1
|
Millet A. Some unanswered questions about the pyrimidine catabolic pathway: The human macrophage perspective. Biochim Biophys Acta Rev Cancer 2025; 1880:189306. [PMID: 40158668 DOI: 10.1016/j.bbcan.2025.189306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Pyrimidine catabolism has attracted attention in relation to pyrimidine analogs used as anticancer drugs but the absence of a severe phenotype associated with pyrimidine catabolism byproducts did not favor to pursue these efforts. Recently, the discovery that dihydropyrimidine dehydrogenase (DPD) has an oxygen-dependent expression in human macrophages brings the aforementioned pathway to the forefront. Moreover, the finding that thymidine phosphorylase, the direct upstream enzyme to DPD in the pathway, also has a huge expression level in macrophages puts a new perspective on this pathway suggesting to look again at the physiology of intracellular pyrimidine bases catabolism revealing some unanswered questions. In this review, we propose to reassess the known and unknown of the catabolism of pyrimidine base in the light of these new results obtained in human macrophages.
Collapse
Affiliation(s)
- Arnaud Millet
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France.
| |
Collapse
|
2
|
Kerhoas M, Le Vée M, Carteret J, Jouan E, Tastet V, Bruyère A, Huc L, Fardel O. Inhibition of human drug transporter activities by succinate dehydrogenase inhibitors. CHEMOSPHERE 2024; 358:142122. [PMID: 38663675 DOI: 10.1016/j.chemosphere.2024.142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 μM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 μM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 μM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.
Collapse
Affiliation(s)
- Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France; Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), INRAE/CNRS/Université Gustave Eiffel, F-Marne-La-Vallée, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
3
|
Shram SI, Shcherbakova TA, Abramova TV, Baradieva EC, Efremova AS, Smirnovskaya MS, Silnikov VN, Švedas VK, Nilov DK. Natural Guanine Derivatives Exert PARP-Inhibitory and Cytoprotective Effects in a Model of Cardiomyocyte Damage under Oxidative Stress. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:783-791. [PMID: 37748874 DOI: 10.1134/s0006297923060068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 09/27/2023]
Abstract
Inhibitors of human poly(ADP-ribose) polymerase (PARP) are considered as promising agents for treatment of cardiovascular, neurological, and other diseases accompanied by inflammation and oxidative stress. Previously, the ability of natural compounds 7-methylguanine (7mGua) and 8-hydroxy-7-methylguanine (8h7mGua) to suppress activity of the recombinant PARP protein was demonstrated. In the present work, we have investigated the possibility of PARP-inhibitory and cytoprotective action of 7mGua and 8h7mGua against the rat cardiomyoblast cultures (undifferentiated and differentiated H9c2). It was found that 7mGua and 8h7mGua rapidly penetrate into the cells and effectively suppress the H2O2-stimulated PARP activation (IC50 = 270 and 55 μM, respectively). The pronounced cytoprotective effects of 7mGua and 8h7mGua were shown in a cellular model of oxidative stress, and effectiveness of 8h7mGua exceeded the classic PARP inhibitor 3-aminobenzamide. The obtained data indicate promise for the development of PARP inhibitors based on guanine derivatives and their testing using the models of ischemia-reperfusion tissue damage.
Collapse
Affiliation(s)
- Stanislav I Shram
- Institute of Molecular Genetics, National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
| | - Tatyana A Shcherbakova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia
| | - Tatyana V Abramova
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Erzhena C Baradieva
- Institute of Molecular Genetics, National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Anna S Efremova
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | | | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Vytas K Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry K Nilov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
5
|
Gupta M, Levine SR, Spitale RC. Probing Nascent RNA with Metabolic Incorporation of Modified Nucleosides. Acc Chem Res 2022; 55:2647-2659. [PMID: 36073807 DOI: 10.1021/acs.accounts.2c00347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The discovery of previously unknown functional roles of RNA in biological systems has led to increased interest in revealing novel RNA molecules as therapeutic targets and the development of tools to better understand the role of RNA in cells. RNA metabolic labeling broadens the scope of studying RNA by incorporating of unnatural nucleobases and nucleosides with bioorthogonal handles that can be utilized for chemical modification of newly synthesized cellular RNA. Such labeling of RNA provides access to applications including measurement of the rates of synthesis and decay of RNA, cellular imaging for RNA localization, and selective enrichment of nascent RNA from the total RNA pool. Several unnatural nucleosides and nucleobases have been shown to be incorporated into RNA by endogenous RNA synthesis machinery of the cells. RNA metabolic labeling can also be performed in a cell-specific manner, where only cells expressing an essential enzyme incorporate the unnatural nucleobase into their RNA. Although several discoveries have been enabled by the current RNA metabolic labeling methods, some key challenges still exist: (i) toxicity of unnatural analogues, (ii) lack of RNA-compatible conjugation chemistries, and (iii) background incorporation of modified analogues in cell-specific RNA metabolic labeling. In this Account, we showcase work done in our laboratory to overcome these challenges faced by RNA metabolic labeling.To begin, we discuss the cellular pathways that have been utilized to perform RNA metabolic labeling and study the interaction between nucleosides and nucleoside kinases. Then we discuss the use of vinyl nucleosides for metabolic labeling and demonstrate the low toxicity of 5-vinyluridine (5-VUrd) compared to other widely used nucleosides. Next, we discuss cell-specific RNA metabolic labeling with unnatural nucleobases, which requires the expression of a specific phosphoribosyl transferase (PRT) enzyme for incorporation of the nucleobase into RNA. In the course of this work, we discovered the enzyme uridine monophosphate synthase (UMPS), which is responsible for nonspecific labeling with modified uracil nucleobases. We were able to overcome this background labeling by discovering a mutant uracil PRT (UPRT) that demonstrates highly specific RNA metabolic labeling with 5-vinyluracil (5-VU). Furthermore, we discuss the optimization of inverse-electron-demand Diels-Alder (IEDDA) reactions for performing chemical modification of vinyl nucleosides to achieve covalent conjugation of RNA without transcript degradation. Finally, we highlight our latest endeavor: the development of mutually orthogonal chemical reactions for selective labeling of 5-VUrd and 2-vinyladenosine (2-VAdo), which allows for potential use of multiple vinyl nucleosides for simultaneous investigation of multiple cellular processes involving RNA. We hope that our methods and discoveries encourage scientists studying biological systems to include RNA metabolic labeling in their toolkit for studying RNA and its role in biological systems.
Collapse
|
6
|
Ito T, Kubo Y, Akanuma SI, Hosoya KI. Functional characteristics of 3'-azido-3'-deoxythymidine transport at the blood-testis barrier. Int J Pharm 2022; 625:122044. [PMID: 35902057 DOI: 10.1016/j.ijpharm.2022.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
3'-Azido-3'-deoxythymidine (AZT), an antiretroviral drug, is often adopted in the therapy for human immunodeficiency virus (HIV) infection, and the characteristics of AZT transport at the blood-testis barrier (BTB) were investigated in this study. In the integration plot analysis that evaluates the transport activity in vivo, the apparent influx clearance of [3H]AZT was significantly greater than that of [14C]D-mannitol, a non-permeable paracellular transport marker. In the uptake study in vitro with TM4 cells derived from mouse Sertoli cells, [3H]AZT uptake exhibited a time- and concentration-dependent manner, of which Km and Vmax values being 20.3 µM and 102 pmol/(min·mg protein), respectively. In the inhibition analysis, [3H]AZT uptake was not affected by extracellular inorganics and some substrates of transporters putatively involved in AZT transport. In the further inhibition analyses to elucidate the characteristics of AZT transport, [3H]AZT uptake was strongly reduced in the presence of several nucleosides, that are categorized as 2'-deoxynucleosides with pyrimidine, whereas little effect on [3H]AZT uptake was exhibited in the presence of other nucleosides, nucleobases, and antiretrovirals. These results suggest the influx transport of AZT from the circulating blood to the testis, and the involvement of carrier-mediated process at the BTB, which selectively recognizes 2'-deoxynucleosides with a pyrimidine base.
Collapse
Affiliation(s)
- Takeru Ito
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Kaga 2-11-1, Tokyo 173-8605, Japan.
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
7
|
Yu Y, Ding J, Zhu S, Alptekin A, Dong Z, Yan C, Zha Y, Ding HF. Therapeutic targeting of both dihydroorotate dehydrogenase and nucleoside transport in MYCN-amplified neuroblastoma. Cell Death Dis 2021; 12:821. [PMID: 34462431 PMCID: PMC8405683 DOI: 10.1038/s41419-021-04120-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is an integral part of the growth-promoting program driven by the MYC family of oncogenes. However, this reprogramming also imposes metabolic dependencies that could be exploited therapeutically. Here we report that the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is an attractive therapeutic target for MYCN-amplified neuroblastoma, a childhood cancer with poor prognosis. Gene expression profiling and metabolomic analysis reveal that MYCN promotes pyrimidine nucleotide production by transcriptional upregulation of DHODH and other enzymes of the pyrimidine-synthesis pathway. Genetic and pharmacological inhibition of DHODH suppresses the proliferation and tumorigenicity of MYCN-amplified neuroblastoma cell lines. Furthermore, we obtain evidence suggesting that serum uridine is a key factor in determining the efficacy of therapeutic agents that target DHODH. In the presence of physiological concentrations of uridine, neuroblastoma cell lines are highly resistant to DHODH inhibition. This uridine-dependent resistance to DHODH inhibitors can be abrogated by dipyridamole, an FDA-approved drug that blocks nucleoside transport. Importantly, dipyridamole synergizes with DHODH inhibition to suppress neuroblastoma growth in animal models. These findings suggest that a combination of targeting DHODH and nucleoside transport is a promising strategy to overcome intrinsic resistance to DHODH-based cancer therapeutics.
Collapse
Affiliation(s)
- Yajie Yu
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, 443000, China
| | - Jane Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ahmet Alptekin
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Zheng Dong
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Chunhong Yan
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Yunhong Zha
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, 443000, China.
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA.
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA.
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA.
| |
Collapse
|
8
|
Suzuki S, Inoue K, Tamai I, Shirasaka Y. Model Analysis of the Apparent Saturation Kinetics of Purine Nucleobase Uptake in Cells co-Expressing Transporter and Metabolic Enzyme. Pharm Res 2021; 38:1585-1592. [PMID: 34435306 DOI: 10.1007/s11095-021-03086-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE This study aims to understand the effect of salvage enzyme activity on the saturable kinetics of facilitated cellular uptake of purine nucleobase by developing a cellular kinetic model incorporating equilibrative nucleobase transporter 1 (ENBT1) and adenine phosphoribosyltransferase (APRT), with adenine as a model nucleobase. METHODS A cellular kinetic model incorporating the functions of ENBT1 and APRT was developed using Napp software and employed for model-based analysis of the cellular disposition of adenine. RESULTS Simulation analysis using the developed cellular kinetic model could account for the experimentally observed time-dependent changes in the Km(app) value of adenine for ENBT1-mediated uptake. At a long experimental time, the model shows that uptake of adenine is rate-limited by APRT, enabling determination of the Km value for APRT. At early time, the rate-limiting step for adenine uptake is ENBT1-mediated transport, enabling determination of the Km value for ENBT1. Further simulations showed that the effect of experimental time on the Km(app) value for ENBT1-mediated uptake is dependent on the APRT expression level. CONCLUSION Our findings indicate that both enzyme expression levels and experimental time should be considered when using cellular uptake studies to determine the Km values of purine nucleobases for facilitated transporters.
Collapse
Affiliation(s)
- Satoru Suzuki
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Tokyo, 192-0392, Japan
| | - Katsuhisa Inoue
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Tokyo, 192-0392, Japan
| | - Ikumi Tamai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Tokyo, 192-0392, Japan.
| |
Collapse
|
9
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
10
|
Yuasa H, Yasujima T, Inoue K. Current Understanding of the Intestinal Absorption of Nucleobases and Analogs. Biol Pharm Bull 2021; 43:1293-1300. [PMID: 32879202 DOI: 10.1248/bpb.b20-00342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been suggested that a Na+-dependent carrier-mediated transport system is involved in the absorption of nucleobases and analogs, including some drugs currently in therapeutic use, for their uptake at the brush border membrane of epithelial cells in the small intestine, mainly based on studies in non-primate experimental animals. The presence of this transport system was indeed proved by the recent identification of sodium-dependent nucleobase transporter 1 (SNBT1/Slc23a4) as its molecular entity in rats. However, this transporter has been found to be genetically deficient in humans and higher primates. Aware of this deficiency, we need to revisit the issue of the absorption of these compounds in the human small intestine so that we can understand the mechanisms and gain information to assure the more rational use and development of drugs analogous to nucleobases. Here, we review the current understanding of the intestinal absorption of nucleobases and analogs. This includes recent knowledge about the efflux transport of those compounds across the basolateral membrane when exiting epithelial cells, following brush border uptake, in order to complete the overall absorption process; the facilitative transporters of equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) may be involved in that in many animal species, including human and rat, without any major species differences.
Collapse
Affiliation(s)
- Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
11
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Zuccarini M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. In Search of a Role for Extracellular Purine Enzymes in Bone Function. Biomolecules 2021; 11:biom11050679. [PMID: 33946568 PMCID: PMC8147220 DOI: 10.3390/biom11050679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is one of the major tissues that undergoes continuous remodeling throughout life, thus ensuring both organic body growth during development and protection of internal organs as well as repair of trauma during adulthood. Many endogenous substances contribute to bone homeostasis, including purines. Their role has increasingly emerged in recent decades as compounds which, by interacting with specific receptors, can help determine adequate responses of bone cells to physiological or pathological stimuli. Equally, it is recognized that the activity of purines is closely dependent on their interconversion or metabolic degradation ensured by a series of enzymes present at extracellular level as predominantly bound to the cell membrane or, also, as soluble isoforms. While the effects of purines mediated by their receptor interactions have sufficiently, even though not entirely, been characterized in many tissues including bone, those promoted by the extracellular enzymes providing for purine metabolism have not been. In this review, we will try to circumstantiate the presence and the role of these enzymes in bone to define their close relationship with purine activities in maintaining bone homeostasis in normal or pathological conditions.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
- StemTeCh Group, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| |
Collapse
|
13
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Lana D, Giovannini MG, Pedata F, Pugliese AM. A 2B Adenosine Receptors: When Outsiders May Become an Attractive Target to Treat Brain Ischemia or Demyelination. Int J Mol Sci 2020; 21:E9697. [PMID: 33353217 PMCID: PMC7766015 DOI: 10.3390/ijms21249697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| |
Collapse
|
14
|
Synthesis, Antiproliferative Activity, and DNA Binding Studies of Nucleoamino Acid-Containing Pt(II) Complexes. Pharmaceuticals (Basel) 2020; 13:ph13100284. [PMID: 33007911 PMCID: PMC7600948 DOI: 10.3390/ph13100284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
We here report our studies on the reaction with the platinum(II) ion of a nucleoamino acid constituted by the l-2,3-diaminopropanoic acid linked to the thymine nucleobase through a methylenecarbonyl linker. The obtained new platinum complexes, characterized by spectroscopic and mass spectrometric techniques, were envisaged to exploit synergistic effects due to the presence of both the platinum center and the nucleoamino acid moiety. The latter can be potentially useful to protect the complexes from early deactivation, as well as to facilitate their cell internalization. The biological activity of the complexes in terms of antiproliferative effects was evaluated in vitro on different cancer cell lines and healthy cells, showing the best results on human cervical adenocarcinoma (HeLa) cells along with good selectivity for cancer over normal cells. In contrast, the metal-free nucleoamino acid did not show any cytotoxicity on both normal and cancer cell lines. Finally, the ability of the novel Pt(II) complexes to bind various DNA model systems was investigated by circular dichroism (CD) spectroscopy and polyacrylamide gel electrophoresis analyses proving that the newly obtained compounds can potentially target DNA, similarly to other well-known anticancer Pt complexes, with a peculiar G-quadruplex vs. duplex selectivity.
Collapse
|
15
|
Watanabe H, Hattori T, Kume A, Misu K, Ito T, Koike Y, Johnson TA, Kamitsuji S, Kamatani N, Sobue G. Improved Parkinsons disease motor score in a single-arm open-label trial of febuxostat and inosine. Medicine (Baltimore) 2020; 99:e21576. [PMID: 32871874 PMCID: PMC7458241 DOI: 10.1097/md.0000000000021576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cellular energetics play an important role in Parkinsons disease etiology, but no treatments directly address this deficiency. Our past research showed that treatment with febuxostat and inosine increased blood hypoxanthine and ATP in healthy adults, and a preliminary trial in 3 Parkinson's disease patients suggested some symptomatic improvements with no adverse effects. METHODS To examine the efficacy on symptoms and safety in a larger group of Parkinsons disease patients, we conducted a single-arm, open-label trial at 5 Japanese neurology clinics and enrolled thirty patients (nmales = 11; nfemales = 19); 26 patients completed the study (nmales = 10; nfemales = 16). Each patient was administered febuxostat 20 mg and inosine 500 mg twice-per-day (after breakfast and dinner) for 8 weeks. The primary endpoint was the difference of MDS-UPDRS Part III score immediately before and after 57 days of treatment. RESULTS Serum hypoxanthine concentrations were raised significantly after treatment (Pre = 11.4 μM; Post = 38.1 μM; P < .0001). MDS-UPDRS Part III score was significantly lower after treatment (Pre = 28.1 ± 9.3; Post = 24.7 ± 10.8; mean ± SD; P = .0146). Sixteen adverse events occurred in 13/29 (44.8%) patients, including 1 serious adverse event (fracture of the second lumbar vertebra) that was considered not related to the treatment. CONCLUSIONS The results of this study suggest that co-administration of febuxostat and inosine is relatively safe and effective for improving symptoms of Parkinsons disease patients. Further controlled trials need to be performed to confirm the symptomatic improvement and to examine the disease-modifying effect in long-term trials.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Nagoya University Graduate School of Medicine, Brain and Mind Research Center, Nagoya
- Fujita Health University School of Medicine, Department of Neurology, Toyoake
| | | | | | | | | | | | | | | | | | - Gen Sobue
- Nagoya University Graduate School of Medicine, Brain and Mind Research Center, Nagoya
| |
Collapse
|
16
|
Wada S, Matsunaga N, Tamai I. Mathematical modeling analysis of hepatic uric acid disposition using human sandwich-cultured hepatocytes. Drug Metab Pharmacokinet 2020; 35:432-440. [PMID: 32807664 DOI: 10.1016/j.dmpk.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Uric acid is biosynthesized from purine by xanthine oxidase (XO) mainly in the liver and is excreted into urine and feces. Although several transporters responsible for renal and intestinal handling of uric acid have been reported, information on hepatic transporters is limited. In the present study, we studied quantitative contribution of transporters for hepatic handling of uric acid by mathematical modeling analysis in human sandwich-cultured hepatocytes (hSCH). Stable isotope-labeled hypoxanthine, hypoxanthine-13C2,15N (HX), was incubated with hSCH and formed 13C2,15N-labeled xanthine (XA) and uric acid (UA) were measured by LC-MS/MS time dependently. Rate constants for metabolism and efflux and uptake transport across sinusoidal and bile canalicular membranes of HX, XA and UA were estimated in the presence of inhibitors of XO and uric acid transporters. An XO inhibitor allopurinol significantly decreased metabolisms of HX and XA. Efflux into bile canalicular lumen was negligible and sinusoidal efflux was considered main efflux pathway of formed UA. Transporter inhibition study highlighted that GLUT9 strongly and MRP4 intermediately contribute to the sinusoidal efflux of UA with minor contribution of NPT1/4. Modeling analysis developed in the present study should be useful for quantitative prediction of uric acid disposition in liver.
Collapse
Affiliation(s)
- Sho Wada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
17
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
18
|
Davenne T, Klintman J, Sharma S, Rigby RE, Blest HTW, Cursi C, Bridgeman A, Dadonaite B, De Keersmaecker K, Hillmen P, Chabes A, Schuh A, Rehwinkel J. SAMHD1 Limits the Efficacy of Forodesine in Leukemia by Protecting Cells against the Cytotoxicity of dGTP. Cell Rep 2020; 31:107640. [PMID: 32402273 PMCID: PMC7225753 DOI: 10.1016/j.celrep.2020.107640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-leukemia agent forodesine causes cytotoxic overload of intracellular deoxyguanosine triphosphate (dGTP) but is efficacious only in a subset of patients. We report that SAMHD1, a phosphohydrolase degrading deoxyribonucleoside triphosphate (dNTP), protects cells against the effects of dNTP imbalances. SAMHD1-deficient cells induce intrinsic apoptosis upon provision of deoxyribonucleosides, particularly deoxyguanosine (dG). Moreover, dG and forodesine act synergistically to kill cells lacking SAMHD1. Using mass cytometry, we find that these compounds kill SAMHD1-deficient malignant cells in patients with chronic lymphocytic leukemia (CLL). Normal cells and CLL cells from patients without SAMHD1 mutation are unaffected. We therefore propose to use forodesine as a precision medicine for leukemia, stratifying patients by SAMHD1 genotype or expression.
Collapse
Affiliation(s)
- Tamara Davenne
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Jenny Klintman
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Rachel E Rigby
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Henry T W Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chiara Cursi
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Bernadeta Dadonaite
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Peter Hillmen
- St James' Institute of Oncology, St James' University Hospital, Leeds LS9 7TF, UK
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Anna Schuh
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Department of Haematology, Oxford University Hospitals NHS Trust, Oxford OX3 7JL, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
19
|
Takenaka R, Yasujima T, Furukawa J, Hishikawa Y, Yamashiro T, Ohta K, Inoue K, Yuasa H. Functional Analysis of the Role of Equilibrative Nucleobase Transporter 1 (ENBT1/SLC43A3) in Adenine Transport in HepG2 Cells. J Pharm Sci 2020; 109:2622-2628. [PMID: 32339528 DOI: 10.1016/j.xphs.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
Equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) has recently been identified as a purine-selective nucleobase transporter. Although it is highly expressed in the liver, its role in nucleobase transport has not been confirmed yet in hepatocytes or any relevant cell models. We, therefore, examined its role in adenine transport in the HepG2 cell line as a human hepatocyte model. The uptake of [3H]adenine in HepG2 cells was highly saturable, indicating the involvement of carrier-mediated transport. The carrier-mediated transport component, for which the Michaelis constant was estimated to be 0.268 μM, was sensitive to decynium-22, an ENBT1 inhibitor, with the half maximal inhibitory concentration of 2.59 μM, which was comparable to that of 2.30 μM for [3H]adenine uptake by ENBT1 in its transient transfectant human embryonic kidney 293 cells. Although equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and ENT2/SLC29A2 are also known to be able to transport adenine, [3H]adenine uptake in HepG2 cells was not inhibited by the ENT1/2-specific inhibitor of either dipyridamole or nitrobenzylthioinosine. Finally, [3H]adenine uptake was extensively reduced by silencing of ENBT1 by RNA interference in the hepatocyte model. All these results, taken together, suggest the predominant role of ENBT1 in the uptake of adenine in HepG2 cells.
Collapse
Affiliation(s)
- Risa Takenaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Junji Furukawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yosuke Hishikawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kinya Ohta
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
20
|
Campagnaro GD, de Koning HP. Purine and pyrimidine transporters of pathogenic protozoa - conduits for therapeutic agents. Med Res Rev 2020; 40:1679-1714. [PMID: 32144812 DOI: 10.1002/med.21667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Purines and pyrimidines are essential nutrients for any cell. Most organisms are able to synthesize their own purines and pyrimidines, but this ability was lost in protozoans that adapted to parasitism, leading to a great diversification in transporter activities in these organisms, especially for the acquisition of amino acids and nucleosides from their hosts throughout their life cycles. Many of these transporters have been shown to have sufficiently different substrate affinities from mammalian transporters, making them good carriers for therapeutic agents. In this review, we summarize the knowledge obtained on purine and pyrimidine activities identified in protozoan parasites to date and discuss their importance for the survival of these parasites and as drug carriers, as well as the perspectives of developments in the field.
Collapse
Affiliation(s)
- Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| |
Collapse
|
21
|
Mender I, Batten K, Peyton M, Vemula A, Cornelius C, Girard L, Gao B, Minna JD, Shay JW. SLC43A3 Is a Biomarker of Sensitivity to the Telomeric DNA Damage Mediator 6-Thio-2'-Deoxyguanosine. Cancer Res 2020; 80:929-936. [PMID: 31948943 PMCID: PMC7056593 DOI: 10.1158/0008-5472.can-19-2257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 01/18/2023]
Abstract
Cell membrane transporters facilitate the passage of nucleobases and nucleosides for nucleotide synthesis and metabolism, and are important for the delivery of nucleoside analogues used in anticancer drug therapy. Here, we investigated if cell membrane transporters are involved in the cellular uptake of the nucleoside analogue DNA damage mediator 6-thio-2'-deoxyguanosine (6-thio-dG). A large panel of non-small cell lung cancer (NSCLC) cell lines (73 of 77) were sensitive to 6-thio-dG; only four NSCLC lines were resistant to 6-thio-dG. When analyzed by microarray and RNA sequencing, the resistant NSCLC cell lines clustered together, providing a molecular signature for patients that may not respond to 6-thio-dG. Significant downregulation of solute carrier family 43 A3 (SLC43A3), an equilibrative nucleobase transporter, was identified as a candidate in this molecular resistance signature. High levels of SLC43A3 mRNA predicted sensitivity to 6-thio-dG and therefore SLC43A3 could serve as a promising biomarker for 6-thio-dG sensitivity in patients with NSCLC. SIGNIFICANCE: These findings identify a biomarker of resistance to the telomeric DNA damage mediator 6-thio-2'-deoxyguanosine.
Collapse
Affiliation(s)
- Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aishwarya Vemula
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Crystal Cornelius
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
22
|
Functional characterization of monocarboxylate transporter 12 (SLC16A12/MCT12) as a facilitative creatine transporter. Drug Metab Pharmacokinet 2020; 35:281-287. [PMID: 32249133 DOI: 10.1016/j.dmpk.2020.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
SLC16A12/MCT12 has been recently identified as a creatine transporter in a Xenopus oocyte expression system; however, the mechanism, by which MCT12 transports creatine, remains unclear. This study was performed to determine the functional and molecular characteristics of MCT12 in mammalian cells. The results showed that the uptake of [14C]creatine was not significantly increased in HEK293 cells transiently expressing MCT12 with or without CD147, a molecular chaperone, compared with mock cells. When [14C]creatine was accumulated in the cells with the aid of SLC6A8/CRT1, a concentrative creatine transporter, followed by assessing the remaining intracellular [14C]creatine after initiating efflux, coexpression of MCT12 resulted in a decrease in the intracellular [14C]creatine and remarkably enhanced the efflux of [14C]creatine from the cells in a time-dependent manner. This activity was not affected by extracellular pH. The creatine efflux activity involved dissipation by the mutations of conserved charged amino acids such as Arg37, Asp65 and Asp299 in the transmembrane domains, indicating direct involvement of MCT12 in the creatine efflux. These results suggest that MCT12 mediates facilitative diffusion of creatine, depending on the concentration gradient across the plasma membrane in mammalian cells. The finding may provide important clues to understanding the disposition kinetics of creatine and its derivatives.
Collapse
|
23
|
Ueda K, Nakamura T, Tanaka S, Hosokawa M, Iwakawa S, Ogawara KI. Numerical analysis of apparent decitabine uptake in HCT116 cells: Incorporation of a bidirectional first-order kinetic parameter for ENT1 transport and Michaelis-Menten parameters for subsequent phosphorylation. Drug Metab Pharmacokinet 2019; 35:124-130. [PMID: 31964620 DOI: 10.1016/j.dmpk.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
Decitabine (DAC), a DNA methylation inhibitor, is transported into cancer cells mainly via equilibrative nucleoside transporter 1 (ENT1) and subsequently phosphorylated by deoxycytidine kinase (dCK). We previously reported that apparent DAC uptake into cells may be described using a simple compartment model with clearance for facilitated diffusion (PS) and subsequent phosphorylation (CLmet). In the present study, time course of apparent intracellular [3H]-DAC uptake was analyzed numerically, and PS and CLmet values were calculated using the compartment model in human colon cancer HCT116 cells. PS at 0.1 μM [3H]-DAC was markedly decreased in the presence of 100 μM irinotecan or etoposide, while CLmet was markedly decreased in the presence of 100 μM cytarabine or gemcitabine. CLmet at 0.1-10 μM [3H]-DAC varied in a concentration-dependent manner and was described by Michaelis-Menten parameters Km,met and Vmax,met. In conclusion, DAC uptake mainly via ENT1 may be described by a bidirectional first-order kinetic parameter, while phosphorylation by dCK may be described by Michaelis-Menten parameters.
Collapse
Affiliation(s)
- Kumiko Ueda
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Touko Nakamura
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Shota Tanaka
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Mika Hosokawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Seigo Iwakawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
24
|
Sullivan MR, Vander Heiden MG. Determinants of nutrient limitation in cancer. Crit Rev Biochem Mol Biol 2019; 54:193-207. [PMID: 31162937 PMCID: PMC6715536 DOI: 10.1080/10409238.2019.1611733] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Proliferation requires that cells accumulate sufficient biomass to grow and divide. Cancer cells within tumors must acquire a variety of nutrients, and tumor growth slows or stops if necessary metabolites are not obtained in sufficient quantities. Importantly, the metabolic demands of cancer cells can be different from those of untransformed cells, and nutrient accessibility in tumors is different than in many normal tissues. Thus, cancer cell survival and proliferation may be limited by different metabolic factors than those that are necessary to maintain noncancerous cells. Understanding the variables that dictate which nutrients are critical to sustain tumor growth may identify vulnerabilities that could be used to treat cancer. This review examines the various cell-autonomous, local, and systemic factors that determine which nutrients are limiting for tumor growth.
Collapse
Affiliation(s)
- Mark R Sullivan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
- Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|