1
|
Yang X, Yao K, Zhang M, Zhang W, Zu H. New insight into the role of altered brain cholesterol metabolism in the pathogenesis of AD: A unifying cholesterol hypothesis and new therapeutic approach for AD. Brain Res Bull 2025; 224:111321. [PMID: 40164234 DOI: 10.1016/j.brainresbull.2025.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The dysregulation of cholesterol metabolism homeostasis has been universally suggested in the aeotiology of Alzheimer's disease (AD). Initially, studies indicate that alteration of serum cholesterol level might contribute to AD. However, because blood-brain barrier impedes entry of plasma cholesterol, brain cells are not directly influenced by plasma cholesterol. Furthermore, mounting evidences suggest a link between alteration of brain cholesterol metabolism and AD. Interestingly, Amyloid-β proteins (Aβ) can markedly inhibit cellular cholesterol biosynthesis and lower cellular cholesterol content in cultured cells. And Aβ overproduction/overload induces a significant decrease of brain cellular cholesterol content in familial AD (FAD) animals. Importantly, mutations or polymorphisms of genes related to brain cholesterol transportation, such as ApoE4, ATP binding cassette (ABC) transporters, low-density lipoprotein receptor (LDLR) family and Niemann-Pick C disease 1 or 2 (NPC1/2), obviously lead to decreased brain cholesterol transport, resulting in brain cellular cholesterol loss, which could be tightly associated with AD pathological impairments. Additionally, accumulating data show that there are reduction of brain cholesterol biosynthesis and/or disorder of brain cholesterol trafficking in a variety of sporadic AD (SAD) animals and patients. Collectively, compelling evidences indicate that FAD and SAD could share one common and overlapping neurochemical mechanism: brain neuronal/cellular cholesterol deficiency. Therefore, accumulated evidences strongly support a novel hypothesis that deficiency of brain cholesterol contributes to the onset and progression of AD. This review highlights the pivotal role of brain cholesterol deficiency in the pathogenesis of AD. The hypothesis offers valuable insights for the future development of AD treatment.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China; Department of Neurology, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
2
|
He K, Zhao Z, Zhang J, Li D, Wang S, Liu Q. Cholesterol Metabolism in Neurodegenerative Diseases. Antioxid Redox Signal 2024; 41:1051-1072. [PMID: 38842175 DOI: 10.1089/ars.2024.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms. Antioxid. Redox Signal. 41, 1051-1072.
Collapse
Affiliation(s)
- Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiang Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Pappolla MA, Refolo L, Sambamurti K, Zambon D, Duff K. Hypercholesterolemia and Alzheimer's Disease: Unraveling the Connection and Assessing the Efficacy of Lipid-Lowering Therapies. J Alzheimers Dis 2024; 101:S371-S393. [PMID: 39422957 DOI: 10.3233/jad-240388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This article examines the relationship between cholesterol levels and Alzheimer's disease (AD), beginning with the early observation that individuals who died from heart attacks often had brain amyloid deposition. Subsequent animal model research proved that high cholesterol could hasten amyloid accumulation. In contrast, cholesterol-lowering treatments appeared to counteract this effect. Human autopsy studies reinforced the cholesterol-AD connection, revealing that higher cholesterol levels during midlife significantly correlated with higher brain amyloid pathology. This effect was especially pronounced in individuals aged 40 to 55. Epidemiological data supported animal research and human tissue observations and suggested that managing cholesterol levels in midlife could reduce the risk of developing AD. We analyze the main observational studies and clinical trials on the efficacy of statins. While observational data often suggest a potential protective effect against AD, clinical trials have not consistently shown benefit. The failure of these trials to demonstrate a clear advantage is partially attributed to multiple factors, including the timing of statin therapy, the type of statin and the appropriate selection of patients for treatment. Many studies failed to target individuals who might benefit most from early intervention, such as high-risk patients like APOE4 carriers. The review addresses how cholesterol is implicated in AD through various biological pathways, the potential preventive role of cholesterol management as suggested by observational studies, and the difficulties encountered in clinical trials, particularly related to statin use. The paper highlights the need to explore alternate therapeutic targets and mechanisms that escape statin intervention.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lorenzo Refolo
- Translational Research Branch, Division of Neuroscience, Bethesda, MD, USA
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Zambon
- Universitat Internacional de Catalunya, Barcelona, Spain
| | - Karen Duff
- Karen Duff, UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
4
|
Chen Y, Yang K, Huang Y, Wang X, Zhao Y, Ping P, Guan S, Fu S. Associations between lipid profiles and late-life cognitive impairment among oldest-old and centenarian adults. MedComm (Beijing) 2023; 4:e362. [PMID: 37692108 PMCID: PMC10484073 DOI: 10.1002/mco2.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023] Open
Abstract
Dyslipidemia and cognitive impairment are common among old adults and the occurrence of them rises exponentially with increasing age. Evidences of the relationships between serum lipids and cognitive impairment are inconsistent or equivocal among older adults. This study aimed to investigate the associations between lipid profiles and late-life cognitive impairment among oldest-old and centenarian adults. In this cross-sectional study, serum lipids were biochemically measured among 606 oldest-old adults and 653 centenarians, and cognitive function was evaluated using mini-mental state examination (MMSE). Multivariate linear and logistic regression analyses were performed to explore the associations between serum lipids and cognitive impairment. Results showed participants with cognitive impairment had lower total cholesterol (TC) levels compared with those without cognitive impairment (p < 0.05). TC levels were positively associated with MMSE (p < 0.05). Furthermore, a negative association was observed between TC levels and cognitive impairment (p for trend = 0.002). This negative association remained statistically significant after adjusting for confounders (p for trend = 0.028). These results suggested that older adults with higher TC levels were likely to have better cognitive function. Taking immoderate cholesterol-lowering drugs among older adults is questionable and requires investigation, and cognitive performance of old adults with lower TC levels deserves more attention.
Collapse
Affiliation(s)
- Yujian Chen
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Kaidi Yang
- Oncology DepartmentHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Ya Huang
- Blood Transfusion DepartmentHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Xuejiao Wang
- Pediatric DepartmentHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Yali Zhao
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Ping Ping
- General Station for Drug and Instrument Supervision and ControlJoint Logistic Support Force of Chinese People's Liberation ArmyBeijingChina
| | - Shasha Guan
- Oncology DepartmentHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Shihui Fu
- Department of CardiologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
- Department of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
5
|
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer's disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11:102. [PMID: 37344916 DOI: 10.1186/s40478-023-01593-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidences reveal that cellular cholesterol deficiency could trigger the onset of Alzheimer's disease (AD). As a key regulator, 24-dehydrocholesterol reductase (DHCR24) controls cellular cholesterol homeostasis, which was found to be downregulated in AD vulnerable regions and involved in AD-related pathological activities. However, DHCR24 as a potential therapeutic target for AD remains to be identified. In present study, we demonstrated the role of DHCR24 in AD by employing delivery of adeno-associated virus carrying DHCR24 gene into the hippocampus of 5xFAD mice. Here, we found that 5xFAD mice had lower levels of cholesterol and DHCR24 expression, and the cholesterol loss was alleviated by DHCR24 overexpression. Surprisingly, the cognitive impairment of 5xFAD mice was significantly reversed after DHCR24-based gene therapy. Moreover, we revealed that DHCR24 knock-in successfully prevented or reversed AD-related pathology in 5xFAD mice, including amyloid-β deposition, synaptic injuries, autophagy, reactive astrocytosis, microglial phagocytosis and apoptosis. In conclusion, our results firstly demonstrated that the potential value of DHCR24-mediated regulation of cellular cholesterol level as a promising treatment for AD.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiao-Rou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Meng-Qi Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiang-Shan Yuan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
6
|
Assis-Mendonça GR, Athié MCP, Tamanini JVG, de Souza A, Zanetti GG, Araújo PAORDA, Ghizoni E, Tedeschi H, Alvim MKM, de Almeida VS, de Souza W, Coras R, Yasuda CL, Blümcke I, Vieira AS, Cendes F, Lopes-Cendes I, Rogerio F. Transcriptome analyses of the cortex and white matter of focal cortical dysplasia type II: Insights into pathophysiology and tissue characterization. Front Neurol 2023; 14:1023950. [PMID: 37006485 PMCID: PMC10050872 DOI: 10.3389/fneur.2023.1023950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/26/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionFocal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. According to the 2022 International League Against Epilepsy classification, FCD type II is characterized by dysmorphic neurons (IIa and IIb) and may be associated with balloon cells (IIb). We present a multicentric study to evaluate the transcriptomes of the gray and white matters of surgical FCD type II specimens. We aimed to contribute to pathophysiology and tissue characterization.MethodsWe investigated FCD II (a and b) and control samples by performing RNA-sequencing followed by immunohistochemical validation employing digital analyses.ResultsWe found 342 and 399 transcripts differentially expressed in the gray matter of IIa and IIb lesions compared to controls, respectively. Cholesterol biosynthesis was among the main enriched cellular pathways in both IIa and IIb gray matter. Particularly, the genes HMGCS1, HMGCR, and SQLE were upregulated in both type II groups. We also found 12 differentially expressed genes when comparing transcriptomes of IIa and IIb lesions. Only 1 transcript (MTRNR2L12) was significantly upregulated in FCD IIa. The white matter in IIa and IIb lesions showed 2 and 24 transcripts differentially expressed, respectively, compared to controls. No enriched cellular pathways were detected. GPNMB, not previously described in FCD samples, was upregulated in IIb compared to IIa and control groups. Upregulations of cholesterol biosynthesis enzymes and GPNMB genes in FCD groups were immunohistochemically validated. Such enzymes were mainly detected in both dysmorphic and normal neurons, whereas GPNMB was observed only in balloon cells.DiscussionOverall, our study contributed to identifying cortical enrichment of cholesterol biosynthesis in FCD type II, which may correspond to a neuroprotective response to seizures. Moreover, specific analyses in either the gray or the white matter revealed upregulations of MTRNR2L12 and GPNMB, which might be potential neuropathological biomarkers of a cortex chronically exposed to seizures and of balloon cells, respectively.
Collapse
Affiliation(s)
- Guilherme Rossi Assis-Mendonça
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Maria Carolina Pedro Athié
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - João Vitor Gerdulli Tamanini
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Arethusa de Souza
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Gabriel Gerardini Zanetti
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Aline Oliveira Ribeiro de Aguiar Araújo
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Enrico Ghizoni
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Helder Tedeschi
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marina Koutsodontis Machado Alvim
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Vanessa Simão de Almeida
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Welliton de Souza
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Clarissa Lin Yasuda
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - André Schwambach Vieira
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernando Cendes
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fabio Rogerio
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- *Correspondence: Fabio Rogerio
| |
Collapse
|
7
|
Honsho M, Fujiki Y. Regulation of plasmalogen biosynthesis in mammalian cells and tissues. Brain Res Bull 2023; 194:118-123. [PMID: 36720320 DOI: 10.1016/j.brainresbull.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 01/29/2023]
Abstract
Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether bond. Synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic reticulum. The absence of plasmalogens in several organs of patients with deficiency in peroxisome biogenesis suggests that de novo synthesis of plasmalogens contributes significantly to plasmalogen homeostasis in humans. Plasmalogen biosynthesis is spatiotemporally regulated by a feedback mechanism that senses the amount of plasmalogens in the inner leaflet of the plasma membrane and regulates the stability of fatty acyl-CoA reductase 1 (FAR1), the rate-limiting enzyme for plasmalogen biosynthesis. Dysregulation of plasmalogen synthesis impairs cholesterol synthesis in cells and brain, resulting in the reduced expression of genes such as mRNA encoding myelin basic protein, a phenotype found in the cerebellum of plasmalogen-deficient mice. In this review, we summarize the current knowledge of molecular mechanisms underlying the regulation of plasmalogen biosynthesis and the link between plasmalogen homeostasis and cholesterol biosynthesis, and address the pathogenesis of impaired plasmalogen homeostasis in rodent and humans.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yukio Fujiki
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka, Japan; Graduate School of Science, University of Hyogo, Hyogo, Japan.
| |
Collapse
|
8
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
9
|
Pereira ELR, Feio DCA, Tavares JPL, Morikawa NM, Deus DF, Vital CG, Tavares ER, Maranhão RC. Uptake of lipid core nanoparticles by fragments of tissues collected during cerebral tumor excision surgeries: hypotheses for use in drug targeting therapy. J Neurooncol 2022; 158:413-421. [PMID: 35612697 DOI: 10.1007/s11060-022-04028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Malignant cerebral tumors have poor prognosis and the blood-brain barrier is a major hindrance for most drugs to reach those tumors. Lipid nanoparticles (LDE) that bind to lipoprotein receptors may carry anticancer drugs and penetrate the cells through those receptors that are overexpressed in gliomas. The aim was to investigate the in vivo uptake of LDE by human cerebral tumors. METHODS Twelve consecutive patients (4 with glioblastomas, 1 meduloblastoma, 1 primary lymphoma, 2 with non-cerebral metastases and 4 with benign tumors) scheduled for tumor excision surgery were injected intravenously, 12 h before surgery, with LDE labeled 14C-cholesterol oleate. Fragments of tumors and of normal head tissues (muscle, periosteum, dura mater) discarded by the surgeon were submitted to lipid extraction and radioactive counting. RESULTS Tumor LDE uptake (range: 10-283 d.p.m./g of tissue) was not lower than that of normal tissues (range: 20-263 d.p.m./g). Malignant tumor uptake was threefold greater than benign tumor uptake (140 ± 93 vs 46 ± 18 d.p.m./g, p < 0.05). Results show that LDE can concentrate in brain malignant tumors and may be used to carry drugs directed against those tumors. CONCLUSION As LDE was previously shown to markedly decrease drug toxicity this new therapeutic strategy should be tested in future trials.
Collapse
Affiliation(s)
- Edmundo Luís Rodrigues Pereira
- Servico de Cirurgia, Nucleo de Pesquisas em Neurooncologia, Hospital Universitario Joao de Barros Barreto, Universidade Federal do Para, Belem, Para, Brazil
| | | | - João Pojucan Lobo Tavares
- Servico de Cirurgia, Nucleo de Pesquisas em Neurooncologia, Hospital Universitario Joao de Barros Barreto, Universidade Federal do Para, Belem, Para, Brazil
| | - Natalia Megumi Morikawa
- Servico de Cirurgia, Nucleo de Pesquisas em Neurooncologia, Hospital Universitario Joao de Barros Barreto, Universidade Federal do Para, Belem, Para, Brazil
| | - Debora Fernandes Deus
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Carolina Graziani Vital
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Elaine Rufo Tavares
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Raul Cavalcante Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil. .,Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, São Paulo, Brazil. .,Instituto Nacional de Ciencias e Tecnologia em Fluidos Complexos (INCT-FCx), São Paulo, São Paulo, Brazil. .,Laboratório de Metabolismo e Lípides, Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44, bloco 2, 1º subsolo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Ezra Manicum AL, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Park JH, Lee CW, Nam MJ, Kim H, Kwon DY, Yoo JW, Lee KN, Han K, Jung JH, Park YG, Kim DH. Association of High-Density Lipoprotein Cholesterol Variability and the Risk of Developing Parkinson Disease. Neurology 2021; 96:e1391-e1401. [PMID: 33536275 DOI: 10.1212/wnl.0000000000011553] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the longitudinal association among high-density lipoprotein cholesterol (HDL-C) level, HDL-C variability, and the risk of developing Parkinson disease (PD). METHODS We conducted a nationwide, population-based cohort study. We included 382,391 patients aged ≥65 years who underwent at least 3 health examinations provided by the Korean National Health Insurance System from 2008 to 2013 and followed up until 2017. Individuals with a history of PD and missing values were excluded (n = 1,987). We assessed HDL-C variability using 3 indices, including variability independent of the mean (VIM). A multivariate-adjusted Cox proportional hazards regression analysis was performed. RESULTS Among the 380,404 participants, 2,733 individuals were newly diagnosed with PD during a median follow-up period of 5 years. The lowest quartile (Q1) group of baseline HDL-C and mean HDL-C was associated with increased PD incidence as compared with the highest quartile (Q4) group (adjusted hazard ratio [aHR], 1.20; 95% confidence interval [CI], 1.08-1.34; and aHR, 1.16; 95% CI, 1.04-1.30, respectively). The Q4 group of HDL-C variability (VIM) was associated with increased PD incidence compared to the Q1 group (aHR, 1.19; 95% CI, 1.06-1.33). The group with the Q1 of baseline HDL-C and with the Q4 of HDL-C variability had the highest risk of PD incidence (aHR, 1.6; 95% CI, 1.31-1.96). CONCLUSION Lower HDL-C level and greater HDL-C variability were associated with a higher incidence of PD.
Collapse
Affiliation(s)
- Joo-Hyun Park
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Chung-Woo Lee
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myung Ji Nam
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjin Kim
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Do-Young Kwon
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Won Yoo
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu Na Lee
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Jin-Hyung Jung
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Gyu Park
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Do-Hoon Kim
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Tsushima H, Yamada K, Miyazawa D, Ohkubo T, Michikawa M, Abe-Dohmae S. Comparison of the Physical Characteristics and Behavior in ABC Transporter A1, A7 or Apolipoprotein E Knockout Mice with Lipid Transport Dysfunction. Biol Pharm Bull 2021; 44:1851-1859. [PMID: 34853267 DOI: 10.1248/bpb.b21-00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physical characteristics and behavior of the ATP-binding cassette (ABC) A1, A7, and apolipoprotein (apo) E knockout (KO) mice with lipid transport dysfunction were investigated. These KO mice exhibited adequate growth, and their body masses increased steadily. No remarkable changes were observed in their blood pressure and heart rate. However, there was a slight increase in the heart rate of the ABCA7 KO mice compared with that of the wild-type (WT) mice. ABCA1 and apoE KO mice showed hypo- and hyper-cholesterol concentrations in the plasma, respectively. With regard to the cerebrum, however, the weight of the ABCA1 KO mice was lighter than those of the other genotypes. Furthermore, the cholesterol, triglyceride and phospholipid concentrations, and fatty acid composition were generally similar. Compared with the WT mice, ABCA1 KO mice stayed for a shorter time in the closed arm of the elevated plus maze, and performed worse in the initial stage of the Morris water maze. To thermal stimuli, the ABCA1 and apoE KO mice showed hyper- and hypo-sensitivities, respectively. Only the response of the ABCA1 KO mice was significantly inhibited by pretreatment with indomethacin. A low concentration of the prostaglandin E metabolites was detected in the plasma of the ABCA1 KO mice. Thus, ABCA1 is thought to play a specific role in the neural function.
Collapse
Affiliation(s)
- Hiromi Tsushima
- Laboratory of Pharmacology, College of Pharmacy, Kinjo Gakuin University
| | - Kazuyo Yamada
- Laboratory of Biochemistry, College of Pharmacy, Kinjo Gakuin University
| | - Daisuke Miyazawa
- Laboratory of Biochemistry, College of Pharmacy, Kinjo Gakuin University
| | - Takeshi Ohkubo
- Department of Health and Nutrition, Sendai Shirayuri Women's College
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences
| | - Sumiko Abe-Dohmae
- Department of Food and Nutritional Sciences, Bioscience and Biotechnology, Chubu University
| |
Collapse
|
13
|
Neskorodov YB, Mardanly SG, Chuprov-Netochin RN. The Experience of Analyzing Biological Activity of Ursodeoxycholic Acid as Part of In Silico Prediction of the Gene Expression Profile. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420100099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Ibrahim G, Luisetto M, Latyshev O. Glial cells in the posterior sub-esophageal mass of the brain in Sepia officinalis (Linnaeus, 1758) (decapodiformes-sepiida): ultrastructure and cytochemical studies. INVERTEBRATE NEUROSCIENCE 2020; 20:16. [PMID: 32876847 DOI: 10.1007/s10158-020-00249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Electron microscopy revealed that glial cells in the posterior sub-esophageal mass of the brain in Sepia officinalis had a well-developed rough endoplasmic reticulum formed by long coverslips with rectilinear or curvilinear arrangements. The coverslips appeared dilated and have a large amount of adhered polysomes. Vesicular lamellae coexisted with the elongated lamellae of RER and dictyosomes of Golgi apparatus. Endocytosis was evidenced through the pale vesicles which were appeared next to the apical border of microvilli in some glial cells. Sub-cellular features of endocytosis, predominantly the fluid phase, were observed in the apical glial cell cytoplasm. Glial cells were related to phagocytosis of apoptotic neurons, endocytosis, pinocytosis and adsorption. These functions were proposed based on their ultrastructure characteristics and a significant number of vesicles with different shapes (oval to polygonal), sizes 0.052-0.67 µm and contents. Glycogen, MPS and lipid were detected in the glial cells. Alkaline phosphatase was not observed, while an activity of acid phosphatase was bound to lysosomes. ATPases were present in the glial cells along the lateral and basal plasma lemma as well as on the membranes of cell organelles. Unspecific esterase was clearly recognizable by electron microscopy. The monoamine and cytochrome oxidase activities were demonstrated, while the succinate dehydrogenase showed a weak enzyme activity.
Collapse
Affiliation(s)
- G Ibrahim
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21547, Egypt.
| | - M Luisetto
- Applied Pharmacology, IMA Academy, Natural Science Branch, Turin and Pavia University, Pavia, 29121, Italy
| | - O Latyshev
- Science and Democracy Network Harvard University's John F. Kennedy School of Government in Cambridge, Cambridge, 02142, USA
| |
Collapse
|
15
|
Affiliation(s)
- Chaoyang Meng
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Zhe Chen
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Gang Li
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Thomas Welte
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Haifa Shen
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Cancer Center Houston Methodist Hospital Houston TX 77030 USA
- Department of Cell and Developmental Biology Weill Cornell Medical College New York NY 10065 USA
| |
Collapse
|
16
|
Gutierrez E, Lütjohann D, Kerksiek A, Fabiano M, Oikawa N, Kuerschner L, Thiele C, Walter J. Importance of γ-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Sci Alliance 2020; 3:3/6/e201900521. [PMID: 32354700 PMCID: PMC7195048 DOI: 10.26508/lsa.201900521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the Alzheimer associated γ-secretase impairs the regulation of cellular lipid droplet homeostasis. Presenilins (PS) are the catalytic components of γ-secretase complexes that mediate intramembrane proteolysis. Mutations in the PS genes are a major cause of familial early-onset Alzheimer disease and affect the cleavage of the amyloid precursor protein, thereby altering the production of the amyloid β-peptide. However, multiple additional protein substrates have been identified, suggesting pleiotropic functions of γ-secretase. Here, we demonstrate that inhibition of γ-secretase causes dysregulation of cellular lipid homeostasis, including up-regulation of liver X receptors, and complex changes in the cellular lipid composition. Genetic and pharmacological inhibition of γsecretase leads to strong accumulation of cytoplasmic lipid droplets, associated with increased levels of acylglycerols, but lowered cholesteryl esters. Furthermore, accumulation of lipid droplets was augmented by increasing levels of amyloid precursor protein C-terminal fragments, indicating a critical involvement of this γ-secretase substrate. Together, these data provide a mechanism that functionally connects γ-secretase activity to cellular lipid metabolism. These effects were also observed in human astrocytic cells, indicating an important function of γ-secretase in cells critical for lipid homeostasis in the brain.
Collapse
Affiliation(s)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Marietta Fabiano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
17
|
Chen SF, Hu TM, Lan TH, Chiu HJ, Sheen LY, Loh EW. Severity of psychosis syndrome and change of metabolic abnormality in chronic schizophrenia patients: Severe negative syndrome may be related to a distinct lipid pathophysiology. Eur Psychiatry 2020; 29:167-71. [DOI: 10.1016/j.eurpsy.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/30/2013] [Accepted: 04/21/2013] [Indexed: 12/01/2022] Open
Abstract
AbstractBackground:Metabolic abnormality is common among schizophrenia patients. Some metabolic traits were found associated with subgroups of schizophrenia patients.Objectives:We examined a possible relationship between metabolic abnormality and psychosis profile in schizophrenia patients.Method:Three hundred and seventy-two chronic schizophrenia patients treated with antipsychotics for more than 2 years were assessed with the Positive and Negative Syndrome Scale. A set of metabolic traits was measured at scheduled checkpoints between October 2004 and September 2006.Results:Multiple regressions adjusted for sex showed negative correlations between body mass index (BMI) and total score and all subscales; triglycerides (TG) was negatively correlated with total score and negative syndrome, while HDLC was positively correlated with negative syndrome. When sex interaction was concerned, total score was negatively correlated with BMI but not with others; negative syndrome was negatively correlated with BMI and positively with HDLC. No metabolic traits were correlated with positive syndrome or general psychopathology.Conclusions:Loss of body weight is a serious health problem in schizophrenia patients with severe psychosis syndrome, especially the negative syndrome. Schizophrenia patients with severe negative syndrome may have a distinct lipid pathophysiology in comparison with those who were less severe in the domain.
Collapse
|
18
|
Reduced central and peripheral inflammatory responses and increased mitochondrial activity contribute to diet-induced obesity resistance in WSB/EiJ mice. Sci Rep 2019; 9:19696. [PMID: 31873127 PMCID: PMC6928236 DOI: 10.1038/s41598-019-56051-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Energy imbalance due to excess of calories is considered to be a major player in the current worldwide obesity pandemic and could be accompanied by systemic and central inflammation and mitochondrial dysfunctions. This hypothesis was tested by comparing the wild-derived diet-induced obesity- (DIO-) resistant mouse strain WSB/EiJ to the obesity-prone C57BL/6J strain. We analysed circulating and hypothalamic markers of inflammatory status and hypothalamic mitochondrial activity in both strains exposed to high-fat diet (HFD). We further analysed the regulations of hypothalamic genes involved in inflammation and mitochondrial pathways by high throughput microfluidic qPCR on RNA extracted from laser micro-dissected arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei. HFD induced increased body weight gain, circulating levels of leptin, cholesterol, HDL and LDL in C57BL/6J whereas WSB/EiJ mice displayed a lower inflammatory status, both peripherally (lower levels of circulating cytokines) and centrally (less activated microglia in the hypothalamus) as well as more reactive mitochondria in the hypothalamus. The gene expression data analysis allowed identifying strain-specific hypothalamic metabolic pathways involved in the respective responses to HFD. Our results point to the involvement of hypothalamic inflammatory and mitochondrial pathways as key factors in the control of energy homeostasis and the resistance to DIO.
Collapse
|
19
|
Yin J, Gibbs M, Long C, Rosenthal J, Kim HS, Kim A, Sheng C, Ding P, Javed U, Yuan Q. Transcriptional Regulation of Lipophorin Receptors Supports Neuronal Adaptation to Chronic Elevations of Activity. Cell Rep 2019; 25:1181-1192.e4. [PMID: 30380410 PMCID: PMC6294312 DOI: 10.1016/j.celrep.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/20/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Activity-dependent modifications strongly influence neural development. However, molecular programs underlying their context and circuit-specific effects are not well understood. To study global transcriptional changes associated with chronic elevation of synaptic activity, we performed cell-type-specific transcriptome profiling of Drosophila ventral lateral neurons (LNvs) in the developing visual circuit and identified activity-modified transcripts that are enriched in neuron morphogenesis, circadian regulation, and lipid metabolism and trafficking. Using bioinformatics and genetic analyses, we validated activity-induced isoform-specific upregulation of Drosophila lipophorin receptors LpR1 and LpR2, the homologs of mammalian low-density lipoprotein receptor (LDLR) family proteins. Furthermore, our morphological and physiological studies uncovered critical functions of neuronal lipophorin receptors (LpRs) in maintaining the structural and functional integrities in neurons challenged by chronic elevations of activity. Together, our findings identify LpRs as molecular targets for activity-dependent transcriptional regulation and reveal the functional significance of cell-type-specific regulation of neuronal lipid uptake in experience-dependent plasticity and adaptive responses. Yin et al. highlight Drosophila lipophorin receptors (LpRs) as molecular targets for activity-dependent transcriptional regulation and reveal the functional significance of cell-type-specific regulation of neuronal lipid uptake in experience-dependent plasticity and adaptive responses.
Collapse
Affiliation(s)
- Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Mary Gibbs
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Caixia Long
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Justin Rosenthal
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Hyong S Kim
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Anna Kim
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Chengyu Sheng
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Peng Ding
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Uzma Javed
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Honsho M, Dorninger F, Abe Y, Setoyama D, Ohgi R, Uchiumi T, Kang D, Berger J, Fujiki Y. Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum. J Biochem 2019; 166:353-361. [PMID: 31135054 DOI: 10.1093/jb/mvz043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Synthesis of ethanolamine plasmalogen (PlsEtn) is regulated by modulating the stability of fatty acyl-CoA reductase 1 (Far1) on peroxisomal membrane, a rate-limiting enzyme in plasmalogen synthesis. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis in cultured cells by altering the stability of squalene epoxidase (SQLE). However, regulation of PlsEtn synthesis and physiological consequences of plasmalogen homeostasis in tissues remain unknown. In the present study, we found that the protein but not the transcription level of Far1 in the cerebellum of the Pex14 mutant mouse expressing Pex14p lacking its C-terminal region (Pex14ΔC/ΔC) is higher than that from wild-type mouse, suggesting that Far1 is stabilized by the lowered level of PlsEtn. The protein level of SQLE was increased, whereas the transcriptional activity of the liver X receptors (LXRs), ligand-activated transcription factors of the nuclear receptor superfamily, is lowered in the cerebellum of Pex14ΔC/ΔC and the mice deficient in dihydroxyacetonephosphate acyltransferase, the initial enzyme for the synthesis of PlsEtn. These results suggest that the reduction of plasmalogens in the cerebellum more likely compromises the cholesterol homeostasis, thereby reducing the transcriptional activities of LXRs, master regulators of cholesterol homeostasis.
Collapse
Affiliation(s)
- Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Ryohei Ohgi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
21
|
Tanaka H, Nakatani T, Furihata T, Tange K, Nakai Y, Yoshioka H, Harashima H, Akita H. In Vivo Introduction of mRNA Encapsulated in Lipid Nanoparticles to Brain Neuronal Cells and Astrocytes via Intracerebroventricular Administration. Mol Pharm 2018; 15:2060-2067. [DOI: 10.1021/acs.molpharmaceut.7b01084] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hiroki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba City, Chiba 260-8675, Japan
| | - Taichi Nakatani
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan
| | - Tomomi Furihata
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Kota Tange
- NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan
| | - Yuta Nakai
- NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan
| | - Hiroki Yoshioka
- NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba City, Chiba 260-8675, Japan
| |
Collapse
|
22
|
A Prospective Birth Cohort Study on Maternal Cholesterol Levels and Offspring Attention Deficit Hyperactivity Disorder: New Insight on Sex Differences. Brain Sci 2017; 8:brainsci8010003. [PMID: 29295472 PMCID: PMC5789334 DOI: 10.3390/brainsci8010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/15/2023] Open
Abstract
Growing evidence suggests that maternal cholesterol levels are important in the offspring’s brain growth and development. Previous studies on cholesterols and brain functions were mostly in adults. We sought to examine the prospective association between maternal cholesterol levels and the risk of attention deficit hyperactivity disorder (ADHD) in the offspring. We analyzed data from the Boston Birth Cohort, enrolled at birth and followed from birth up to age 15 years. The final analyses included 1479 mother-infant pairs: 303 children with ADHD, and 1176 neurotypical children without clinician-diagnosed neurodevelopmental disorders. The median age of the first diagnosis of ADHD was seven years. The multiple logistic regression results showed that a low maternal high-density lipoprotein level (≤60 mg/dL) was associated with an increased risk of ADHD, compared to a higher maternal high-density lipoprotein level, after adjusting for pertinent covariables. A “J” shaped relationship was observed between triglycerides and ADHD risk. The associations with ADHD for maternal high-density lipoprotein and triglycerides were more pronounced among boys. The findings based on this predominantly urban low-income minority birth cohort raise a new mechanistic perspective for understanding the origins of ADHD and the gender differences and future targets in the prevention of ADHD.
Collapse
|
23
|
Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci Rep 2017; 7:10779. [PMID: 28883484 PMCID: PMC5589817 DOI: 10.1038/s41598-017-11103-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
The grey and white matter regions of the mammalian brain consist of both neurons and neuroglial cells. Among the neuroglia, the two macroglia oligodendrocytes and astrocytes are the most abundant cell types. While the major function of oligodendrocytes is the formation of the lipid-rich myelin structure, the heterogeneous group of astrocytes fulfils a multitude of important roles in cerebral development and homeostasis. Brain lipid homeostasis involves the synthesis of a specific cerebral lipidome by local lipid metabolism. In this study we have investigated the fatty acid uptake and lipid biosynthesis in grey and white matter regions of the murine brain. Key findings were: (i) white matter oligodendrocytes and astrocytes take up saturated and unsaturated fatty acids, (ii) different grey matter regions show varying lipid labelling intensities, (iii) the medial habenula, an epithalamic grey matter structure, and the oligodendrocytes and astrocytes therein are targeted by fatty acids, and (iv) in the medial habenula, the neutral lipid containing lipid droplets are found in cells facing the ventricle but undetectable in the habenular parenchyma. Our data indicate a role for oligodendrocytes and astrocytes in local lipid metabolism of white and grey matter regions in the brain.
Collapse
|
24
|
Cai R, Han J, Sun J, Huang R, Tian S, Shen Y, Wang S. Effects of ABCA1 R219K Polymorphism and Serum Lipid Profiles on Mild Cognitive Impairment in Type 2 Diabetes Mellitus. Front Aging Neurosci 2017; 9:257. [PMID: 28824418 PMCID: PMC5540897 DOI: 10.3389/fnagi.2017.00257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Accumulated evidence suggests that adverse lipid changes are risk factors for type 2 diabetes mellitus (T2DM) and neurodegenerative disorders. The ATP-binding cassette A1 transporter (ABCA1) gene contributes to both lipid processing and amyloid-β formation and thus shows promise as a biological target in the pathology of mild cognitive impairment (MCI) in T2DM. Objective: This study aimed to investigate the interactions among lipids, ABCA1 R219K polymorphism, and cognitive function in T2DM. Methods: Clinical parameters, including lipids, were measured. The testing scores of different cognitive domains were recorded, and the ABCA1 R219K polymorphisms were analyzed. Results: A total of 226 patients, including 124 MCI patients and 102 controls, were enrolled in this study. T2DM patients with MCI showed lower cognitive functions, serum high-density lipoprotein (HDL-c), and apolipoprotein A1 (apoA-I) levels; and higher total cholesterol level than the controls. Serum HDL-c (P = 0.001) and apoA-I (P = 0.016) were positively associated with the MoCA score in MCI patients. Further stratification analyses revealed that the subjects with higher HDL-c concentration showed better attention and memory for verbal, visual, and logical functions than the group with lower HDL-c concentration (P < 0.05). No significant differences were observed among the distributions of ABCA1 R219K variants between MCI patients and controls; however, the KK genotype carriers presented higher apoA-I levels than those with RR genotype in MCI individuals. Conclusion: This study does not support the association between R219K polymorphism and T2DM-related MCI. However, our data suggested that the serum HDL-c level might positively influence cognition, especially memory function, in T2DM patients. Further studies are needed to determine the interaction between lipids and ABCA1 genotype and its effect on cognition in T2DM patients. Trial registration: Advanced Glycation End Products Induced Cognitive Impairment in Diabetes: BDNF Signal Meditated Hippocampal Neurogenesis ChiCTR-OCC-15006060; http://www.chictr.org.cn/showproj.aspx?proj=10536.
Collapse
Affiliation(s)
- Rongrong Cai
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China.,Medical school of Southeast UniversityNanjing, China
| | - Jing Han
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China
| | - Jie Sun
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China
| | - Rong Huang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China
| | - Sai Tian
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China
| | - Yanjue Shen
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China
| | - Shaohua Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China
| |
Collapse
|
25
|
Bruce KD, Zsombok A, Eckel RH. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front Endocrinol (Lausanne) 2017; 8:60. [PMID: 28421037 PMCID: PMC5378716 DOI: 10.3389/fendo.2017.00060] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
- *Correspondence: Kimberley D. Bruce,
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert H. Eckel
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
| |
Collapse
|
26
|
Breitfeld J, Scholl C, Steffens M, Brandenburg K, Probst-Schendzielorz K, Efimkina O, Gurwitz D, Ising M, Holsboer F, Lucae S, Stingl JC. Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy. Transl Psychiatry 2016; 6:e950. [PMID: 27845776 PMCID: PMC5314111 DOI: 10.1038/tp.2016.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022] Open
Abstract
The current therapy success of depressive disorders remains in need of improvement due to low response rates and a delay in symptomatic improvement. Reliable functional biomarkers would be necessary to predict the individual treatment outcome. On the basis of the neurotrophic hypothesis of antidepressant's action, effects of antidepressant drugs on proliferation may serve as tentative individual markers for treatment efficacy. We studied individual differences in antidepressant drug effects on cell proliferation and gene expression in lymphoblastoid cell lines (LCLs) derived from patients treated for depression with documented clinical treatment outcome. Cell proliferation was characterized by EdU (5-ethynyl-2'-deoxyuridine) incorporation assays following a 3-week incubation with therapeutic concentrations of fluoxetine. Genome-wide expression profiling was conducted by microarrays, and candidate genes such as betacellulin-a gene involved in neuronal stem cell regeneration-were validated by quantitative real-time PCR. Ex vivo assessment of proliferation revealed large differences in fluoxetine-induced proliferation inhibition between donor LCLs, but no association with clinical response was observed. Genome-wide expression analyses followed by pathway and gene ontology analyses identified genes with different expression before vs after 21-day incubation with fluoxetine. Significant correlations between proliferation and gene expression of WNT2B, FZD7, TCF7L2, SULT4A1 and ABCB1 (all involved in neurogenesis or brain protection) were also found. Basal gene expression of SULT4A1 (P=0.029), and gene expression fold changes of WNT2B by ex vivo fluoxetine (P=0.025) correlated with clinical response and clinical remission, respectively. Thus, we identified potential gene expression biomarkers eventually being useful as baseline predictors or as longitudinal targets in antidepressant therapy.
Collapse
Affiliation(s)
- J Breitfeld
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - C Scholl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - M Steffens
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - K Brandenburg
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - K Probst-Schendzielorz
- Institute of Clinical Pharmacology and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - O Efimkina
- Institute of Clinical Pharmacology and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - D Gurwitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany,HMNC Holding GmbH, Munich, Germany
| | - S Lucae
- Max Planck Institute of Psychiatry, Munich, Germany
| | - J C Stingl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany,Center for Translational Medicine, Bonn University Medical School, Bonn, Germany,Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany. E-mail:
| |
Collapse
|
27
|
Hayashi H, Takagi N. Endogenous Neuroprotective Molecules and Their Mechanisms in the Central Nervous System. Biol Pharm Bull 2016; 38:1104-8. [PMID: 26235573 DOI: 10.1248/bpb.b15-00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functions of the central nervous system (CNS) are based on a complex neural network. It is believed that the CNS has several neuroprotective mechanisms operated by neurons, glia and other types of cells against various types of neuronal damage. Since mature, differentiated neurons are not able to divide, it is important to protect neurons from damage prior to death. The neuroprotective effects of a number of pharmaceutical agents and natural products against necrosis and apoptosis of the CNS neurons have been reported, thus this review will mainly discuss several endogenous neuroprotectants and their mechanisms.
Collapse
Affiliation(s)
- Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | |
Collapse
|
28
|
Yoon H, Flores LF, Kim J. MicroRNAs in brain cholesterol metabolism and their implications for Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2139-2147. [PMID: 27155217 DOI: 10.1016/j.bbalip.2016.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023]
Abstract
Cholesterol is important for various neuronal functions in the brain. Brain has elaborate regulatory mechanisms to control cholesterol metabolism that are distinct from the mechanisms in periphery. Interestingly, dysregulation of the cholesterol metabolism is strongly associated with a number of neurodegenerative diseases. MicroRNAs are short non-coding RNAs acting as post-transcriptional gene regulators. Recently, several microRNAs are demonstrated to be involved in regulating cholesterol metabolism in the brain. This article reviews the regulatory mechanisms of cellular cholesterol homeostasis in the brain. In addition, we discuss the role of microRNAs in brain cholesterol metabolism and their potential implications for the treatment of Alzheimer's disease. This article is part of a special issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Hyejin Yoon
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, United States; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Luis F Flores
- Biochemistry and Molecular Biology Graduate Program, Mayo Graduate School, Jacksonville, FL, United States
| | - Jungsu Kim
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, United States; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|
29
|
Ling Q, Tejada-Simon MV. Statins and the brain: New perspective for old drugs. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:80-86. [PMID: 26655447 DOI: 10.1016/j.pnpbp.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/15/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
Abstract
Statins are one of the most popular lipid-lowering drugs (LLDs). Upon oral administration, these drugs are well absorbed by the intestine and effectively used for the treatment of dyslipidemias. Recently, statins are becoming also well-known for their cholesterol-independent effects and their potential use in brain diseases and different types of cancers. While still controversial, recent research has suggested that statin's cholesterol-independent activities work possibly through alterations on isoprenoid levels. This reduction of isoprenoids in the central nervous system might result in effective biochemical and behavioral improvements on certain neurological disorders. This manuscript aims to highlight current research describing the use of statin therapy in the brain and discuss whether statins might affect neuronal dynamics and function independently of their cholesterol regulatory role.
Collapse
Affiliation(s)
- Q Ling
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - M V Tejada-Simon
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA; Department of Biology, University of Houston, Houston, TX, USA; Department of Psychology, University of Houston, Houston, TX, USA; Biology of Behavior Institute (BoBI), University of Houston, Houston, TX, USA.
| |
Collapse
|
30
|
Chandra A, Xu YM. Cholesterol: A necessary evil from a multiple sclerosis perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Avinash Chandra
- Buffalo Neuroimaging Analysis Center; Department of Neurology; Buffalo General Hospital; Buffalo NY USA
- Department of Neurology; Annapurna Neurological Institute and Allied Sciences; Kathmandu Nepal
| | - Yu Ming Xu
- Department of Neurology III; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| |
Collapse
|
31
|
Huang Z, Cheng C, Jiang L, Yu Z, Cao F, Zhong J, Guo Z, Sun X. Intraventricular apolipoprotein ApoJ infusion acts protectively in Traumatic Brain Injury. J Neurochem 2016; 136:1017-25. [PMID: 26670094 DOI: 10.1111/jnc.13491] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Zhijian Huang
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Chongjie Cheng
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Li Jiang
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Zhanyang Yu
- Department of Neurology and Radiology; Neuroprotection Research Laboratory; Harvard Medical School; Cambridge MA USA
| | - Fang Cao
- Department of Cerebrovascular; the Affiliated Hospital of Zunyi Medical College; Guizhou China
| | - Jianjun Zhong
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Zongduo Guo
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Xiaochuan Sun
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| |
Collapse
|
32
|
Honsho M, Abe Y, Fujiki Y. Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis. J Biol Chem 2015; 290:28822-33. [PMID: 26463208 DOI: 10.1074/jbc.m115.656983] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Plasmalogen biosynthesis is regulated by modulating fatty acyl-CoA reductase 1 stability in a manner dependent on cellular plasmalogen level. However, physiological significance of the regulation of plasmalogen biosynthesis remains unknown. Here we show that elevation of the cellular plasmalogen level reduces cholesterol biosynthesis without affecting the isoprenylation of proteins such as Rab and Pex19p. Analysis of intermediate metabolites in cholesterol biosynthesis suggests that the first oxidative step in cholesterol biosynthesis catalyzed by squalene monooxygenase (SQLE), an important regulator downstream HMG-CoA reductase in cholesterol synthesis, is reduced by degradation of SQLE upon elevation of cellular plasmalogen level. By contrast, the defect of plasmalogen synthesis causes elevation of SQLE expression, resulting in the reduction of 2,3-epoxysqualene required for cholesterol synthesis, hence implying a novel physiological consequence of the regulation of plasmalogen biosynthesis.
Collapse
Affiliation(s)
- Masanori Honsho
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukio Fujiki
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
33
|
Abstract
Astrocytes regulate multiple aspects of neuronal and synaptic function from development through to adulthood. Instead of addressing each function independently, this review provides a comprehensive overview of the different ways astrocytes modulate neuronal synaptic function throughout life, with a particular focus on recent findings in each area. It includes the emerging functions of astrocytes, such as a role in synapse formation, as well as more established roles, including the uptake and recycling of neurotransmitters. This broad approach covers the many ways astrocytes and neurons constantly interact to maintain the correct functioning of the brain. It is important to consider all of these diverse functions of astrocytes when investigating how astrocyte-neuron interactions regulate synaptic behavior to appreciate the complexity of these ongoing interactions.
Collapse
Affiliation(s)
- Nicola J Allen
- Salk Institute for Biological Studies, La Jolla, California 92037;
| |
Collapse
|
34
|
Babić M, Svob Štrac D, Mück-Šeler D, Pivac N, Stanić G, Hof PR, Simić G. Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease. Croat Med J 2015; 55:347-65. [PMID: 25165049 PMCID: PMC4157375 DOI: 10.3325/cmj.2014.55.347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Goran Simić
- Goran Šimić, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia,
| |
Collapse
|
35
|
Astrocitos en las enfermedades neurodegenerativas (I): función y caracterización molecular. Neurologia 2015; 30:119-29. [DOI: 10.1016/j.nrl.2012.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/15/2012] [Indexed: 12/23/2022] Open
|
36
|
Guillamón-Vivancos T, Gómez-Pinedo U, Matías-Guiu J. Astrocytes in neurodegenerative diseases (I): function and molecular description. NEUROLOGÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.nrleng.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
37
|
Cantarelli MDG, Tramontina AC, Leite MC, Gonçalves CA. Potential neurochemical links between cholesterol and suicidal behavior. Psychiatry Res 2014; 220:745-51. [PMID: 25457283 DOI: 10.1016/j.psychres.2014.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
The role of cholesterol in psychiatric diseases has aroused the interest of the medical community, particularly in association with violent and suicidal behavior. Herein, we discuss some aspects of brain cholesterol metabolism, exploring possible mechanisms underlying the findings and reviewing the available literature on the possible neurochemical link between suicide and low or reduced levels of serum cholesterol. Most of the current hypotheses suggest a decreased serotonergic activity due to a decrease in cholesterol in the lipid rafts of synaptic membranes. Some aspects and limitations of this assumption are emphasized. In addition to serotonin hypofunction, other mechanisms have been proposed to explain increased impulsivity in suicidal individuals, including steroid modulation and brain-derived neurotrophic factor decrease, which could also be related to changes in lipid rafts. Other putative markers of suicidal behavior (e.g. protein S100B) are discussed in connection with cholesterol metabolism in the brain tissue.
Collapse
|
38
|
Tamaru M, Akita H, Nakatani T, Kajimoto K, Sato Y, Hatakeyama H, Harashima H. Application of apolipoprotein E-modified liposomal nanoparticles as a carrier for delivering DNA and nucleic acid in the brain. Int J Nanomedicine 2014; 9:4267-76. [PMID: 25228805 PMCID: PMC4162633 DOI: 10.2147/ijn.s65402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An innovative drug delivery technology is urgently needed to satisfy unmet medical needs in treating various brain disorders. As a fundamental carrier for plasmid DNA or nucleic acids, we developed a liposomal nanoparticle (multifunctional envelope-type nano device [MEND]) containing a proton-ionizable amino lipid (YSK-MEND). Here we report on the impact of apolipoprotein E (ApoE) modification on the function of YSK-MEND in terms of targeting brain cells. The cellular uptake and function of YSK-MEND encapsulating short interference RNA or plasmid DNA were significantly improved as a result of ApoE modification in mouse neuron-derived cell lines (Neuro-2a and CAD). Intracerebroventricular administration of ApoE-modified YSK-MEND (ApoE/YSK-MEND) encapsulating plasmid DNA also resulted in higher transgene expression in comparison with YSK-MEND that was not modified with ApoE. Moreover, observation of fluorescence-labeled ApoE/YSK-MEND and expression of mCherry (fluorescence protein) derived from plasmid DNA indicated that this carrier might be useful for delivering and conferring transgene expression in neural stem cells and/or neural progenitor cells. Thus, this system may be a useful tool for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Mina Tamaru
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Taichi Nakatani
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kazuaki Kajimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroto Hatakeyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
39
|
Sheridan DA, Bridge SH, Crossey MME, Felmlee DJ, Thomas HC, Neely RDG, Taylor-Robinson SD, Bassendine MF. Depressive symptoms in chronic hepatitis C are associated with plasma apolipoprotein E deficiency. Metab Brain Dis 2014; 29:625-34. [PMID: 24615429 DOI: 10.1007/s11011-014-9520-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
Neuro-psychiatric and cognitive disorders are frequent in patients with chronic hepatitis C (CHC) virus (HCV) infection which adversely impact quality of life, antiviral treatment adherence and outcome. HCV has neurotrophic properties and affects lipid metabolism, essential for cognitive function. We evaluated the relationship of lipid profiles with depression and anxiety symptoms and the effects of 12-weeks of therapy with fluvastatin and omega-3 ethyl esters (n-3 PUFA) in a randomised pilot study of CHC prior non-responders. Participants (n = 60) had fasting lipid profiles and assessment of depression and anxiety symptoms using the Hospital Anxiety and Depression Scale (HADS) questionnaire at each study visit. At screening 26/60 (43 %) had HADS-A score ≥8 and 13/60 (22 %) had HADS-D scores ≥8. Depressed patients had significantly lower apolipoprotein-E concentrations (30 mg/l vs 39 mg/l, P = 0.029) than those without depression and a tendency toward lower total cholesterol (3.8 vs 4.4 mmol/l, P = 0.053). 3 patients discontinued lipid-modifying treatment because of worsening depression. However, there was a small but significant improvement in anxiety symptoms after 12-weeks of high-dose (2-4 g daily) n-3 PUFA. In conclusion, depression in CHC is associated with plasma apoE deficiency. We postulate that apoE deficiency disrupts blood brain barrier integrity to promote HCV infection of the CNS. High-dose n-PUFAs may alleviate anxiety in some CHC patients but the use of lipid lowering therapy must be balanced against risks of worsening depression.
Collapse
Affiliation(s)
- David A Sheridan
- Institute of Cellular Medicine (Hepatology), Newcastle University, William Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK,
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cerebrospinal fluid apolipoprotein E and phospholipid transfer protein activity are reduced in multiple sclerosis; relationships with the brain MRI and CSF lipid variables. Mult Scler Relat Disord 2014; 3:533-541. [PMID: 24955324 DOI: 10.1016/j.msard.2014.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apolipoprotein E (apoE), phospholipid transfer protein (PLTP) activity, lipids, total tau and beta amyloid 1-42 (Aβ42) were measured in cerebrospinal fluid (CSF) from controls (n=38) and multiple sclerosis (MS) patients (n=91). ApoE and PLTP activity were significantly reduced in MS compared to non-inflammatory disease controls (NINDC; p<0.05). In NINDC and MS, apoE correlated with PLTP activity (rs=0.399 and 0.591, respectively), Aβ42 (rs= 0.609 and 0.483, respectively), and total tau (rs=0.748 and 0.380, respectively; all p<0.05). CSF apoE and PLTP significantly contributed to the variance of the normalized brain volume (NBV) and T2 lesion volume in MS (p<0.001 and p<0.05, respectively). ApoE correlated with CSF cholesterol and 24-hydroxycholesterol in all groups; PLTP activity correlated with CSF cholesterol in controls (p<0.05).
Collapse
|
41
|
Abstract
Cholesterol is an essential component of both the peripheral nervous system and central nervous system (CNS) of mammals. Brain cholesterol is synthesized in situ by astrocytes and oligodendrocytes and is almost completely isolated from other pools of cholesterol in the body, but a small fraction can be taken up from the circulation as 27-hydroxycholesterol, or via the scavenger receptor class B type I. Glial cells synthesize native high-density lipoprotein (HDL)-like particles, which are remodelled by enzymes and lipid transfer proteins, presumably as it occurs in plasma. The major apolipoprotein constituent of HDL in the CNS is apolipoprotein E, which is produced by astrocytes and microglia. Apolipoprotein A-I, the major protein component of plasma HDL, is not synthesized in the CNS, but can enter and become a component of CNS lipoproteins. Low HDL-C levels have been shown to be associated with cognitive impairment and various neurodegenerative diseases. On the contrary, no clear association with brain disorders has been shown in genetic HDL defects, with the exception of Tangier disease. Mutations in a wide variety of lipid handling genes can result in human diseases, often with a neuronal phenotype caused by dysfunctional intracellular lipid trafficking.
Collapse
Affiliation(s)
- Cecilia Vitali
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
42
|
Schmidt V, Carlo AS, Willnow TE. Apolipoprotein E receptor pathways in Alzheimer disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:255-70. [PMID: 24604742 DOI: 10.1002/wsbm.1262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 11/07/2022]
Abstract
UNLABELLED Alzheimer disease (AD) is the most common neurodegenerative disease affecting millions of patients worldwide. According to the amyloid cascade hypothesis, the formation of neurotoxic oligomers composed of amyloid-β (Aβ) peptides is the main mechanism that causes synaptic dysfunction and, eventually, neuronal cell death in this condition. Intriguingly, apolipoprotein E (apoE), the most important genetic risk factor for sporadic AD, emerges as a key factor that contributes to many aspects of the amyloid cascade including the clearance of Aβ from brain interstitial fluid and the ability of this peptide to form neurotoxic oligomers. Central to the activity of apoE in the healthy and in the diseased brain are apoE receptors that interact with this protein to mediate its multiple cellular and systemic effects. This review describes the molecular interactions that link apoE and its cellular receptors with neuronal viability and function, and how defects in these pathways in the brain promote neurodegeneration. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
43
|
Jha MK, Kim JH, Suk K. Proteome of brain glia: the molecular basis of diverse glial phenotypes. Proteomics 2013; 14:378-98. [PMID: 24124134 DOI: 10.1002/pmic.201300236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
Several different types of nonneuronal glial cells with diverse phenotypes are present in the CNS, and all have distinct indispensible functions. Although glial cells primarily provide neurons with metabolic and structural support in the healthy brain, they may switch phenotype from a "resting" to a "reactive" state in response to pathological insults. Furthermore, this reactive gliosis is an invariant feature of the pathogeneses of CNS maladies. The glial proteome serves as a signature of glial phenotype, and not only executes physiological functions, but also acts as a molecular mediator of the reactive glial phenotype. The glial proteome is also involved in intra- and intercellular communications as exemplified by glia-glia and neuron-glia interactions. The utilization of authoritative proteomic tools and the bioinformatic analyses have helped to profile the brain glial proteome and explore the molecular mechanisms of diverse glial phenotypes. Furthermore, technologic innovations have equipped the field of "glioproteomics" with refined tools for studies of the expression, interaction, and function of glial proteins in the healthy and in the diseased CNS. Glioproteomics is expected to contribute to the elucidation of the molecular mechanisms of CNS pathophysiology and to the discovery of biomarkers and theragnostic targets in CNS disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | |
Collapse
|
44
|
Gong H, Dong W, Rostad SW, Marcovina SM, Albers JJ, Brunzell JD, Vuletic S. Lipoprotein lipase (LPL) is associated with neurite pathology and its levels are markedly reduced in the dentate gyrus of Alzheimer's disease brains. J Histochem Cytochem 2013; 61:857-68. [PMID: 24004859 PMCID: PMC3840745 DOI: 10.1369/0022155413505601] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Lipoprotein lipase (LPL) is involved in regulation of fatty acid metabolism, and facilitates cellular uptake of lipoproteins, lipids and lipid-soluble vitamins. We evaluated LPL distribution in healthy and Alzheimer’s disease (AD) brain tissue and its relative levels in cerebrospinal fluid. LPL immunostaining is widely present in different neuronal subgroups, microglia, astrocytes and oligodendroglia throughout cerebrum, cerebellum and spinal cord. LPL immunoreactivity is also present in leptomeninges, small blood vessels, choroid plexus and ependymal cells, Schwann cells associated with cranial nerves, and in anterior and posterior pituitary. In vitro studies have shown presence of secreted LPL in conditioned media of human cortical neuronal cell line (HCN2) and neuroblastoma cells (SK-N-SH), but not in media of cultured primary human astrocytes. LPL was present in cytoplasmic and nuclear fractions of neuronal cells and astrocytes in vitro. LPL immunoreactivity strongly associates with AD-related pathology, staining diffuse plaques, dystrophic and swollen neurites, possible Hirano bodies and activated glial cells. We observed no staining associated with neurofibrillary tangles or granulovacuolar degeneration. Granule cells of the dentate gyrus and the associated synaptic network showed significantly reduced staining in AD compared to control tissue. LPL was also reduced in AD CSF samples relative to those in controls.
Collapse
Affiliation(s)
- Huilin Gong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, WA (HG, WD, SMM, JJA, SV)
| | | | | | | | | | | | | |
Collapse
|
45
|
Suesca E, Alejo JL, Bolaños NI, Ocampo J, Leidy C, González JM. Sulfocerebrosides upregulate liposome uptake in human astrocytes without inducing a proinflammatory response. Cytometry A 2013; 83:627-35. [DOI: 10.1002/cyto.a.22305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/17/2013] [Accepted: 04/12/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Elizabeth Suesca
- Grupo de Biofísica; Departamento de Física; Universidad de los Andes; Bogotá; Colombia
| | - Jose Luis Alejo
- Grupo de Biofísica; Departamento de Física; Universidad de los Andes; Bogotá; Colombia
| | - Natalia I. Bolaños
- Grupo de Ciencias Básicas Médicas; Facultad de Medicina; Universidad de los Andes; Bogotá; Colombia
| | - Jackson Ocampo
- Grupo de Biofísica; Departamento de Física; Universidad de los Andes; Bogotá; Colombia
| | - Chad Leidy
- Grupo de Biofísica; Departamento de Física; Universidad de los Andes; Bogotá; Colombia
| | - John M. González
- Grupo de Ciencias Básicas Médicas; Facultad de Medicina; Universidad de los Andes; Bogotá; Colombia
| |
Collapse
|
46
|
Lestaevel P, Airault F, Racine R, Bensoussan H, Dhieux B, Delissen O, Manens L, Aigueperse J, Voisin P, Souidi M. Influence of environmental enrichment and depleted uranium on behaviour, cholesterol and acetylcholine in apolipoprotein E-deficient mice. J Mol Neurosci 2013; 53:469-79. [PMID: 23749703 DOI: 10.1007/s12031-013-0038-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/27/2013] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease is associated with genetic risk factors, of which the apolipoprotein E (ApoE) is the most prevalent, and is affected by environmental factors that include education early in life and exposure to metals. The industrial and military use of depleted uranium (DU) resulted in an increase of its deposition in some areas and led to a possible environmental factor. The present study aims to ascertain the effects on the behaviour and the metabolism of cholesterol and acetylcholine of ApoE-/- mice exposed to enriched environment (EE) and exposed to DU (20 mg/L) for 14 weeks. Here we show that ApoE-/- mice were unaffected by the EE and their learning and memory were similar to those of the non-enriched ApoE-/- mice. ApoE-/- mice showed a significant decrease in total (-16 %) and free (-16 %) cholesterol in the entorhinal cortex in comparison to control wild-type mice. Whatever the housing conditions, the exposure to DU of ApoE-/- mice impaired working memory, but had no effect on anxiety-like behaviour, in comparison to control ApoE-/- mice. The exposure of ApoE-/- mice to DU also induced a trend toward higher total cholesterol content in the cerebral cortex (+15 %) compared to control ApoE-/- mice. In conclusion, these results demonstrate that enriched environment does not ameliorate neurobehaviour in ApoE-/- mice and that ApoE mutation induced specific effects on the brain cholesterol. These findings also suggested that DU exposure could modify the pathology in this ApoE model, with no influence of housing conditions.
Collapse
Affiliation(s)
- P Lestaevel
- Laboratoire de Radiotoxicologie Expérimentale (LRTOX), Service de Radiobiologie et d'Epidémiologie (SRBE), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP no° 17, 92262 Fontenay-aux-Roses CEDEX and BP no° 166, 26702, Pierrelatte CEDEX, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Patel M, Souto EB, Singh KK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin Drug Deliv 2013; 10:889-905. [DOI: 10.1517/17425247.2013.784742] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina 2013; 33:265-76. [PMID: 23266879 PMCID: PMC3870202 DOI: 10.1097/iae.0b013e31827e25e0] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To characterize the morphology, prevalence, and topography of subretinal drusenoid deposits, a candidate histological correlate of reticular pseudodrusen, with reference to basal linear deposit (BlinD), a specific lesion of age-related macular degeneration, and to propose a biogenesis model for both lesion. METHODS Donor eyes with median death-to-preservation of 2:40 hours were postfixed in osmium tannic acid paraphenylenediamine and prepared for macula-wide high-resolution digital sections. Annotated thicknesses of 21 chorioretinal layers were determined at standard locations in sections through the fovea and the superior perifovea. RESULTS In 22 eyes of 20 white donors (83.1 ± 7.7 years), SDD appeared as isolated or confluent drusenoid dollops punctuated by tufts of retinal pigment epithelium apical processes and associated with photoreceptor perturbation. Subretinal drusenoid deposits and BlinD were detected in 85 and 90% of non-neovascular age-related macular degeneration donors, respectively. Subretinal drusenoid deposit was thick (median, 9.4 μm) and more abundant in the perifovea than in the fovea (P < 0.0001). BlinD was thin (median, 2.1 μm) and more abundant in the fovea than in the perifovea (P < 0.0001). CONCLUSION Subretinal drusenoid deposits and BlinD prevalence in age-related macular degeneration eyes are high. Subretinal drusenoid deposits organized morphology, topography, and impact on surrounding photoreceptors imply specific processes of biogenesis. Contrasting topographies of subretinal drusenoid deposits and BlinD suggest relationships with differentiable aspects of rod and cone physiology, respectively. A 2-lesion 2-compartment biogenesis model incorporating outer retinal lipid homeostasis is presented.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Overlapped Metabolic and Therapeutic Links between Alzheimer and Diabetes. Mol Neurobiol 2012; 47:399-424. [DOI: 10.1007/s12035-012-8352-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
|
50
|
Induction of mitochondrial changes associated with oxidative stress on very long chain fatty acids (C22:0, C24:0, or C26:0)-treated human neuronal cells (SK-NB-E). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:623257. [PMID: 22919440 PMCID: PMC3420217 DOI: 10.1155/2012/623257] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/05/2012] [Indexed: 01/02/2023]
Abstract
In Alzheimer's disease, lipid alterations point towards peroxisomal dysfunctions. Indeed, a cortical accumulation of saturated very long chain fatty acids (VLCFAs: C22:0, C24:0, C26:0), substrates for peroxisomal β-oxidation, has been found in Alzheimer patients. This study was realized to investigate the effects of VLCFAs at the mitochondrial level since mitochondrial dysfunctions play crucial roles in neurodegeneration. On human neuronal SK-NB-E cells treated with C22:0, C24:0, or C26:0 (0.1-20 μM; 48 h), an inhibition of cell growth and mitochondrial dysfunctions were observed by cell counting with trypan blue, MTT assay, and measurement of mitochondrial transmembrane potential (Δψ(m)) with DiOC(6)(3). A stimulation of oxidative stress was observed with DHE and MitoSOX used to quantify superoxide anion production on whole cells and at the mitochondrial level, respectively. With C24:0 and C26:0, by Western blotting, lower levels of mitochondrial complexes III and IV were detected. After staining with MitoTracker and by transmission electron microscopy used to study mitochondrial topography, mass and morphology, major changes were detected in VLCFAs treated-cells: modification of the cytoplasmic distribution of mitochondria, presence of large mitochondria, enhancement of the mitochondrial mass. Thus, VLCFAs can be potential risk factors contributing to neurodegeneration by inducing neuronal damages via mitochondrial dysfunctions.
Collapse
|