1
|
Li G, He W, Wang DW. Immune cell dynamics in heart failure: implicated mechanisms and therapeutic targets. ESC Heart Fail 2025. [PMID: 39905753 DOI: 10.1002/ehf2.15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
The relationship between heart failure (HF) and immune activation has garnered significant interest. Studies highlight the critical role of inflammation in HF, affecting cardiac structure and function. Despite promising anti-inflammatory therapies, clinical trials have faced challenges, indicating an incomplete understanding of immune mechanisms in HF. Immune cells, which are key cytokine sources, are pivotal in HF progression. In this review, the authors provide a comprehensive overview of the complex role of different types of immune cells and their cell subtypes in HF. In addition, the authors summarize the available targets and animal experimental evidence for targeting immune cells for the treatment of HF. Future research directions will focus on the roles of immune cells and their interrelationships at different stages of HF, aiming to develop more targeted therapeutic strategies that can achieve more precise interventions in the pathological process of HF.
Collapse
Affiliation(s)
- Gen Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430000, China
| | - Wu He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430000, China
| |
Collapse
|
2
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
3
|
Huang B, Lin H, Zhang Q, Luo Y, Zhou B, Zhuo Z, Sha W, Wei J, Luo L, Zhang H, Chen K. Identification of shared fatty acid metabolism related signatures in dilated cardiomyopathy and myocardial infarction. Future Sci OA 2023; 9:FSO847. [PMID: 37056578 PMCID: PMC10088053 DOI: 10.2144/fsoa-2023-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Aim: It is to be elucidated the risk-predictive role of differentially expressed fatty acid metabolism related genes (DE-FRGs) in dilated cardiomyopathy (DCM) and myocardial infarction. Materials & methods: Four gene enrichment analyses defined DE-FRGs’ biological functions and pathways. Three strategies were applied to identify risk biomarkers and construct a nomogram. The 4-DE-FRG correlation with immune cell infiltration, drugs, and ceRNA was explored. Results: DE-FRGs were enriched in lipid metabolism. A risk nomogram was established by ACSL1, ALDH2, CYP27A1 and PPARA, demonstrating a good ability for DCM and myocardial infarction prediction. PPARA was positively correlated with adaptive immunocytes. Thirty-five drugs are candidate therapeutic targets. Conclusion: A nomogram and new biological targets for early diagnosis and treatment of DCM and myocardial infarction were provided.
Collapse
|
4
|
Martinez FJ, Wijsenbeek MS, Raghu G, Flaherty KR, Maher TM, Wuyts WA, Kreuter M, Kolb M, Chambers DC, Fogarty C, Mogulkoc N, Tutuncu AS, Richeldi L. Phase 2b Study of Inhaled RVT-1601 for Chronic Cough in Idiopathic Pulmonary Fibrosis: SCENIC Trial: Multi-Center, Randomized, Placebo-Controlled Study. Am J Respir Crit Care Med 2022; 205:1084-1092. [PMID: 35050837 DOI: 10.1164/rccm.202106-1485oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic cough remains a major and often debilitating symptom for patients with idiopathic pulmonary fibrosis (IPF). In a phase 2a study, inhaled RVT-1601 reduced daytime cough and 24-hour average cough counts in patients with IPF. OBJECTIVES To determine the efficacy, safety and optimal dose of inhaled RVT-1601 for the treatment of chronic cough in patients with IPF. METHODS In this multicenter, randomized, placebo-controlled phase 2b study, patients with IPF and chronic cough for ≥8 weeks were randomized (1:1:1:1) to receive 10, 40, and 80 mg RVT-1601 three times daily or placebo for 12 weeks. The primary endpoint was change from baseline to end of treatment in log-transformed 24-hour cough count. Key secondary endpoints were change from baseline in cough severity and cough specific quality of life. Safety was monitored throughout the study. MEASUREMENTS AND MAIN RESULTS The study was prematurely terminated due to the impact of COVID-19 pandemic. Overall, 108 patients (mean age 71.0 years, 62.9% males) received RVT-1601 10 mg (n = 29), 40 mg (n = 25), 80 mg (n = 27), or matching placebo (n = 27); 61.1% (n = 66) completed double-blind treatment. No statistically significant difference was observed in the least-squares mean change from baseline in log-transformed 24-hour average cough count, cough severity, and cough-specific quality of life score between the RVT-1601 groups and placebo. The mean percentage change from baseline in 24-hour average cough count was 27.7% in the placebo group. Treatment was generally well tolerated. CONCLUSIONS Treatment with inhaled RVT-1601 (10, 40 and 80 mg TID) did not provide benefit over placebo for the treatment of chronic cough in patients with IPF. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT03864328.
Collapse
Affiliation(s)
| | | | - Ganesh Raghu
- University of Washington Medical Center, 21617, Division of Pulmonary and Critical Care Medicine, Seattle, Washington, United States
| | | | - Toby M Maher
- University of Southern California Keck School of Medicine, 12223, Los Angeles, California, United States
| | - Wim A Wuyts
- K U Leuven, respiratory medicine, Leuven, Belgium
| | - Michael Kreuter
- Center for interstitial and rare lung diseases, Pneumology, Thoraxklinik, University of Heidelberg, Member of the German Center for Lung Research Germany, Heidelberg, Germany
| | - Martin Kolb
- McMaster University, Hamilton, Ontario, Canada
| | - Daniel C Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, Brisbane, Queensland, Australia.,Queensland Lung Transplant Program, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Charles Fogarty
- Spartanburg Medical Research, Spartanburg, South Carolina, United States
| | - Nesrin Mogulkoc
- Ege University Hospital, Department of Pulmonology, Bornova, Turkey
| | | | - Luca Richeldi
- Universita Cattolica del Sacro Cuore Sede di Roma, 96983, Pulmonary Medicine, Roma, Italy
| |
Collapse
|
5
|
Levick SP. Histamine receptors in heart failure. Heart Fail Rev 2021; 27:1355-1372. [PMID: 34622365 DOI: 10.1007/s10741-021-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
The biogenic amine, histamine, is found predominantly in mast cells, as well as specific histaminergic neurons. Histamine exerts its many and varied actions via four G-protein-coupled receptors numbered one through four. Histamine has multiple effects on cardiac physiology, mainly via the histamine 1 and 2 receptors, which on a simplified level have opposing effects on heart rate, force of contraction, and coronary vasculature function. In heart failure, the actions of the histamine receptors are complex, the histamine 1 receptor appears to have detrimental actions predominantly in the coronary vasculature, while the histamine 2 receptor mediates adverse effects on cardiac remodeling via actions on cardiomyocytes, fibroblasts, and even endothelial cells. Conversely, there is growing evidence that the histamine 3 receptor exerts protective actions when activated. Little is known about the histamine 4 receptor in heart failure. Targeting histamine receptors as a therapeutic approach for heart failure is an important area of investigation given the over-the-counter access to many compounds targeting these receptors, and thus the relatively straight forward possibility of drug repurposing. In this review, we briefly describe histamine receptor signaling and the actions of each histamine receptor in normal cardiac physiology, before describing in more detail the known role of each histamine receptor in adverse cardiac remodeling and heart failure. This includes information from both clinical studies and experimental animal models. It is the goal of this review article to bring more focus to the possibility of targeting histamine receptors as therapy for heart failure.
Collapse
Affiliation(s)
- Scott P Levick
- Kolling Institute, St Leonards, Australia.
- Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2006, Australia.
| |
Collapse
|
6
|
Sun K, Li YY, Jin J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct Target Ther 2021; 6:79. [PMID: 33612829 PMCID: PMC7897720 DOI: 10.1038/s41392-020-00455-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The response of immune cells in cardiac injury is divided into three continuous phases: inflammation, proliferation and maturation. The kinetics of the inflammatory and proliferation phases directly influence the tissue repair. In cardiac homeostasis, cardiac tissue resident macrophages (cTMs) phagocytose bacteria and apoptotic cells. Meanwhile, NK cells prevent the maturation and transport of inflammatory cells. After cardiac injury, cTMs phagocytose the dead cardiomyocytes (CMs), regulate the proliferation and angiogenesis of cardiac progenitor cells. NK cells prevent the cardiac fibrosis, and promote vascularization and angiogenesis. Type 1 macrophages trigger the cardioprotective responses and promote tissue fibrosis in the early stage. Reversely, type 2 macrophages promote cardiac remodeling and angiogenesis in the late stage. Circulating macrophages and neutrophils firstly lead to chronic inflammation by secreting proinflammatory cytokines, and then release anti-inflammatory cytokines and growth factors, which regulate cardiac remodeling. In this process, dendritic cells (DCs) mediate the regulation of monocyte and macrophage recruitment. Recruited eosinophils and Mast cells (MCs) release some mediators which contribute to coronary vasoconstriction, leukocyte recruitment, formation of new blood vessels, scar formation. In adaptive immunity, effector T cells, especially Th17 cells, lead to the pathogenesis of cardiac fibrosis, including the distal fibrosis and scar formation. CMs protectors, Treg cells, inhibit reduce the inflammatory response, then directly trigger the regeneration of local progenitor cell via IL-10. B cells reduce myocardial injury by preserving cardiac function during the resolution of inflammation.
Collapse
Affiliation(s)
- Kang Sun
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Baci D, Bosi A, Parisi L, Buono G, Mortara L, Ambrosio G, Bruno A. Innate Immunity Effector Cells as Inflammatory Drivers of Cardiac Fibrosis. Int J Mol Sci 2020; 21:E7165. [PMID: 32998408 PMCID: PMC7583949 DOI: 10.3390/ijms21197165] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Despite relevant advances made in therapies for cardiovascular diseases (CVDs), they still represent the first cause of death worldwide. Cardiac fibrosis and excessive extracellular matrix (ECM) remodeling are common end-organ features in diseased hearts, leading to tissue stiffness, impaired myocardial functional, and progression to heart failure. Although fibrosis has been largely recognized to accompany and complicate various CVDs, events and mechanisms driving and governing fibrosis are still not entirely elucidated, and clinical interventions targeting cardiac fibrosis are not yet available. Immune cell types, both from innate and adaptive immunity, are involved not just in the classical response to pathogens, but they take an active part in "sterile" inflammation, in response to ischemia and other forms of injury. In this context, different cell types infiltrate the injured heart and release distinct pro-inflammatory cytokines that initiate the fibrotic response by triggering myofibroblast activation. The complex interplay between immune cells, fibroblasts, and other non-immune/host-derived cells is now considered as the major driving force of cardiac fibrosis. Here, we review and discuss the contribution of inflammatory cells of innate immunity, including neutrophils, macrophages, natural killer cells, eosinophils and mast cells, in modulating the myocardial microenvironment, by orchestrating the fibrogenic process in response to tissue injury. A better understanding of the time frame, sequences of events during immune cells infiltration, and their action in the injured inflammatory heart environment, may provide a rationale to design new and more efficacious therapeutic interventions to reduce cardiac fibrosis.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Luca Parisi
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy;
| | - Giuseppe Buono
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, 06123 Perugia, Italy;
| | - Antonino Bruno
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| |
Collapse
|
8
|
Liu HF, Hu CL, Li YB. Neurogenic inflammation in fulminant myocarditis: May be a trigger. Med Hypotheses 2020; 139:109563. [DOI: 10.1016/j.mehy.2020.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
9
|
Mohajeri M, Kovanen PT, Bianconi V, Pirro M, Cicero AFG, Sahebkar A. Mast cell tryptase - Marker and maker of cardiovascular diseases. Pharmacol Ther 2019; 199:91-110. [PMID: 30877022 DOI: 10.1016/j.pharmthera.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Mast cells are tissue-resident cells, which have been proposed to participate in various inflammatory diseases, among them the cardiovascular diseases (CVDs). For mast cells to be able to contribute to an inflammatory process, they need to be activated to exocytose their cytoplasmic secretory granules. The granules contain a vast array of highly bioactive effector molecules, the neutral protease tryptase being the most abundant protein among them. The released tryptase may act locally in the inflamed cardiac or vascular tissue, so contributing directly to the pathogenesis of CVDs. Moreover, a fraction of the released tryptase reaches the systemic circulation, thereby serving as a biomarker of mast cell activation. Actually, increased levels of circulating tryptase have been found to associate with CVDs. Here we review the biological relevance of the circulating tryptase as a biomarker of mast cell activity in CVDs, with special emphasis on the relationship between activation of mast cells in their tissue microenvironments and the pathophysiological pathways of CVDs. Based on the available in vitro and in vivo studies, we highlight the potential molecular mechanisms by which tryptase may contribute to the pathogenesis of CVDs. Finally, the synthetic and natural inhibitors of tryptase are reviewed for their potential utility as therapeutic agents in CVDs.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Mast Cells: Key Contributors to Cardiac Fibrosis. Int J Mol Sci 2018; 19:ijms19010231. [PMID: 29329223 PMCID: PMC5796179 DOI: 10.3390/ijms19010231] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
Historically, increased numbers of mast cells have been associated with fibrosis in numerous cardiac pathologies, implicating mast cells in the development of cardiac fibrosis. Subsequently, several approaches have been utilised to demonstrate a causal role for mast cells in animal models of cardiac fibrosis including mast cell stabilising compounds, rodents deficient in mast cells, and inhibition of the actions of mast cell-specific proteases such as chymase and tryptase. Whilst most evidence supports a pro-fibrotic role for mast cells, there is evidence that in some settings these cells can oppose fibrosis. A major gap in our current understanding of cardiac mast cell function is identification of the stimuli that activate these cells causing them to promote a pro-fibrotic environment. This review will present the evidence linking mast cells to cardiac fibrosis, as well as discuss the major questions that remain in understanding how mast cells contribute to cardiac fibrosis.
Collapse
|
12
|
Birring SS, Wijsenbeek MS, Agrawal S, van den Berg JWK, Stone H, Maher TM, Tutuncu A, Morice AH. A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial. THE LANCET RESPIRATORY MEDICINE 2017; 5:806-815. [PMID: 28923239 DOI: 10.1016/s2213-2600(17)30310-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. METHODS This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. FINDINGS Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48-0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78-2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. INTERPRETATION This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation. FUNDING Patara Pharma.
Collapse
Affiliation(s)
- Surinder S Birring
- Division of Asthma, Allergy & Lung Biology, School of Transplantation, Immunology, Infection & Inflammation Sciences, Faculty of Life Sciences & Medicine, King's College London, King's Health Partners, London, UK.
| | - Marlies S Wijsenbeek
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanjay Agrawal
- Department of Respiratory Medicine, Glenfield Hospital, Leicester, UK
| | | | - Helen Stone
- Department of Respiratory Medicine, Royal Stoke University Hospital, Stoke on Trent, UK
| | - Toby M Maher
- Royal Brompton Hospital, London, UK; Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| | | | - Alyn H Morice
- Hull York Medical School, Castle Hill Hospital, Hull, UK
| |
Collapse
|
13
|
Jones H, Hargrove L, Kennedy L, Meng F, Graf-Eaton A, Owens J, Alpini G, Johnson C, Bernuzzi F, Demieville J, DeMorrow S, Invernizzi P, Francis H. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2(-/-) mice. Hepatology 2016; 64:1202-1216. [PMID: 27351144 PMCID: PMC5033697 DOI: 10.1002/hep.28704] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/11/2016] [Accepted: 06/23/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED Hepatic fibrosis is marked by activation of hepatic stellate cells (HSCs). Cholestatic injury precedes liver fibrosis, and cholangiocytes interact with HSCs promoting fibrosis. Mast cells (MCs) infiltrate following liver injury and release histamine, increasing biliary proliferation. We evaluated if inhibition of MC-derived histamine decreases biliary proliferation and fibrosis. Wild-type and multidrug resistance 2 knockout mice (9-11 weeks) were treated with cromolyn sodium for 1 week to block MC-derived histamine. Biliary mass and proliferation were evaluated by immunohistochemistry for cytokeratin 19 and Ki-67. Bile flow, bicarbonate excretion, and total bile acids were measured in all mice. Fibrosis was evaluated by sirius red/fast green staining and by quantitative polymerase chain reaction for alpha-smooth muscle actin, fibronectin, collagen type 1a, and transforming growth factor-beta 1. HSC activation was evaluated by quantitative polymerase chain reaction in total liver and immunofluorescent staining in tissues for synaptophysin 9. Histamine serum secretion was measured by enzymatic immunoassay. Mouse liver and human liver samples from control or primary sclerosing cholangitis patients were evaluated for MC markers by quantitative polymerase chain reaction and immunohistochemistry. In vitro, cultured MCs were transfected with histidine decarboxylase short hairpin RNA to decrease histamine secretion and subsequently cocultured with cholangiocytes or HSCs prior to measuring fibrosis markers, proliferation, and transforming growth factor-beta 1 secretion. Treatment with cromolyn sodium decreased biliary proliferation, fibrosis, histamine secretion, and bile flow in multidrug resistance 2 knockout mice. Primary sclerosing cholangitis mice and patients have increased MCs. Knockdown of MC histidine decarboxylase decreased cholangiocyte and HSC proliferation/activation. CONCLUSION MCs are recruited to proliferating cholangiocytes and promote fibrosis. Inhibition of MC-derived histamine decreases fibrosis, and regulation of MC mediators may be therapeutic for primary sclerosing cholangitis. (Hepatology 2016;64:1202-1216).
Collapse
Affiliation(s)
- Hannah Jones
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
| | - Laura Hargrove
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | - Allyson Graf-Eaton
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Jennifer Owens
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | | | - Francesca Bernuzzi
- Temple, Texas, USA and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | - Pietro Invernizzi
- Temple, Texas, USA and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| |
Collapse
|
14
|
Rezaeyan A, Haddadi GH, Hosseinzadeh M, Moradi M, Najafi M. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue. J Med Phys 2016; 41:182-91. [PMID: 27651565 PMCID: PMC5019037 DOI: 10.4103/0971-6203.189482] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to evaluate radioprotective effects of hesperidin (HES) administration before the irradiation on the cardiac oxidative stress and histopathological changes in an experimental rat model. The cardiovascular complications of radiation exposure cause morbidity and mortality in patients who received radiotherapy. HES, an antioxidant flavonoid found in citrus fruits, suggests the protection against the tissue damage. Fifty-eight rats were divided into four groups: Group 1 received phosphate buffered saline (PBS) and sham radiation; Group 2, HES and sham radiation; Group 3, PBS and radiation; and Group 4, HES and radiation. The rats were exposed to single dose of 18 Gy of 6 MV X-ray. One hundred milligrams per kilogram doses of HES was administered for 7 days before irradiation. The estimation of superoxide dismutase (SOD), malondialdehyde (MDA), and histopathological analyses was performed at 24 h and 8 weeks after radiation exposure. The irradiation of chest area resulted in an elevated MDA level and decreased SOD activity. Moreover, long-term pathological lesions of radiation were inflammation, fibrosis, the increased number of mast cells and macrophages, and development of plaque, vascular leakage, myocardial degeneration, and myocyte necrosis. Although the administration of HES decreases inflammation, fibrosis, mast cell and macrophage numbers, and myocyte necrosis, it did not result in reduced thrombus, myocardium degeneration, and vascular leakage. In conclusion, these results suggest that HES can perform a radioprotection action. The protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties.
Collapse
Affiliation(s)
- Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholam Hassan Haddadi
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massood Hosseinzadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moradi
- Food and Drug Organization, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kolck UW, Haenisch B, Molderings GJ. Cardiovascular symptoms in patients with systemic mast cell activation disease. Transl Res 2016; 174:23-32.e1. [PMID: 26775802 DOI: 10.1016/j.trsl.2015.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/23/2022]
Abstract
Traditionally, mast cell activation disease (MCAD) has been considered as just one rare (neoplastic) disease, mastocytosis, focused on the mast cell (MC) mediators tryptase and histamine and the suggestive, blatant symptoms of flushing and anaphylaxis. Recently another form of MCAD, the MC activation syndrome, has been recognized featuring inappropriate MC activation with little to no neoplasia and likely much more heterogeneously clonal and far more prevalent than mastocytosis. Increasing expertise and appreciation has been established for the truly very large menagerie of MC mediators and their complex patterns of release, engendering complex, nebulous presentations of chronic and acute illness best characterized as multisystem polymorbidity of generally inflammatory ± allergic theme. We describe the pathogenesis of MCAD with a particular focus on clinical cardiovascular symptoms and the therapeutic options for MC mediator-induced cardiovascular symptoms.
Collapse
Affiliation(s)
- Ulrich W Kolck
- Johanniter-Kliniken Bonn, Waldkrankenhaus, Innere Medizin II, Bonn, Germany
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
16
|
Lv S, Wu M, Li M, Wang Q, Xu L, Wang X, Zhang J. Effect and Mechanism of QiShenYiQi Pill on Experimental Autoimmune Myocarditis Rats. Med Sci Monit 2016; 22:752-6. [PMID: 26946470 PMCID: PMC4784548 DOI: 10.12659/msm.895655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background To observe the effect of QiShenYiQi pill (QSYQ) on experimental autoimmune myocarditis rats, and to explore its mechanism of action. Material/methods Lewis rats underwent the injection of myocardial myosin mixed with Freund’s complete adjuvant were randomized into 3 groups: model, valsartan, and QSYQ groups. Rats injected with phosphate-buffered saline (PBS) mixed with Freund’s complete adjuvant were used as the control group. Rats were euthanized at 4 and 8 weeks, and we weighed rat body mass, heart mass, and left ventricular mass. Myocardium sections were stained with hematoxylin and eosin (H&E) and Masson trichrome. Myocardial TGF-β1 and CTGF protein expression was detected by immunohistochemistry, and myocardial TGF-β1 and CTGF mRNA expression was detected by real-time qPCR. Results QSYQ reduced HMI and LVMI, as well as the histological score of hearts and CVF, which further decreased over time, and its effect was significantly greater than that of valsartan at 4 and 8 weeks. After 4 weeks, QSYQ inhibited the protein and mRNA expression of TGF-β1 and CTGF, and its effect on lowering CTGF was significantly greater than that of valsartan. In addition, after 8 weeks, QSYQ also inhibited the protein and mRNA expression of CTGF, whereas there was no significant difference in the expression of myocardial TGF-β1. Conclusions This study provides evidence that QSYQ can improve cardiac remodeling of experimental autoimmune myocarditis rats. It also effectively improved the degree of myocardial fibrosis, which is related to the mechanism of regulation of TGF-β1 CTGF.
Collapse
Affiliation(s)
- Shichao Lv
- Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Meifang Wu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Meng Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Qiang Wang
- Graduate School, Tianjin University of Traditional Chinese Medcine, Tianjin, China (mainland)
| | - Ling Xu
- Graduate School, Tianjin University of Traditional Chinese Medcine, Tianjin, China (mainland)
| | - Xiaojing Wang
- Graduate School, Tianjin University of Traditional Chinese Medcine, Tianjin, China (mainland)
| | - Junping Zhang
- Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medcine, Tianjin, China (mainland)
| |
Collapse
|
17
|
Watanabe K, Arumugam S, Sreedhar R, Thandavarayan RA, Nakamura T, Nakamura M, Harima M, Yoneyama H, Suzuki K. Small interfering RNA therapy against carbohydrate sulfotransferase 15 inhibits cardiac remodeling in rats with dilated cardiomyopathy. Cell Signal 2015; 27:1517-24. [PMID: 25778904 DOI: 10.1016/j.cellsig.2015.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/17/2015] [Accepted: 03/08/2015] [Indexed: 02/07/2023]
Abstract
Carbohydrate sulfotransferase 15 (CHST15) is a sulfotransferase responsible for biosynthesis of chondroitin sulfate E (CS-E), which plays important roles in numerous biological events such as biosynthesis of proinflammatory cytokines. However, the effects of CHST15 siRNA in rats with chronic heart failure (CHF) after experimental autoimmune myocarditis (EAM) have not yet been investigated. CHF was elicited in Lewis rats by immunization with cardiac myosin, and after immunization, the rats were divided into two groups and treated with either CHST15 siRNA (2μg/week) or vehicle. Age matched normal rats without immunizations were also included in this study. After 7weeks of treatment, we investigated the effects of CHST15 siRNA on cardiac function, proinflammatory cytokines, and cardiac remodeling in EAM rats. Myocardial functional parameters measured by hemodynamic and echocardiographic studies were significantly improved by CHST15 siRNA treatment in rats with CHF compared with that of vehicle-treated CHF rats. CHST15 siRNA significantly reduced cardiac fibrosis, and hypertrophy and its marker molecules (left ventricular (LV) mRNA expressions of transforming growth factor beta1, collagens I and III, and atrial natriuretic peptide) compared with vehicle-treated CHF rats. CHF-induced increased myocardial mRNA expressions of proinflammatory cytokines [interleukin (IL)-6, IL-1β], monocyte chemoattractant protein-1, and matrix metalloproteinases (MMP-2 and -9), and CHST15 were also suppressed by the treatment with CHST15 siRNA. Western blotting study has confirmed the results obtained from mRNA analysis as CHST15 siRNA treated rats expressed reduced levels of inflammatory and cardiac remodeling marker proteins. Our results demonstrate for the first time, that CHST15 siRNA treatment significantly improved LV function and ameliorated the progression of cardiac remodeling in rats with CHF after EAM.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Takashi Nakamura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masahiko Nakamura
- Department of Cardiology, Yamanashi Prefectural Central Hospital, Kofu-city, Yamanashi, Japan
| | - Meilei Harima
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Kenji Suzuki
- Department of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
18
|
Monument MJ, Hart DA, Salo PT, Befus AD, Hildebrand KA. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions. Adv Wound Care (New Rochelle) 2015; 4:137-151. [PMID: 25785237 DOI: 10.1089/wound.2013.0509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022] Open
Abstract
Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies.
Collapse
Affiliation(s)
- Michael J. Monument
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David A. Hart
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul T. Salo
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin A. Hildebrand
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond) 2014; 127:435-48. [PMID: 24655024 DOI: 10.1042/cs20130716] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Histamine H2 receptor (H2R) blockade has been reported to be beneficial for patients with chronic heart failure (CHF), but the mechanisms involved are not entirely clear. In the present study, we assessed the influences of H2R disruption on left ventricular (LV) dysfunction and the mechanisms involved in mitochondrial dysfunction and calcineurin-mediated myocardial fibrosis. H2R-knockout mice and their wild-type littermates were subjected to transverse aortic constriction (TAC) or sham surgery. The influences of H2R activation or inactivation on mitochondrial function, apoptosis and fibrosis were evaluated in cultured neonatal rat cardiomyocytes and fibroblasts as well as in murine hearts. After 4 weeks, H2R-knockout mice had higher echocardiographic LV fractional shortening, a larger contractility index, a significantly lower LV end-diastolic pressure, and more importantly, markedly lower pulmonary congestion compared with the wild-type mice. Similar results were obtained in wild-type TAC mice treated with H2R blocker famotidine. Histological examinations showed a lower degree of cardiac fibrosis and apoptosis in H2R-knockout mice. H2R activation increased mitochondrial permeability and induced cell apoptosis in cultured cardiomyocytes, and also enhanced the protein expression of calcineurin, nuclear factor of activated T-cell and fibronectin in fibroblasts rather than in cardiomyocytes. These findings indicate that a lack of H2R generates resistance towards heart failure and the process is associated with the inhibition of cardiac fibrosis and apoptosis, adding to the rationale for using H2R blockers to treat patients with CHF.
Collapse
|
20
|
Ma Y, Hwang RF, Logsdon CD, Ullrich SE. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res 2013; 73:3927-37. [PMID: 23633481 DOI: 10.1158/0008-5472.can-12-4479] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exists in a complex desmoplastic microenvironment, which includes cancer-associated fibroblasts [also known as pancreatic stellate cells (PSC)] and immune cells that provide a fibrotic niche that impedes successful cancer therapy. We have found that mast cells are essential for PDAC tumorigenesis. Whether mast cells contribute to the growth of PDAC and/or PSCs is unknown. Here, we tested the hypothesis that mast cells contribute to the growth of PSCs and tumor cells, thus contributing to PDAC development. Tumor cells promoted mast cell migration. Both tumor cells and PSCs stimulated mast cell activation. Conversely, mast cell-derived interleukin (IL)-13 and tryptase stimulated PSC proliferation. Treating tumor-bearing mice with agents that block mast cell migration and function depressed PDAC growth. Our findings suggest that mast cells exacerbate the cellular and extracellular dynamics of the tumor microenvironment found in PDAC. Therefore, targeting mast cells may inhibit stromal formation and improve therapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology and the Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
21
|
Mina Y, Rinkevich-Shop S, Konen E, Goitein O, Kushnir T, Epstein FH, Feinberg MS, Leor J, Landa-Rouben N. Mast cell inhibition attenuates myocardial damage, adverse remodeling, and dysfunction during fulminant myocarditis in the rat. J Cardiovasc Pharmacol Ther 2013; 18:152-61. [PMID: 23172937 PMCID: PMC3968541 DOI: 10.1177/1074248412458975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Myocarditis is a life-threatening heart disease characterized by myocardial inflammation, necrosis, and chronic fibrosis. While mast cell inhibition has been suggested to prevent fibrosis in rat myocarditis, little is known about its effectiveness in attenuating cardiac remodeling and dysfunction in myocarditis. Thus, we sought to test the hypothesis that mast cell inhibition will attenuate the inflammatory reaction and associated left ventricular (LV) remodeling and dysfunction after fulminant autoimmune myocarditis. Methods and RESULTS To induce experimental autoimmune myocarditis, we immunized 30 rats with porcine cardiac myosin (PCM) twice at a 7-day interval. On day 8 animals were randomized into treatment with either an intraperitoneal (IP) injection of 25mg/kg of cromolyn sodium (n = 13) or an equivalent volume (∼0.5 mL IP) of normal saline (n = 11). All animals were scanned by serial echocardiography studies before treatment (baseline echocardiogram) and after 20 days of cromolyn sodium (28 days after immunization). Furthermore, serial cardiac magnetic resonance was performed in a subgroup of 12 animals. After 20 days of treatment (28 days from first immunization), hearts were harvested for histopathological analysis. By echocardiography, cromolyn sodium prevented LV dilatation and attenuated LV dysfunction, compared with controls. Postmortem analysis of hearts showed that cromolyn sodium reduced myocardial fibrosis, as well as the number and size of cardiac mast cells in the inflamed myocardium, compared with controls. CONCLUSIONS Our study suggests that mast cell inhibition with cromolyn sodium attenuates adverse LV remodeling and dysfunction in myocarditis. This mechanism-based therapy is clinically relevant and could improve the outcome of patients at risk for inflammatory cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Yair Mina
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Masiha S, Sundström J, Lind L. Inflammatory markers are associated with left ventricular hypertrophy and diastolic dysfunction in a population-based sample of elderly men and women. J Hum Hypertens 2012; 27:13-7. [DOI: 10.1038/jhh.2011.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Palaniyandi SS, Ferreira JCB, Brum PC, Mochly-Rosen D. PKCβII inhibition attenuates myocardial infarction induced heart failure and is associated with a reduction of fibrosis and pro-inflammatory responses. J Cell Mol Med 2012; 15:1769-77. [PMID: 20874717 PMCID: PMC3136735 DOI: 10.1111/j.1582-4934.2010.01174.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protein kinase C βII (PKCβII) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKCβII in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKCβII in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKCβII on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKCβII selective inhibitor (βIIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKCβII inhibitor. Further, a 90% decrease in active TGFβ1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKCβII attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKCβII in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.
Collapse
|
24
|
Mito S, Watanabe K, Harima M, Thandavarayan RA, Veeraveedu PT, Sukumaran V, Suzuki K, Kodama M, Aizawa Y. Curcumin ameliorates cardiac inflammation in rats with autoimmune myocarditis. Biol Pharm Bull 2011; 34:974-9. [PMID: 21720000 DOI: 10.1248/bpb.34.974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Curcumin is a natural polyphenolic compound abundant in the rhizome of the perennial herb turmeric, Curcuma longa. It is commonly used as a dietary spice and coloring agent in cooking, and is used anecdotally as an herb in traditional Indian and Chinese medicine. It has been reported that curcumin has the potential to protect against cardiac inflammation through suppression of GATA-4 and nuclear factor-κB (NF-κB); however, no study to date has addressed the effect of curcumin on experimental autoimmune myocarditis (EAM) in rats. In this study, 8-week-old male Lewis rats were immunized with cardiac myosin to induce EAM. They were then divided randomly into a treatment or vehicle group and orally administrated curcumin (50 mg/kg/d) or 1% gum arabic, respectively, for 3 weeks after myosin injection. We performed hemodynamic, echocardiographic, hematoxylin and eosin staining, mast cell staining and Western blotting studies to evaluate the protective effect of curcumin in the acute phase of EAM. Cardiac functional parameters measured by hemodynamic and echocardiographic studies were significantly improved by curcumin treatment. Furthermore, curcumin reduced the heart weight-to-body weight ratio, area of inflammatory lesions and the myocardial protein level of NF-κB, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and GATA-4. Our results indicate that curcumin has the potential to protect against cardiac inflammation through suppression of IL-1β, TNF-α, GATA-4 and NF-κB expresses, and may provide a novel therapeutic strategy for autoimmune myocarditis.
Collapse
Affiliation(s)
- Sayaka Mito
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, 265–1 Higashijima, Akiha-ku, Niigata 956–8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Levick SP, Meléndez GC, Plante E, McLarty JL, Brower GL, Janicki JS. Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res 2010; 89:12-9. [PMID: 20736239 DOI: 10.1093/cvr/cvq272] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic volume overload secondary to aortocaval fistula and mitral regurgitation. Accordingly, mast cells have been implicated to have a major role in the pathophysiology of these cardiovascular disorders. In vitro studies have verified that mast cell proteases are capable of activating collagenase, gelatinases and stromelysin. Recent results have shown that with chronic ventricular volume overload, there is an elevation in mast cell density, which is associated with a concomitant increase in matrix metalloproteinase (MMP) activity and extracellular matrix degradation. However, the role of the cardiac mast cell is not one dimensional, with evidence from hypertension and cardiac transplantation studies suggesting that they can also assume a pro-fibrotic phenotype in the heart. These adverse events do not occur in mast cell deficient rodents or when cardiac mast cells are pharmacologically prevented from degranulating. This review is focused on the regulation and dual roles of cardiac mast cells in: (i) activating MMPs and causing myocardial fibrillar collagen degradation and (ii) causing fibrosis in the stressed, injured or diseased heart. Moreover, there is strong evidence that premenopausal female cardioprotection may at least partly be due to gender differences in cardiac mast cells. This too will be addressed.
Collapse
Affiliation(s)
- Scott P Levick
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
26
|
Omae K, Ogawa T, Yoshikawa M, Nitta K. The use of H1-receptor antagonists and left ventricular remodeling in patients on chronic hemodialysis. Heart Vessels 2010; 25:163-9. [DOI: 10.1007/s00380-009-1183-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022]
|
27
|
Sun X, Suzuki K, Nagata M, Kawauchi Y, Yano M, Ohkoshi S, Matsuda Y, Kawachi H, Watanabe K, Asakura H, Aoyagi Y. Rectal administration of tranilast ameliorated acute colitis in mice through increased expression of heme oxygenase-1. Pathol Int 2010; 60:93-101. [PMID: 20398193 DOI: 10.1111/j.1440-1827.2009.02490.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mast cells play a key role in the pathophysiology of inflammatory bowel disease (IBD). Tranilast, a mast cell stabilizer, has been empirically used for IBD in Japan, but its precise role in the treatment of IBD is largely unknown. To investigate the role of tranilast for the treatment of IBD, tranilast was administered intrarectally to mice with dextran sulfate sodium (DSS)-induced colitis. Tranilast ameliorated DSS colitis clinically and pathologically, as demonstrated by decreased number and degranulation of mast cells in the colon. mRNA expression was increased for tumor necrosis factor-alpha, interferon-gamma and interleukin (IL)-6, and decreased for IL-10 in the colon of DSS colitis mice. In contrast, tranilast markedly decreased expression of mRNAs for the pro-inflammatory cytokines, and increased that of the anti-inflammatory cytokines. Moreover, tranilast increased heme oxygenase (HO)-1 expression on colonic epithelial cells as well as on colon-infiltrating cells of DSS colitis. In conclusion, tranilast ameliorated DSS colitis by regulating mast cell degranulation, decreasing inflammatory cytokines and increasing anti-inflammatory cytokines. Tranilast might exert these effects partly through enhanced HO-1 expression in the colon, suggesting a potential adjunctive therapy for IBD.
Collapse
Affiliation(s)
- Xiaomei Sun
- Department of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND The present study has been designed to investigate the effect of sodium cromoglycate and ketotifen, mast cell stabilizers in hyperhomocysteinemia-induced cardiac hypertrophy in rats. METHODS Rats were administered L-methionine (1.7 g/kg/day PO) for 8 weeks to produce hyperhomocysteinemia. Sodium cromoglycate (24 mg/kg/day IP) and ketotifen (1mg/kg/day IP) treatments were started from first day of administration of L-methionine and continued for 8 weeks. The development of cardiac hypertrophy was assessed in terms of measuring mean arterial blood pressure (MABP), ratio of left ventricular (LV) weight to body weight (LVW/BW), LV wall thickness (LVWT), LV protein content, and LV collagen content. Further, the oxidative stress in heart was assessed by measuring lipid peroxidation, superoxide anion generation, and reduced glutathione (GSH). Moreover, the cardiomyocyte diameter and LV mast cell density were determined using hematoxylin-eosin and toluidine blue staining, respectively. RESULTS The L-methionine administration produced hyperhomocysteinemia, which significantly increased MABP, oxidative stress, and density of mast cells and consequently produced cardiac hypertrophy by increasing cardiomyocyte diameter, LVW/BW, LVWT, LV protein and collagen content. However, sodium cromoglycate and ketotifen treatments significantly attenuated hyperhomocysteinemia-induced oxidative stress and pathological cardiac hypertrophy without significantly altering MABP. Moreover, sodium cromoglycate and ketotifen treatments did not affect serum homocysteine levels. CONCLUSIONS Thus, it may be concluded that hyperhomocysteinemia-induced cardiac hypertrophy is associated with an increase in oxidative stress and density of mast cells in heart. Sodium cromoglycate and ketotifen may have attenuated hyperhomocysteinemia-induced pathological cardiac hypertrophy, possibly by reducing oxidative stress and preventing the degranulation and increase in density of mast cells.
Collapse
|
29
|
Palaniyandi SS, Inagaki K, Mochly-Rosen D. Mast cells and epsilonPKC: a role in cardiac remodeling in hypertension-induced heart failure. J Mol Cell Cardiol 2008; 45:779-86. [PMID: 18804478 DOI: 10.1016/j.yjmcc.2008.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/14/2008] [Accepted: 08/19/2008] [Indexed: 11/27/2022]
Abstract
Heart failure (HF) is a chronic syndrome in which pathological cardiac remodeling is an integral part of the disease and mast cell (MC) degranulation-derived mediators have been suggested to play a role in its progression. Protein kinase C (PKC) signaling is a key event in the signal transduction pathway of MC degranulation. We recently found that inhibition of epsilonPKC slows down the progression of hypertension-induced HF in salt-sensitive Dahl rats fed a high-salt diet. We therefore determined whether epsilonPKC inhibition affects MC degranulation in this model. Six week-old male Dahl rats were fed with a high-salt diet to induce systemic hypertension, which resulted in concentric left ventricular hypertrophy at the age of 11 weeks, followed by myocardial dilatation and HF at the age of 17 weeks. We administered epsilonV1-2, an epsilonPKC-selective inhibitor peptide (3 mg/kg/day), deltaV1-1, a deltaPKC-selective inhibitor peptide (3 mg/kg/day), TAT (negative control; at equimolar concentration; 1.6 mg/kg/day) or olmesartan (angiotensin receptor blocker [ARB] as a positive control; 3 mg/kg/day) between 11 weeks and 17 weeks. Treatment with epsilonV1-2 attenuated cardiac MC degranulation without affecting MC density, myocardial fibrosis, microvessel patency, vascular thickening and cardiac inflammation in comparison to TAT- or deltaV1-1-treatment. Treatment with ARB also attenuated MC degranulation and cardiac remodeling, but to a lesser extent when compared to epsilonV1-2. Finally, epsilonV1-2 treatment inhibited MC degranulation in isolated peritoneal MCs. Together, our data suggest that epsilonPKC inhibition attenuates pathological remodeling in hypertension-induced HF, at least in part, by preventing cardiac MC degranulation.
Collapse
Affiliation(s)
- Suresh Selvaraj Palaniyandi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR, Stanford, CA 94305-5174, USA
| | | | | |
Collapse
|
30
|
Palaniyandi SS, Nagai Y, Watanabe K, Ma M, Veeraveedu PT, Prakash P, Kamal FA, Abe Y, Yamaguchi K, Tachikawa H, Kodama M, Aizawa Y. Chymase inhibition reduces the progression to heart failure after autoimmune myocarditis in rats. Exp Biol Med (Maywood) 2007; 232:1213-21. [PMID: 17895529 DOI: 10.3181/0703-rm-85] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chymase has been known as a local angiotensin II-generating enzyme in the cardiovascular system in dogs, monkeys, hamsters, and humans; however, recently it was reported that chymase also has various other functions. Therefore, we decided to examine whether the inhibition of chymase improves disease conditions associated with the pathophysiology of dilated cardiomyopathy in rats and its possible mechanism of action as rat chymase is unable to produce angiotensin II. We examined the effect of TY-51469, a novel chymase inhibitor (0.1 mg/kg/day [group CYI-0.1, n = 15] and 1 mg/kg/day [group CYI-1, n = 15]), in myosin-immunized postmyocarditis rats. Another group of myosin-immunized rats was treated with vehicle (group V, n = 15). Age-matched normal rats without immunization (group N, n = 10) were also included in the study. After 4 weeks of treatment, we evaluated cardiac function; area of fibrosis; fibrogenesis; levels of transforming growth factor (TGF)-beta1 and collagen III; hypertrophy and its marker, atrial natriuretic peptide (ANP); and mast cell activity. Survival rate and myocardial functions improved dose-dependently with chymase inhibitor treatment after myosin immunization. A reduction in the percent area of myocardial fibrosis, fibrogenesis, myocardial hypertrophy, and mast cell activity along with a reduction in TGF-beta1, collagen III, and ANP levels in the myocardium were noted in postmyocarditis rats that received chymase inhibitor treatment. The treatment also decreased myocardial aldosterone synthase levels in those animals. Inhibition of chymase reduces the pathogenesis of postmyocarditis dilated cardiomyopathy and progression to heart failure by preventing the pathological remodeling and residual inflammation in rats.
Collapse
Affiliation(s)
- Suresh S Palaniyandi
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, 956-8603, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Balakumar P, Singh AP, Ganti SS, Krishan P, Ramasamy S, Singh M. Resident cardiac mast cells: are they the major culprit in the pathogenesis of cardiac hypertrophy? Basic Clin Pharmacol Toxicol 2007; 102:5-9. [PMID: 17973902 DOI: 10.1111/j.1742-7843.2007.00147.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mast cells originate from pluripotent progenitor cells in bone marrow and are major players in the inflammation process. The involvements of mast cells in various cardiovascular complications such as arrhythmias, ischaemia reperfusion injury and graft rejection are well documented. Moreover, recent studies suggest the involvement of mast cells in cardiac hypertrophy and heart failure. The present review focuses on the role of mast cells in the development of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Pitchai Balakumar
- ISF Institute of Pharmaceutical Sciences and Drug Research, Moga, Punjab, India.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cardiac mast cells proliferate in cardiovascular diseases. In myocardial ischemia, mast cell mediators contribute to coronary vasoconstriction, arrhythmias, leukocyte recruitment, and tissue injury and repair. Arrhythmic dysfunction, coronary vasoconstriction, and contractile failure are also characteristic of cardiac anaphylaxis. In coronary atherosclerosis, mast cell mediators facilitate cholesterol accumulation and plaque destabilization. In cardiac failure, mast cell chymase causes myocyte apoptosis and fibroblast proliferation, leading to ventricular dysfunction. Chymase and tryptase also contribute to fibrosis in cardiomyopathies and myocarditis. In addition, mast cell tumor necrosis factor-alpha promotes myocardial remodeling. Cardiac remodeling and hypertrophy in end-stage hypertension are also induced by mast cell mediators and proteases. We recently discovered that cardiac mast cells contain and release renin, which initiates local angiotensin formation. Angiotensin causes coronary vasoconstriction, arrhythmias, fibrosis, apoptosis, and endothelin release, all demonstrated mechanisms of mast-cell-associated cardiac disease. The effects of angiotensin are further amplified by the release of norepinephrine from cardiac sympathetic nerves. Our discovery of renin in cardiac mast cells and its release in pathophysiological conditions uncovers an important new pathway in the development of mast-cell-associated heart diseases. Several steps in this novel pathway may constitute future therapeutic targets.
Collapse
Affiliation(s)
- Alicia C Reid
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
33
|
Jahanyar J, Youker KA, Loebe M, Assad-Kottner C, Koerner MM, Torre-Amione G, Noon GP. Mast cell-derived cathepsin g: a possible role in the adverse remodeling of the failing human heart. J Surg Res 2007; 140:199-203. [PMID: 17418861 DOI: 10.1016/j.jss.2007.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/20/2007] [Accepted: 02/26/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND The role of cardiac mast cells (MCs) in the progression to heart failure has recently become increasingly evident. Cathepsin g is a neutrophil- and mast cell-derived protease, which can convert angiotensin I to angiotensin II and thereby activate the TGF-beta pathway, resulting in myocyte necrosis, hypertrophy, and increased fibrosis. This study focuses on mast cell-derived cathepsin g in the human heart during heart failure and following mechanical unloading by means of heart-assist devices (LVADs). MATERIALS AND METHODS Myocardial tissue was obtained from 10 patients with end-stage cardiomyopathy at the time of LVAD implantation (pre-LVAD) and following orthotopic heart transplantation (post-LAVD). In addition, biopsies of four normal hearts served as a control group. Paraffin-embedded sections were dual stained for cathepsin g and tryptase, a known marker for mast cells, using standard immunohistochemistry protocols. Total cathepsin g positive mast cells were counted. RESULTS No cathepsin g positive MCs were found in normal hearts. However, we found evidence for cathepsin g in cardiac MCs in heart failure tissues (pre-LVAD). During heart failure, 46% of total MCs were cathepsin g positive as compared to after mechanical unloading, where only 11% of total MCs were cathepsin g positive (P<0.001). CONCLUSION Heart failure causes an increase of myocardial MCs. We have provided evidence that cathepsin g positive MCs accumulate during heart failure and their total percentage decreases after ventricular unloading. This coincides with the decrease in myocyte necrosis, hypertrophy, and fibrosis. Thus, cathepsin g may play a role in the progression to heart failure by activating angiotensin II, leading to detrimental effects on the heart.
Collapse
Affiliation(s)
- Jama Jahanyar
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|