1
|
Zhang MY, Cao RD, Chen Y, Ma JC, Shi CM, Zhang YF, Zhang JX, Zhang YH. Genomic and Phenotypic Adaptations of Rattus tanezumi to Cold Limit Its Further Northward Expansion and Range Overlap with R. norvegicus. Mol Biol Evol 2024; 41:msae106. [PMID: 38829799 PMCID: PMC11184353 DOI: 10.1093/molbev/msae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Global climate change has led to shifts in the distribution ranges of many terrestrial species, promoting their migration from lower altitudes or latitudes to higher ones. Meanwhile, successful invaders have developed genetic adaptations enabling the colonization of new environments. Over the past 40 years, Rattus tanezumi (RT) has expanded into northern China (Northwest and North China) from its southern origins. We studied the cold adaptation of RT and its potential for northward expansion by comparing it with sympatric Rattus norvegicus (RN), which is well adapted to cold regions. Through population genomic analysis, we revealed that the invading RT rats have split into three distinct populations: the North, Northwest, and Tibetan populations. The first two populations exhibited high genetic diversity, while the latter population showed remarkably low genetic diversity. These rats have developed various genetic adaptations to cold, arid, hypoxic, and high-UV conditions. Cold acclimation tests revealed divergent thermoregulation between RT and RN. Specifically, RT exhibited higher brown adipose tissue activity and metabolic rates than did RN. Transcriptome analysis highlighted changes in genes regulating triglyceride catabolic processes in RT, including Apoa1 and Apoa4, which were upregulated, under selection and associated with local adaptation. In contrast, RN showed changes in carbohydrate metabolism genes. Despite the cold adaptation of RT, we observed genotypic and phenotypic constraints that may limit its ability to cope with severe low temperatures farther north. Consequently, it is less likely that RT rats will invade and overlap with RN rats in farther northern regions.
Collapse
Affiliation(s)
- Ming-Yu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Cang Ma
- Zhangye Maize Stock Production Base, Zhangye 734024, Gansu, China
| | - Cheng-Min Shi
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
2
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Somers FM, Malek G. Estrogen related receptor alpha: Potential modulator of age-related macular degeneration. Curr Opin Pharmacol 2024; 75:102439. [PMID: 38447458 PMCID: PMC10947805 DOI: 10.1016/j.coph.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/08/2024]
Abstract
To develop effective therapies for complex blinding diseases such as age-related macular degeneration (AMD), identification of mechanisms involved in its initiation and progression is needed. The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor that regulates several AMD-associated pathogenic pathways. However, it has not been investigated in detail in the ocular posterior pole during aging or in AMD. This review delves into the literature highlighting the significance of ESRRA as a molecular target that may be important in the pathobiology of AMD, and discusses data available supporting the targeting of this receptor signaling pathway as a therapeutic option for AMD.
Collapse
Affiliation(s)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Li T, Bai H, Yang L, Wang H, Wei S, Yan P. Cold exposure induces browning of bovine subcutaneous white fat in vivo and in vitro. J Therm Biol 2023; 112:103446. [PMID: 36796901 DOI: 10.1016/j.jtherbio.2022.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
White adipocytes can be transformed into beige adipocytes through the process of browning under cold exposure. To investigate the effects and underlying mechanisms of cold exposure on subcutaneous white fat in cattle, in vitro and in vivo studies were performed. Eight bulls of Jinjiang cattle breed (Bos taurus) aged 18 months were allocated to the control group (n = 4, autumn) or the cold group (n = 4, winter) by different slaughter seasons. Biochemical and histomorphological parameters were detected in blood and backfat samples. Subcutaneous adipocytes from Simental cattle (Bos taurus) were then isolated and cultured at a normal body temperature (37 °C) and at a cold temperature (31 °C) in vitro. In the in vivo study, cold exposure stimulated subcutaneous white adipose tissue (sWAT) browning by reducing adipocyte sizes and up-regulating the expression levels of browning-specific makers (UCP1, PRDM16, and PGC-1α) in cattle. In addition, cold-exposed cattle displayed lower lipogenesis transcriptional regulator levels (PPARγ and CEBPα) and higher lipolysis regulator levels (HSL) in sWAT. In the in vitro study, cold temperature inhibited subcutaneous white adipocytes (sWA) adipogenic differentiation by reducing lipid contents and decreasing the expression of adipogenic marker genes and proteins. Furthermore, cold temperature led to sWA browning which was characterized by increased browning-related genes, mitochondrial contents, and mitochondrial biogenesis-specific markers. In addition, p38 MAPK signaling pathway activity was stimulated by the incubation in cold temperature for 6 h in sWA. We concluded that the cold-induced browning of the subcutaneous white fat was beneficial to the production of heat and the maintenance of body temperature regulation in cattle.
Collapse
Affiliation(s)
- Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hui Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Liang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hongzhuang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
5
|
Moraes DA, Machado RB, Koban M, Hoffman GE, Suchecki D. The Pituitary-Adrenal Response to Paradoxical Sleep Deprivation Is Similar to a Psychological Stressor, Whereas the Hypothalamic Response Is Unique. Front Endocrinol (Lausanne) 2022; 13:885909. [PMID: 35880052 PMCID: PMC9308007 DOI: 10.3389/fendo.2022.885909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Stressors of different natures induce activation of the hypothalamic-pituitary-adrenal (HPA) axis at different magnitudes. Moreover, the HPA axis response to repeated exposure is usually distinct from that elicited by a single session. Paradoxical sleep deprivation (PSD) augments ACTH and corticosterone (CORT) levels, but the nature of this stimulus is not yet defined. The purpose of the present study was to qualitatively compare the stress response of animals submitted to PSD to that of rats exposed once or four times to cold, as a physiological stress, movement restraint (RST) as a mixed stressor and predator odour (PRED) as the psychological stressor, whilst animals were submitted for 1 or 4 days to PSD and respective control groups. None of the stressors altered corticotropin releasing factor immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN), median eminence (ME) or central amygdala, compared to control groups, whereas vasopressin immunoreactivity in PSD animals was decreased in the PVN and increased in the ME, indicating augmented activity of this system. ACTH levels were higher after repeated stress or prolonged PSD than after single- or 1 day-exposure and control groups, whereas the CORT response was habituated by repeated stress, but not by 4-days PSD. This dissociation resulted in changes in the CORT : ACTH ratio, with repeated cold and RST decreasing the ratio compared to single exposure, but no change was seen in PRED and PSD groups. Comparing the magnitude and pattern of pituitary-adrenal response to the different stressors, PSD-induced responses were closer to that shown by PRED-exposed rats. In contrast, the hypothalamic response of PSD-exposed rats was unique, inasmuch as this was the only stressor which increased the activity of the vasopressin system. In conclusion, we propose that the pituitary-adrenal response to PSD is similar to that induced by a psychological stressor.
Collapse
Affiliation(s)
- Danilo A. Moraes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo B. Machado
- Grupo de Pesquisa em Psicossomática, Universidade Ibirapuera, São Paulo, Brazil
| | - Michael Koban
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Deborah Suchecki,
| |
Collapse
|
6
|
Xepapadaki E, Nikdima I, Zvintzou E, Karavia EA, Kypreos KE. Tissue-specific functional interaction between apolipoproteins A1 and E in cold-induced adipose organ mitochondrial energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158859. [PMID: 33309975 DOI: 10.1016/j.bbalip.2020.158859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.
Collapse
Affiliation(s)
- Eva Xepapadaki
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Ioanna Nikdima
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Evangelia Zvintzou
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Eleni A Karavia
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Kyriakos E Kypreos
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece; European University Cyprus, School of Sciences, Department of Life Sciences, Nicosia, Cyprus.
| |
Collapse
|
7
|
Reynés B, van Schothorst EM, Keijer J, Palou A, Oliver P. Effects of cold exposure revealed by global transcriptomic analysis in ferret peripheral blood mononuclear cells. Sci Rep 2019; 9:19985. [PMID: 31882687 PMCID: PMC6934835 DOI: 10.1038/s41598-019-56354-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Animal studies, mostly performed in rodents, show the beneficial anti-obesity effects of cold studies. This is due to thermogenic activation of brown adipose tissue (BAT), a tissue also recently discovered in adult humans. Studies in humans, however, are hampered by the accessibility of most tissues. In contrast, peripheral blood mononuclear cells (PBMC) are accessible and share the expression profile of different sets of genes with other tissues, including those that reflect metabolic responses. Ferrets are an animal model physiologically closer to humans than rodents. Here, we investigated the effects on ferrets of one-week acclimation to 4 °C by analysing the PBMC transcriptome. Cold exposure deeply affected PBMC gene expression, producing a widespread down-regulation of genes involved in different biological pathways (cell cycle, gene expression regulation/protein synthesis, immune response, signal transduction, and genes related to extracellular matrix/cytoskeleton), while thermogenic and glycogenolysis-related processes were increased. Results obtained in PBMC reflected those of adipose tissue, but hardly those of the liver. Our study, using ferret as a model, reinforce PBMC usefulness as sentinel biological material for cold-exposure studies in order to deepen our understanding of the general and specific pathways affected by cold acclimation. This is relevant for future development of therapies to be used clinically.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity group), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity group), University of the Balearic Islands, Palma, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity group), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
8
|
Identification of key candidate genes and molecular pathways in white fat browning: an anti-obesity drug discovery based on computational biology. Hum Genomics 2019; 13:55. [PMID: 31699147 PMCID: PMC6836481 DOI: 10.1186/s40246-019-0239-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/25/2019] [Indexed: 01/16/2023] Open
Abstract
Background Obesity—with its increased risk of obesity-associated metabolic diseases—has become one of the greatest public health epidemics of the twenty-first century in affluent countries. To date, there are no ideal drugs for treating obesity. Studies have shown that activation of brown adipose tissue (BAT) can promote energy consumption and inhibit obesity, which makes browning of white adipose tissue (WAT) a potential therapeutic target for obesity. Our objective was to identify genes and molecular pathways associated with WAT and the activation of BAT to WAT browning, by using publicly available data and computational tools; this knowledge might help in targeting relevant signaling pathways for treating obesity and other related metabolic diseases. Results In this study, we used text mining to find out genes related to brown fat and white fat browning. Combined with biological process and pathway analysis in GeneCodis and protein-protein interaction analysis by using STRING and Cytoscape, a list of high priority target genes was developed. The Human Protein Atlas was used to analyze protein expression. Candidate drugs were derived on the basis of the drug-gene interaction analysis of the final genes. Our study identified 18 genes representing 6 different pathways, targetable by a total of 33 drugs as possible drug treatments. The final list included 18 peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, 4 beta 3 adrenoceptor (β3-AR) agonists, 1 insulin sensitizer, 3 insulins, 6 lipase clearing factor stimulants and other drugs. Conclusions Drug discovery using in silico text mining, pathway, and protein-protein interaction analysis tools may be a method of exploring drugs targeting the activation of brown fat or white fat browning, which provides a basis for the development of novel targeted therapies as potential treatments for obesity and related metabolic diseases.
Collapse
|
9
|
Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proc Natl Acad Sci U S A 2019; 116:18691-18699. [PMID: 31451658 DOI: 10.1073/pnas.1909883116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ambient temperature influences the molecular clock and lipid metabolism, but the impact of chronic cold exposure on circadian lipid metabolism in thermogenic brown adipose tissue (BAT) has not been studied. Here we show that during chronic cold exposure (1 wk at 4 °C), genes controlling de novo lipogenesis (DNL) including Srebp1, the master transcriptional regulator of DNL, acquired high-amplitude circadian rhythms in thermogenic BAT. These conditions activated mechanistic target of rapamycin 1 (mTORC1), an inducer of Srebp1 expression, and engaged circadian transcriptional repressors REV-ERBα and β as rhythmic regulators of Srebp1 in BAT. SREBP was required in BAT for the thermogenic response to norepinephrine, and depletion of SREBP prevented maintenance of body temperature both during circadian cycles as well as during fasting of chronically cold mice. By contrast, deletion of REV-ERBα and β in BAT allowed mice to maintain their body temperature in chronic cold. Thus, the environmental challenge of prolonged noncircadian exposure to cold temperature induces circadian induction of SREBP1 that drives fuel synthesis in BAT and is necessary to maintain circadian body temperature during chronic cold exposure. The requirement for BAT fatty acid synthesis has broad implications for adaptation to cold.
Collapse
|
10
|
Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:471-480. [DOI: 10.1016/j.bbadis.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 11/21/2022]
|
11
|
Sopeña B, López-Ibarra Z, López-Farré AJ, de Las Heras N, Ballesteros S, González-Cantalapiedra A, Lahera V, Zamorano-León JJ. Really does temperature reduction and norepinephrine have similar effects on the energy metabolism in rat brown adipose tissue? Arch Physiol Biochem 2018; 124:54-60. [PMID: 28844165 DOI: 10.1080/13813455.2017.1360913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Heat generation by brown adipose tissue (BAT) in response to temperature reduction seems to be entirely related to sympathetic nervous stimulation. OBJECTIVE To analyse if temperature reduction and norepinephrine may differently affect the expression of proteins related to energy metabolism in BAT. MATERIALS AND METHODS Isolated rats BAT was incubated with/without norepinephrine (10-6 mol/L, 24 h at 32 °C and 37 °C). RESULTS In BAT, 32 °C increased the protein expression levels of carnitine palmitoyltransferase-I and -II, mitochondrial uncoupling protein-1 (UCP-1) and the expression and activity of lactate dehydrogenase. Mitochondrial F1-ATP synthase α-chain expression was decreased at 32 °C compared to 37 °C. Norepinephrine and at 32 °C exposure, UCP-1 expression was increased but cytochrome-c oxidase and F1-ATP synthase α-chain expression was reduced with respect to 37 °C. DISCUSSION Sympathetic stimulation seems not to be the only factor associated with heat generation. CONCLUSIONS Temperature reduction by itself exerts some different effects on the expression of proteins related to the energy metabolism than norepinephrine.
Collapse
Affiliation(s)
- B Sopeña
- a Department of Medicine, School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - Z López-Ibarra
- a Department of Medicine, School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
- b Surgery Department , Hospital Universitario ROF-Codina , Lugo , Spain
| | - A J López-Farré
- a Department of Medicine, School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - N de Las Heras
- c Department of Physiology, School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - S Ballesteros
- c Department of Physiology, School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | | | - V Lahera
- c Department of Physiology, School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - J J Zamorano-León
- a Department of Medicine, School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
12
|
Pramme-Steinwachs I, Jastroch M, Ussar S. Extracellular calcium modulates brown adipocyte differentiation and identity. Sci Rep 2017; 7:8888. [PMID: 28827782 PMCID: PMC5567186 DOI: 10.1038/s41598-017-09025-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/19/2017] [Indexed: 11/24/2022] Open
Abstract
Brown adipocytes are important in regulating non-shivering thermogenesis, whole body glucose and lipid homeostasis. Increasing evidence supports an important role of metabolites as well as macro- and micronutrients in brown adipocyte differentiation and function. Calcium is one of the most abundant ions in the body regulating multiple cellular processes. We observed that increasing extracellular calcium concentration during brown adipocyte differentiation blocks lipid accumulation and suppresses induction of major adipogenic transcription factors such as PPARγ and C/EBPα. In contrast, the depletion of calcium in the medium enhances adipogenesis and expression of brown adipocyte selective genes, such as UCP1. Mechanistically, we show that elevated extracellular calcium inhibits C/EBPβ activity through hyperactivation of ERK, a process that is independent of intracellular calcium levels and reversibly halts differentiation. Moreover, increased extracellular calcium solely after the induction phase of differentiation specifically suppresses gene expression of UCP1, PRDM16 and PGC1-α. Notably, depleting extracellular calcium provokes opposite effects. Together, we show that modulating extracellular calcium concentration controls brown adipocyte differentiation and thermogenic gene expression, highlighting the importance of tissue microenvironment on brown adipocyte heterogeneity and function.
Collapse
Affiliation(s)
- Ines Pramme-Steinwachs
- JRG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Center Munich, 85748, Garching, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Jastroch
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute for Diabetes & Obesity, Helmholtz Center Munich, 85748, Garching, Germany
| | - Siegfried Ussar
- JRG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Center Munich, 85748, Garching, Germany. .,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
| |
Collapse
|
13
|
LIN YH, LIU YP, LIN YC, LEE PL, TUNG CS. Cooling-Evoked Hemodynamic Perturbations Facilitate Sympathetic Activity with Subsequent Myogenic Vascular Oscillations via Alpha2-Adrenergic Receptors. Physiol Res 2017; 66:449-457. [DOI: 10.33549/physiolres.933385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study extends our previous work by examining the effects of alpha2-adrenoceptors under cold stimulation involving the increase of myogenic vascular oscillations as increases of very-low-frequency and low-frequency of the blood pressure variability. Forty-eight adult male Sprague-Dawley rats were randomly divided into four groups: vehicle; yohimbine; hexamethonium+yohimbine; guanethidine+yohimbine. Systolic blood pressure, heart rate, power spectral analysis of spontaneous blood pressure and heart rate variability and spectral coherence at very-low-frequency (0.02 to 0.2 Hz), low-frequency (0.2 to 0.6 Hz), and high-frequency (0.6 to 3.0 Hz) regions were monitored using telemetry. Key findings are as follows: 1) Cooling-induced pressor response was attenuated by yohimbine and further attenuated by hexamethonium+yohimbine and guanethidine+yohimbine, 2) Cooling-induced tachycardia response of yohimbine was attenuated by hexame-thonium+yohimbine and guanethidine+yohimbine, 3) Different patterns of power spectrum reaction and coherence value compared hexamethonium+yohimbine and guanethi-dine+yohimbine to yohimbine alone under cold stimulation. The results suggest that sympathetic activation of the postsynaptic alpha2-adrenoceptors causes vasoconstriction and heightening myogenic vascular oscillations, in turn, may increase blood flow to prevent tissue damage under stressful cooling challenge.
Collapse
Affiliation(s)
| | | | | | | | - C.-S. TUNG
- Division of Medical Research & Education, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Do PH, Tran PV, Bahry MA, Yang H, Han G, Tsuchiya A, Asami Y, Furuse M, Chowdhury VS. Oral administration of a medium containing both D-aspartate-producing live bacteria and D-aspartate reduces rectal temperature in chicks. Br Poult Sci 2017; 58:569-577. [DOI: 10.1080/00071668.2017.1335858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- P. H. Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - P. V. Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - M. A. Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - H. Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - G. Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - A. Tsuchiya
- R&D Division, Meiji Co., Ltd., Kanagawa, Japan
| | - Y. Asami
- R&D Division, Meiji Co., Ltd., Kanagawa, Japan
| | - M. Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - V. S. Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Mukherjee J, Baranwal A, Schade KN. Classification of Therapeutic and Experimental Drugs for Brown Adipose Tissue Activation: Potential Treatment Strategies for Diabetes and Obesity. Curr Diabetes Rev 2016; 12:414-428. [PMID: 27183844 PMCID: PMC5425649 DOI: 10.2174/1573399812666160517115450] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Increasing efforts are being made towards pharmacologic activation of brown adipose tissue (BAT) in animals and humans for potential use in the treatment of obesity and diabetes. We and others have reported a number of animal studies using either experimental or therapeutic drugs. There are now efforts to translate these findings to human studies. The goal of this review is to evaluate the various drugs currently being used that have the potential for BAT activation. METHODS Drugs were classified into 4 classes based on their mechanism of action. Class 1 drugs include the use of β3 adrenoceptor agonists for BAT activation. Class 2 drugs include drugs that affect norepinephrine levels and activate BAT with the potential of reducing obesity. Class 3 includes activators of peroxisome proliferator-activated receptor-γ in pursuit of lowering blood sugar, weight loss and diabetes and finally Class 4 includes natural products and other emerging drugs with limited information on BAT activation and their effects on diabetes and weight loss. RESULTS Class 1 drugs are high BAT activators followed by Class 2 and 3. Some of these drugs have now been extended to diabetes and obesity animal models and human BAT studies. Drugs in Class 3 are used clinically for Type 2 diabetes, but the extent of BAT involvement is unclear. CONCLUSION Further studies on the efficacy of these drugs in diabetes and measuring their effects on BAT activation using noninvasive imaging will help in establishing a clinical role of BAT.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- B140 Medical Sciences, Department of Radiological Sciences, University of California - Irvine, Irvine, CA 92697-5000, USA.
| | | | | |
Collapse
|
16
|
Hao Q, Yadav R, Basse AL, Petersen S, Sonne SB, Rasmussen S, Zhu Q, Lu Z, Wang J, Audouze K, Gupta R, Madsen L, Kristiansen K, Hansen JB. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism. Am J Physiol Endocrinol Metab 2015; 308:E380-92. [PMID: 25516548 DOI: 10.1152/ajpendo.00277.2014] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, suggesting increased synthesis of glycerol from glucose. Similarly, expression of lactate dehydrogenases was induced by cold in BAT. Pyruvate dehydrogenase kinase 2 (Pdk2) and Pdk4 were expressed at significantly higher levels in BAT than in WAT, and Pdk2 was induced in BAT by cold. Of notice, only a subset of the changes detected in BAT was observed in WAT. Based on changes in gene expression during cold exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating triacylglycerol synthesis/fatty acid re-esterification; 3) glycogen turnover and lactate production are increased; and 4) entry of glucose carbon into the tricarboxylic acid cycle is restricted by PDK2 and PDK4. In summary, our results demonstrate extensive and diverse gene expression changes related to glucose handling in activated BAT.
Collapse
Affiliation(s)
- Qin Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rachita Yadav
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Astrid L Basse
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sidsel Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Si B Sonne
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Qianhua Zhu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Zhike Lu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Jun Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China; Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; Department of Medicine, University of Hong Kong, Hong Kong
| | - Karine Audouze
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark; Université Paris Diderot, Inserm UMR-S973, Paris, France; and
| | - Ramneek Gupta
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Nordnes, Bergen, Norway
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
17
|
Park EY, Kim MH, Kim EH, Lee EK, Park IS, Yang DC, Jun HS. Efficacy Comparison of Korean Ginseng and American Ginseng on Body Temperature and Metabolic Parameters. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:173-87. [DOI: 10.1142/s0192415x14500128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ginseng has beneficial effects in cancer, diabetes and aging. There are two main varieties of ginseng: Panax ginseng (Korean ginseng) and Panax quinquefolius (American ginseng). There are anecdotal reports that American ginseng helps reduce body temperature, whereas Korean ginseng improves blood circulation and increases body temperature; however, their respective effects on body temperature and metabolic parameters have not been studied. We investigated body temperature and metabolic parameters in mice using a metabolic cage. After administering ginseng extracts acutely (single dose of 1000 mg/kg) or chronically (200 mg/kg/day for four weeks), core body temperature, food intake, oxygen consumption and activity were measured, as well as serum levels of pyrogen-related factors and mRNA expression of metabolic genes. Acute treatment with American ginseng reduced body temperature compared with PBS-treated mice during the night; however, there was no significant effect of ginseng treatment on body temperature after four weeks of treatment. VO 2, VCO 2, food intake, activity and energy expenditure were unchanged after both acute and chronic ginseng treatment compared with PBS treatment. In acutely treated mice, serum thyroxin levels were reduced by red and American ginseng, and the serum prostaglandin E2 level was reduced by American ginseng. In chronically treated mice, red and white ginseng reduced thyroxin levels. We conclude that Korean ginseng does not stimulate metabolism in mice, whereas a high dose of American ginseng may reduce night-time body temperature and pyrogen-related factors.
Collapse
Affiliation(s)
- Eun-Young Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Mi-Hwi Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Eung-Hwi Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Eun-Kyu Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - In-Sun Park
- Department of Pathology, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Duck-Choon Yang
- Korea Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| |
Collapse
|
18
|
Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver. PLoS One 2013; 8:e68933. [PMID: 23894377 PMCID: PMC3718809 DOI: 10.1371/journal.pone.0068933] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/05/2013] [Indexed: 01/30/2023] Open
Abstract
Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production.
Collapse
|
19
|
Chen D, Latham J, Zhao H, Bisoffi M, Farelli J, Dunaway-Mariano D. Human brown fat inducible thioesterase variant 2 cellular localization and catalytic function. Biochemistry 2012; 51:6990-9. [PMID: 22897136 DOI: 10.1021/bi3008824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mammalian brown fat inducible thioesterase variant 2 (BFIT2), also known as ACOT11, is a multimodular protein containing two consecutive hotdog-fold domains and a C-terminal steroidogenic acute regulatory protein-related lipid transfer domain (StarD14). In this study, we demonstrate that the N-terminal region of human BFIT2 (hBFIT2) constitutes a mitochondrial location signal sequence, which undergoes mitochondrion-dependent posttranslational cleavage. The mature hBFIT2 is shown to be located in the mitochondrial matrix, whereas the paralog "cytoplasmic acetyl-CoA hydrolase" (CACH, also known as ACOT12) was found in the cytoplasm. In vitro activity analysis of full-length hBFIT2 isolated from stably transfected HEK293 cells demonstrates selective thioesterase activity directed toward long chain fatty acyl-CoA thioesters, thus distinguishing the catalytic function of BFIT2 from that of CACH. The results from a protein-lipid overlay test indicate that the hBFIT2 StarD14 domain binds phosphatidylinositol 4-phosphate.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
20
|
Tsoli M, Moore M, Burg D, Painter A, Taylor R, Lockie SH, Turner N, Warren A, Cooney G, Oldfield B, Clarke S, Robertson G. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res 2012; 72:4372-82. [PMID: 22719069 DOI: 10.1158/0008-5472.can-11-3536] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cachexia/anorexia is a complex syndrome that involves profound metabolic imbalances and is directly implicated as a cause of death in at least 20% to 30% of all cancers. Brown adipose tissue (BAT) plays a key role in thermogenesis and energy balance and potentially contributes to the physiologic perturbations associated with cachexia. In this study, we investigated the impact of cachexia-inducing colorectal tumor on BAT in mice. We found that brown adipocytes were smaller and exhibited profound delipidation in cachectic tumor-bearing mice. Diurnal expression profiling of key regulators of lipid accumulation and fatty acid β-oxidation and their corresponding target genes revealed dramatic molecular changes indicative of active BAT. Increased Ucp1, Pbe, and Cpt1α expression at specific points coincided with higher BAT temperatures during the dark cycle, suggestive of a temporal stimulation of thermogenesis in cachexia. These changes persisted when cachectic mice were acclimatized to 28°C confirming inappropriate stimulation of BAT despite thermoneutrality. Evidence of inflammatory signaling also was observed in the BAT as an energetically wasteful and maladaptive response to anorexia during the development of cachexia.
Collapse
Affiliation(s)
- Maria Tsoli
- Cancer Pharmacology Unit, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cloning and ontogenetic expression of the uncoupling protein 1 gene UCP1 in sheep. J Appl Genet 2012; 53:203-12. [DOI: 10.1007/s13353-012-0086-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 12/19/2022]
|
22
|
Król E, Martin SAM, Huhtaniemi IT, Douglas A, Speakman JR. Negative correlation between milk production and brown adipose tissue gene expression in lactating mice. J Exp Biol 2011; 214:4160-70. [DOI: 10.1242/jeb.061382] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SUMMARY
It has been proposed that the performance of lactating animals is limited by the capacity of the female to dissipate body heat – the heat dissipation limit (HDL) theory. This theory predicts that milk production might be constrained not by intrinsic properties of the mammary glands but rather by competitive heat production such as thermogenesis in brown adipose tissue (BAT). To test this prediction, we measured the expression of genes linked to thermogenesis in BAT of lactating laboratory mice. The applicability of BAT gene expression to reflect thermogenic activity of BAT was confirmed by a positive relationship between expression levels of several BAT genes (summarised by the first principal component following principal component analysis) and daily energy expenditure in virgin mice. Milk production at peak lactation was strongly and negatively associated with the expression of thermogenic genes in BAT. Downregulation of these genes during lactation was correlated with low levels of circulating leptin and high levels of circulating prolactin. Our results are consistent with the HDL theory. However, we cannot discount the converse interpretation that milk production may reduce BAT activity. If the reduction in BAT activity does facilitate increased milk production, then reducing the heat generated by competitive processes may be a more productive route to increase lactational performance than attempts to improve mammary gland performance in isolation from the other body systems.
Collapse
Affiliation(s)
- Elzbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
- Mammal Research Institute PAS, 17-230 Białowieza, Poland
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Ilpo T. Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, UK
- Department of Physiology, University of Turku, FIN-20520 Turku, Finland
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| |
Collapse
|
23
|
Mirbolooki MR, Constantinescu CC, Pan ML, Mukherjee J. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation. EJNMMI Res 2011; 1:30. [PMID: 22214183 PMCID: PMC3250993 DOI: 10.1186/2191-219x-1-30] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 12/01/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Brown adipose tissue [BAT] metabolism in vivo is vital for the development of novel strategies in combating obesity and diabetes. Currently, BAT is activated at low temperatures and measured using 2-deoxy-2-18F-fluoro-D-glucose [18F-FDG] positron-emission tomography [PET]. We report the use of β3-adrenergic receptor-mediated activation of BAT at ambient temperatures using (R, R)-5-[2-[2,3-(3-chlorphenyl)-2-hydroxyethyl-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate, disodium salt [CL316,243] (a selective β3-adrenoceptor agonist) and measured by 18F-FDG PET/computed tomography [CT]. METHODS Control and CL316,243-treated (2 mg/kg) male Sprague-Dawley rats were administered with 18F-FDG for PET/CT studies and were compared to animals at cold temperatures. Receptor-blocking experiments were carried out using propranolol (5 mg/kg). Dose effects of CL316,243 were studied by injecting 0.1 to 1 mg/kg 30 min prior to 18F-FDG administration. Imaging results were confirmed by autoradiography, and histology was done to confirm BAT activation. RESULTS CL316,243-activated interscapular BAT [IBAT], cervical, periaortic, and intercostal BATs were clearly visualized by PET. 18F-FDG uptake of IBAT was increased 12-fold by CL316,243 vs. 1.1-fold by cold exposure when compared to controls. 18F-FDG uptake of the CL-activated IBAT was reduced by 96.0% using intraperitoneal administration of propranolol. Average 18F-FDG uptake of IBAT increased 3.6-, 3.5-, and 7.6-fold by doses of 0.1, 0.5, and 1 mg/kg CL, respectively. Ex vivo 18F-FDG autoradiography and histology of transverse sections of IBAT confirmed intense uptake in the CL-activated group and activated IBAT visualized by PET. CONCLUSION Our study indicated that BAT metabolic activity could be evaluated by 18F-FDG PET using CL316,243 at ambient temperature in the rodent model. This provides a feasible and reliable method to study BAT metabolism.
Collapse
Affiliation(s)
- M Reza Mirbolooki
- Preclinical Imaging Center, Department of Psychiatry and Human Behavior, University of California-Irvine, Irvine, CA, 92697, USA.
| | | | | | | |
Collapse
|
24
|
Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT. Amino Acids 2011; 43:725-34. [DOI: 10.1007/s00726-011-1123-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/07/2011] [Indexed: 01/14/2023]
|
25
|
Caimari A, Oliver P, Palou A. Adipose triglyceride lipase expression and fasting regulation are differently affected by cold exposure in adipose tissues of lean and obese Zucker rats. J Nutr Biochem 2011; 23:1041-50. [PMID: 21944063 DOI: 10.1016/j.jnutbio.2011.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/09/2011] [Accepted: 05/16/2011] [Indexed: 01/04/2023]
Abstract
Adipose triglyceride lipase (ATGL) hydrolyzes triacylglycerols to diacylglycerols in the first step of lipolysis, providing substrates for hormone-sensitive lipase (HSL). Here we studied whether ATGL messenger RNA (mRNA) and protein levels were affected by 24-h cold exposure in different white adipose tissue depots and in interscapular brown adipose tissue of lean and obese Zucker rats submitted to feeding and 14-h fasting conditions. HSL mRNA expression was also studied in selected depots. In both lean and obese rats, as a general trend, cold exposure increased ATGL mRNA and protein levels in the different adipose depots, except in the brown adipose tissue of lean animals, where a decrease was observed. In lean rats, cold exposure strongly improved fasting up-regulation of ATGL expression in all the adipose depots. Moreover, in response to fasting, in cold-exposed lean rats, there was a stronger positive correlation between circulating nonesterified fatty acids (NEFA) and ATGL mRNA levels in the adipose depots and a higher percentage increase of circulating NEFA in comparison with control animals not exposed to cold. In obese rats, fasting-induced up-regulation of ATGL was impaired and was not improved by cold. The effects of obesity and cold exposure on HSL mRNA expression were similar to those observed for ATGL, suggesting common regulatory mechanisms for both proteins. Thus, cold exposure increases ATGL expression and improves its fasting-up-regulation in adipose tissue of lean rats. In obese rats, cold exposure also increases ATGL expression but fails to improve its regulation by fasting, which could contribute to the increased difficulty for mobilizing lipids in these animals.
Collapse
Affiliation(s)
- Antoni Caimari
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | | | | |
Collapse
|
26
|
Cold exposure down-regulates adiponutrin/PNPLA3 mRNA expression and affects its nutritional regulation in adipose tissues of lean and obese Zucker rats. Br J Nutr 2011; 107:1283-95. [PMID: 21914237 DOI: 10.1017/s000711451100434x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adiponutrin/PNPLA3 is a protein highly produced in adipose tissue whose expression is under tight nutritional regulation. It possesses lipogenic/lipolytic capacity and, although adiponutrin polymorphisms are related to obesity, its physiological role is not clear. To help clarify its role, we studied the effect of acute cold exposure on adiponutrin mRNA expression in different adipose tissues of lean/obese Zucker rats subjected to feeding/fasting/refeeding. The effect of cold on the expression of key lipogenic enzymes and on uncoupling protein-1 (UCP1) was evaluated in selected adipose depots. Adiponutrin mRNA levels were also determined in the adipose tissue of isoprenaline-treated rats and in cultured adipocytes treated with noradrenaline, isoprenaline and a selective β3-adrenoceptor (AR) agonist. Adiponutrin expression was strongly down-regulated by cold in the different adipose depots in lean animals, while this down-regulation was impaired in obese rats. Adiponutrin pattern of expression in response to cold correlated positively with that of the lipogenic enzymes and negatively with UCP1 expression. Acute intraperitoneal administration of isoprenaline also produced a decrease in adiponutrin expression in adipose tissue. In vitro data suggest that adiponutrin's inhibitory effect could be mediated, at least in part, by the sympathetic system via β1/β2-AR. In addition, improvement in metabolic parameters related to obesity in cold-exposed animals was related to an improvement in adiponutrin nutritional regulation. Thus, cold inhibition of adiponutrin expression in adipose tissue (which correlates with the response of lipogenic enzymes) supports a physiological role for this protein in lipogenesis. Moreover, alterations in adiponutrin expression and regulation in adipose tissue are related to obesity.
Collapse
|
27
|
Zhang XY, Zhang Q, Wang DH. Pre- and post-weaning cold exposure does not lead to an obese phenotype in adult Brandt's voles (Lasiopodomys brandtii). Horm Behav 2011; 60:210-8. [PMID: 21635895 DOI: 10.1016/j.yhbeh.2011.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
Evidence has shown that postnatal undernutrition, overnutrition and cold stress are associated with imbalanced metabolic regulation as rodents achieve adulthood. In this study, we used a breeding colony of Brandt's voles (Lasiopodomys brandtii), a wild rodent species from the Inner Mongolia grasslands in China, to examine the effects of pre- and post-weaning cold exposure on the adult body (fat) mass, serum hormones and hypothalamic neuropeptides. Unlike laboratory rodents, vole offspring exposed to pre-weaning cold did not exhibit overweight or obese phenotypes in adulthood compared with unexposed controls. Moreover, adult male voles that remained in colder conditions had less body mass and lower serum leptin levels despite having higher food intake compared to other groups. To understand the mechanism of this unexpected regulation, hypothalamic gene expression was assessed for pre- and post-weaning cold exposure. Voles exposed to cold before weaning increased hypothalamic, orexigenic agouti-related protein (AgRP) and decreased anorexigenic proopiomelanocortin (POMC) mRNA expression at weaning. These expression changes were associated with hyperphagia and catch-up growth after weaning. Interestingly, these changes in hypothalamic neuropeptides were short lasting because in adult voles these differences were no longer apparent, which might explain why the pre-weaning, cold-exposed voles did not become obese in adulthood. These data suggest that some species do not develop an obese phenotype in response to early life cold stress.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen Xilu, Chaoyang, Beijing 100101, China
| | | | | |
Collapse
|
28
|
Differential Effects of Cold Exposure on Gene Expression Profiles in White Versus Brown Adipose Tissue. Appl Biochem Biotechnol 2011; 165:538-47. [DOI: 10.1007/s12010-011-9273-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/25/2011] [Indexed: 11/25/2022]
|
29
|
Wu C, Cheng W, Xing H, Dang Y, Li F, Zhu Z. Brown adipose tissue can be activated or inhibited within an hour before 18F-FDG injection: a preliminary study with microPET. J Biomed Biotechnol 2011; 2011:159834. [PMID: 21541240 PMCID: PMC3085214 DOI: 10.1155/2011/159834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/16/2011] [Indexed: 01/21/2023] Open
Abstract
Brown adipose tissue (BAT) is emerging as a potential target for treating human obesity. It has been indicated that BAT is rich in innervations of sympathetic nerve control. Using (18)F-FDG microPET imaging, this study aims at evaluating how factors related to sympathetic activation/inhibition changed BAT metabolism of mice. BAT (18)F-FDG uptake were semiquantitatively evaluated in different groups of mice under temperature (cold or warm stimulus) or pharmacological interventions (norepinephrine, epinephrine, isoprenaline, or propranolol) and were compared with the corresponding controls. It was found that BAT activation can be stimulated by cold exposure (P = 1.96 × 10(-4)), norepinephrine (P = .002), or both (P = 2.19 × 10(-6)) within an hour before (18)F-FDG injection and can also be alleviated by warming up (P = .001) or propranolol lavage (P = .027). This preliminary study indicated that BAT function could be evaluated by (18)F-FDG PET imaging through short-term interventions, which paved the way for further investigation of the relationship between human obesity and BAT dysfunction.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wuying Cheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Haiqun Xing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yonghong Dang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
30
|
Nunn C, Zhao P, Zou MX, Summers K, Guglielmo CG, Chidiac P. Resistance to age-related, normal body weight gain in RGS2 deficient mice. Cell Signal 2011; 23:1375-86. [PMID: 21447383 DOI: 10.1016/j.cellsig.2011.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/01/2011] [Accepted: 03/21/2011] [Indexed: 01/09/2023]
Abstract
RGS2 (regulator of G protein signaling 2) is known to limit signals mediated via Gq- and Gs-coupled GPCRs (G protein coupled receptors), and it has been implicated in the differentiation of several cells types. The physiology of RGS2 knockout mice (rgs2(-/-)) has been studied in some detail, however, a metabolic phenotype has not previously been reported. We observed that old (21-24month) rgs2(-/-) mice weigh much less than wild-type C57BL/6 controls, and exhibit greatly reduced fat deposits, decreased serum lipids, and low leptin levels. Lower weight was evident as early as four weeks and continued throughout life. Younger adult male rgs2(-/-) mice (4-8months) were found to show similar strain-related differences as the aged animals, as well improved glucose clearance and insulin sensitivity, and enhanced beta-adrenergic and glucagon signaling in isolated hepatocytes. In addition, rgs2(-/-) pre-adipocytes had reduced levels of differentiation markers (Peroxisome proliferator-activated receptor γ (PPARγ); lipoprotein lipase (Lpl); CCAAT/enhancer binding protein α (CEBPα)) and also rgs2(-/-) white adipocytes were small relative to controls, suggesting altered adipogenesis. In wild-type animals, RGS2 mRNA was decreased in brown adipose tissue after cold exposure (7 h at 4 °C) but increased in white adipose tissue in response to a high fat diet, also suggesting a role in lipid storage. No differences between strains were detected with respect to food intake, energy expenditure, GPCR-stimulated lipolysis, or adaptive thermogenesis. In conclusion this study points to RGS2 as being an important regulatory factor in controlling body weight and adipose function.
Collapse
Affiliation(s)
- Caroline Nunn
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Son’kin VD, Kirdin AA, Andreev RS, Akimov EB. Homeostatic non-shivering thermogenesis in humans facts and hypotheses. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s0362119710050129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Terrien J, Ambid L, Nibbelink M, Saint-Charles A, Aujard F. Non-shivering thermogenesis activation and maintenance in the aging gray mouse lemur (Microcebus murinus). Exp Gerontol 2010; 45:442-8. [DOI: 10.1016/j.exger.2010.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/15/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
|
34
|
Frühbeck G, Becerril S, Sáinz N, Garrastachu P, García-Velloso MJ. BAT: a new target for human obesity? Trends Pharmacol Sci 2009; 30:387-96. [PMID: 19595466 DOI: 10.1016/j.tips.2009.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/03/2009] [Accepted: 05/07/2009] [Indexed: 01/04/2023]
Abstract
Two types of adipose tissue can be distinguished histologically and functionally: white (WAT) and brown adipose tissue (BAT). Whereas BAT is specialized in the production of heat, WAT stores excess energy as triacylglycerols. BAT is present throughout life in rodents, whereas in humans it was thought to involute rapidly postnatally, having essentially disappeared within the first years after birth. However, positron emission tomography has provided evidence that adults retain metabolically active BAT depots that can be induced in response to cold and sympathetic nervous system activation. These findings together with the recent identification of specific molecular determinants (PRDM16 and BMP7) activating brown adipogenesis highlights BAT as a potential relevant target for pharmacological and gene expression manipulation to combat human obesity.
Collapse
Affiliation(s)
- Gema Frühbeck
- Department of Endocrinology, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain.
| | | | | | | | | |
Collapse
|