1
|
Lee EJ, Sun R, Kim J. The self-renewal function of Oct-4 can be replaced by the EWS-Oct-4 fusion protein in embryonic stem cells. Cell Mol Life Sci 2025; 82:166. [PMID: 40251420 PMCID: PMC12008092 DOI: 10.1007/s00018-025-05701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Octamer-binding transcription factor 4 (Oct-4) is essential for maintenance and pluripotency of embryonic stem (ES) cells. Despite the structural similarities between Oct-4 and its homologs (Oct-1, Oct-2, and Oct-6), these homologs cannot serve as substitutes for Oct-4 when generating stem cell colonies. While nuclear receptor subfamily 5, group A, member 2 (Nr5a2) can temporarily serve as a substitute for Oct-4 during cellular reprogramming, it is insufficient to maintain these functions in ES cells. The EWS-Oct-4 fusion protein, which was identified in human tumors, is a viable alternative that can potentially sustain and enhance ES cell functions. This study used ZHBTc4 ES cells, which have tetracycline-regulated Oct-4 expression, to explore the capabilities of EWS-Oct-4. It employed a variety of assays, including western blotting, immunocytochemistry, RT-PCR, luciferase reporter assays, flow cytometry, and teratoma formation assays. EWS-Oct-4 preserved the self-renewal capacity of Oct-4-null ES cells, as demonstrated by their undifferentiated morphology and increased expression of pluripotency markers such as Sox2, Nanog, and SSEA-1. It also boosted cell proliferation and influenced cell cycle dynamics by downregulating p21 and upregulating Oct-4 target genes, including Rex-1 and fibroblast growth factor-4. Epithelial markers were upregulated and mesenchymal markers were downregulated, suggesting a shift toward an epithelial phenotype. Prominent teratoma formation further confirmed the functionality of EWS-Oct-4 in vivo. The integrity and specific functional domains of EWS-Oct-4 were critical for these effects. Finally, comparative transcriptomic analysis revealed that ES cells expressing EWS-Oct-4 and those expressing Oct-4 had highly similar global gene expression profiles, with distinct variations in differentially expressed genes. These findings indicate that EWS-Oct-4 can effectively replace Oct-4, which has significant implications for advancements in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Eun Joo Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Ruijing Sun
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea.
- Stress-Responding Bionanomaterial Center, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
2
|
Nourreddine S, Doctor Y, Dailamy A, Forget A, Lee YH, Chinn B, Khaliq H, Polacco B, Muralidharan M, Pan E, Zhang Y, Sigaeva A, Hansen JN, Gao J, Parker JA, Obernier K, Clark T, Chen JY, Metallo C, Lundberg E, Ideker T, Krogan N, Mali P. A PERTURBATION CELL ATLAS OF HUMAN INDUCED PLURIPOTENT STEM CELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.03.621734. [PMID: 39574586 PMCID: PMC11580897 DOI: 10.1101/2024.11.03.621734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Towards comprehensively investigating the genotype-phenotype relationships governing the human pluripotent stem cell state, we generated an expressed genome-scale CRISPRi Perturbation Cell Atlas in KOLF2.1J human induced pluripotent stem cells (hiPSCs) mapping transcriptional and fitness phenotypes associated with 11,739 targeted genes. Using the transcriptional phenotypes, we created a minimum distortion embedding map of the pluripotent state, demonstrating rich recapitulation of protein complexes, such as strong co-clustering of MRPL, BAF, SAGA, and Ragulator family members. Additionally, we uncovered transcriptional regulators that are uncoupled from cell fitness, discovering potential novel pluripotency (JOSD1, RNF7) and metabolic factors (ZBTB41). We validated these findings via phenotypic, protein-interaction, and metabolic tracing assays. Finally, we propose a contrastive human-cell engineering framework (CHEF), a machine learning architecture that learns from perturbation cell atlases to predict perturbation recipes that achieve desired transcriptional states. Taken together, our study presents a comprehensive resource for interrogating the regulatory networks governing pluripotency.
Collapse
Affiliation(s)
- Sami Nourreddine
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Yesh Doctor
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yi-Hung Lee
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Becky Chinn
- Department of Bioengineering, University of California San Diego, CA, USA
- School of Medicine, University of California San Diego, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Benjamin Polacco
- Quantitative Biosciences Institute (QBI), University of California San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
| | - Monita Muralidharan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Emily Pan
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Yifan Zhang
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Alina Sigaeva
- Division of Cellular and Clinical Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Jiahao Gao
- School of Medicine, University of California San Diego, CA, USA
| | | | - Kirsten Obernier
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
| | - Timothy Clark
- Department of Medicine, University of Virginia, VA, USA
| | - Jake Y. Chen
- Department of Computer Science, The University of Alabama at Birmingham, VA, USA
| | - Christian Metallo
- Department of Bioengineering, University of California San Diego, CA, USA
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Emma Lundberg
- Department of Bioengineering, Stanford University, CA, USA
- Department of Pathology, Stanford University, CA, USA
| | - Trey Ideker
- Department of Bioengineering, University of California San Diego, CA, USA
- School of Medicine, University of California San Diego, CA, USA
| | - Nevan Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
- Department of Bioengineering and Therapeutics Sciences, University of California San Francisco, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, CA, USA
| |
Collapse
|
3
|
Effect of cigarette smoke condensate on mouse embryo development and expression of pluripotency and apoptotic genes in vitro. ZYGOTE 2022; 30:768-772. [PMID: 36066090 DOI: 10.1017/s0967199421000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to investigate the effect of cigarette smoke condensate (CSC) on in vitro development of mouse embryos. In total 3000 NMRI mice 2PN embryos were divided into six groups (n = 500). The test group was exposed to 20, 40, 80, 160 or 320 μg/ml of CSC. In the control group, CSC was not added to the culture medium during the development of 2PN embryos. The effects of 20 and 80 μg/ml of CSC on genes involved in pluripotency and apoptosis, and also, the aryl hydrocarbon receptor gene was assessed in the blastocysts. Our results showed that CSC had an adverse effect on the viability of mouse embryos at the concentrations of 80, 160 and 320 μg/ml compared with the control group (P < 0.05). In contrast, it had positive effects on the viability of mouse embryos at the concentrations of 20 and 40 μg/ml compared with the control group (P < 0.05). The 20 and 80 μg/ml concentrations of CSC increased the expression of pluripotency, apoptotic, and aryl hydrocarbon receptor genes in the blastocyst embryo stage compared with the control group (P < 0.05). It can be concluded that concentrations higher than 40 μg/ml of CSC have an adverse effect on mouse embryo development in the preimplantation stages. Also, 20 and 80 μg/ml concentrations of CSC have a significant effect on the expression of pluripotency, apoptotic, and the aryl hydrocarbon receptor genes in the blastocyst embryo stage compared with the control group.
Collapse
|
4
|
Feeding role of mouse embryonic fibroblast cells is influenced by genetic background, cell passage and day of isolation. ZYGOTE 2022; 30:550-560. [PMID: 35485762 DOI: 10.1017/s0967199421000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mouse embryonic fibroblast (MEF) cells are commonly used as feeder cells to maintain the pluripotent state of stem cells. MEFs produce growth factors and provide adhesion molecules and extracellular matrix (ECM) compounds for cellular binding. In the present study, we compared the expression levels of Fgf2, Bmp4, ActivinA, Lif and Tgfb1 genes at the mRNA level and the level of Fgf2 protein secretion and Lif cytokine secretion at passages one, three and five of MEFs isolated from 13.5-day-old and 15.5-day-old embryos of NMRI and C57BL/6 mice using real-time PCR and enzyme-linked immunosorbent assay. We observed differences in the expression levels of the studied genes and secretion of the two growth factors in the three passages of MEFs isolated from 13.5-day-old and 15.5-day-old embryos, respectively. These differences were also observed between the NMRI and C57BL/6 strains. The results of this study suggested that researchers should use mice embryos that have different genetic backgrounds and ages, in addition to different MEF passages, when producing MEFs based on the application and type of their study.
Collapse
|
5
|
OCT4, SOX2 and NANOG co-regulate glycolysis and participate in somatic induced reprogramming. Cytotechnology 2022; 74:371-383. [DOI: 10.1007/s10616-022-00530-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
|
6
|
Wu L, Xu S, Cheng X, Zhang L, Wang Y, Wu J, Bao J, Yu H, Lu R. Capsaicin inhibits the stemness of anaplastic thyroid carcinoma cells by triggering autophagy-lysosome mediated OCT4A degradation. Phytother Res 2022; 36:938-950. [PMID: 35076979 DOI: 10.1002/ptr.7361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
Capsaicin (CAP) is a well-known anti-cancer agent. Recently, we reported capsaicin-induced apoptosis in anaplastic thyroid cancer (ATC) cells. It is well accepted that the generation of cancer stem cells (CSCs) is responsible for the dedifferentiation of ATC, the most lethal subtype of thyroid cancer with highly dedifferentiation status. Whether CAP inhibited the ATC growth through targeting CSCs needed further investigation. In the present study, CAP was found to induce autophagy in ATC cells through TRPV1 activation and subsequent calcium influx. Meanwhile, CAP dose-dependently decreased the sphere formation capacity of ATC cells. The stemness-inhibitory effect of CAP was further by extreme limiting dilution analysis (ELDA). CAP significantly decreased the protein level of OCT4A in both 8505C and FRO cells. Furthermore, CAP-induced OCT4A degradation was reversed by autophagy inhibitors 3-MA and chloroquine, BAPTA-AM and capsazepine, but not proteasome inhibitor MG132. Collectively, our study firstly showed CAP suppressed the stemness of ATC cells partially via calcium-dependent autophagic degradation of OCT4A. Our study lent credence to the feasible application of capsaicin in limiting ATC stemness.
Collapse
Affiliation(s)
- Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Li F, Ye Y, Lei X, Zhang W. Effects of Microgravity on Early Embryonic Development and Embryonic Stem Cell Differentiation: Phenotypic Characterization and Potential Mechanisms. Front Cell Dev Biol 2021; 9:797167. [PMID: 34926474 PMCID: PMC8675004 DOI: 10.3389/fcell.2021.797167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
With the development of science and technology, mankind’s exploration of outer space has increased tremendously. Settling in outer space or on other planets could help solve the Earth’s resource crisis, but such settlement will first face the problem of reproduction. There are considerable differences between outer space and the Earth’s environment, with the effects of gravity being one of the most significant. Studying the possible effects and underlying mechanisms of microgravity on embryonic stem cell (ESC) differentiation and embryonic development could help provide solutions to healthy living and reproduction in deep space. This article summarizes recent research progress on the effects of microgravity on ESCs and early embryonic development and proposes hypotheses regarding the potential mechanisms. In addition, we discuss the controversies and key questions in the field and indicate directions for future research.
Collapse
Affiliation(s)
- Feng Li
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.,Department of Physiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
8
|
El-Mouelhy ATM, Nasry SA, Abou El-Dahab O, Sabry D, Fawzy El-Sayed K. In vitro evaluation of the effect of the electronic cigarette aerosol, Cannabis smoke, and conventional cigarette smoke on the properties of gingival fibroblasts/gingival mesenchymal stem cells. J Periodontal Res 2021; 57:104-114. [PMID: 34748642 DOI: 10.1111/jre.12943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The current study aimed to evaluate the effect of electronic cigarette (EC) aerosol, Cannabis, and conventional cigarettes smoke on gingival fibroblast/gingival mesenchymal stem cells' (GF/G-MSCs) of never smokers. MATERIAL AND METHODS Human GF/G-MSCs (n = 32) were isolated and characterized using light microscopy, flow cytometry, and multilineage differentiation ability. Following the application of aerosol/smoke extracts, GF/G-MSCs were evaluated for cellular proliferation; colony-forming units (CFU-F) ability; cellular viability (using the MTT assay); mitochondrial depolarization using JC-1 dye; and genes' expression of ATM, p21, Oct4, and Nanog. RESULTS Colony-forming units and viability (OD 450 nm) were significantly reduced upon exposure to Cannabis (mean ± SD; 5.5 ± 1.5; p < .00001, 0.47 ± 0.21; p < .05) and cigarettes smoke (2.3 ± 1.2 p < .00001, 0.59 ± 0.13, p < .05), while EC aerosol showed no significant reduction (10.8 ± 2.5; p = .05, 1.27 ± 0.47; p > .05) compared to the control group (14.3 ± 3, 1.33 ± 0.12). Significantly upregulated expression of ATM, Oct4, and Nanog (gene copies/GADPH) was noticed with Cannabis (1.5 ± 0.42, 0.82 ± 0.44, and 1.54 ± 0.52, respectively) and cigarettes smoke (1.52 ± 0.75, 0.7 ± 0.14, and 1.48 ± 0.79, respectively; p < .05), whereas EC aerosol caused no statistically significant upregulation of these genes compared to the control group (0.63 ± 0.1, 0.31 ± 0.12, and 0.64 ± 0.46, respectively; p > .05). The p21 gene was not significantly downregulated in EC aerosol (1.22 ± 0.46), Cannabis (0.71 ± 0.24), and cigarettes smokes (0.83 ± 0.54) compared to the control group (p = .053, analysis of variance). CONCLUSION Cannabis and cigarettes smoke induce DNA damage and cellular dedifferentiation and negatively affect the cellular proliferation and viability of GF/G-MSCs of never smokers, whereas EC aerosol showed a significantly lower impact on these properties.
Collapse
Affiliation(s)
- Abir Tarek Mansour El-Mouelhy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Department of Surgery and Oral Medicine, National Research Centre, Cairo, Egypt
| | - Sherine Adel Nasry
- Department of Surgery and Oral Medicine, National Research Centre, Cairo, Egypt
| | - Omnia Abou El-Dahab
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, Cairo University School of Medicine, Cairo, Egypt.,Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University, Cairo, Egypt
| | - Karim Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Stem Cell and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany
| |
Collapse
|
9
|
Vaziri N, Shariati L, Javanmard SH. Leukemia inhibitory factor: A main controller of breast cancer. J Biosci 2020. [DOI: 10.1007/s12038-020-00115-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Liu H, Liu Z, Gao M, Hu X, Sun R, Shen X, Liu F, Shen J, Shan Z, Lei L. The Effects of Daxx Knockout on Pluripotency and Differentiation of Mouse Induced Pluripotent Stem Cells. Cell Reprogram 2020; 22:90-98. [PMID: 32150692 DOI: 10.1089/cell.2019.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology refers to the reprogramming of terminally differentiated somatic cells into pluripotent stem cells by introducing specific transcription factors that are known to regulate pluripotency, including Oct4, Sox2, Klf4, and c-Myc. In this study, we reprogrammed the primary fibroblasts isolated from the Daxxflox/flox mice, which carry the Oct4-green fluorescent protein reporter, and employed wild-type littermates as a control to induce iPSCs, then knocked out Daxx by infecting with Cre virus at the cellular level. The pluripotency and self-renewal capacity of iPSCs were determined. In addition, Daxx deletion altered the pluripotency marker (Nanog, Oct4) expression and displayed neural differentiation defects. Particularly, by performing transcriptome analysis, we observed that numerous ribosome biogenesis-related genes were altered, and quantitative polymerase chain reaction revealed that the expression of rDNA-related genes, 47S and 18S, was elevated after Daxx deletion. Finally, we illustrated that the expression of the neurodevelopment-related gene was upregulated both in iPSCs and differentiated neurospheres. Taken together, we demonstrated that Daxx knockout promotes the expression of rDNA, pluripotency, and neurodevelopment genes, which may improve the differentiation abilities of mouse iPSCs (miPSCs).
Collapse
Affiliation(s)
- Hui Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Zhaojun Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Meng Gao
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Xinghui Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Feng Liu
- Department of Breast Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Jingling Shen
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Clemente-Periván SI, Gómez-Gómez Y, Leyva-Vázquez MA, Lagunas-Martínez A, Organista-Nava J, Illades-Aguiar B. Role of Oct3/4 in Cervical Cancer Tumorigenesis. Front Oncol 2020; 10:247. [PMID: 32219062 PMCID: PMC7079573 DOI: 10.3389/fonc.2020.00247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Cervical cancer (CC) is the fourth most common type of cancer that affects women. Compared to other types of cancer, CC has a high mortality rate in women worldwide. Several factors contribute to the development of CC, but persistent high-risk human papillomavirus infection is the main etiologic agent associated with the development of CC. Moreover, several studies reported that alterations in the expression of transcription factors present in a small subpopulation of cells within tumors called cancer stem cells (CSCs), which contribute to the development of CC by promoting tumorigenicity and metastasis. These transcription factors affect self-renewal and maintenance of pluripotency and differentiation in stem cells. OCT3/4 belongs to the family of transcription factors with the POU domain. It consists of five exons and can be edited by alternative splicing into three main transcripts: OCT3/4A, OCT3/4B, and OCT3/4B1. The OCT3/4 expression in CSCs promotes carcinogenesis and the development of malignant tumors, and the loss of expression leads to the loss of self-renewal and proliferation and favors apoptosis. This review describes the main roles of OCT3/4 in CC and its importance in several biological processes that contribute to the development of CC and may serve as molecular targets to improve prognosis of CC.
Collapse
Affiliation(s)
- Sayuri Itzel Clemente-Periván
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Yazmín Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Alfredo Lagunas-Martínez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| |
Collapse
|
12
|
Naddafpour A, Ghazvini Zadegan F, Hajian M, Hosseini SM, Jafarpour F, Rahimi M, Habibi R, Nasr Esfahani MH. Effects of abundances of OCT-4 mRNA transcript on goat pre-implantation embryonic development. Anim Reprod Sci 2020; 215:106286. [PMID: 32216939 DOI: 10.1016/j.anireprosci.2020.106286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
Unlike in mice, the function of pluripotent markers in early embryonic development of domestic animals remains to be elucidated and this may account for the failure to establish embryonic stem cell lines for these species. To study the functions of the OCT-4 protein which has important actions in maintenance of pluripotent and self-renewal processes during early embryonic development, there was induced reduction in relative abundance of OCT-4 mRNA transcript during goat early embryonic development by using RNA interference techniques. The injection of OCT-4 siRNA into goat IVF presumptive zygotes resulted in a decrease in the relative abundance of OCT-4 mRNA transcript; however, there was development of these embryos to the blastocyst stage at the same rate as there was in the control group. The blastocysts from the treated groups had a similar number of TE, ICM, and total cells compared to those from the control group. Although there was a greater relative abundance of NANOG, REX1, and CDX2 mRNA transcript in the embryos injected with siRNA at the 8-16 cell stage, the relative transcript abundances were similar for the control and treatment groups at the blastocyst stage. The relative abundance of SOX2 mRNA transcript was similar for the treatment and control group. It, therefore, is concluded that inhibition of abundances of OCT-4 mRNA transcript to about 20 % of that of the untreated control group did not affect blastocyst formation rate in goats. The functions of OCT-4 in maintaining ICM and TE integrity, however, remains to be assessed.
Collapse
Affiliation(s)
- Azadeh Naddafpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, University of Science and Culture, Tehran, Iran
| | - Faezeh Ghazvini Zadegan
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sayyed Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Razieh Habibi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, University of Science and Culture, Tehran, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
13
|
Neuronal differentiation defects in induced pluripotent stem cells derived from a Prader-Willi syndrome patient. Neurosci Lett 2019; 703:162-167. [PMID: 30902571 DOI: 10.1016/j.neulet.2019.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/24/2022]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by a lack of expression of paternally inherited genes located in the15q11.2-q13 chromosome region. An obstacle in the study of human neurological diseases is the inaccessibility of brain material. Generation of induced pluripotent stem cells (iPSC cells) from patients can partially overcome this problem. We characterized the cellular differentiation potential of iPS cells derived from a PWS patient with a paternal 15q11-q13 deletion. A gene tip transcriptome array revealed very low expression of genes in the 15q11.2-q13 chromosome region, including SNRPN, SNORD64, SNORD108, SNORD109, and SNORD116, in iPS cells of this patient compared to that in control iPS cells. Methylation-specific PCR analysis of the SNRPN gene locus indicated that the PWS region of the paternal chromosome was deleted or methylated in iPS cells from the patient. Both the control and patient-derived iPS cells were positive for Oct3/4, a key marker of pluripotent cells. After 11 days of differentiation into neural stem cells (NSCs), Oct3/4 expression in both types of iPS cells was decreased. The NSC markers Pax6, Sox1, and Nestin were induced in NSCs derived from control iPS cells, whereas induction of these NSC markers was not apparent in NSCs derived from iPS cells from the patient. After 7 days of differentiation into neurons, neuronal cells derived from control iPS cells were positive for βIII-tubulin and MAP2. However, neuronal cells derived from patient iPS cells only included a few immunopositive neurons. The mRNA expression levels of the neuronal marker βIII-tubulin were increased in neuronal cells derived from control iPS cells, while the expression levels of βIII-tubulin in neuronal cells derived from patient iPS cells were similar to those of NSCs. These results indicate that iPS cells derived from a PWS patient exhibited neuronal differentiation defects.
Collapse
|
14
|
Assadollahi V, Mohammadi E, Fathi F, Hassanzadeh K, Erfan MBK, Soleimani F, Banafshi O, Yosefi F, Allahvaisi O. Effects of cigarette smoke condensate on proliferation and pluripotency gene expression in mouse embryonic stem cells. J Cell Biochem 2018; 120:4071-4080. [PMID: 30269371 DOI: 10.1002/jcb.27692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of blastocysts. They can be used as valuable experimental models to test the effects of drugs, chemicals, and environmental contaminants such as cigarette smoke condensate (CSC) on preimplantation embryo development. The aim of this study was to evaluate the effect of CSC on ESCs derived from mice with different genetic backgrounds and maternal ages. METHODS The study groups consisted of mouse ESCs (mESCs) obtained from three sources: blastocysts developed from fertilized oocytes of two-month-old (2-C57) and six-month-old (6-C57) C57BL/6 inbred mice and those developed from fertilized oocytes of two-month-old (2-NMRI) NMRI outbred mice. The groups of mESCs were exposed to 0.04, 4, and 40 μg/mL CSC. After exposure, we measured cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and real-time polymerase chain reaction for changes in expressions of Oct4, Sox2, Nanog, Ahr, Bax, Bcl2, TFAM, and POLG. The cell doubling time (DT) of these populations was also determined. RESULTS We observed that CSC changed proliferation and DT in the 2-C57 and 6-C57 cells. There was no change in 2-NMRI cells. Exposure to CSC caused changes in the gene expressions and induced apoptosis in all three cell lines. CONCLUSION Based on the results of the study, it can be concluded that CSC has an effect on the viability, DT and gene expression patterns in mouse ESCs and its effects vary based on the genetic background and maternal age of isolated mouse ESCs.
Collapse
Affiliation(s)
- Vahideh Assadollahi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Occupational Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohamad Bager Khadem Erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farzad Soleimani
- Department of Biology, School of Natural Science, University of Tabriz, Tabriz, Iran
| | - Omid Banafshi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fayeg Yosefi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ozra Allahvaisi
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
15
|
Lee SW, Wu G, Choi NY, Lee HJ, Bang JS, Lee Y, Lee M, Ko K, Schöler HR, Ko K. Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells. Mol Cells 2018; 41:631-638. [PMID: 29991673 PMCID: PMC6078851 DOI: 10.14348/molcells.2018.2294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/10/2018] [Accepted: 06/25/2018] [Indexed: 01/12/2023] Open
Abstract
Spermatogonial stem cells (SSCs) derived from mouse testis are unipotent in regard of spermatogenesis. Our previous study demonstrated that SSCs can be fully reprogrammed into pluripotent stem cells, so called germline-derived pluripotent stem cells (gPS cells), on feeder cells (mouse embryonic fibroblasts), which supports SSC proliferation and induction of pluripotency. Because of an uncontrollable microenvironment caused by interactions with feeder cells, feeder-based SSC reprogramming is not suitable for elucidation of the self-reprogramming mechanism by which SSCs are converted into pluripotent stem cells. Recently, we have established a Matrigel-based SSC expansion culture system that allows long-term SSC proliferation without mouse embryonic fibroblast support. In this study, we developed a new feeder-free SSC self-reprogramming protocol based on the Matrigel-based culture system. The gPS cells generated using a feeder-free reprogramming system showed pluripotency at the molecular and cellular levels. The differentiation potential of gPS cells was confirmed in vitro and in vivo. Our study shows for the first time that the induction of SSC pluripotency can be achieved without feeder cells. The newly developed feeder-free self-reprogramming system could be a useful tool to reveal the mechanism by which unipotent cells are self-reprogrammed into pluripotent stem cells.
Collapse
Affiliation(s)
- Seung-Won Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029,
Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029,
Korea
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster,
Germany
| | - Na Young Choi
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029,
Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029,
Korea
| | - Hye Jeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029,
Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029,
Korea
| | - Jin Seok Bang
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029,
Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029,
Korea
| | - Yukyeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029,
Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029,
Korea
| | - Minseong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029,
Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029,
Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974,
Korea
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster,
Germany
- Medical Faculty, University of Münster, Münster,
Germany
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029,
Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029,
Korea
- The University Open-Innovation Center, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
16
|
Xue R, Jia K, Wang J, Yang L, Wang Y, Gao L, Hao J. A Rising Star in Pancreatic Diseases: Pancreatic Stellate Cells. Front Physiol 2018; 9:754. [PMID: 29967585 PMCID: PMC6015921 DOI: 10.3389/fphys.2018.00754] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
Pancreatic stellate cell (PSC) is a type of pluripotent cell located between pancreatic lobules and the surrounding area of acinars. When activated, PSC can be transformed into myofibroblast-like cell. A number of evidences suggest that activated PSC is the main source of the accumulation of extracellular matrix (ECM) protein under the pathological conditions, which lead to pancreatic fibrosis in chronic pancreatitis and pancreatic cancer. Recent studies have found that PSC also plays an important role in the endocrine cell function, islet fibrosis and diabetes. In order to provide new strategies for the treatment of pancreatic diseases, this paper systematically summarizes the recent researches about the biological behaviors of PSC, including its stem/progenitor cell characteristics, secreted exosomes, cellular senescence, epithelial mesenchymal transformation (EMT), energy metabolism and direct mechanical reprogramming.
Collapse
Affiliation(s)
- Ran Xue
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kai Jia
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianxin Wang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lixin Yang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanbin Wang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lingyun Gao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Samoilova EM, Kalsin VA, Kushnir NM, Chistyakov DA, Troitskiy AV, Baklaushev VP. Adult Neural Stem Cells: Basic Research and Production Strategies for Neurorestorative Therapy. Stem Cells Int 2018; 2018:4835491. [PMID: 29760724 PMCID: PMC5901847 DOI: 10.1155/2018/4835491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
Over many decades, constructing genetically and phenotypically stable lines of neural stem cells (NSC) for clinical purposes with the aim of restoring irreversibly lost functions of nervous tissue has been one of the major goals for multiple research groups. The unique ability of stem cells to maintain their own pluripotent state even in the adult body has made them into the choice object of study. With the development of the technology for induced pluripotent stem cells (iPSCs) and direct transdifferentiation of somatic cells into the desired cell type, the initial research approaches based on the use of allogeneic NSCs from embryonic or fetal nervous tissue are gradually becoming a thing of the past. This review deals with basic molecular mechanisms for maintaining the pluripotent state of embryonic/induced stem and reprogrammed somatic cells, as well as with currently existing reprogramming strategies. The focus is on performing direct reprogramming while bypassing the stage of iPSCs which is known for genetic instability and an increased risk of tumorigenesis. A detailed description of various protocols for obtaining reprogrammed neural cells used in the therapy of the nervous system pathology is also provided.
Collapse
Affiliation(s)
- E. M. Samoilova
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
| | - V. A. Kalsin
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
| | - N. M. Kushnir
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
| | - D. A. Chistyakov
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - A. V. Troitskiy
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
- Institute for Advanced Studies, Federal Biomedical Agency of Russian Federation, Moscow, Russia
| | - V. P. Baklaushev
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
- Institute for Advanced Studies, Federal Biomedical Agency of Russian Federation, Moscow, Russia
| |
Collapse
|
18
|
Kavyasudha C, Macrin D, ArulJothi KN, Joseph JP, Harishankar MK, Devi A. Clinical Applications of Induced Pluripotent Stem Cells - Stato Attuale. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1079:127-149. [PMID: 29480445 DOI: 10.1007/5584_2018_173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In an adult human body, somatic stem cells are present in small amounts in almost all organs with the function of general maintenance and prevention of premature aging. But, these stem cells are not pluripotent and are unable to regenerate large cellular loss caused by infarctions or fractures especially in cells with limited replicative ability such as neurons and cardiomyocytes. These limitations gave rise to the idea of inducing pluripotency to adult somatic cells and thereby restoring their regeneration, replication and plasticity. Though many trials and research were focused on inducing pluripotency, a solid breakthrough was achieved by Yamanaka in 2006. Yamanaka's research identified 4 genes (OCT-4, SOX-2, KLF-4 and c-MYC) as the key requisite for inducing pluripotency in any somatic cells (iPSCs). Our study, reviews the major methods used for inducing pluripotency, differentiation into specific cell types and their application in both cell regeneration and disease modelling. We have also highlighted the current status of iPSCs in clinical applications by analysing the registered clinical trials. We believe that this review will assist the researchers to decide the parameters such as induction method and focus their efforts towards clinical application of iPSCs.
Collapse
Affiliation(s)
- Chavali Kavyasudha
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Dannie Macrin
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - K N ArulJothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - M K Harishankar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India.
| |
Collapse
|
19
|
Lu H, Jiang J, Gao Y. The cloning and activity of human Hes1 gene promoter. Mol Med Rep 2017; 17:3164-3169. [PMID: 29257279 DOI: 10.3892/mmr.2017.8240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/15/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to obtain and analyze the activity of the human Hes1 gene promoter. The genomic DNA of human HeLa cell was used as template, polymerase chain reaction (PCR) was used to amplify the 5' end sequence of Hes1 gene and then the amplified segment was connected to pMD18‑T vector. Subsequently, double enzyme digestion was used for identification and the sequence was detected; the promoter with the correct sequence was inserted into pGL3‑Basic, and the sequence was identified by double enzyme digestion. The recombinant DNA with correct sequence was transiently transfected into cervical cancer cells, and the dual luciferase reporter gene assay system was used to detect the activity of the promoter. The results demonstrated that the human Hes1 gene promoter amplified by PCR was the same as that of the sequence in the gene bank, and the dual luciferase reporter gene assay system demonstrated that there was promoter activity in cervical cancer cells. In conclusion, the Hes1 luciferase reporter recombinant vector was successfully established and transfected into HeLa cells to verify that it has promoter activity, and the core area of the promoter has several tumor‑promoting and tumor suppressor genes. This provides a basis for understanding the regulatory mechanism of Hes1 transcription and translation.
Collapse
Affiliation(s)
- Hai Lu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jinqun Jiang
- Clinical Laboratory, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
20
|
Bae KB, Yu DH, Lee KY, Yao K, Ryu J, Lim DY, Zykova TA, Kim MO, Bode AM, Dong Z. Serine 347 Phosphorylation by JNKs Negatively Regulates OCT4 Protein Stability in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 9:2050-2064. [PMID: 29153991 PMCID: PMC5785688 DOI: 10.1016/j.stemcr.2017.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 11/23/2022] Open
Abstract
The POU transcription factor OCT4 is critical for maintaining the undifferentiated state of embryonic stem cells (ESCs) and generating induced pluripotent stem cells (iPSCs), but its precise mechanisms of action remain poorly understood. Here, we investigated the role of OCT4 phosphorylation in the biological functions of ESCs. We observed that c-Jun N-terminal kinases (JNKs) directly interacted with and phosphorylated OCT4 at serine 347, which inhibited the transcriptional activity of OCT4. Moreover, phosphorylation of OCT4 induced binding of FBXW8, which reduced OCT4 protein stability and enhanced its proteasomal degradation. We also found that the mutant OCT4 (S347A) might delay the differentiation process of mouse ESCs and enhance the efficiency of generating iPSCs. These results demonstrated that OCT4 phosphorylation on serine 347 by JNKs plays an important role in its stability, transcriptional activities, and self-renewal of mouse ESCs. JNKs interact with and phosphorylate OCT4 at serine 347 Serine 347 phosphorylation inhibits OCT4 transcriptional activity and stability FBXW8 can interact with the OCT4 protein phosphorylated at serine 347 The differentiation of mouse ESCs is delayed in the presence of OCT4 (S347A)
Collapse
Affiliation(s)
- Ki Beom Bae
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Kun Yeong Lee
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Ke Yao
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Tatyana A Zykova
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Myoung Ok Kim
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA; The School of Animal BT Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA.
| |
Collapse
|
21
|
Picot T, Kesr S, Wu Y, Aanei CM, Flandrin-Gresta P, Tondeur S, Tavernier E, Wattel E, Guyotat D, Campos L. Potential Role of OCT4 in Leukemogenesis. Stem Cells Dev 2017; 26:1637-1647. [DOI: 10.1089/scd.2017.0134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Tiphanie Picot
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Sanae Kesr
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Yuenv Wu
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Carmen Mariana Aanei
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Pascale Flandrin-Gresta
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Sylvie Tondeur
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Emmanuelle Tavernier
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
- Département d'Hématologie et Thérapie Cellulaire, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France
| | - Eric Wattel
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Denis Guyotat
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
- Département d'Hématologie et Thérapie Cellulaire, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France
| | - Lydia Campos
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| |
Collapse
|
22
|
Abstract
In mammalian development, primordial germ cells (PGCs) represent the initial population of cells that are committed to the germ cell lineage. PGCs segregate early in development, triggered by signals from the extra-embryonic ectoderm. They are distinguished from surrounding cells by their unique gene expression patterns. Some of the more common genes used to identify them are Blimp1, Oct3/4, Fragilis, Stella, c-Kit, Mvh, Dazl and Gcna1. These genes are involved in regulating their migration and differentiation, and in maintaining the pluripotency of these cells. Recent research has demonstrated the possibility of obtaining PGCs, and subsequently, mature germ cells from a starting population of embryonic stem cells (ESCs) in culture. This phenomenon has been investigated using a variety of methods, and ESC lines of both mouse and human origin. Embryonic stem cells can differentiate into germ cells of both the male and female phenotype and in one case has resulted in the birth of live pups from the fertilization of oocytes with ESC derived sperm. This finding leads to the prospect of using ESC derived germ cells as a treatment for sterility. This review outlines the evolvement of germ cells from ESCs in vitro in relation to in vivo events.
Collapse
Affiliation(s)
- Deshira Saiti
- Monash Immunology and Stem Cell Laboratories, Level 3, STRIP 1 – Buildings 75, Monash University, Wellington Rd., Clayton, Australia, 3800
| | - Orly Lacham-Kaplan
- Monash Immunology and Stem Cell Laboratories, Level 3, STRIP 1 – Buildings 75, Monash University, Wellington Rd., Clayton, Australia, 3800
| |
Collapse
|
23
|
Bao S, Tang WW, Wu B, Kim S, Li J, Li L, Kobayashi T, Lee C, Chen Y, Wei M, Li S, Dietmann S, Tang F, Li X, Surani MA. Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Cell Res 2017; 28:22-34. [PMID: 29076502 PMCID: PMC5752839 DOI: 10.1038/cr.2017.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 12/21/2022] Open
Abstract
Naive hypomethylated embryonic pluripotent stem cells (ESCs) are developmentally closest to the preimplantation epiblast of blastocysts, with the potential to contribute to all embryonic tissues and the germline, excepting the extra-embryonic tissues in chimeric embryos. By contrast, epiblast stem cells (EpiSCs) resembling postimplantation epiblast are relatively more methylated and show a limited potential for chimerism. Here, for the first time, we reveal advanced pluripotent stem cells (ASCs), which are developmentally beyond the pluripotent cells in the inner cell mass but with higher potency than EpiSCs. Accordingly, a single ASC contributes very efficiently to the fetus, germline, yolk sac and the placental labyrinth in chimeras. Since they are developmentally more advanced, ASCs do not contribute to the trophoblast. ASCs were derived from blastocysts in two steps in a chemically defined medium supplemented with Activin A and basic fibroblast growth factor, followed by culturing in ABCL medium containing ActA, BMP4, CHIR99021 and leukemia inhibitory factor. Notably, ASCs exhibit a distinct transcriptome with the expression of both naive pluripotency genes, as well as mesodermal somatic genes; Eomes, Eras, Tdgf1, Evx1, hand1, Wnt5a and distinct repetitive elements. Conversion of established ESCs to ASCs is also achievable. Importantly, ASCs exhibit a stable hypermethylated epigenome and mostly intact imprints as compared to the hypomethylated inner cell mass of blastocysts and naive ESCs. Properties of ASCs suggest that they represent cells at an intermediate cellular state between the naive and primed states of pluripotency.
Collapse
Affiliation(s)
- Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Walfred Wc Tang
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK
| | - Baojiang Wu
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shinseog Kim
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK.,Current address: Center for Genomic Integrity, Institute for Basic Science, Ulsan National Institute of Science and Technology, Ulsan 44689, Republic of Korea
| | - Jingyun Li
- BIOPIC, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lin Li
- BIOPIC, School of Life Sciences, Peking University, Beijing 100871, China
| | - Toshihiro Kobayashi
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK
| | - Caroline Lee
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK
| | - Yanglin Chen
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Mengyi Wei
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shudong Li
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sabine Dietmann
- Wellcome Trust-Medical Research Council Stem Cell Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 3EG, UK
| | - Fuchou Tang
- BIOPIC, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
24
|
Expression and Role of Oct3/4 in Injury-Repair Process of Rat Alveolar Epithelium after 5-Fu Treatment. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3856839. [PMID: 28948165 PMCID: PMC5602623 DOI: 10.1155/2017/3856839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/03/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We aimed to investigate how the embryonic stem cell-related gene Oct3/4 changes during the injury-repair process of distal pulmonary epithelium induced by 5-fluorouracil (5-Fu). METHODS We have developed the lung injury model induced by 5-Fu and observed the dynamic changes of Oct3/4 by indirect immunofluorescence, Western blot, and quantitative real-time PCR. Immunofluorescence double staining was used to compare the positions of Oct3/4(+) cells and other reported alveolar epithelial stem cells. RESULTS Oct3/4(+) cells were not found in normal rat lung epithelial cells. However, after treatment with 5-Fu, Oct3/4(+) cells appeared at 12 h, reached the peak at 24 h, then decreased at 48 h, and eventually disappeared at 72 h. Oct3/4 was localized in the nucleus. We found that the sites of Clara cell secretory protein and surfactant protein-C dual positive cells were apparently different from Oct3/4(+) cells. CONCLUSIONS Our results revealed that, in rat alveolar epithelium, expression of Oct3/4 could be induced after treatment with 5-Fu, then decreased gradually, and was silenced following the alveolar epithelial differentiation. We hold that Oct3/4(+) cells are lung stem cells, which can provide new evidence for identification and isolation of lung epithelial stem cells.
Collapse
|
25
|
Saito Y, Kunitomi A, Seki T, Tohyama S, Kusumoto D, Takei M, Kashimura S, Hashimoto H, Yozu G, Motoda C, Shimojima M, Egashira T, Oda M, Fukuda K, Yuasa S. Epigenetic barrier against the propagation of fluctuating gene expression in embryonic stem cells. FEBS Lett 2017; 591:2879-2889. [PMID: 28805244 DOI: 10.1002/1873-3468.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022]
Abstract
The expression of pluripotency genes fluctuates in a population of embryonic stem (ES) cells and the fluctuations in the expression of some pluripotency genes correlate. However, no correlation in the fluctuation of Pou5f1, Zfp42, and Nanog expression was observed in ES cells. Correlation between Pou5f1 and Zfp42 fluctuations was demonstrated in ES cells containing a knockout in the NuRD component Mbd3. ES cells containing a triple knockout in the DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b showed correlation between the fluctuation of Pou5f1, Zfp42, and Nanog gene expression. We suggest that an epigenetic barrier is key to preventing the propagation of fluctuating pluripotency gene expression in ES cells.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Kunitomi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Takei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kashimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Gakuto Yozu
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Chikaaki Motoda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Shimojima
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Egashira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Picot T, Aanei CM, Fayard A, Flandrin-Gresta P, Tondeur S, Gouttenoire M, Tavernier-Tardy E, Wattel E, Guyotat D, Campos L. Expression of embryonic stem cell markers in acute myeloid leukemia. Tumour Biol 2017; 39:1010428317716629. [PMID: 28718379 DOI: 10.1177/1010428317716629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia is driven by leukemic stem cells which can be identified by cross lineage expression or arrest of differentiation compared to normal hematopoietic stem cells. Self-renewal and lack of differentiation are also features of stem cells and have been associated with the expression of embryonic genes. The aim of our study was to evaluate the expression of embryonic antigens (OCT4, NANOG, SOX2, SSEA1, SSEA3) in hematopoietic stem cell subsets (CD34+CD38- and CD34+CD38+) from normal bone marrows and in samples from acute myeloid leukemia patients. We observed an upregulation of the transcription factors OCT4 and SOX2 in leukemic cells as compared to normal cells. Conversely, SSEA1 protein was downregulated in leukemic cells. The expression of OCT4, SOX2, and SSEA3 was higher in CD34+CD38- than in CD34+CD38+ subsets in leukemic cells. There was no correlation with biological characteristics of the leukemia. We evaluated the prognostic value of marker expression in 69 patients who received an intensive treatment. The rate of complete remission was not influenced by the level of expression of markers. Overall survival was significantly better for patients with high SOX2 levels, which was unexpected because of the inverse correlation with favorable genetic subtypes. These results prompt us to evaluate the potential role of these markers in leukemogenesis and to test their relevance for better leukemic stem cell identification.
Collapse
Affiliation(s)
- Tiphanie Picot
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Carmen Mariana Aanei
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Amandine Fayard
- 3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Pascale Flandrin-Gresta
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Sylvie Tondeur
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Marina Gouttenoire
- 3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Emmanuelle Tavernier-Tardy
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.,3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Eric Wattel
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Denis Guyotat
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.,3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Lydia Campos
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| |
Collapse
|
27
|
Chen CY, Cheng YY, Yen CYT, Hsieh PCH. Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol Life Sci 2017; 74:1805-1817. [PMID: 27999898 PMCID: PMC11107721 DOI: 10.1007/s00018-016-2438-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
Abstract
Mouse embryonic stem cells (mESCs), characterized by their pluripotency and capacity for self-renewal, are driven by a complex gene expression program composed of several regulatory mechanisms. These mechanisms collaborate to maintain the delicate balance of pluripotency gene expression and their disruption leads to loss of pluripotency. In this review, we provide an extensive overview of the key pillars of mESC pluripotency by elaborating on the various essential transcription factor networks and signaling pathways that directly or indirectly support this state. Furthermore, we consider the latest developments in the role of epigenetic regulation, such as noncoding RNA signaling or histone modifications.
Collapse
Affiliation(s)
- Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Christopher Y T Yen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan.
- Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University and Hospital, Taipei, 100, Taiwan.
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
28
|
Chandrika G, Natesh K, Ranade D, Chugh A, Shastry P. Mammalian target of rapamycin inhibitors, temsirolimus and torin 1, attenuate stemness-associated properties and expression of mesenchymal markers promoted by phorbol-myristate-acetate and oncostatin-M in glioblastoma cells. Tumour Biol 2017; 39:1010428317695921. [PMID: 28351321 DOI: 10.1177/1010428317695921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway is crucial for tumor survival, proliferation, and progression, making it an attractive target for therapeutic intervention. In glioblastoma, activated mammalian target of rapamycin promotes invasive phenotype and correlates with poor patient survival. A wide range of mammalian target of rapamycin inhibitors are currently being evaluated for cytotoxicity and anti-proliferative activity in various tumor types but are not explored sufficiently for controlling tumor invasion and recurrence. We recently reported that mammalian target of rapamycin inhibitors-rapamycin, temsirolimus, torin 1, and PP242-suppressed invasion and migration promoted by tumor necrosis factor-alpha and phorbol-myristate-acetate in glioblastoma cells. As aggressive invasion and migration of tumors are associated with mesenchymal and stem-like cell properties, this study aimed to examine the effect of mammalian target of rapamycin inhibitors on these features in glioblastoma cells. We demonstrate that temsirolimus and torin 1 effectively reduced the constitutive as well as phorbol-myristate-acetate/oncostatin-M-induced expression of mesenchymal markers (fibronectin, vimentin, and YKL40) and neural stem cell markers (Sox2, Oct4, nestin, and mushashi1). The inhibitors significantly abrogated the neurosphere-forming capacity induced by phorbol-myristate-acetate and oncostatin-M. Furthermore, we demonstrate that the drugs dephosphorylated signal transducer and activator transcription factor 3, a major regulator of mesenchymal and neural stem cell markers implicating the role of signal transducer and activator transcription factor 3 in the inhibitory action of these drugs. The findings demonstrate the potential of mammalian target of rapamycin inhibitors as "stemness-inhibiting drugs" and a promising therapeutic approach to target glioma stem cells.
Collapse
Affiliation(s)
- Goparaju Chandrika
- 1 National Centre for Cell Science (NCCS), Savitribai Phule Pune University, Pune, India
| | - Kumar Natesh
- 1 National Centre for Cell Science (NCCS), Savitribai Phule Pune University, Pune, India
| | - Deepak Ranade
- 2 Department of Neurosurgery, D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Ashish Chugh
- 3 Department of Neurosurgery, CIMET's Inamdar Multispecialty Hospital, Pune, India
| | - Padma Shastry
- 1 National Centre for Cell Science (NCCS), Savitribai Phule Pune University, Pune, India
| |
Collapse
|
29
|
Mora C, Serzanti M, Consiglio A, Memo M, Dell'Era P. Clinical potentials of human pluripotent stem cells. Cell Biol Toxicol 2017; 33:351-360. [PMID: 28176010 DOI: 10.1007/s10565-017-9384-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.
Collapse
Affiliation(s)
- Cristina Mora
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Marialaura Serzanti
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Antonella Consiglio
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Maurizio Memo
- Pharmacology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
| |
Collapse
|
30
|
Barnawi R, Al-Khaldi S, Majed Sleiman G, Sarkar A, Al-Dhfyan A, Al-Mohanna F, Ghebeh H, Al-Alwan M. Fascin Is Critical for the Maintenance of Breast Cancer Stem Cell Pool Predominantly via the Activation of the Notch Self-Renewal Pathway. Stem Cells 2016; 34:2799-2813. [DOI: 10.1002/stem.2473] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rayanah Barnawi
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Samiyah Al-Khaldi
- National Genome Center, King Abdulaziz City for Sciences and Technology; Riyadh Saudi Arabia
| | | | - Abdullah Sarkar
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| | - Abdullah Al-Dhfyan
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Falah Al-Mohanna
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| |
Collapse
|
31
|
Kanda M, Nagai T, Takahashi T, Liu ML, Kondou N, Naito AT, Akazawa H, Sashida G, Iwama A, Komuro I, Kobayashi Y. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS One 2016; 11:e0156562. [PMID: 27227407 PMCID: PMC4881916 DOI: 10.1371/journal.pone.0156562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p < 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p < 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)–AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic strategy for cardiogenesis.
Collapse
Affiliation(s)
- Masato Kanda
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshio Nagai
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
- * E-mail:
| | - Toshinao Takahashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mei Lan Liu
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naomichi Kondou
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsuhiko T. Naito
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Goro Sashida
- Department of Cellular and Molecular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
32
|
Vojnits K, Pan H, Mu X, Li Y. Characterization of an Injury Induced Population of Muscle-Derived Stem Cell-Like Cells. Sci Rep 2015; 5:17355. [PMID: 26611864 PMCID: PMC4661568 DOI: 10.1038/srep17355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/29/2015] [Indexed: 12/16/2022] Open
Abstract
We recently discovered a novel population of stem cells from the injured murine skeletal muscle. These injury induced muscle-derived stem cell-like cells (iMuSCs) are partially reprogrammed from differentiated myogenic cells and display a pluripotent-like state. The iMuSCs exhibit stem cell properties including the ability to differentiate into multiple lineages, such as neurogenic and myogenic differentiations; they also display a superior migration capacity that demonstrating a strong ability of muscle engraftment in vivo. IMuSCs express several pluripotent and myogenic stem cell markers; have the capability to form embryoid bodies and teratomas, and can differentiate into all three germ layers. Moreover, blastocyst microinjection showed that the iMuSCs contributed to chimeric embryos but could not complete germline transmission. Our results indicate that the iMuSCs are in a partially reprogrammed state of pluripotency, which are generated by the microenvironment of injured skeletal muscle.
Collapse
Affiliation(s)
- Kinga Vojnits
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| | - HaiYing Pan
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| | - Xiaodong Mu
- Stem Cell Research Center, University of Pittsburgh, Medical School, Pittsburgh, PA 15213, USA
| | - Yong Li
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| |
Collapse
|
33
|
Ota I, Masui T, Kurihara M, Yook JI, Mikami S, Kimura T, Shimada K, Konishi N, Yane K, Yamanaka T, Kitahara T. Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells. Oncol Rep 2015; 35:261-6. [PMID: 26498709 DOI: 10.3892/or.2015.4348] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/22/2015] [Indexed: 11/05/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process involved in the invasion and metastasis of cancer cells. Furthermore, EMT can induce a cancer stem cell (CSC)-like phenotype in a number of tumor types. We demonstrated that Snail is one of the master regulators that promotes EMT and mediates cancer cell migration and invasion in many types of malignancies including head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated the role of Snail in inducing and maintaining CSC-like properties through EMT in HNSCC. We established HNSCC cell lines transfected with Snail. Stem cell markers were evaluated with real-time RT-PCR and western blot analysis. CSC properties were assessed using sphere formation and WST-8 assays as well as chemosensitivity and chick chorioallantoic membrane in vivo invasion assays. Introduction of Snail induced EMT properties in HNSCC cells. Moreover, Snail-induced EMT maintained the CSC-like phenotype, and enhanced sphere formation capability, chemoresistance and invasive ability. These data suggest that Snail could be one of the critical molecular targets for the development of therapeutic strategies for HNSCC.
Collapse
Affiliation(s)
- Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Takashi Masui
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Miyako Kurihara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Jong-In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul 120-752, Republic of Korea
| | - Shinji Mikami
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Takahiro Kimura
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Keiji Shimada
- Department of Pathology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Noboru Konishi
- Department of Pathology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Katsunari Yane
- Department of Otolaryngology, Kinki University School of Medicine, Nara Hospital, Ikoma, Nara 630-0293, Japan
| | - Toshiaki Yamanaka
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
34
|
Immunologic Network and Response to Intramyocardial CD34+ Stem Cell Therapy in Patients With Dilated Cardiomyopathy. J Card Fail 2015; 21:572-82. [PMID: 25863169 DOI: 10.1016/j.cardfail.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although stem cell therapy (SCT) is emerging as a potential treatment for patients with dilated cardiomyopathy (DCM), clinical response remains variable. Our objective was to determine whether baseline differences in circulating immunologic and nonimmunologic biomarkers may help to identify patients more likely to respond to intramyocardial injection of CD34(+)-based SCT. METHODS AND RESULTS We enrolled from January 3, 2011 to March 5, 2012 37 patients with longstanding DCM (left ventricular ejection fraction [LVEF] <40%, New York Heart Association functional class III) who underwent peripheral CD34(+) stem cell mobilization with granulocyte colony-stimulating factor (G-CSF) and collection by means of apheresis. CD34(+) cells were labeled with (99m)Tc-hexamethylpropyleneamine oxime to allow assessment of stem cell retention at 18 hours. Response to SCT was predefined as an increase in LVEF of ≥5% at 3 months. The majority (84%) of patients were male with an overall mean LVEF of 27 ± 7% and a median N-terminal pro-B-type natriuretic peptide (NT-proBNP) level of 2,774 pg/mL. Nineteen patients (51%) were responders to SCT. There was no significant difference between responders and nonresponders regarding to age, sex, baseline LVEF, NT-proBNP levels, or 6-minute walking distance. With the use of a partial least squares (PLS) predictive model, we identified 9 baseline factors that were associated with both stem cell response and stem cell retention (mechanistic validation). Among the baseline factors positively associated with both clinical response and stem cell retention were G-CSF, SDF-1, LIF, MCP-1, and MCP-3. Among baseline factors negatively associated with both clinical response and retention were IL-12p70, FASL, ICAM-1, and GGT. A decrease in G-CSF at 3-month follow-up was also observed in responders compared with nonresponders (P = .02). CONCLUSIONS If further validated, baseline immunologic and nonimmunologic biomarkers may help to identify patients with DCM who are more likely to respond to CD34(+)-based SCT.
Collapse
|
35
|
Bai M, Yuan M, Liao H, Chen J, Xie B, Yan D, Xi X, Xu X, Zhang Z, Feng Y. OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncol Rep 2015; 33:1745-52. [PMID: 25634023 DOI: 10.3892/or.2015.3763] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/09/2015] [Indexed: 11/06/2022] Open
Abstract
OCT4 plays a critical role in the maintenance of stem cell pluripotency and proliferation, and is overexpressed in multiple human tumors, including endometrial cancer. OCT4 expression can be modulated by miR-145 and the OCT4 pseudogene 5 (OCT4-pg5), which share similar binding sites in the OCT4 3'-untranslated region. The goal of the present study was to evaluate the interaction between miR-145 and OCT4‑pg5 on OCT4 expression in endometrial cancer. We assessed OCT4-pg5 expression in 14 benign endometrium and 29 endometrial carcinoma samples. Furthermore, miR-145 mimic transfection was performed to explore its effect on OCT4-pg5 and OCT4 expression, and small interfering RNA (siRNA)-mediated knockdown of OCT4 was conducted to determine whether the effect of OCT4-pg5 on cellular growth was OCT4-dependent. We observed that OCT4-pg5 was abnormally activated in the endometrial carcinomas, and that overexpression of OCT4-pg5 contributed to enhanced cell proliferation and OCT4-PI3K/AKT-cyclin D1 signaling. Moreover, the miR-145 mimic depleted OCT4 expression, whereas elevated OCT4-pg5 restored OCT4 expression and OCT4-PI3K/AKT-cyclin D1 signaling. In conclusion, these data indicate that OCT4-pg5 can act as an RNA sponge to protect OCT4 transcripts from being inhibited by miR-145, providing novel insight into the control of OCT4 expression.
Collapse
Affiliation(s)
- Mingzhu Bai
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Mu Yuan
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hong Liao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Jiazhou Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Binying Xie
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dong Yan
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Xianming Xu
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
36
|
Shimozaki K. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells. World J Stem Cells 2014; 6:485-490. [PMID: 25258670 PMCID: PMC4172677 DOI: 10.4252/wjsc.v6.i4.485] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Neural stem cells (NSCs) contribute to ontogeny by producing neurons at the appropriate time and location. Neurogenesis from NSCs is also involved in various biological functions in adults. Thus, NSCs continue to exert their effects throughout the lifespan of the organism. The mechanism regulating the core functional properties of NSCs is governed by intra- and extracellular signals. Among the transcription factors that serve as molecular switches, Sox2 is considered a key factor in NSCs. Sox2 forms a core network with partner factors, thereby functioning as a molecular switch. This review discusses how the network of Sox2 partner and target genes illustrates the molecular characteristics of the mechanism underlying the self-renewal and multipotency of NSCs.
Collapse
|
37
|
Krueger W, Boelsterli UA, Rasmussen TP. Stem Cell Strategies to Evaluate Idiosyncratic Drug-induced Liver Injury. J Clin Transl Hepatol 2014; 2:143-52. [PMID: 26355943 PMCID: PMC4521249 DOI: 10.14218/jcth.2014.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/07/2014] [Indexed: 12/14/2022] Open
Abstract
The host-dependent nature of idiosyncratic drug-induced liver injury (iDILI) suggests that rare genetic polymorphisms may contribute to the disease. Indeed, a few mutations in key genes have already been identified using conventional human genetics approaches. Over 50 commonly used drugs can precipitate iDILI, making this a substantial medical problem. Only recently have human induced pluripotent stem cells been used as a research tool to discover novel iDILI genes and to study the mechanisms of iDILI in vitro. Here we review the current state of stem cell use in the investigation of iDILI, with a special focus on genetics. In addition, the concerns and difficulties associated with genetics and animal model research are discussed. We then present the features of patient-specific pluripotent stem cells (which may be derived from iDILI patients themselves), and explain why these cells may be of great utility. A variety of recent approaches to produce hepatocyte-like cells from pluripotent cells and the associated advantages and limitations of such cells are discussed. Future directions for the use of stem cell science to investigate iDILI include novel ways to identify new iDILI genes, a consideration of epigenetic impacts on iDILI, and the development of new and improved strategies for the production of hepatocytes from human pluripotent cells.
Collapse
Affiliation(s)
- Winfried Krueger
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Urs A. Boelsterli
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Theodore P. Rasmussen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- University of Connecticut Stem Cell Institute, Storrs/Farmington, CT, USA
- Correspondence to: Theodore P. Rasmussen, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, U-3092, Storrs, CT 06269, USA. Tel: +86-486-8339, Fax: +86-486-5792. E-mail:
| |
Collapse
|
38
|
Du J, Wu Y, Ai Z, Shi X, Chen L, Guo Z. Mechanism of SB431542 in inhibiting mouse embryonic stem cell differentiation. Cell Signal 2014; 26:2107-16. [PMID: 24949833 DOI: 10.1016/j.cellsig.2014.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022]
Abstract
SB431542 (SB) is an established small molecular inhibitor that specifically binds to the ATP binding domains of the activin receptor-like kinase receptors, ALK5, ALK4 and ALK7, and thus specifically inhibits Smad2/3 activation and blocks TGF-β signal transduction. SB maintains the undifferentiated state of mouse embryonic stem cells. However, the way of SB in maintaining the undifferentiated state of mouse embryonic stem cells remains unclear. Considering that SB could not maintain embryonic stem cells pluripotency when leukemia inhibitory factor was withdrawn, we sought to identify the mechanism of SB on pluripotent maintenance. Transcripts regulated by SB, including message RNAs and small non-coding RNAs were examined through microarray and deep-sequence experiments. After examination, Western blot analysis, and quantitative real-time PCR verification, we found that SB regulated the transcript expressions related to self-renewal and differentiation. SB mainly functioned by inhibiting differentiation. The key pluripotent factors expression were not significantly affected by SB, and intrinsic differentiation-related transcripts including fibroblast growth factor family members, were significantly down-regulated by SB. Moreover, SB could partially inhibit the retinoic acid response to neuronal differentiation of mouse embryonic stem cells.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Zhiying Ai
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xiaoyan Shi
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Linlin Chen
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
39
|
Youssef A, Iosef C, Han VKM. Low-oxygen tension and IGF-I promote proliferation and multipotency of placental mesenchymal stem cells (PMSCs) from different gestations via distinct signaling pathways. Endocrinology 2014; 155:1386-97. [PMID: 24506070 DOI: 10.1210/en.2013-1842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The microenvironment of placental mesenchymal stem cells (PMSCs) is dynamic throughout gestation and determines changes in cell fate. In vivo, PMSCs initially develop in low-oxygen tension and low IGF-I concentrations, and both increase gradually with gestation. The impact of varying concentrations of IGF-I and changing oxygen tension on PMSC signaling and multipotency was investigated in PMSCs from early (preterm) and late (term) gestation human placentae. Preterm PMSCs had greater proliferative response to IGF-I, which was further enhanced by low-oxygen tension. Low-oxygen tension alone was sufficient to induce ERK1/2 phosphorylation, whereas IGF-I was required for AKT (protein kinase B) phosphorylation. Low-oxygen tension prolonged ERK1/2 and AKT phosphorylation with a slowed phosphorylation decay even in presence of IGF-I. Low-oxygen tension maintained higher levels of IGF-I receptor and insulin receptor substrate 1 that were otherwise decreased by exposure to IGF-I and induced a differential phosphorylation pattern on IGF-I receptorβ and insulin receptor substrate 1. Phosphorylation of ERK1/2 and AKT was different between the preterm and term PMSCs, and phospho-AKT, and not phospho-ERK1/2, was the major determinant of PMSC proliferation and octamer-4 levels. These studies demonstrate that low-oxygen tension regulates the fate of PMSCs from early and late gestations in response to IGF-I, both independently and dependently, via specific signal transduction mechanisms.
Collapse
Affiliation(s)
- Amer Youssef
- Departments of Biochemistry (A.Y., V.K.M.H.) and Paediatrics (C.I., V.K.M.H.), Schulich School of Medicine and Dentistry; Children's Health Research Institute (A.Y., C.I., V.K.M.H.); and Lawson Health Research Institute (A.Y., C.I., V.K.M.H.); Western University, London, Ontario, Canada N6C 2V5
| | | | | |
Collapse
|
40
|
Respiration Rates of Individual Bovine In Vivo-Produced Embryos Measured with a Novel, Scanning Electrochemical Microscopy. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2013.28.4.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
41
|
Kashani IR, Zarnani AH, Soleimani M, Abdolvahabi MA, Nayernia K, Shirazi R. Retinoic acid induces mouse bone marrow-derived CD15⁺, Oct4⁺ and CXCR4⁺ stem cells into male germ-like cells in a two-dimensional cell culture system. Cell Biol Int 2014; 38:782-9. [PMID: 24677291 DOI: 10.1002/cbin.10260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/27/2014] [Indexed: 11/06/2022]
Abstract
We have examined the effect of retinoic acid (RA) on differentiation of bone marrow-derived CD15(+) , Oct4(+) and CXCR4(+) cells into male germ cells. Bone marrow stem cells (BMSCs) were isolated from the femur of 3-4-week-old male C57BL/6 mice. Magnetic-activated cell sorting (MACS) system was used to sort CD15(+) , Oct4(+) and CXCR4(+) cells. RT-PCR was used to follow the expression of pluripotency markers. Sorted CD15(+) , Oct4(+) and CXCR4(+) cells were cultured in an undifferentiated condition on a feeder layer of mitomycin C-inactivated C2C12. The embryoid-like bodies were differentiated into male germ cells by retinoic acid. To identify the expression of male germ specific markers, differentiated cells were analysed by means of reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence staining. RT-PCR and immunofluorescence show that bone marrow-derived CD15(+) , Oct4(+) and CXCR4(+) cells express pluripotency markers, Oct4, Nanog, Rex-1, SOX-2 and AP. The purified CD15(+) , Oct4(+) and CXCR4(+) formed structures like embryoid bodies when plated over a feeder layer; these bodies were alkaline phosphatase positive. When cells were induced by RA, bone marrow-derived CD15(+) , Oct4(+) and CXCR4(+) were positive for Mvh, Dazl, Piwil2, Dppa3 and Stra8, that known molecular markers of male germ cells. Thus RA can induce differentiation of mouse bone marrow-derived CD15(+) , Oct4(+) and CXCR4(+) cells into male germ cells in vitro. Negative results for the gene expression analysis of female germ cells markers, GDF9 and ZP3, confirmed this conclusion.
Collapse
Affiliation(s)
- Iraj Ragerdi Kashani
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
42
|
Ebrahimie M, Esmaeili F, Cheraghi S, Houshmand F, Shabani L, Ebrahimie E. Efficient and simple production of insulin-producing cells from embryonal carcinoma stem cells using mouse neonate pancreas extract, as a natural inducer. PLoS One 2014; 9:e90885. [PMID: 24614166 PMCID: PMC3948699 DOI: 10.1371/journal.pone.0090885] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/03/2014] [Indexed: 01/15/2023] Open
Abstract
An attractive approach to replace the destroyed insulin-producing cells (IPCs) is the generation of functional β cells from stem cells. Embryonal carcinoma (EC) stem cells are pluripotent cells which can differentiate into all cell types. The present study was carried out to establish a simple nonselective inductive culture system for generation of IPCs from P19 EC cells by 1–2 weeks old mouse pancreas extract (MPE). Since, mouse pancreatic islets undergo further remodeling and maturation for 2–3 weeks after birth, we hypothesized that the mouse neonatal MPE contains essential factors to induce in vitro differentiation of pancreatic lineages. Pluripotency of P19 cells were first confirmed by expression analysis of stem cell markers, Oct3/4, Sox-2 and Nanog. In order to induce differentiation, the cells were cultured in a medium supplemented by different concentrations of MPE (50, 100, 200 and 300 µg/ml). The results showed that P19 cells could differentiate into IPCs and form dithizone-positive cell clusters. The generated P19-derived IPCs were immunoreactive to proinsulin, insulin and insulin receptor beta. The expression of pancreatic β cell genes including, PDX-1, INS1 and INS2 were also confirmed. The peak response at the 100 µg/ml MPE used for investigation of EP300 and CREB1 gene expression. When stimulated with glucose, these cells synthesized and secreted insulin. Network analysis of the key transcription factors (PDX-1, EP300, CREB1) during the generation of IPCs resulted in introduction of novel regulatory candidates such as MIR17, and VEZF1 transcription factors, as well as MORN1, DKFZp761P0212, and WAC proteins. Altogether, we demonstrated the possibility of generating IPCs from undifferentiated EC cells, with the characteristics of pancreatic β cells. The derivation of pancreatic cells from EC cells which are ES cell siblings would provide a valuable experimental tool in study of pancreatic development and function as well as rapid production of IPCs for transplantation.
Collapse
Affiliation(s)
- Marzieh Ebrahimie
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Fariba Esmaeili
- Department of Biology, Faculty of Basic Sciences, University of Isfahan, Isfahan, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Somayeh Cheraghi
- Department of Biology, Faculty of Basic Sciences, Azad Islamic University of Shahrekord, Shahrekord, Iran
| | - Fariba Houshmand
- Department of Physiology, Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Shabani
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
43
|
Ai Y, Liu Q, Li Y, Duan T. Progesterone signaling/miR-200a/zeb2 axis regulates self-renewal of mouse embryonic stem cells. Biomed Pharmacother 2014; 68:201-8. [DOI: 10.1016/j.biopha.2013.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/10/2013] [Indexed: 02/01/2023] Open
|
44
|
Arakawa T, Yoshimi T, Azuma M, Tachibana T. Production of a monoclonal antibody specific for Pou5f1/Oct4. Monoclon Antib Immunodiagn Immunother 2014; 32:229-31. [PMID: 23750483 DOI: 10.1089/mab.2013.0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pou5f1/Oct4, a member of the POU transcription factor family, is exclusively expressed in embryonic stem cells, which are involved in self-renewal and maintaining pluripotency. In the present study, we report on the establishment of a monoclonal antibody that is specific for Oct4 using the rat medial iliac lymph node method. In an immunoblotting analysis, our antibody detected endogenous Oct4. In addition, immunocytochemical staining using the antibody revealed the nuclear localization of Oct4. This monoclonal antibody has the potential for use in the further analysis of Oct4 function in stem cells.
Collapse
Affiliation(s)
- Tatsuhiko Arakawa
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | | | | | | |
Collapse
|
45
|
Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. Stem Cell Res 2014; 12:69-85. [DOI: 10.1016/j.scr.2013.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/08/2013] [Accepted: 08/29/2013] [Indexed: 01/21/2023] Open
|
46
|
Delphinidin prevents hypoxia-induced mouse embryonic stem cell apoptosis through reduction of intracellular reactive oxygen species-mediated activation of JNK and NF-κB, and Akt inhibition. Apoptosis 2013; 18:811-24. [PMID: 23584725 DOI: 10.1007/s10495-013-0838-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Delphinidin, gallic acid, betulinic acid, and ursolic acid, which are bio-active ingredients in a variety of fruits, vegetables, and herbs, have potent antioxidant activity and various biological activities. However, it is not clear whether these bio-active ingredients can significantly contribute to the protection of embryonic stem (ES) cells from hypoxia-induced apoptosis. In the present study, hypoxia-induced ES cells apoptosis with time, which were abrogated by pretreatment with all ingredients. Hypoxia-induced ROS generation was blocked by pretreatment with all ingredients in a dose-dependent manner, with the maximum ROS scavenging effect observed for delphinidin. Hypoxia increased phosphorylation of JNK and NF-κB were blocked by pretreatment of delphinidin as well as NAC. Hypoxia decreased phosphorylation of Akt(thr308) and (ser473); these decreases were reversed by pretreatment with delphinidin or NAC. However, Akt inhibition did not affect NF-κB phosphorylation. Delphinidin attenuated the hypoxia-induced increase in Bax, cleaved caspase-9, cleaved caspase-3, and decrease in Bcl-2, which were diminished by pretreatment of Akt inhibitor. Hypoxia induced Bax translocation from the cytosol to mitochondria. Furthermore, hypoxia induced mitochondria membrane potential loss and cytochrome c release in cytosol, which were blocked by delphinidin pretreatment. Hypoxia induced cleavage of procaspase-9 and procaspase-3 which were blocked by delphinidin or SP600125, but Akt inhibitor abolished the protection effect of delphinidin. Moreover, inhibition of JNK and NF-κB abolished hypoxia-induced ES cell apoptosis and inhibition of Akt attenuated delphinidin-induced blockage of apoptosis. The results indicate that delphinidin can prevent hypoxia-induced apoptosis of ES cells through the inhibition of JNK and NF-κB phosphorylation, and restoration of Akt phosphorylation.
Collapse
|
47
|
Hosseinpour B, Bakhtiarizadeh MR, Khosravi P, Ebrahimie E. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network. Gene 2013; 531:212-9. [DOI: 10.1016/j.gene.2013.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/23/2022]
|
48
|
Organista-Nava J, Gómez-Gómez Y, Gariglio P. Embryonic stem cell-specific signature in cervical cancer. Tumour Biol 2013; 35:1727-38. [PMID: 24163107 DOI: 10.1007/s13277-013-1321-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022] Open
Abstract
The wide range of invasive and noninvasive lesion phenotypes associated with high-risk human papillomavirus (HR-HPV) infection in cervical cancer (CC) indicates that not only the virus but also specific cervical epithelial cells in the transformation zone (TZ), such as stem cells (SCs), play an important part in the development of cervical neoplasia. In this review, we focused in an expression signature that is specific to embryonic SCs and to poorly differentiated cervical malignant tumors and we hypothesize that this expression signature may play an important role to promote cell growth, survival, colony formation, lack of adhesion, as well as cell invasion and migration in CC.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, DF, México,
| | | | | |
Collapse
|
49
|
Uema N, Ooshio T, Harada K, Naito M, Naka K, Hoshii T, Tadokoro Y, Ohta K, Ali MAE, Katano M, Soga T, Nakanuma Y, Okuda A, Hirao A. Abundant nucleostemin expression supports the undifferentiated properties of germ cell tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:592-603. [PMID: 23885716 DOI: 10.1016/j.ajpath.2013.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/21/2013] [Accepted: 04/30/2013] [Indexed: 12/23/2022]
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein that is involved in ribosomal biogenesis and protection of telomeres. We investigated the expression of NS in human germ cell tumors and its function in a mouse germ cell tumor model. NS was abundantly expressed in undifferentiated, but not differentiated, types of human testicular germ cell tumors. NS was expressed concomitantly with OCT3/4, a critical regulator of the undifferentiated status of pluripotent stem cells in primordial germ cells and embryonal carcinomas. To investigate the roles of NS in tumor growth in vivo, we used a mouse teratoma model. Analysis of teratomas derived from embryonic stem cells in which the NS promoter drives GFP expression showed that cells highly expressing NS were actively proliferating and exhibited the characteristics of tumor-initiating cells, including the ability to initiate and propagate tumor cells in vivo. NS-expressing cells exhibited higher levels of GTP than non-NS-expressing cells. Because NS protein is stabilized by intracellular GTP, metabolic changes may contribute to abundant NS expression in the undifferentiated cells. OCT3/4 deficiency in teratomas led to loss of NS expression, resulting in growth retardation. Finally, we found that teratomas deficient in NS lost their undifferentiated characteristics, resulting in defective tumor proliferation. These data indicate that abundant expression of NS supports the undifferentiated properties of germ cell tumors.
Collapse
Affiliation(s)
- Noriyuki Uema
- Division of Molecular Genetics, Cancer and Stem Cell Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Michifuri Y, Hirohashi Y, Torigoe T, Miyazaki A, Fujino J, Tamura Y, Tsukahara T, Kanaseki T, Kobayashi J, Sasaki T, Takahashi A, Nakamori K, Yamaguchi A, Hiratsuka H, Sato N. Small proline-rich protein-1B is overexpressed in human oral squamous cell cancer stem-like cells and is related to their growth through activation of MAP kinase signal. Biochem Biophys Res Commun 2013; 439:96-102. [PMID: 23954638 DOI: 10.1016/j.bbrc.2013.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are considered to be essential for tumor maintenance, recurrence and metastasis. Therefore, eradication of CSCs/CICs is essential to cure cancers. However, the molecular mechanisms of CSCs/CICs are still elusive. In this study, we investigated the molecular mechanism of the cell growth of oral CSCs/CICs. Oral CSCs/CICs were isolated as aldehyde dehydrogenase 1 bright (ALDH1(br)) cells by the ALDEFLUOR assay. Small proline-rich protein-1B (SPRR1B) gene was shown to be overexpressed in ALDH1(br) cells by a cDNA microarray and RT-PCR. SPRR1B was shown to have a role in cell growth and maintenance of ALDH1(br) cells by SPRR1B overexpression and knockdown experiments. To elucidate the molecular mechanism by which SPRR1B regulates cell growth, further cDNA microarray analysis was performed using SPRR1B-overexpressed cells and cells with SPRR1B knocked down by siRNA. Expression of the tumor suppressor gene Ras association domain family member 4 (RASSF4) was found to be suppressed in SPRR1B-overexpressed cells. On the other hand, the expression of RASSF4 was enhanced in cells in which SPRR1B expression was knocked down by SPRR1B-specific siRNA. RASSF4 has an RA (Ras association) domain, and we thus hypothesized that RASSF4 modulates the MAP kinase signal downstream of the Ras signal. MAP kinase signal was activated in SPRR1B-overexpressed cells, whereas the signal was suppressed in SPRR1B knocked down cells. Taken together, the results indicate that the expression of SPRR1B is upregulated in oral CSCs/CICs and that SPRR1B has a role in cell growth by suppression of RASSF4.
Collapse
Affiliation(s)
- Yoshitaka Michifuri
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan; Department of Oral Surgery, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|