1
|
Duke SO, Dayan FE. The search for new herbicide mechanisms of action: Is there a 'holy grail'? PEST MANAGEMENT SCIENCE 2022; 78:1303-1313. [PMID: 34796620 DOI: 10.1002/ps.6726] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
New herbicide modes of action (MOAs) are in great demand because of the burgeoning evolution of resistance of weeds to existing commercial herbicides. This need has been exacerbated by the almost complete lack of introduction of herbicides with new MOAs for almost 40 years. There are many highly phytotoxic compounds with MOAs not represented by commercial herbicides, but neither these compounds nor structural analogues have been developed as herbicides for a variety of reasons. Natural products provide knowledge of many MOAs that are not being utilized by commercial herbicides. Other means of identifying new herbicide targets are discussed, including pharmaceutical target sites and metabolomic and proteomic information, as well as the use of artificial intelligence and machine learning to predict herbicidal compounds with new MOAs. Information about several newly discovered herbicidal compounds with new MOAs is summarized. The currently increased efforts of both established companies and start-up companies are likely to result in herbicides with new MOAs that can be used in herbicide resistance management within the next decade. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, USA
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Sukhoverkov KV, Breese KJ, Debowski AW, Murcha MW, Stubbs KA, Mylne JS. Inhibition of chloroplast translation as a new target for herbicides. RSC Chem Biol 2022; 3:37-43. [PMID: 35128407 PMCID: PMC8729176 DOI: 10.1039/d1cb00192b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
The rise in herbicide resistance over recent decades threatens global agriculture and food security and so discovery of new modes of action is increasingly important. Here we reveal linezolid, an oxazolidinone antibiotic that inhibits microbial translation, is also herbicidal. To validate the herbicidal mode of action of linezolid we confirmed its micromolar inhibition is specific to chloroplast translation and did not affect photosynthesis directly. To assess the herbicide potential of linezolid, testing against a range of weed and crop species found it effective pre- and post-emergence. Using structure-activity analysis we identified the critical elements for herbicidal activity, but importantly also show, using antimicrobial susceptibility assays, that separation of antibacterial and herbicidal activities was possible. Overall these results validate chloroplast translation as a viable herbicidal target.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
| | - Karen J Breese
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Aleksandra W Debowski
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- School of Biomedical Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Monika W Murcha
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
| | - Keith A Stubbs
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
| |
Collapse
|
3
|
Abdullah HSTSH, Chia PW, Omar D, Chuah TS. Herbicidal properties of antihypertensive drugs: calcium channel blockers. Sci Rep 2021; 11:14227. [PMID: 34244589 PMCID: PMC8270911 DOI: 10.1038/s41598-021-93662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Herbicide resistance is a worldwide problem in weed control. This prompts researchers to look for new modes of action to slow down the evolution of herbicide-resistant weeds. This research aims to determine the herbicidal action of thiazolo[3,2-a]pyrimidines derivatives, which are well known as antihypertensive drugs. The phytotoxic effects of ten compounds were investigated using leaf disc discoloration test and seed germination bioassay. At concentrations of 125 to 250 mg/L, the 5-(3-Fluoro-phenyl)-7-methyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester (c) was highly active against Oldenlandia verticillata and Eleusine indica. At application rates of 1.25 to 2.5 kg ai/ha, formulated c demonstrated selective post-emergence and pre-emergence herbicidal activity against O. verticillata, E. indica and Cyperus iria. In the crop tolerance test, formulated c outperformed the commercial herbicide diuron, with aerobic Oryza sativa being the most tolerant, followed by Zea mays, and Brassica rapa. The addition of calcium chloride partially nullified compound c's inhibitory effects on weed shoot growth, indicating that it has potential as a calcium channel blocker. Compound c acted by triggering electrolyte leakage without affecting photosystem II. These findings imply that c could be explored further as a template for developing new herbicides with novel modes of action.
Collapse
Affiliation(s)
| | - Poh Wai Chia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Dzolkhifli Omar
- Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tse Seng Chuah
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Arau, Perlis, Malaysia.
| |
Collapse
|
4
|
Sukhoverkov KV, Corral MG, Leroux J, Haywood J, Johnen P, Newton T, Stubbs KA, Mylne JS. Improved herbicide discovery using physico-chemical rules refined by antimalarial library screening. RSC Adv 2021; 11:8459-8467. [PMID: 35423398 PMCID: PMC8695207 DOI: 10.1039/d1ra00914a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Herbicides have physico-chemical properties not unlike orally-delivered human drugs, but are known to diverge in their limits for proton donors, partition coefficients and molecular weight. To further refine rules specific for herbicides, we exploited the close evolutionary relationship between Plasmodium falciparum and plants by screening the entire Malaria Box, a chemical library of novel chemical scaffolds with activity against the blood stage of P. falciparum. Initial screening against Arabidopsis thaliana on agar media and subsequently on soil demonstrated the crucial nature of log P and formal charge are to active molecules. Using this information, a weighted scoring system was applied to a large chemical library of liver-stage effective antimalarial leads, and of the six top-scoring compounds, one had potency comparable to that of commercial herbicides. This novel compound, MMV1206386, has no close structural analogues among commercial herbicides. Physiological profiling suggested that MMV1206386 has a new mode of action and overall demonstrates how weighted rules can help during herbicide discovery programs.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Maxime G Corral
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Julie Leroux
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Joel Haywood
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | | | - Trevor Newton
- BASF SE Speyerer Straße 2 67117 Limburgerhof Germany
| | - Keith A Stubbs
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| |
Collapse
|
5
|
Kumarihamy M, Rosa LH, Techen N, Ferreira D, Croom EM, Duke SO, Tekwani BL, Khan S, Nanayakkara NPD. Antimalarials and Phytotoxins from Botryosphaeria dothidea Identified from a Seed of Diseased Torreya taxifolia. Molecules 2020; 26:molecules26010059. [PMID: 33374444 PMCID: PMC7795089 DOI: 10.3390/molecules26010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
The metabolic pathways in the apicoplast organelle of Plasmodium parasites are similar to those in plastids in plant cells and are suitable targets for malaria drug discovery. Some phytotoxins released by plant pathogenic fungi have been known to target metabolic pathways of the plastid; thus, they may also serve as potential antimalarial drug leads. An EtOAc extract of the broth of the endophyte Botryosphaeria dothidea isolated from a seed collected from a Torreya taxifolia plant with disease symptoms, showed in vitro antimalarial and phytotoxic activities. Bioactivity-guided fractionation of the extract afforded a mixture of two known isomeric phytotoxins, FRT-A and flavipucine (or their enantiomers, sapinopyridione and (-)-flavipucine), and two new unstable γ-lactam alkaloids dothilactaenes A and B. The isomeric mixture of phytotoxins displayed strong phytotoxicity against both a dicot and a monocot and moderate cytotoxicity against a panel of cell lines. Dothilactaene A showed no activity. Dothilactaene B was isolated from the active fraction, which showed moderate in vitro antiplasmodial activity with high selectivity index. In spite of this activity, its instability and various other biological activities shown by related compounds would preclude it from being a viable antimalarial lead.
Collapse
Affiliation(s)
- Mallika Kumarihamy
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (N.T.); (B.L.T.); (S.K.)
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (D.F.); (E.M.C.J.)
- Correspondence: (M.K.); (N.P.D.N.); Tel.: +1-662-915-1661 (M.K.); +1-662-915-1019 (N.P.D.N.)
| | - Luiz H. Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil;
| | - Natascha Techen
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (N.T.); (B.L.T.); (S.K.)
| | - Daneel Ferreira
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (D.F.); (E.M.C.J.)
| | - Edward M. Croom
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (D.F.); (E.M.C.J.)
| | - Stephen O. Duke
- Natural Products Utilization Research Unit, USDA-ARS, University, MS 38677, USA;
| | - Babu L. Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (N.T.); (B.L.T.); (S.K.)
| | - Shabana Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (N.T.); (B.L.T.); (S.K.)
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (D.F.); (E.M.C.J.)
| | - N. P. Dhammika Nanayakkara
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (N.T.); (B.L.T.); (S.K.)
- Correspondence: (M.K.); (N.P.D.N.); Tel.: +1-662-915-1661 (M.K.); +1-662-915-1019 (N.P.D.N.)
| |
Collapse
|
6
|
Antiplasmodial and Cytotoxic Cytochalasins from an Endophytic Fungus, Nemania sp. UM10M, Isolated from a Diseased Torreya taxifolia Leaf. Molecules 2019; 24:molecules24040777. [PMID: 30795572 PMCID: PMC6413121 DOI: 10.3390/molecules24040777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/30/2023] Open
Abstract
Bioassay-guided fractionation of an EtOAc extract of the broth of the endophytic fungus Nemania sp. UM10M (Xylariaceae) isolated from a diseased Torreya taxifolia leaf afforded three known cytochalasins, 19,20-epoxycytochalasins C (1) and D (2), and 18-deoxy-19,20-epoxy-cytochalasin C (3). All three compounds showed potent in vitro antiplasmodial activity and phytotoxicity with no cytotoxicity to Vero cells. These compounds exhibited moderate to weak cytotoxicity to some of the cell lines of a panel of solid tumor (SK-MEL, KB, BT-549, and SK-OV-3) and kidney epithelial cells (LLC-PK11). Evaluation of in vivo antimalarial activity of 19,20-epoxycytochalasin C (1) in a mouse model at 100 mg/kg dose showed that this compound had weak suppressive antiplasmodial activity and was toxic to animals.
Collapse
|
7
|
Corral MG, Leroux J, Tresch S, Newton T, Stubbs KA, Mylne JS. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana. PEST MANAGEMENT SCIENCE 2018; 74:1558-1563. [PMID: 29377434 DOI: 10.1002/ps.4872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. RESULTS Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. CONCLUSION We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maxime G Corral
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Julie Leroux
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | | | | | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
8
|
Chen JJ, Rateb ME, Love MS, Xu Z, Yang D, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, McNamara CW, Shen B. Herbicidins from Streptomyces sp. CB01388 Showing Anti- Cryptosporidium Activity. JOURNAL OF NATURAL PRODUCTS 2018; 81:791-797. [PMID: 29469575 DOI: 10.1021/acs.jnatprod.7b00850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A high-content imaging assay was used to screen the fraction collection of the Natural Product Library at The Scripps Research Institute for inhibitors of Cryptosporidium parvum. A chemical investigation of one strain, Streptomyces sp. CB01388, resulted in the isolation of six herbicidins (1-6), one of which is new (herbicidin L, 1). Five of the six herbicidins (1-3, 5, 6) showed moderate inhibitory activity against C. parvum, with 1 and 6 comparable to the FDA-approved drug nitazoxanide, and 2-6 showed no toxicity to the host HCT-8 cells and human HEK293T and HepG2 cells. These findings highlight the herbicidin scaffold for anti- Cryptosporidium drug development.
Collapse
Affiliation(s)
- Jian-Jun Chen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Mostafa E Rateb
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Melissa S Love
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Zhengren Xu
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Dong Yang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Case W McNamara
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Ben Shen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
9
|
Vu H, Pedro L, Mak T, McCormick B, Rowley J, Liu M, Di Capua A, Williams-Noonan B, Pham NB, Pouwer R, Nguyen B, Andrews KT, Skinner-Adams T, Kim J, Hol WGJ, Hui R, Crowther GJ, Van Voorhis WC, Quinn RJ. Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. ACS Infect Dis 2018; 4:431-444. [PMID: 29436819 PMCID: PMC5902791 DOI: 10.1021/acsinfecdis.7b00197] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Natural
products are well known for their biological relevance, high degree
of three-dimensionality, and access to areas of largely unexplored
chemical space. To shape our understanding of the interaction between
natural products and protein targets in the postgenomic era, we have
used native mass spectrometry to investigate 62 potential protein
targets for malaria using a natural-product-based fragment library.
We reveal here 96 low-molecular-weight natural products identified
as binding partners of 32 of the putative malarial targets. Seventy-nine
(79) fragments have direct growth inhibition on Plasmodium
falciparum at concentrations that are promising for the development
of fragment hits against these protein targets. This adds a fragment
library to the published HTS active libraries in the public domain.
Collapse
Affiliation(s)
- Hoan Vu
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Liliana Pedro
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Brendan McCormick
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Jessica Rowley
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Angela Di Capua
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Billy Williams-Noonan
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Ngoc B. Pham
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Rebecca Pouwer
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Bao Nguyen
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | | | | | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, seventh floor 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | | | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
10
|
Corral MG, Leroux J, Tresch S, Newton T, Stubbs KA, Mylne JS. Exploiting the Evolutionary Relationship between Malarial Parasites and Plants To Develop New Herbicides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maxime G. Corral
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Julie Leroux
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | | | | | - Keith A. Stubbs
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Joshua S. Mylne
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| |
Collapse
|
11
|
Corral MG, Leroux J, Tresch S, Newton T, Stubbs KA, Mylne JS. Exploiting the Evolutionary Relationship between Malarial Parasites and Plants To Develop New Herbicides. Angew Chem Int Ed Engl 2017; 56:9881-9885. [DOI: 10.1002/anie.201705400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Maxime G. Corral
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Julie Leroux
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | | | | | - Keith A. Stubbs
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Joshua S. Mylne
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| |
Collapse
|
12
|
Chooi Y, Zhang G, Hu J, Muria‐Gonzalez MJ, Tran PN, Pettitt A, Maier AG, Barrow RA, Solomon PS. Functional genomics‐guided discovery of a light‐activated phytotoxin in the wheat pathogen
Parastagonospora nodorum
via pathway activation. Environ Microbiol 2017; 19:1975-1986. [DOI: 10.1111/1462-2920.13711] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Yit‐Heng Chooi
- School of Molecular SciencesUniversity of Western AustraliaPerth WA6009 Australia
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| | - Guozhi Zhang
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| | - Jinyu Hu
- School of Molecular SciencesUniversity of Western AustraliaPerth WA6009 Australia
| | | | - Phuong N. Tran
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| | - Amber Pettitt
- School of Molecular SciencesUniversity of Western AustraliaPerth WA6009 Australia
| | - Alexander G. Maier
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| | - Russell A. Barrow
- Research School of ChemistryAustralian National UniversityCanberra ACT2601 Australia
| | - Peter S. Solomon
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| |
Collapse
|
13
|
Corral MG, Leroux J, Stubbs KA, Mylne JS. Herbicidal properties of antimalarial drugs. Sci Rep 2017; 7:45871. [PMID: 28361906 PMCID: PMC5374466 DOI: 10.1038/srep45871] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
The evolutionary relationship between plants and the malarial parasite Plasmodium falciparum is well established and underscored by the P. falciparum apicoplast, an essential chloroplast-like organelle. As a result of this relationship, studies have demonstrated that herbicides active against plants are also active against P. falciparum and thus could act as antimalarial drug leads. Here we show the converse is also true; many antimalarial compounds developed for human use are highly herbicidal. We found that human antimalarial drugs (e.g. sulfadiazine, sulfadoxine, pyrimethamine, cycloguanil) were lethal to the model plant Arabidopsis thaliana at similar concentrations to market herbicides glufosinate and glyphosate. Furthermore, the physicochemical properties of these herbicidal antimalarial compounds were similar to commercially used herbicides. The implications of this finding that many antimalarial compounds are herbicidal proffers two novel applications: (i) using the genetically tractable A. thaliana to reveal mode-of-action for understudied antimalarial drugs, and (ii) co-opting antimalarial compounds as a new source for much needed herbicide lead molecules.
Collapse
Affiliation(s)
- Maxime G Corral
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia.,The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Julie Leroux
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia.,The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia.,The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
14
|
Chen W, Yeo SCM, Chuang XF, Lin HS. Determination of pinostilbene in rat plasma by LC–MS/MS: Application to a pharmacokinetic study. J Pharm Biomed Anal 2016; 120:316-21. [DOI: 10.1016/j.jpba.2015.12.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 10/22/2022]
|
15
|
Santoro E, Mazzeo G, Petrovic AG, Cimmino A, Koshoubu J, Evidente A, Berova N, Superchi S. Absolute configurations of phytotoxins seiricardine A and inuloxin A obtained by chiroptical studies. PHYTOCHEMISTRY 2015; 116:359-366. [PMID: 25817835 DOI: 10.1016/j.phytochem.2015.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 05/23/2023]
Abstract
The absolute configuration (AC) of the plant phytotoxin inuloxin A, produced by Inula viscosa, and of the fungal phytotoxin seiricardine A, obtained from Seiridium fungi, pathogen for cypress, has been determined by experimental measurements and theoretical simulations of chiroptical properties of three related methods, namely, Optical Rotatory Dispersion (ORD), Electronic Circular Dichroism (ECD), and Vibrational Circular Dichroism (VCD). Computational prediction by Density Functional Theory (DFT) of VCD spectra and by Time-dependent DFT (TDDFT) of ORD and ECD spectra allowed to assign (7R,8R,10S) AC to naturally occurring (+)-inuloxin A. In the case of compound (-)-seiricardine A, which lacks useful for the analysis UV-Vis absorption, and thus provides a hardly detectable ECD spectrum and quite low ORD values, an introduction of a suitable chromophore by chemical derivatization was performed. The corresponding derivative, 2-O-p-bromobenzoate ester, gave rise to an intense ECD spectrum and higher ORD and VCD values. The comparison of computed spectra with the experimental ones allowed to assign (1S,2R,3aS,4S,5R,7aS) AC to (-)-2-O-p-bromobenzoate ester of seiricardine A and then to (-)-seiricardine A. This study further supports a recent trend of concerted application of more than a single chiroptical technique toward an unambiguous assignment of AC of flexible and complex natural products. Moreover, the use of chemical derivatization, with insertion of suitable chromophoric moieties has allowed to treat also UV-Vis transparent molecules by ECD and ORD spectroscopies.
Collapse
Affiliation(s)
- Ernesto Santoro
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Ana G Petrovic
- Department of Life Sciences, New York Institute of Technology (NYIT), 1855 Broadway, New York, NY 10023, USA
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Jun Koshoubu
- JASCO Corporation, Hachioji-shi, Tokyo 192-8537, Japan
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Nina Berova
- Department of Chemistry, Columbia University, 3000 Broadway, 3114, New York, NY 10027, USA.
| | - Stefano Superchi
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
16
|
Knudsmark Jessing K, Duke SO, Cedergreeen N. Potential ecological roles of artemisinin produced by Artemisia annua L. J Chem Ecol 2014; 40:100-17. [PMID: 24500733 DOI: 10.1007/s10886-014-0384-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/16/2013] [Accepted: 01/21/2014] [Indexed: 11/24/2022]
Abstract
Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin has a complex structure that requires a significant amount of energy for the plant to synthesize. So, what are the benefits to A. annua of producing this unique compound, and what is the ecological role of artemisinin? This review addresses these questions, discussing evidence of the potential utility of artemisinin in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species. Abiotic factors affecting the artemisinin production, as well as mechanisms of artemisinin release to the surroundings also are discussed, and new data are provided on the toxicity of artemisinin towards soil and aquatic organisms. The antifungal and antibacterial effects reported are not very pronounced. Several studies have reported that extracts of A. annua have insecticidal effects, though few studies have proven that artemisinin could be the single compound responsible for the observed effects. However, the pathogen(s) or insect(s) that may have provided the selection pressure for the evolution of artemisinin synthesis may not have been represented in the research thus far conducted. The relatively high level of phytotoxicity of artemisinin in soil indicates that plant/plant allelopathy could be a beneficial function of artemisinin to the producing plant. The release routes of artemisinin (movement from roots and wash off from leaf surfaces) from A. annua to the soil support the rationale for allelopathy.
Collapse
Affiliation(s)
- Karina Knudsmark Jessing
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark,
| | | | | |
Collapse
|
17
|
Witschel M, Rottmann M, Kaiser M, Brun R. Agrochemicals against malaria, sleeping sickness, leishmaniasis and Chagas disease. PLoS Negl Trop Dis 2012; 6:e1805. [PMID: 23145187 PMCID: PMC3493374 DOI: 10.1371/journal.pntd.0001805] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/18/2012] [Indexed: 12/30/2022] Open
Abstract
In tropical regions, protozoan parasites can cause severe diseases with malaria, leishmaniasis, sleeping sickness, and Chagas disease standing in the forefront. Many of the drugs currently being used to treat these diseases have been developed more than 50 years ago and can cause severe adverse effects. Above all, resistance to existing drugs is widespread and has become a serious problem threatening the success of control measures. In order to identify new antiprotozoal agents, more than 600 commercial agrochemicals have been tested on the pathogens causing the above mentioned diseases. For all of the pathogens, compounds were identified with similar or even higher activities than the currently used drugs in applied in vitro assays. Furthermore, in vivo activity was observed for the fungicide/oomyceticide azoxystrobin, and the insecticide hydramethylnon in the Plasmodium berghei mouse model, and for the oomyceticide zoxamide in the Trypanosoma brucei rhodesiense STIB900 mouse model, respectively. Even though agrochemistry and infectious disease control have the same principle goal – the suppression of harmful organisms without harming human health and the environment – there have been only very limited activities to exploit this overlap for the development of new antiinfectious drugs so far. In this study and for the first time, over 600 commercial agrochemicals were systematically screened against the infectious pathogens causing malaria, sleeping sickness, Chagas disease and leishmaniasis. Many highly active compounds with known low mammalian toxicity were identified in cell based assays, and the activity of some of them could even be confirmed in first animal model studies. Further expansion of this concept to other pathogens and the examination of analogues of the identified hits, potentially available from agrochemical companies, would allow for a very efficient source of novel drug candidates.
Collapse
Affiliation(s)
- Matthias Witschel
- BASF SE, Global Research Herbicides, Ludwigshafen, Germany
- * E-mail: (MW); (RB)
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (MW); (RB)
| |
Collapse
|
18
|
Kumarihamy M, Khan SI, Jacob M, Tekwani BL, Duke SO, Ferreira D, Nanayakkara ND. Antiprotozoal and antimicrobial compounds from the plant pathogen Septoria pistaciarum. JOURNAL OF NATURAL PRODUCTS 2012; 75:883-9. [PMID: 22530813 PMCID: PMC3361971 DOI: 10.1021/np200940b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Four new 1,4-dihydroxy-5-phenyl-2-pyridinone alkaloids, 17-hydroxy-N-(O-methyl)septoriamycin A (1), 17-acetoxy-N-(O-methyl)septoriamycin A (2), 13-(S)-hydroxy-N-(O-methyl)septoriamycin A (3), and 13-(R)-hydroxy-N-(O-methyl)septoriamycin A (4), together with the known compounds (+)-cercosporin (5), (+)-14-O-acetylcercosporin (6), (+)-di-O-acetylcercosporin (7), lumichrome, and brassicasterol, were isolated from an ethyl acetate extract of a culture medium of Septoria pistaciarum. Methylation of septoriamycin A (8) with diazomethane yielded three di-O-methyl analogues, two of which existed as mixtures of rotamers. We previously reported antimalarial activity of septoriamycin A. This compound also exhibited significant activity against Leishmania donovani promastigotes. Compounds 5-7 showed moderate in vitro activity against L. donovani promastigotes and chloroquine-sensitive (D6) and -resistant (W2) strains of Plasmodium falciparum, whereas compound 5 was fairly active against methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus. Compounds 5-7 also displayed moderate phytotoxic activity against both a dicot (lettuce, Lactuca sativa) and a monocot (bentgrass, Agrostis stolonifera) and cytotoxicity against a panel of cell lines.
Collapse
|
19
|
Abstract
Parasitic diseases cause significant global morbidity and mortality, particularly in underdeveloped regions of the world. Malaria alone causes ~800000 deaths each year, with children and pregnant women being at highest risk. There is no licensed vaccine available for any human parasitic disease and drug resistance is compromising the efficacy of many available anti-parasitic drugs. This is driving drug discovery research on new agents with novel modes of action. Histone deacetylase (HDAC) inhibitors are being investigated as drugs for a range of diseases, including cancers and infectious diseases such as HIV/AIDS, and several parasitic diseases. This review focuses on the current state of knowledge of HDAC inhibitors targeted to the major human parasitic diseases malaria, schistosomiasis, trypanosomiasis, toxoplasmosis and leishmaniasis. Insights are provided into the unique challenges that will need to be considered if HDAC inhibitors are to be progressed towards clinical development as potential new anti-parasitic drugs.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | |
Collapse
|
20
|
Swanton CJ, Mashhadi HR, Solomon KR, Afifi MM, Duke SO. Similarities between the discovery and regulation of pharmaceuticals and pesticides: in support of a better understanding of the risks and benefits of each. PEST MANAGEMENT SCIENCE 2011; 67:790-797. [PMID: 21520394 DOI: 10.1002/ps.2179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 02/03/2011] [Accepted: 02/25/2011] [Indexed: 05/30/2023]
Abstract
An argument is presented by which the role of pharmaceuticals and pesticides can both be viewed in terms of contributing to human health. Comparisons are made in terms of discovery and development, regulatory policies and environmental and human impacts. Both technologies target particular biological functions, and in many cases they target similar molecular sites of action. Pharmaceuticals and pesticides undergo a similar registration process; however, both can enter the environment where they can have adverse effects on non-target organisms and, if misused, will have detrimental effects on human health or the environment. It is suggested that the risks associated with the two technologies are similar. The rejection of pesticides by the general public is based primarily on personal value systems and the uncertainty of risk management. It is concluded that plant and animal health are vital to maintaining human health, and that pesticides used in food production are, as with pharmaceuticals, a vital tool used to maintain human health.
Collapse
Affiliation(s)
- Clarence J Swanton
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | |
Collapse
|
21
|
Bajsa J, McCluskey A, Gordon CP, Stewart SG, Hill TA, Sahu R, Duke SO, Tekwani BL. The antiplasmodial activity of norcantharidin analogs. Bioorg Med Chem Lett 2010; 20:6688-95. [PMID: 20888768 DOI: 10.1016/j.bmcl.2010.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 12/22/2022]
Abstract
The antiplasmodial activities of sixty norcantharidin analogs were tested in vitro against a chloroquine sensitive (D6, Sierra Leone) and chloroquine resistant (W2) strains of Plasmodium falciparum. Forty analogs returned IC(50) values <500 μM against at least one of the P. falciparum strains examined. The ring open compound 24 ((1S,4R)-3-(allylcarbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid) is the most active aliphatic analog (D6 IC(50)=3.0±0.0 and W2 IC(50)=3.0±0.8 μM) with a 20-fold enhancement relative to norcantharidin. Surprisingly, seven norcantharimides also displayed good antiplasmodial activity with the most potent, 5 returning D6=8.9±0.9 and W2 IC(50)=12.5±2.2 μM, representing a fivefold enhancement over norcantharidin.
Collapse
Affiliation(s)
- Joanna Bajsa
- USDA, ARS, Natural Products Utilization Research Unit, University, MS 38677, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kumarihamy M, Fronczek FR, Ferreira D, Jacob M, Khan SI, Nanayakkara ND. Bioactive 1,4-dihydroxy-5-phenyl-2-pyridinone alkaloids from Septoria pistaciarum. JOURNAL OF NATURAL PRODUCTS 2010; 73:1250-1253. [PMID: 20550123 PMCID: PMC2917538 DOI: 10.1021/np1000939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Four new 1,4-dihydroxy-5-phenyl-2-pyridinone alkaloids (1-4) were isolated from an EtOAc extract of a culture medium of Septoria pistaciarum. The structures of these compounds were determined by spectroscopic methods, and the absolute configuration of the major compound (1) was determined by X-ray crystallographic analysis. Compound 1 exhibited moderate in vitro antiplasmodial (antimalarial) activity against chloroquine-sensitive (D6) and -resistant (W2) strains of Plasmodium falciparum and cytotoxic activity to Vero cells. Compound 2 was moderately active against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus.
Collapse
|
23
|
Bandara Herath HMT, Herath WHMW, Carvalho P, Khan SI, Tekwani BL, Duke SO, Tomaso-Peterson M, Nanayakkara NPD. Biologically active tetranorditerpenoids from the fungus Sclerotinia homoeocarpa causal agent of dollar spot in turfgrass. JOURNAL OF NATURAL PRODUCTS 2009; 72:2091-7. [PMID: 19928902 PMCID: PMC2856487 DOI: 10.1021/np900334k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nine new tetranorditerpenoid dilactones (2-10), together with two previously reported norditerpenoids dilactones (1, 11), and two known putative biosynthetic intermediates, oidiolactone-E (12) and 13, were isolated from an ethyl acetate extract of a culture medium of Sclerotinia homoeocarpa. Structures and absolute configurations of these compounds were determined by spectroscopic methods and confirmed by X-ray crystallographic analysis of representative compounds. Compounds were evaluated for herbicidal, antiplasmodial, and cytotoxic activities. Compounds 1, 2, 6, 7, and 11 were more active as growth inhibitors in a duckweed bioassay (I(50) values of 0.39-0.95 microM) than more than half of 26 commercial herbicides previously evaluated using the same bioassay. Some of these compounds exhibited strong antiplasmodial activities as well, but they also had cytotoxic activity, thus precluding them as potential antimalarial agents.
Collapse
Affiliation(s)
- H. M. T. Bandara Herath
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677
| | - Wimal H. M. W. Herath
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677
| | - Paulo Carvalho
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Shabana I. Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677
| | - Babu L. Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677
| | - Stephen O. Duke
- Natural Products Utilization Research Unit, USDA-ARS, University, MS 38677
| | - Maria Tomaso-Peterson
- Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - N. P. Dhammika Nanayakkara
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677
| |
Collapse
|
24
|
Kaur K, Jain M, Kaur T, Jain R. Antimalarials from nature. Bioorg Med Chem 2009; 17:3229-56. [DOI: 10.1016/j.bmc.2009.02.050] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
25
|
Jung M, Park WH, Jung JC, Lim E, Lee Y, Oh S, Moon HI. Synthesis, Structural Characterization and Biological Evaluation of Novel Stilbene Derivatives as Potential Antimalarial Agents. Chem Biol Drug Des 2009; 73:346-54. [DOI: 10.1111/j.1747-0285.2009.00775.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|