1
|
Zou Q, Chunduru J, LaRoe N, Yang Y, Mohamed TA, Hegazi NM, Ibrahim MAA, Hegazy MEF, Pappas D, Paré PW. Anti-tumor withanolides as signal transducers and activators of transcription 3 (STAT3)-inhibition from Withania obtusifolia. Fitoterapia 2024; 177:106124. [PMID: 38996879 DOI: 10.1016/j.fitote.2024.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
The Solanaceae family and the Withania genus specifically are rich sources of medicinal plants. Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS/MS) revealed a predominance of withanolides from an organic extract of Withania obtusifolia. A constructed molecular network uncovered the presence of potentially novel withanolides. A series of withanolides were then isolated and structurally characterized from the extract including two new withanolides (withafolia A and withafolia B) and seven previously reported metabolites. Of the isolated compounds, cytotoxicity of withanolide J, physaperuvin G, and a commercial STAT3 inhibitor (S3I-201) were assessed against a human leukemia HL-60 cell line resulting in IC50 values of 26, 29, and 120 μM, respectively. In silico molecular docking simulations indicate that withanolide J and physaperuvin G can bind as an inhibitor in the active site of STAT3 with docking scores comparable to the selective STAT3 inhibitor, S3I-201.
Collapse
Affiliation(s)
- Qingya Zou
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jayendra Chunduru
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas LaRoe
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Yijia Yang
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, Giza 12622, Egypt
| | - Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, National Research Centre, Giza 12622, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | | | - Dimitri Pappas
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
2
|
San Nicolás-Hernández D, Hernández-Álvarez E, Bethencourt-Estrella CJ, López-Arencibia A, Sifaoui I, Bazzocchi IL, Lorenzo-Morales J, Jiménez IA, Piñero JE. Multi-target withaferin-A analogues as promising anti-kinetoplastid agents through the programmed cell death. Biomed Pharmacother 2023; 164:114879. [PMID: 37210899 DOI: 10.1016/j.biopha.2023.114879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Leishmaniasis and Chagas disease, two of the most prevalent neglected tropical diseases, are a world health problem. The harsh reality of these infective diseases is the absence of effective and safe therapies. In this framework, natural products play an important role in overcoming the current need to development new antiparasitic agents. The present study reports the synthesis, antikinetoplastid screening, mechanism study of fourteen withaferin A derivatives (2-15). Nine of them (2-6, 8-10 and 12) showed a potent dose-dependent inhibitory effect on the proliferation of Leishmania amazonensis and L. donovani promastigotes and Trypanosoma cruzi epimastigotes with IC50 values ranging from 0.19 to 24.01 µM. Outstandingly, the fully acetylated derivative 10 (4,27-diacetylwithaferin A) was the most potent compound showing IC50 values of 0.36, 2.82 and 0.19 µM against L. amazonensis, L. donovani and T. cruzi, respectively. Furthermore, analogue 10 exhibited approximately 18 and 36-fold greater antikinetoplastid activity, on L. amazonensis and T. cruzi, than the reference drugs. The activity was accompanied by significantly lower cytotoxicity on the murine macrophage cell line. Moreover, compounds 2, 3, 5-7, 9 and 10 showed more potent activity than the reference drug against the intracellular amastigotes forms of L. amazonensis and T.cruzi, with a good selectivity index on a mammalian cell line. In addition, withaferin A analogues 3, 5-7, 9 and 10 induce programmed cell death through a process of apoptosis-like and autophagy. These results strengthen the anti-parasitic potential of withaferin A-related steroids against neglected tropical diseases caused by Leishmania spp. and T. cruzi parasites.
Collapse
Affiliation(s)
- Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Eduardo Hernández-Álvarez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| |
Collapse
|
3
|
San Nicolás-Hernández D, Bethencourt-Estrella CJ, López-Arencibia A, Hernández-Álvarez E, Sifaoui I, Bazzocchi IL, Lorenzo-Morales J, Jiménez IA, Piñero JE. Withaferin A-silyl ether analogs as potential anti-kinetoplastid agents targeting the programmed cell death. Biomed Pharmacother 2023; 157:114012. [PMID: 36399830 DOI: 10.1016/j.biopha.2022.114012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapies of leishmaniasis and Chagas disease, two of the most widespread neglected tropical diseases, have limited efficacy and toxic side effects. In this regard, natural products play an important role in overcoming the current need for new antiparasitic agents. The present study reports the leishmanicidal and trypanocidal activities of twenty-four known silyl-ether derivatives of withaferin A. Eleven compounds from this series (4, 7, 8, 10, 12, 15, 17, 18, 20, 22 and 25) showed a potent dose-dependent inhibitory effect on the proliferation of Leishmania amazonensis promastigotes and Trypanosoma cruzi epimastigotes respectively, even higher than the references drugs, miltefosine and benznidazole. Among them, the most promising compound, derivative 10, exhibited approximately 34-fold higher leishmanicidal activity and 49-fold higher trypanocidal activity compared to the reference drugs, as well as lower cytotoxicity. Moreover, compounds 4, 7, 10, 12 and 15 were more active than the reference drugs against the amastigote forms of L. amazonensis, presenting a high selectivity index. Assays performed to study the ATP levels, mitochondrial membrane potential, plasma membrane permeability, chromatin condensation, reactive oxygen species and autophagy indicated that these withaferin A-silyl analogs appear to induce events characteristic of apoptosis-like and also autophagy leading to programmed cell death. These findings support the therapeutic potential of withaferin A-related steroids as anti-Leishmania and Trypanosoma agents.
Collapse
Affiliation(s)
- Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain.
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain.
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Inst. de Salud Carlos III, Madrid, Spain.
| | - Eduardo Hernández-Álvarez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain.
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Inst. de Salud Carlos III, Madrid, Spain.
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Inst. de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Recent Advances in the Chemistry and Therapeutic Evaluation of Naturally Occurring and Synthetic Withanolides. Molecules 2022; 27:molecules27030886. [PMID: 35164150 PMCID: PMC8840339 DOI: 10.3390/molecules27030886] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products are a major source of biologically active compounds that make promising lead molecules for developing efficacious drug-like molecules. Natural withanolides are found in many flora and fauna, including plants, algae, and corals, that traditionally have shown multiple health benefits and are known for their anti-cancer, anti-inflammatory, anti-bacterial, anti-leishmaniasis, and many other medicinal properties. Structures of these withanolides possess a few reactive sites that can be exploited to design and synthesize more potent and safe analogs. In this review, we discuss the literature evidence related to the medicinal implications, particularly anticancer properties of natural withanolides and their synthetic analogs, and provide perspectives on the translational potential of these promising compounds.
Collapse
|
5
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
6
|
Khan MI, Maqsood M, Saeed RA, Alam A, Sahar A, Kieliszek M, Miecznikowski A, Muzammil HS, Aadil RM. Phytochemistry, Food Application, and Therapeutic Potential of the Medicinal Plant ( Withania coagulans): A Review. Molecules 2021; 26:6881. [PMID: 34833974 PMCID: PMC8622323 DOI: 10.3390/molecules26226881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/02/2022] Open
Abstract
Herbal plants have been utilized to treat and cure various health-related problems since ancient times. The use of Ayurvedic medicine is very significant because of its least reported side effects and host of advantages. Withania coagulans (Family; Solanaceae), a valuable medicinal plant, has been used to cure abnormal cell growth, wasting disorders, neural as well as physical problems, diabetes mellitus, insomnia, acute and chronic hepatic ailments. This review provides critical insight regarding the phytochemistry, biological activities, and pharmacognostic properties of W. coagulans. It has been known to possess diuretic, anti-inflammatory, anti-bacterial, anti-fungal, cardio-protective, hepato-protective, hypoglycemic, anti-oxidative, and anti-mutagenic properties owing to the existence of withanolides, an active compound present in it. Apart from withanolides, W. coagulans also contains many phytochemicals such as flavonoids, tannins, and β-sterols. Several studies indicate that various parts of W. coagulans and their active constituents have numerous pharmacological and therapeutic properties and thus can be considered as a new drug therapy against multiple diseases.
Collapse
Affiliation(s)
- Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Amna Alam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Amna Sahar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland;
| | - Antoni Miecznikowski
- Department of Fermentation Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| |
Collapse
|
7
|
Khan T, Khan MA, Mashwani ZUR, Ullah N, Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021; 31:101890. [PMID: 33520034 PMCID: PMC7831775 DOI: 10.1016/j.bcab.2020.101890] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
There are numerous trials underway to find treatment for the COVID-19 through testing vaccines as well as existing drugs. Apart from the many synthetic chemical compounds, plant-based compounds could provide an array of \suitable candidates for testing against the virus. Studies have confirmed the role of many plants against respiratory viruses when employed either as crude extracts or their active ingredients in pure form. The purpose of this review article is to highlight the importance of phytomedicine against COVID-19. The main aim is to review the mechanistic aspects of most important phytochemical compounds that have showed potential against coronaviruses. Glycyrrhizin from the roots of Glycyrrhiza glabra has shown promising potential against the previously epidemic coronavirus, SARS-CoV. Other important plants such as Artemisia annua, Isatis indigotica, Lindera aggregate, Pelargonium sidoides, and Glychirrhiza spp. have been employed against SARS-CoV. Active ingredients (e.g. emodin, reserpine, aescin, myricetin, scutellarin, apigenin, luteolin, and betulonic acid) have shown promising results against the coronaviruses. Phytochemicals have demonstrated activity against the coronaviruses through mechanisms such as viral entry inhibition, inhibition of replication enzymes and virus release blockage. However, compared to synthetic drugs, phytomedicine are mechanistically less understood and should be properly evaluated before application. Nonetheless, phytochemicals reduce the tedious job of drug discovery and provide a less time-consuming alternative for drug testing. Therefore, along with other drugs currently tested against COVID-19, plant-based drugs should be included for speedy development of COVID-19 treatment.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, KP, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | | | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | - Akhtar Nadhman
- Department of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| |
Collapse
|
8
|
Maher S, Choudhary MI, Saleem F, Rasheed S, Waheed I, Halim SA, Azeem M, Abdullah IB, Froeyen M, Mirza MU, Ahmad S. Isolation of Antidiabetic Withanolides from Withania coagulans Dunal and Their In Vitro and In Silico Validation. BIOLOGY 2020; 9:biology9080197. [PMID: 32751610 PMCID: PMC7464911 DOI: 10.3390/biology9080197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/06/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Withania coagulans (W. coagulans) is well-known in herbal medicinal systems for its high biological potential. Different parts of the plant are used against insomnia, liver complications, asthma, and biliousness, as well as it is reported to be sedative, emetic, diuretic, antidiabetic antimicrobial, anti-inflammatory, antitumor, hepatoprotective, antihyperglycemic, cardiovascular, immuno-suppressive and central nervous system depressant. Withanolides present in W. coagulans have attracted an immense interest in the scientific field due to their diverse therapeutic applications. The current study deals with chemical and biological evaluation of chloroform, and n-butanol fractions of W. coagulans. The activity-guided fractionation of both extracts via multiple chromatographic steps and structure elucidation of pure isolates using spectroscopies (NMR, mass spectrometry, FTIR and UV-Vis) led to the identification of a new withanolide glycoside, withacogulanoside-B (1) from n-butanol extract and five known withanolides from chloroform extract [withanolid J (2), coagulin E (3), withaperuvin C (4), 27-hydroxywithanolide I (5), and ajugin E (6)]. Among the tested compounds, compound 5 was the most potent α-glucosidase inhibitor with IC50 = 66.7 ± 3.6 µM, followed by compound 4 (IC50: 407 ± 4.5 µM) and compound 2 (IC50: 683 ± 0.94 µM), while no antiglycation activity was observed with the six isolated compounds. Molecular docking was used to predict the binding potential and binding site interactions of these compounds as α-glucosidase inhibitors. Consequently, this study provides basis to discover specific antidiabetic compounds from W. coagulans.
Collapse
Affiliation(s)
- Saima Maher
- Department of Chemistry, Sardar Bahadur Khan Woman University, Quetta 95000, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.C.); (S.R.)
- Correspondence: (S.M.); (S.A.)
| | - M. Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.C.); (S.R.)
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Farooq Saleem
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (F.S.); (M.A.)
| | - Saima Rasheed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.C.); (S.R.)
| | - Imran Waheed
- Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore 54000, Pakistan;
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Muhammad Azeem
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (F.S.); (M.A.)
| | - Iskandar Bin Abdullah
- Department of Chemistry, Faculty of Sciences, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium; (M.F.); (M.U.M.)
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium; (M.F.); (M.U.M.)
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Sciences, University Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (S.M.); (S.A.)
| |
Collapse
|
9
|
Cortes S, Bruno de Sousa C, Morais T, Lago J, Campino L. Potential of the natural products against leishmaniasis in Old World - a review of in-vitro studies. Pathog Glob Health 2020; 114:170-182. [PMID: 32339079 DOI: 10.1080/20477724.2020.1754655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Leishmaniasis is a vector-borne disease among the 10 most Neglected Tropical Diseases with diverse clinical manifestations caused by protozoan parasites of the Leishmania genus. Around 80% of leishmaniasis cases are found in the Old World affecting populations mainly in low and middle-income countries. Its control relies mostly on chemotherapy which still presents many drawbacks. Natural products may offer an inexhaustible source of chemical diversity with therapeutic potential. Despite the lack of knowledge on traditional products with activity against Leishmania parasites, many reports describe the search for natural extracts and compounds with antileishmanial properties against promastigote and amastigote parasite forms. This review summarizes the research of 74 publications of the last decade (2008-2018) focused on the identification of endemic plant-derived products that are active against Old World Leishmania parasites responsible for cutaneous and visceral leishmaniasis. The present review combines data on antileishmanial activity of 423 plants species, belonging to 94 different families, including a large range of crude extracts which lead to the isolation of 86 active compounds. Most studied plants came from Asia and most promising plant families for antileishmanial activity were Asteraceae and Lamiaceae. From the chemical point of view, terpenoids were the most frequently isolated natural products. These studies suggest that natural products isolated from Old World flora are a rich source of new chemical scaffolds for future leishmaniasis treatment as well as for other Neglected Tropical Diseases warranting further investigation.
Collapse
Affiliation(s)
- Sofia Cortes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Carolina Bruno de Sousa
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Thiago Morais
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo , São Paulo, Brazil.,Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade de Guarulhos , São Paulo, Brazil
| | - João Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC , São Paulo, Brazil
| | - Lenea Campino
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| |
Collapse
|
10
|
Huang M, He JX, Hu HX, Zhang K, Wang XN, Zhao BB, Lou HX, Ren DM, Shen T. Withanolides from the genus Physalis: a review on their phytochemical and pharmacological aspects. J Pharm Pharmacol 2019; 72:649-669. [DOI: 10.1111/jphp.13209] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Withanolides are a group of modified C28 ergostane-type steroids with a C-22, C-26 δ-lactone side chain or a C-23, C-26 γ-lactone side chain. They enjoy a limited distribution in the plant kingdom and predominantly occur in several genera of Solanaceae. Of which, the genus Physalis is an important resource for this type of natural molecules. The present review aims to comprehensively illustrate the structural characteristics and classification of withanolides, and particularly focus on the progression on phytochemical and pharmacological aspects of withanolides from Physalis ranging from January 2015 to June 2019.
Key findings
Approximately 351 natural withanolides with novel and unique structures have so far been identified from genus Physalis, mainly isolated from the species of P. angulata and P. peruviana. Withanolides demonstrated diverse biological activity, such as anticancer, anti-inflammatory, antimicrobial, immunoregulatory, trypanocidal and leishmanicidal activity. Their observed pharmacological functions supported the uses of Physalis species in traditional or folk medicines.
Summary
Due to their unique structure skeleton and potent bioactivities, withanolides are regarded to be promising drug candidates, particularly for developing anticancer and anti-inflammatory agents. Further investigations for discovering novel withanolides of genus Physalis, exploiting their pharmacological values and evaluating their potency as therapeutic agents are significant work.
Collapse
Affiliation(s)
- Min Huang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Kan Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bao-Bing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
11
|
López-Arencibia A, San Nicolás-Hernández D, Bethencourt-Estrella CJ, Sifaoui I, Reyes-Batlle M, Rodríguez-Expósito RL, Rizo-Liendo A, Lorenzo-Morales J, Bazzocchi IL, Piñero JE, Jiménez IA. Withanolides from Withania aristata as Antikinetoplastid Agents through Induction of Programmed Cell Death. Pathogens 2019; 8:pathogens8040172. [PMID: 31581590 PMCID: PMC6963971 DOI: 10.3390/pathogens8040172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022] Open
Abstract
Leishmaniasis and American trypanosomiasis are parasitic diseases that cause significant clinical, social and economic impact on the population of tropical and subtropical countries. Their current treatment is limited and presents multiple drawbacks, including high toxicity, high cost, lengthy treatment plans, as well as the emergence of resistant species. Therefore, there is a need to find new lead compounds with high potency against parasites and low toxicity in patients. In the present work, the bioguided fractionation of an endemic plant from the Canary Islands, Withania aristata, led to the identification of withanolide-type metabolites (1-3) with leishmanicidal and trypanocidal activities. Compounds 1 and 3 showed a significant dose-dependent inhibition effect on the proliferation of L. amazonensis promastigotes and T. cruzi epimastigotes, higher than the reference drugs, miltefosine and benznidazole, respectively. Moreover, compounds 1-3 were more potent (IC50 0.055-0.663 µM) than the reference drug against the intracellular amastigote stage of L. amazonensis, with a high selectivity index on murine macrophage cells (SI 58.66-216.73). Studies on the mechanism of death showed that the compounds induced programmed cell death or that which was apoptosis-like. The present findings underline the potential of withanolides as novel therapeutic antikinetoplastid agents.
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
12
|
Lin YC, Chao CH, Ahmed AF, Chen YY, Hwang TL, Liu HY, Sheu JH. Withanolides and 26-Hydroxylated Derivatives with Anti-Inflammatory Property from Solanum Capsicoide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- You-Cheng Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Atallah F. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yang-Yih Chen
- Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ho-Yih Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
13
|
Leishmanicidal Activity of Withanolides from Aureliana Fasciculata var. Fasciculata. Molecules 2018; 23:molecules23123160. [PMID: 30513673 PMCID: PMC6320798 DOI: 10.3390/molecules23123160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is the generic denomination to the neglected diseases caused by more than 20 species of protozoa belonging to the genus Leishmania. The toxic and parenteral-delivered pentavalent antimonials remain to be the first-line treatment. However, all the current used drugs have restrictions. The species Aureliana fasciculata (Vell.) Sendtner var. fasciculata is a native Brazilian species parsimoniously studied on a chemical point of view. In this study, the antileishmanial activity of A. fasciculata was evaluated. Among the evaluated samples of the leaves, the dichloromethane partition (AFfDi) showed the more pronounced activity, with IC50 1.85 µg/ml against promastigotes of L. amazonensis. From AFfDi, two active withanolides were isolated, the Aurelianolides A and B, with IC50 7.61 μM and 7.94 μM, respectively. The withanolides also proved to be active against the clinically important form, the intracellular amastigote, with IC50 2.25 μM and 6.43 μM for Aurelianolides A and B, respectively. Furthermore, withanolides showed results for in silico parameters of absorption, distribution, metabolism, excretion, and toxicity (ADMET) similar to miltefosine, the reference drug, and were predicted as good oral drugs, with the advantage of not being hepatotoxic. These results suggest that these compounds can be useful as scaffolds for planning drug design.
Collapse
|
14
|
Zhang H, Timmermann BN. Withanolide Structural Revisions by (13)C NMR Spectroscopic Analysis Inclusive of the γ-Gauche Effect. JOURNAL OF NATURAL PRODUCTS 2016; 79:732-742. [PMID: 26894655 DOI: 10.1021/acs.jnatprod.5b00648] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A classic withanolide is defined as a highly oxygenated C28 ergostane-type steroid that is characterized by a C22-hydroxy-C26-oic acid δ-lactone in the nine-carbon side chain. Analysis of the reported (13)C NMR data of classic withanolides with hydroxy groups (C-14, C-17, and C-20) revealed that (1) a hydroxy (C-14 or C-17) substituent significantly alters the chemical shifts (C-7, C-9, C-12, and C-21) via the γ-gauche effect; (2) the chemical shift values (C-9, C-12, and C-21) reflect the orientation (α or β) of the hydroxy moiety (C-14 or C-17); (3) a double-bond positional change in ring A (Δ(2) to Δ(3)), or hydroxylation (C-27), results in a minuscule effect on the chemical shifts of carbons in rings C and D (from C-12 to C-18); and (4) the (13)C NMR γ-gauche effect method is more convenient and reliable than the traditional approach ((1)H NMR shift comparisons in C5D5N versus CDCl3) to probe the orientation of the hydroxy substituent (C-14 and C-17). Utilization of these rules demonstrated that the reported (13)C NMR data of withanolides 1a-29a were inconsistent with their published structures, which were subsequently revised as 1-16 and 12 and 18-29, respectively. When combined, this strongly supports the application of these methods to determine the relative configuration of steroidal substituents.
Collapse
Affiliation(s)
- Huaping Zhang
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Barbara N Timmermann
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
15
|
Ali A, Maher S, Khan SA, Chaudhary MI, Musharraf SG. Sensitive quantification of six steroidal lactones in Withania coagulans extract by UHPLC electrospray tandem mass spectrometry. Steroids 2015; 104:176-81. [PMID: 26459135 DOI: 10.1016/j.steroids.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022]
Abstract
A method for the concurrent determination of six known steroidal lactones (syn. withanolides or withasteroids), namely withaferin A, withanolide H, withanolide K, withanolide A, withacoagulin H, and withanolide J in Withania coagulans extracts was developed. Extracts of Withania species and purified withanolides are considered among the most important natural products used for medicinal purposes. Methanolic extract of plant material was subjected to reverse phase ultra-high performance liquid chromatography (UHPLC) coupled with electrospray (JetStream ESI) triple quadrupole mass spectrometer operated in the Multiple Reaction Monitoring (MRM) mode. Satisfactory separation of withanolide component was achieved within 9 min on UHPLC runtime. The limits of detection (LOD) and the limits of quantitation (LOQs) for the six withanolides ranged between 0.040-4.80 ng/mL, and 0.13-16 ng/mL, respectively. Linear responses were attained for all six withanolides in two orders of magnitude with the linear regression coefficient values ⩾0.998. At the five QC levels inspected, the relative standard deviations (RSD) were found below 5% in most cases. The newly developed method is fast, precise, and sensitive, therefore, the method can be used for high-throughput quantification of various withanolides in W. coagulans extract, and other herbal formulations, derived from W. coagulans.
Collapse
Affiliation(s)
- Arslan Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saima Maher
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahid Ali Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Chaudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
16
|
Chen BW, Chen YY, Lin YC, Huang CY, Uvarani C, Hwang TL, Chiang MY, Liu HY, Sheu JH. Capsisteroids A–F, withanolides from the leaves of Solanum capsicoides. RSC Adv 2015. [DOI: 10.1039/c5ra12014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A known withanolide steroid cilistol G (1) and six new withanolides, capsisteroids A–F (2–7), were isolated from the EtOAc extract of the leaves of Solanum capsicoides.
Collapse
Affiliation(s)
- Bo-Wei Chen
- Department of Marine Biotechnology and Resources
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
| | - Yang-Yih Chen
- Department of Marine Environment and Engineering
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
- Department of Hydraulic and Ocean Engineering
| | - You-Cheng Lin
- Department of Marine Biotechnology and Resources
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
| | - Chokkalingam Uvarani
- Department of Marine Biotechnology and Resources
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
- National Museum of Marine Biology and Aquarium
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products
- Chang Gung University
- Taoyuan 333
- Taiwan
| | - Michael Y. Chiang
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
| | - Ho-Yih Liu
- Department of Biological Sciences
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
- Department of Medical Research
| |
Collapse
|