1
|
Zhang T, He S, Tao L, Shi M, Wu Y, Guo Y, Wang R. Efficacy and safety of RC48 in combination with PD-1 inhibitors for the treatment of locally advanced or metastatic urothelial carcinoma: a single-center, real-world study. Discov Oncol 2025; 16:558. [PMID: 40249537 PMCID: PMC12008086 DOI: 10.1007/s12672-025-02362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE This study aims to assess the efficacy and safety of RC48 in combination with PD-1 inhibitors for patients diagnosed with locally advanced or metastatic urothelial carcinoma (mUC). METHODS A retrospective analysis was performed on clinical data from 53 patients with locally advanced or metastatic bladder cancer, who were treated at the First Affiliated Hospital of Bengbu Medical College between January 2023 and December 2023. The cohort was stratified into two groups: the RC48 combined immunotherapy group (RC48 + PD-1, n = 27) and the conventional chemotherapy group (gemcitabine and cisplatin regimen, GP, n = 26). RESULTS The RC48 + PD-1 group demonstrated significantly higher objective response rates (ORR) and median progression-free survival (PFS) compared to the chemotherapy group (P < 0.05). Notably, the incidence of grade 3 or higher adverse events was elevated in the chemotherapy cohort, predominantly due to hematologic toxicities, with no treatment-related fatalities reported. In contrast, the RC48 combined PD-1 group primarily experienced immune-related adverse events, without any incidents of grade 3 or higher adverse effects or treatment-related deaths. CONCLUSION The combination of RC48 and PD-1 inhibitors exhibits promising antitumor activity and a manageable safety profile in patients with locally advanced or metastatic UC.
Collapse
Affiliation(s)
- Tiantian Zhang
- Departments of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Shuo He
- Departments of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Lu Tao
- Departments of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Mengting Shi
- Departments of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Yue Wu
- Departments of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Yuanyuan Guo
- Departments of Urology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Rui Wang
- Departments of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China.
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Mathi GR, Lee BS, Chun Y, Shin S, Kweon S, Go A, Jung JK, Lee JS, Cho HY, Jung DY. Design, synthesis and biological evaluation of camptothecin analogue FL118 as a payload for antibody-drug conjugates in targeted cancer therapy. Bioorg Med Chem Lett 2025; 118:130085. [PMID: 39732148 DOI: 10.1016/j.bmcl.2024.130085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
FL118, a camptothecin derivative with dual mechanisms of action through topoisomerase I inhibition and proteasome-mediated degradation of anti-apoptotic proteins exhibits potent anti-tumor activity while remaining resistant to drug efflux transporters. This work describes the targeted delivery of FL118 to tumors via antibody-drug conjugates (ADCs) using the pH-sensitive CL2A linker. ADCs targeting Trop2, HER2, and EGFR exhibited potent in vitro cytotoxicity, with IC50 values as low as 0.025 nM in Trop2-positive FaDu cells. In vivo, Sac-CL2A-FL118 showed 130 % tumor growth inhibition (TGI) at 7 mg/kg in Trop2-expressing xenografts surpassing Trodelvy®. Pharmacokinetic evaluations revealed that FL118-ADCs exhibited a 2.6-fold increase in AUC and approximately 1.7-fold higher Cmax compared to Trodelvy®, confirming their favorable profiles and supporting their potential as a promising therapeutic approach.
Collapse
Affiliation(s)
| | | | | | | | - Sohui Kweon
- Pinotbio, Inc Suwon, Gyeonggi-do 16506, South Korea
| | - Areum Go
- Pinotbio, Inc Suwon, Gyeonggi-do 16506, South Korea
| | - Jin Kyo Jung
- Pinotbio, Inc Suwon, Gyeonggi-do 16506, South Korea
| | - Jin Soo Lee
- Pinotbio, Inc Suwon, Gyeonggi-do 16506, South Korea
| | | | | |
Collapse
|
3
|
Yamazaki S, Matsuda Y. Antibody Modification via Lipoic Acid Ligase A-Mediated Site-Specific Labeling. Chem Biodivers 2025; 22:e202402113. [PMID: 39435640 DOI: 10.1002/cbdv.202402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Enzymatic modification, particularly utilizing lipoic acid ligase (LplA), has emerged as a transformative approach in biopharmaceuticals, enabling precise and site-specific protein modifications. This review delves into the innovative applications of LplA in antibody modifications, including the creation of antibody-drug conjugates (ADCs) and the advancement of tag-free conjugation techniques. LplA's ability to facilitate the incorporation of bioorthogonal groups and its adaptability to various substrates underscores its versatility. Key developments include the successful generation of dual-labeled antibodies and the application of LplA in modifying antibody fragments. Additionally, the review explores the potential for LplA to enhance the therapeutic efficacy of ADCs through improved drug-to-antibody ratios and site-specific payload attachment. The implications of these advancements are significant, suggesting that LplA-mediated modifications could lead to more effective and targeted antibody-based therapies. This review aims to provide a comprehensive overview of LplA's role in expanding the possibilities of enzymatic conjugation, setting the stage for future research and clinical applications.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| |
Collapse
|
4
|
Vujović T, Paradžik T, Babić Brčić S, Piva R. Unlocking the Therapeutic Potential of Algae-Derived Compounds in Hematological Malignancies. Cancers (Basel) 2025; 17:318. [PMID: 39858100 PMCID: PMC11763723 DOI: 10.3390/cancers17020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Algae are a rich source of bioactive compounds that have a wide range of beneficial effects on human health and can show significant potential in the treatment of hematological malignancies such as leukemia, lymphoma, and multiple myeloma. These diseases often pose a therapeutic challenge despite recent advances in treatment (e.g., the use of immunomodulatory drugs, proteasome inhibitors, CD38 monoclonal antibodies, stem cell transplant, and targeted therapy). A considerable number of patients experience relapses or resistance to the applied therapies. Algal compounds, alone or in combination with chemotherapy or other more advanced therapies, have exhibited antitumor and immunomodulatory effects in preclinical studies that may improve disease outcomes. These include the ability to induce apoptosis, inhibit tumor growth, and improve immune responses. However, most of these studies are conducted in vitro, often without in vivo validation or clinical trials. This paper summarizes the current evidence on the in vitro effects of algae extracts and isolated compounds on leukemia, lymphoma, and myeloma cell lines. In addition, we address the current advances in the application of algae-derived compounds as targeted drug carriers and their synergistic potential against hematologic malignancies.
Collapse
Affiliation(s)
- Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (T.V.); (S.B.B.)
| | - Tina Paradžik
- Department of Physical Chemistry, Rudjer Boskovic Insitute, 10000 Zagreb, Croatia;
| | - Sanja Babić Brčić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (T.V.); (S.B.B.)
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| |
Collapse
|
5
|
Parashar AK, Saraogi GK, Jain PK, Kurmi B, Shrivastava V, Arora V. Polymer-drug conjugates: revolutionizing nanotheranostic agents for diagnosis and therapy. Discov Oncol 2024; 15:641. [PMID: 39527173 PMCID: PMC11554983 DOI: 10.1007/s12672-024-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Nanotheranostics, an amalgamation of therapeutic and diagnostic capabilities at the nanoscale, is revolutionizing personalized medicine. Polymer-drug conjugates (PDCs) stand at the forefront of this arena, offering a multifaceted approach to treat complex diseases such as cancer. This review explores the recent advancements in PDCs, highlighting their design principles, working mechanisms, and the therapeutic applications. We discuss the incorporation of imaging agents into PDCs that allow for real-time monitoring of drug delivery and treatment efficacy. With the aim of improving patient care, the review examines how PDCs enable targeted drug delivery, minimize side effects, and provide valuable diagnostic data, hence enhancing the precision of medical interventions. We also address the challenges facing the clinical translation of PDCs, such as scalability, regulatory hurdles, and cost-effectiveness, providing a comprehensive outlook on the future of nanotheranostics in patient management.
Collapse
Affiliation(s)
- Ashish Kumar Parashar
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India, 201306.
| | | | | | - Balakdas Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | | | - Vandana Arora
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India, 201306
| |
Collapse
|
6
|
Mathiot L, Baldini C, Letissier O, Hollebecque A, Bahleda R, Gazzah A, Smolenschi C, Sakkal M, Danlos FX, Henon C, Beshiri K, Goldschmidt V, Parisi C, Patrikidou A, Michot JM, Marabelle A, Postel-Vinay S, Bernard-Tessier A, Loriot Y, Ponce S, Champiat S, Ouali K. Exploring the Role of Target Expression in Treatment Efficacy of Antibody-Drug Conjugates (ADCs) in Solid Cancers: A Comprehensive Review. Curr Oncol Rep 2024; 26:1236-1248. [PMID: 39066847 DOI: 10.1007/s11912-024-01576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) offer a promising path for cancer therapy, leveraging the specificity of monoclonal antibodies and the cytotoxicity of linked drugs. The success of ADCs hinges on precise targeting of cancer cells based on protein expression levels. This review explores the relationship between target protein expression and ADC efficacy in solid tumours, focusing on results of clinical trials conducted between January 2019 and May 2023. RECENT FINDINGS We hereby highlight approved ADCs, revealing their effectiveness even in low-expressing target populations. Assessing target expression poses challenges, owing to variations in scoring systems and biopsy types. Emerging methods, like digital image analysis, aim to standardize assessment. The complexity of ADC pharmacokinetics, tumour dynamics, and off-target effects emphasises the need for a balanced approach. This review underscores the importance of understanding target protein dynamics and promoting standardized evaluation methods in shaping the future of ADC-based cancer therapies.
Collapse
Affiliation(s)
- Laurent Mathiot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Octave Letissier
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Antoine Hollebecque
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Rastislav Bahleda
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Anas Gazzah
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Cristina Smolenschi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Madona Sakkal
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - François-Xavier Danlos
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Villejuif, France
- Centre d'Investigations Cliniques Biothérapies Pour Une Immunisation in Situ (BIOTHERIS), INSERM, CIC1428, Villejuif, France
| | - Clémence Henon
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Kristi Beshiri
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Vincent Goldschmidt
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Claudia Parisi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Anna Patrikidou
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Jean-Marie Michot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Sophie Postel-Vinay
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | | | - Yohann Loriot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U981, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Stéphane Champiat
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Villejuif, France
- Centre d'Investigations Cliniques Biothérapies Pour Une Immunisation in Situ (BIOTHERIS), INSERM, CIC1428, Villejuif, France
| | - Kaïssa Ouali
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France.
| |
Collapse
|
7
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
8
|
Hengel SM, Topletz-Erickson AR, Kadry H, Alley SC. A modelling approach to compare ADC deconjugation and systemic elimination rates of individual drug-load species using native ADC LC-MS data from human plasma. Xenobiotica 2024; 54:492-501. [PMID: 39329288 DOI: 10.1080/00498254.2024.2340741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 09/28/2024]
Abstract
Native liquid chromatography mass spectrometry (LC-MS) is a commonly used approach for intact analysis of inter-chain cysteine conjugated antibody-drug conjugates (ADCs). Coupling native LC-MS with affinity capture provides a platform for intact ADC analysis from in vivo samples and characterisation of individual drug load species, specifically the impact of drug linker deconjugation, hydrolysis, and differential clearance in a biological system.This manuscript describes data generated from native LC-MS analysis of ADCs from human plasma, both in vitro incubations and clinical samples. It also details the pharmacokinetic (PK) model built to specifically characterise the disposition of individual drug load species from MMAE and MMAF interchain cysteine conjugated ADCs.In vitro deconjugation and hydrolysis rates were similar across both ADCs. Differential clearance of higher loaded species in vivo was pronounced for the MMAE conjugated ADC, while systemic elimination after accounting for deconjugation was similar across drug loads for the MMAF conjugated ADC. This is the first report of affinity capture native LC-MS analysis, and subsequent modelling of deconjugation, hydrolysis and clearance rates of individual drug load species using clinical data from cysteine conjugated ADCs.
Collapse
Affiliation(s)
- Shawna M Hengel
- Clinical Pharmacology and Translational Science, Pfizer Inc, Bothell, Washington, USA
| | | | - Hossam Kadry
- Clinical Pharmacology and Translational Science, Pfizer Inc, Bothell, Washington, USA
| | - Stephen C Alley
- Clinical Pharmacology and Translational Science, Pfizer Inc, Bothell, Washington, USA
| |
Collapse
|
9
|
Yip V, Saad OM, Leipold D, Li C, Kamath A, Shen BQ. Monomethyl auristatin E (MMAE), a payload for multiple antibody drug conjugates (ADCs), demonstrates differential red blood cell partitioning across human and animal species. Xenobiotica 2024; 54:511-520. [PMID: 38647387 DOI: 10.1080/00498254.2024.2345849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Background: Monomethyl auristatin E (MMAE) has been used as a payload for several Food and Drug Administration (FDA) approved antibody-drug conjugates (ADCs). It is known that MMAE is released from the ADC following binding, internalisation and proteolytic degradation in target tissues. A striking discrepancy in systemic MMAE levels has been observed across species with 50-fold higher MMAE levels in human than that in rodents when normalised by ADC dose with unknown mechanism.Hypothesis and purpose: Multiple factors could affect systemic MMAE levels such as production and elimination of unconjugated MMAE following ADC dosing. In this study, we have explored whether MMAE displays differential red blood cell (RBC) partitioning across species that may contribute to the different MMAE levels seen between human and animals.Experiments: To determine MMAE RBC partitioning, tritium labelled MMAE ([3H]-MMAE) was incubated in whole blood from mice, rats, monkeys and humans in vitro, then RBC partitioning was determined and compared across species. To test whether MMAE released from the ADC would show any difference in RBC partitioning, pinatuzumab vedotin or polatuzumab vedotin was administered to mice, rats, and monkeys. MMAE levels were measured in both blood and plasma, and the ratios of MMAE levels were calculated as blood-to-plasma ratio (in vivo RBC partitioning).Results: Our in vitro data showed that unconjugated MMAE has a species-dependent RBC partitioning with strong RBC partitioning in mouse, rat, followed by monkey blood, whereas minimal RBC partitioning was seen in human blood. Incubation of 2 nM of MMAE in mouse blood resulted in a blood-to-plasma ratio of 11.8 ± 0.291, followed by rat, monkey, and human at 2.36 ± 0.0825, 1.57 ± 0.0250, and 0.976 ± 0.0620, respectively. MMAE RBC partitioning is also concentration-dependent, with an inverse relationship between RBC partitioning and MMAE concentration (higher RBC partitioning at lower concentration). In vivo dosing of pinatuzumab vedotin in mouse displayed systemic MMAE at about a 5-fold higher blood concentration compared to plasma concentration once MMAE reached a pseudo-equilibrium, while systemic MMAE from blood and plasma concentration showed a 1.65-fold difference in rat.Implication and conclusion: These data demonstrated that MMAE has a distinct RBC partitioning across different species, which may contribute to, at least in part, to the differential in the systemic MMAE levels observed in vivo between preclinical and clinical studies. These findings highlight the importance of fully characterising the ADME properties of both the ADC and its payload, to enable better translation from animals to human for ADC development.
Collapse
Affiliation(s)
- Victor Yip
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Ola M Saad
- BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Doug Leipold
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Chunze Li
- Clinical Pharmacology, Genentech Inc, South San Francisco, CA, USA
| | - Amrita Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
10
|
Sun H, Wienkers LC, Lee A. Beyond cytotoxic potency: disposition features required to design ADC payload. Xenobiotica 2024; 54:442-457. [PMID: 39017706 DOI: 10.1080/00498254.2024.2381139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
1. Antibody-drug conjugates (ADCs) have demonstrated impressive clinical usefulness in treating several types of cancer, with the notion of widening of the therapeutic index of the cytotoxic payload through the minimisation of the systemic toxicity. Therefore, choosing the most appropriate payload molecule is a particularly important part of the early design phase of ADC development, especially given the highly competitive environment ADCs find themselves in today.2. The focus of the current review is to describe critical attributes/considerations needed in the discovery and ultimately development of cytotoxic payloads in support of ADC design. In addition to potency, several key dispositional characteristics including solubility, permeability and bystander effect, pharmacokinetics, metabolism, and drug-drug interactions, are described as being an integral part of the integrated activities required in the design of clinically safe and useful ADC therapeutic agents.
Collapse
Affiliation(s)
- Hao Sun
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Larry C Wienkers
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| |
Collapse
|
11
|
Yu P, Zhu C, You X, Gu W, Wang X, Wang Y, Bu R, Wang K. The combination of immune checkpoint inhibitors and antibody-drug conjugates in the treatment of urogenital tumors: a review insights from phase 2 and 3 studies. Cell Death Dis 2024; 15:433. [PMID: 38898003 PMCID: PMC11186852 DOI: 10.1038/s41419-024-06837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
With the high incidence of urogenital tumors worldwide, urinary system tumors are among the top 10 most common tumors in men, with prostate cancer ranking first and bladder cancer fourth. Patients with resistant urogenital tumors often have poor prognosis. In recent years, researchers have discovered numerous specific cancer antigens, which has led to the development of several new anti-cancer drugs. Using protein analysis techniques, researchers developed immune checkpoint inhibitors (ICIs) and antibody-conjugated drugs (ADCs) for the treatment of advanced urogenital tumors. However, tumor resistance often leads to the failure of monotherapy. Therefore, clinical trials of the combination of ICIs and ADCs have been carried out in numerous centers around the world. This article reviewed phase 2 and 3 clinical studies of ICIs, ADCs, and their combination in the treatment of urogenital tumors to highlight safe and effective methods for selecting individualized therapeutic strategies for patients. ICIs activate the immune system, whereas ADCs link monoclonal antibodies to toxins, which can achieve a synergistic effect when the two drugs are combined. This synergistic effect provides multiple advantages for the treatment of urogenital tumors.
Collapse
Affiliation(s)
- Puguang Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiangyun You
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Urology, Yichang Central People's Hospital, Yichang, 443002, China
| | - Wen Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
12
|
Zhang J, Hu F, Aras O, Chai Y, An F. Small Molecule-Drug Conjugates: Opportunities for the Development of Targeted Anticancer Drugs. ChemMedChem 2024; 19:e202300720. [PMID: 38396351 DOI: 10.1002/cmdc.202300720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Conventional chemotherapy is insufficient for precise cancer treatment due to its lack of selectivity and inevitable side effects. Targeted drugs have emerged as a promising solution for precise cancer treatment. A common strategy is to conjugate therapeutic agents with ligands that can specifically bind to tumor cells, providing targeted therapy. Similar to the more successful antibody drug conjugates (ADCs), small molecule drug conjugates (SMDCs) are another promising class of targeted drugs, consisting of three parts: targeting ligand, cleavable linker and payload. Compared to ADCs, SMDCs have the advantages of smaller size, better permeability, simpler preparation process and non-immunogenicity, making them a promising alternative to ADCs. This review describes the characteristics of the targeting ligand, linker and payload of SMDCs and the criteria for selecting a suitable one. We also discuss recently reported SMDCs and list some successful SMDCs that have entered clinical trials.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Fanchun Hu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yichao Chai
- Department of Oncology, The Second Affiliated Hospital of Xi'an, Jiaotong University, No.157 Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, China
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
13
|
Rosenberg AJ, Perez CA, Guo W, de Oliveira Novaes JM, da Silva Reis KFO, McGarrah PW, Price KAR. Breaking Ground in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Novel Therapies Beyond PD-L1 Immunotherapy. Am Soc Clin Oncol Educ Book 2024; 44:e433330. [PMID: 38718318 DOI: 10.1200/edbk_433330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The treatment for recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) with immune checkpoint inhibitors (anti-PD1) with or without chemotherapy has led to an improvement in survival. Yet, despite this therapeutic advancement, only 15%-19% of patients remain alive at four years, highlighting the poor survival and unmet need for improved therapies for this patient population. Some of the key evolving novel therapeutics beyond anti-PD1 in R/M HNSCC have included therapeutic vaccine therapies, bispecific antibodies/fusion proteins and multitargeted kinase inhibitors, and antibody-drug conjugates (ADCs). Multiple concurrent investigations of novel therapeutics for patients with R/M HNSCC beyond anti-PD(L)1 inhibition are currently underway with some promising early results. Beyond immune checkpoint inhibition, novel immunotherapeutic strategies including therapeutic vaccines ranging from targeting human papillomavirus-specific epitopes to personalized neoantigen vaccines are ongoing with some early efficacy signals and large, randomized trials. Other novel weapons including bispecific antibodies, fusion proteins, and multitargeted kinase inhibitors leverage multiple concurrent targets and modulation of the tumor microenvironment to harness antitumor immunity and inhibition of protumorigenic signaling pathways with emerging promising results. Finally, as with other solid tumors, ADCs remain a promising therapeutic intervention either alone or in combination with immunotherapy for patients with R/M HNSCC. With early enthusiasm across novel therapies in R/M HNSCC, results of larger randomized trials in R/M HNSCC are eagerly awaited.
Collapse
Affiliation(s)
- Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL
| | - Cesar A Perez
- Sarah Cannon Research Institute at Florida Cancer Specialists, Orlando, FL
| | - Wenji Guo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL
| | | | | | | | | |
Collapse
|
14
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Savoy EA, Olatunji FP, Fulton MD, Kesic BN, Herman JW, Romero O, Maniatopoulos M, Berkman CE. PSMA-targeted small-molecule drug-conjugates with valine-citrulline and phosphoramidate cleavable linkers. Bioorg Med Chem Lett 2024; 98:129573. [PMID: 38052377 DOI: 10.1016/j.bmcl.2023.129573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
In this study, we present a modular synthesis and evaluation of two prostate-specific membrane antigen (PSMA) targeted small molecule drug conjugates (SMDCs) incorporating the potent chemotherapeutic agent monomethyl auristatin E (MMAE). These SMDCs are distinguished by their cleavable linker modules: one utilizing the widely known valine-citrulline linker, susceptible to cleavage by cathepsin B, and the other featuring a novel acid-labile phosphoramidate-based (PhosAm) linker. Both SMDCs maintained nanomolar affinity to PSMA. Furthermore, we confirmed the selective release of the payload and observed chemotherapeutic efficacy specifically within PSMA-positive prostate cancer cells, while maintaining cell viability in PSMA-negative cells. These findings not only validate the efficacy of our approach but also highlight the potential of the innovative pH-responsive PhosAm linker. This study contributes significantly to the field and also paves the way for future advancements in targeted cancer therapy.
Collapse
Affiliation(s)
- Emily A Savoy
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Feyisola P Olatunji
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Melody D Fulton
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Brittany N Kesic
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Jacob W Herman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Oscar Romero
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | | | - Clifford E Berkman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA.
| |
Collapse
|
16
|
Chang FL, Lee CC, Tsai KC, Lin TY, Chiang CW, Pan SL, Lee YC. An auristatin-based antibody-drug conjugate targeting EphA2 in pancreatic cancer treatment. Biochem Biophys Res Commun 2023; 688:149214. [PMID: 37951154 DOI: 10.1016/j.bbrc.2023.149214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
Pancreatic adenocarcinoma, a highly aggressive form of cancer with a poor prognosis, necessitates the development of innovative treatment strategies. Our prior research showcased the growth-inhibiting effects of the anti-EphA2 antibody drug hSD5 on pancreatic cancer tumors. This antibody targets and induces the degradation of the EphA2 receptor while also prompting the antibody's internalization. A deeper dive into the hSD5 Fab crystallographic structure and docking studies revealed that hSD5's CDRH3 drives the primary interaction between hSD5 and the EphA2 active site. In this study, we developed a novel antibody-drug conjugate (ADC)-the auristatin-based hSD5-vedotin specifically targeting EphA2 in pancreatic cancer cells. This ADC aims at the tumor-specific antigen EphA2, triggering endocytosis and releasing the conjugated payload molecule Monomethyl auristatin E (MMAE), amplifying the tumor-killing effect. Upon cellular entry, hSD5-vedotin demonstrated an impressive tumor-killing response, inhibiting tumor cell growth and promoting apoptosis even at lower antibody concentrations. In a pancreatic cancer xenograft animal model, hSD5-vedotin showcased the potential to suppress tumor growth entirely. Notably, potential immune resistance responses were also observed in recurrent pancreatic cancer tumors. Our empirical results underscore the possibility of developing hSD5-vedotin further, which we anticipate will have a broader and more potent therapeutic impact on pancreatic cancer and other EphA2-related cancers.
Collapse
Affiliation(s)
- Fu-Ling Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chen-Wei Chiang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan.
| | - Yu-Ching Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
18
|
Fu Z, Gao C, Wu T, Wang L, Li S, Zhang Y, Shi C. Peripheral neuropathy associated with monomethyl auristatin E-based antibody-drug conjugates. iScience 2023; 26:107778. [PMID: 37727735 PMCID: PMC10505985 DOI: 10.1016/j.isci.2023.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Since the successful approval of gemtuzumab ozogamicin, antibody-drug conjugates (ADCs) have emerged as a pivotal category of targeted therapies for cancer. Among these ADCs, the use of monomethyl auristatin E (MMAE) as a payload is prevalent in the development of ADC drugs, which has significantly improved overall therapeutic efficacy against various malignancies. However, increasing clinical observations have raised concerns regarding the potential nervous system toxicity associated with MMAE-based ADCs. Specifically, a higher incidence of peripheral neuropathy has been reported in ADCs incorporating MMAE as payloads. Considering the increasing global use of MMAE-based ADCs, it is imperative to provide an inclusive overview of diagnostic and management strategies for this adverse event. In this review, we examine current information and what future research directions are required to better understand and manage this type of clinical challenge.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| |
Collapse
|
19
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
20
|
Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B 2023; 13:4025-4059. [PMID: 37799390 PMCID: PMC10547921 DOI: 10.1016/j.apsb.2023.06.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody‒drug conjugates (ADCs), which combine the advantages of monoclonal antibodies with precise targeting and payloads with efficient killing, show great clinical therapeutic value. The ADCs' payloads play a key role in determining the efficacy of ADC drugs and thus have attracted great attention in the field. An ideal ADC payload should possess sufficient toxicity, low immunogenicity, high stability, and modifiable functional groups. Common ADC payloads include tubulin inhibitors and DNA damaging agents, with tubulin inhibitors accounting for more than half of the ADC drugs in clinical development. However, due to clinical limitations of traditional ADC payloads, such as inadequate efficacy and the development of acquired drug resistance, novel highly efficient payloads with diverse targets and reduced side effects are being developed. This perspective summarizes the recent research advances of traditional and novel ADC payloads with main focuses on the structure-activity relationship studies, co-crystal structures, and designing strategies, and further discusses the future research directions of ADC payloads. This review also aims to provide valuable references and future directions for the development of novel ADC payloads that will have high efficacy, low toxicity, adequate stability, and abilities to overcome drug resistance.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lantu Gou
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
21
|
Kondrashov A, Sapkota S, Sharma A, Riano I, Kurzrock R, Adashek JJ. Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload. Pharmaceutics 2023; 15:2160. [PMID: 37631374 PMCID: PMC10459723 DOI: 10.3390/pharmaceutics15082160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are at the forefront of the drug development revolution occurring in oncology. Formed from three main components-an antibody, a linker molecule, and a cytotoxic agent ("payload"), ADCs have the unique ability to deliver cytotoxic agents to cells expressing a specific antigen, a great leap forward from traditional chemotherapeutic approaches that cause widespread effects without specificity. A variety of payloads can be used, including most frequently microtubular inhibitors (auristatins and maytansinoids), as well as topoisomerase inhibitors and alkylating agents. Finally, linkers play a critical role in the ADCs' effect, as cleavable moieties that serve as linkers impact site-specific activation as well as bystander killing effects, an upshot that is especially important in solid tumors that often express a variety of antigens. While ADCs were initially used in hematologic malignancies, their utility has been demonstrated in multiple solid tumor malignancies, including breast, gastrointestinal, lung, cervical, ovarian, and urothelial cancers. Currently, six ADCs are FDA-approved for the treatment of solid tumors: ado-trastuzumab emtansine and trastuzumab deruxtecan, both anti-HER2; enfortumab-vedotin, targeting nectin-4; sacituzuzmab govitecan, targeting Trop2; tisotumab vedotin, targeting tissue factor; and mirvetuximab soravtansine, targeting folate receptor-alpha. Although they demonstrate utility and tolerable safety profiles, ADCs may become ineffective as tumor cells undergo evolution to avoid expressing the specific antigen being targeted. Furthermore, the current cost of ADCs can be limiting their reach. Here, we review the structure and functions of ADCs, as well as ongoing clinical investigations into novel ADCs and their potential as treatments of solid malignancies.
Collapse
Affiliation(s)
- Aleksei Kondrashov
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD 21229, USA; (A.K.); (S.S.)
| | - Surendra Sapkota
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD 21229, USA; (A.K.); (S.S.)
| | - Aditya Sharma
- Department of Internal Medicine, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (A.S.); (I.R.)
| | - Ivy Riano
- Department of Internal Medicine, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (A.S.); (I.R.)
- Division of Hematology and Oncology, Dartmouth Cancer Center, Lebanon, NH 03755, USA
| | - Razelle Kurzrock
- WIN Consortium, 94550 Paris, France;
- MCW Cancer Center, Milwaukee, WI 53226, USA
- Division of Oncology and Hematology, University of Nebraska, Omaha, NE 68198, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Jacob J. Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
22
|
Fujii T, Matsuda Y. Novel formats of antibody conjugates: recent advances in payload diversity, conjugation, and linker chemistry. Expert Opin Biol Ther 2023; 23:1053-1065. [PMID: 37953519 DOI: 10.1080/14712598.2023.2276873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the field of bioconjugates, the focus on antibody - drug conjugates (ADCs) with novel payloads beyond the traditional categories of potent cytotoxic agents is increasing. These innovative ADCs exhibit various molecular formats, ranging from small-molecule payloads, such as immune agonists and proteolytic agents, to macromolecular payloads, such as oligonucleotides and proteins. AREAS COVERED This review offers an in-depth exploration of unconventional strategies for designing conjugates with novel mechanisms of action and notable examples of approaches that show promising prospects. Representative examples of novel format payloads and their classification, attributes, and appropriate conjugation techniques are discussed in detail. EXPERT OPINION The existing basic technologies used to manufacture ADCs can be directly applied to synthesize novel formatted conjugates. However, a wide variety of new payloads require the creation of customized technologies adapted to the unique characteristics of these payloads. Consequently, fundamental technologies, such as conjugation methods aimed at achieving high drug - antibody ratios and developing stable crosslinkers, are likely to become increasingly important research areas in the future.
Collapse
|
23
|
Lahnif H, Grus T, Salvanou EA, Deligianni E, Stellas D, Bouziotis P, Rösch F. Old Drug, New Delivery Strategy: MMAE Repackaged. Int J Mol Sci 2023; 24:ijms24108543. [PMID: 37239890 DOI: 10.3390/ijms24108543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Targeting therapy is a concept that has gained significant importance in recent years, especially in oncology. The severe dose-limiting side effects of chemotherapy necessitate the development of novel, efficient and tolerable therapy approaches. In this regard, the prostate specific membrane antigene (PSMA) has been well established as a molecular target for diagnosis of, as well as therapy for, prostate cancer. Although most PSMA-targeting ligands are radiopharmaceuticals used in imaging or radioligand therapy, this article evaluates a PSMA-targeting small molecule-drug conjugate, and, thus, addresses a hitherto little-explored field. PSMA binding affinity and cytotoxicity were determined in vitro using cell-based assays. Enzyme-specific cleavage of the active drug was quantified via an enzyme-based assay. Efficacy and tolerability in vivo were assessed using an LNCaP xenograft model. Histopathological characterization of the tumor in terms of apoptotic status and proliferation rate was carried out using caspase-3 and Ki67 staining. The binding affinity of the Monomethyl auristatin E (MMAE) conjugate was moderate, compared to the drug-free PSMA ligand. Cytotoxicity in vitro was in the nanomolar range. Both binding and cytotoxicity were found to be PSMA-specific. Additionally, complete MMAE release could be reached after incubation with cathepsin B. In vivo, the MMAE conjugate displayed good tolerability and dose-dependent inhibition of tumor growth. Immunohistochemical and histological studies revealed the antitumor effect of MMAE.VC.SA.617, resulting in the inhibition of proliferation and the enhancement of apoptosis. The developed MMAE conjugate showed good properties in vitro, as well as in vivo, and should, therefore, be considered a promising candidate for a translational approach.
Collapse
Affiliation(s)
- Hanane Lahnif
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tilmann Grus
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Evangelia-Alexandra Salvanou
- Radiochemical Studies Laboratory, INRASTES, National Center for Scientific Research "Demokritos", Ag. Paraskevi, 15341 Athens, Greece
| | - Elisavet Deligianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, INRASTES, National Center for Scientific Research "Demokritos", Ag. Paraskevi, 15341 Athens, Greece
| | - Frank Rösch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
24
|
Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target Antigen Attributes and Their Contributions to Clinically Approved Antibody-Drug Conjugates (ADCs) in Haematopoietic and Solid Cancers. Cancers (Basel) 2023; 15:1845. [PMID: 36980732 PMCID: PMC10046624 DOI: 10.3390/cancers15061845] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Antibody drug conjugates (ADCs) are powerful anti-cancer therapies comprising an antibody joined to a cytotoxic payload through a chemical linker. ADCs exploit the specificity of antibodies for their target antigens, combined with the potency of cytotoxic drugs, to selectively kill target antigen-expressing tumour cells. The recent rapid advancement of the ADC field has so far yielded twelve and eight ADCs approved by the US and EU regulatory bodies, respectively. These serve as effective targeted treatments for several haematological and solid tumour types. In the development of an ADC, the judicious choice of an antibody target antigen with high expression on malignant cells but restricted expression on normal tissues and immune cells is considered crucial to achieve selectivity and potency while minimising on-target off-tumour toxicities. Aside from this paradigm, the selection of an antigen for an ADC requires consideration of several factors relating to the expression pattern and biological features of the target antigen. In this review, we discuss the attributes of antigens selected as targets for antibodies used in clinically approved ADCs for the treatment of haematological and solid malignancies. We discuss target expression, functions, and cellular kinetics, and we consider how these factors might contribute to ADC efficacy.
Collapse
Affiliation(s)
- Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Jiexuan Jiang
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Anthony Cheung
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - David E. Thurston
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|
25
|
Santaniello G, Nebbioso A, Altucci L, Conte M. Recent Advancement in Anticancer Compounds from Marine Organisms: Approval, Use and Bioinformatic Approaches to Predict New Targets. Mar Drugs 2022; 21:md21010024. [PMID: 36662197 PMCID: PMC9862894 DOI: 10.3390/md21010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies.
Collapse
Affiliation(s)
- Giovanna Santaniello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- BIOGEM, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino, Italy
- IEOS, Institute for Endocrinology and Experimental Oncology, CNR, Via Pansini 5, 80131 Napoli, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| |
Collapse
|
26
|
Olatunji FP, Pun M, Herman JW, Romero O, Maniatopoulos M, Latoche JD, Parise RA, Guo J, Beumer JH, Anderson CJ, Berkman CE. Modular Smart Molecules for PSMA-Targeted Chemotherapy. Mol Cancer Ther 2022; 21:1701-1709. [PMID: 35999662 PMCID: PMC9842478 DOI: 10.1158/1535-7163.mct-22-0160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023]
Abstract
New targeted chemotherapeutics are urgently needed to minimize off-target toxicity and reduce the high-mortality rate associated with metastatic prostate cancer. Herein, we report on the modular synthesis, pharmacokinetics, and efficacy of two small-molecule-drug conjugates (SMDC) targeted to prostate-specific membrane antigen (PSMA) incorporating either: (i) a cathepsin-B-cleavable valine-citrulline (Val-Cit), or (ii) an acid-cleavable phosphoramidate linker. Crucial components used in the design of the conjugates include: (i) CTT1298, a nanomolar affinity ligand that binds irreversibly to PSMA and has proven in past studies to rapidly internalize and shuttle payloads into PSMA-expressing prostate cancer cells, (ii) MMAE, a known potent cytotoxic payload, and (iii) an albumin-binder, proven to improve residence time of drug conjugates. At dose of 0.8 mg/kg (∼250 nmol/kg), the two SMDCs showed significant efficacy in a PSMA(+) PC3-PIP mouse model of human prostate cancer compared with controls, without inducing systemic toxicity. Though localization of the SMDCs was observed in tissues apart from the tumor, release of MMAE was observed predominantly in tumor tissue, at levels that were 2-3 orders of magnitude higher than non-target tissues. Furthermore, SMDC2, which incorporated a novel pH-responsive phosporamidate linker, demonstrated significantly improved efficacy over SMDC1 that has a Val-Cit linker, with a 100% survival over 90 days and 4 out of 8 mice showing complete tumor growth inhibition after 6 weekly doses of 0.8 mg/kg (244 nmol/kg). Our findings demonstrate the potential of irreversible PSMA inhibitors combined with pH-responsive linkers as a way to specifically deliver chemotherapeutic drugs to prostate cancer tumors with minimal toxicity.
Collapse
Affiliation(s)
| | - Michael Pun
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630,Department of Chemistry, University of Missouri, Columbia, MO 65211,Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO 65211
| | - Jacob W. Herman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630
| | - Oscar Romero
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630
| | | | - Joseph D. Latoche
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Robert A. Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Jianxia Guo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Jan H. Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, 15261.,Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Carolyn J. Anderson
- Department of Chemistry, University of Missouri, Columbia, MO 65211,Department of Radiology, University of Missouri, Columbia, MO 65211,Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO 65211
| | - Clifford E. Berkman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630
| |
Collapse
|
27
|
Yamashita N, Kufe D. Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 23:8219. [PMID: 35897789 PMCID: PMC9331006 DOI: 10.3390/ijms23158219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
28
|
Nerone M, Del Grande M, Sessa C, Colombo I. Advancing antibody-drug conjugates in gynecological malignancies: myth or reality? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:149-171. [PMID: 36046840 PMCID: PMC9400759 DOI: 10.37349/etat.2022.00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Antibody-drug conjugates (ADCs) represent a new class of therapeutic agents designed to target specific antigens on tumor cells, combining the specificity of monoclonal antibodies to the cytotoxicity of classic chemotherapy agents. These drugs have been extensively studied both in solid and hematologic malignancies, leading to substantial improvement in the therapeutic landscape for several tumors. Despite no ADC have been yet approved for the treatment of gynecological malignancies, some agents have shown promising results and might have the potential to become part of the standard of care. Among them, mirvetuximab soravtansine has shown activity in platinum-resistant ovarian cancer with high folate-α receptor expression, as a single agent and in combination. Tisotumab vedotin is active in patients with pre-treated cervical cancer, and further investigation is ongoing. The purpose of this review is to summarize the structural and functional characteristics of ADCs and analyze the most recent and promising data regarding the clinical development of ADCs in gynecological malignancies. The available data on the efficacy of the more studied ADCs in ovarian, endometrial, and cervical cancers will be discussed along with toxicities of special interest, the mechanisms of resistance, and future possible drugs combination.
Collapse
Affiliation(s)
- Marta Nerone
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland
| | - Maria Del Grande
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland
| | - Cristiana Sessa
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland
| | - Ilaria Colombo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland
| |
Collapse
|
29
|
Paulus J, Sewald N. Synthesis and Evaluation of a Non-Peptide Small-Molecule Drug Conjugate Targeting Integrin αVβ3. Front Chem 2022; 10:869639. [PMID: 35480387 PMCID: PMC9035832 DOI: 10.3389/fchem.2022.869639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 01/16/2023] Open
Abstract
An integrin αVβ3-targeting linear RGD mimetic containing a small-molecule drug conjugate (SMDC) was synthesized by combining the antimitotic agent monomethyl auristatin E (MMAE), an enzymatically cleavable Val-Ala-PABC linker with a linear conjugable RGD mimetic. The structure proposal for the conjugable RGD mimetic was suggested upon the DAD mapping analysis of a previously synthesized small-molecule RGD mimetic array based on a tyrosine scaffold. Therefore, a diversifying strategy was developed as well as a novel method for the partial hydrogenation of pyrimidines in the presence of the hydrogenolytically cleavable Cbz group. The small-molecule RGD mimetics were evaluated in an ELISA-like assay, and the structural relationships were analyzed by DAD mapping revealing activity differences induced by structural changes as visualized in dependence on special structural motifs. This provided a lead structure for generation of an SMDC containing the antimitotic drug MMAE. The resulting SMDC containing a linear RGD mimetic was tested in a cell adhesion and an in vitro cell viability assay in comparison to reference SMDCs containing cRGDfK or cRADfK as the homing device. The linear RGD SMDC and the cRGDfK SMDC inhibited adhesion of αVβ3-positive WM115 cells to vitronectin with IC50 values in the low µM range, while no effect was observed for the αVβ3-negative M21-L cell line. The cRADfK SMDC used as a negative control was about 30-fold less active in the cell adhesion assay than the cRGDfK SMDC. Conversely, both the linear RGD SMDC and the cRGDfK SMDC are about 55-fold less cytotoxic than MMAE against the αVβ3-positive WM115 cell line with IC50 values in the nM range, while the cRADfK SMDC is 150-fold less cytotoxic than MMAE. Hence, integrin binding also influences the antiproliferative activity giving a targeting index of 2.8.
Collapse
|
30
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
31
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
32
|
Zhang X, Huang AC, Chen F, Chen H, Li L, Kong N, Luo W, Fang J. Novel development strategies and challenges for anti-Her2 antibody-drug conjugates. Antib Ther 2022; 5:18-29. [PMID: 35146330 PMCID: PMC8826051 DOI: 10.1093/abt/tbac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibody-drug conjugates (ADCs) combining potent cytotoxicity of small-molecule drugs with the selectivity and excellent pharmacokinetic profile of monoclonal antibody (mAb) are promising therapeutic modalities for a diverse range of cancers. Owing to overexpression in a wide range of tumors, human epidermal growth factor receptor 2 (Her2) is one of the most utilized targeting antigens for ADCs to treat Her2-positive cancers. Owing to the high density of Her2 antigens on the tumor cells and high affinity and high internalization capacity of corresponding antibodies, 56 anti-Her2 ADCs which applied >10 different types of novel payloads had entered preclinical or clinical trials. Seven of 12 Food and Drug Administration (FDA)-approved ADCs including Polivy (2019), Padcev (2019), EnHertu (2019), Trodelvy (2020), Blenrep (2020), Zynlonta (2021), and Tivdak) (2021) have been approved by FDA in the past three years alone, indicating that the maturing of ADC technology brings more productive clinical outcomes. This review, focusing on the anti-Her2 ADCs in clinical trials or on the market, discusses the strategies to select antibody formats, the linkages between linker and mAb, and effective payloads with particular release and action mechanisms for a good clinical outcome.
Collapse
Affiliation(s)
- Xinling Zhang
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Andrew C Huang
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Fahai Chen
- CEO Office, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Hu Chen
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Lele Li
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Nana Kong
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Wenting Luo
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
33
|
Lofgren KA, Sreekumar S, Jenkins EC, Ernzen KJ, Kenny PA. Anti-tumor efficacy of an MMAE-conjugated antibody targeting cell surface TACE/ADAM17-cleaved Amphiregulin in breast cancer. Antib Ther 2021; 4:252-261. [PMID: 34877472 PMCID: PMC8643873 DOI: 10.1093/abt/tbab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022] Open
Abstract
Background The Epidermal Growth Factor Receptor (EGFR) ligand, Amphiregulin (AREG), is a key proliferative effector of estrogen receptor signaling in breast cancer and also plays a role in other malignancies. AREG is a single-pass transmembrane protein proteolytically processed by TACE/ADAM17 to release the soluble EGFR ligand, leaving a residual transmembrane stalk that is subsequently internalized. Methods Using phage display, we identified antibodies that selectively recognize the residual transmembrane stalk of cleaved AREG. Conjugation with fluorescence labels and monomethyl auristatin E (MMAE) was used to study their intracellular trafficking and anti-cancer effects, respectively. Results We report the development of an antibody-drug conjugate (ADC), GMF-1A3-MMAE, targeting an AREG neo-epitope revealed following ADAM17-mediated cleavage. The antibody does not interact with uncleaved AREG, providing a novel means of targeting cells with high rates of AREG shedding. Using fluorescent dye conjugation, we demonstrated that the antibody is internalized by cancer cells in a manner dependent on the presence of cell surface cleaved AREG. Antibodies conjugated with MMAE were cytotoxic in vitro and induced rapid regression of established breast tumor xenografts in immunocompromised mice. We further demonstrate that these antibodies recognize the AREG neo-epitope in formalin-fixed, paraffin-embedded tumor tissue, suggesting their utility as a companion diagnostic for patient selection. Conclusions This ADC targeting AREG has potential utility in the treatment of breast and other tumors in which proteolytic AREG shedding is a frequent event.
Collapse
Affiliation(s)
- Kristopher A Lofgren
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
| | - Sreeja Sreekumar
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
| | - E Charles Jenkins
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kyle J Ernzen
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
| | - Paraic A Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
34
|
Matsuda Y. Current approaches for the purification of antibody-drug conjugates. J Sep Sci 2021; 45:27-37. [PMID: 34473399 DOI: 10.1002/jssc.202100575] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/21/2023]
Abstract
In the past two decades, antibody-drug conjugates have gained increasing attention because they expand the therapeutic index when compared with that of traditional chemotherapies. Antibody-drug conjugates are highly complex structures consisting of antibodies covalently conjugated with small-molecule cytotoxic drugs. The complex structure of antibody-drug conjugates makes chemistry, manufacturing, and control difficult. In contrast to antibody production, distinct purification methods following conjugation of antibodies with drug-linkers are required for the manufacturing. For process development of antibody drug conjugates, the drug-to-antibody ratio, free drug-linkers, and aggregates are critical quality attributes that must be strictly controlled and removed by appropriate purification techniques. In this review, features of various purification methods used to purify antibody drug conjugates are described and evaluated. The future landscape of the antibody-conjugates field is also discussed briefly.
Collapse
|
35
|
Yao HP, Zhao H, Hudson R, Tong XM, Wang MH. Duocarmycin-based antibody-drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress. Drug Discov Today 2021; 26:1857-1874. [PMID: 34224904 DOI: 10.1016/j.drudis.2021.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody-drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hui Zhao
- Office of Scientific Research, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
36
|
Zuo W, Kwok HF. Development of Marine-Derived Compounds for Cancer Therapy. Mar Drugs 2021; 19:md19060342. [PMID: 34203870 PMCID: PMC8232666 DOI: 10.3390/md19060342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer has always been a threat to human health with its high morbidity and mortality rates. Traditional therapy, including surgery, chemotherapy and radiotherapy, plays a key role in cancer treatment. However, it is not able to prevent tumor recurrence, drug resistance and treatment side effects, which makes it a very attractive challenge to search for new effective and specific anticancer drugs. Nature is a valuable source of multiple pharmaceuticals, and most of the anticancer drugs are natural products or derived from them. Marine-derived compounds, such as nucleotides, proteins, peptides and amides, have also shed light on cancer therapy, and they are receiving a fast-growing interest due to their bioactive properties. Their mechanisms contain anti-angiogenic, anti-proliferative and anti-metastasis activities; cell cycle arrest; and induction of apoptosis. This review provides an overview on the development of marine-derived compounds with anticancer properties, both their applications and mechanisms, and discovered technologies.
Collapse
Affiliation(s)
- Weimin Zuo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao
- Correspondence:
| |
Collapse
|
37
|
Baah S, Laws M, Rahman KM. Antibody-Drug Conjugates-A Tutorial Review. Molecules 2021; 26:2943. [PMID: 34063364 PMCID: PMC8156828 DOI: 10.3390/molecules26102943] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a family of targeted therapeutic agents for the treatment of cancer. ADC development is a rapidly expanding field of research, with over 80 ADCs currently in clinical development and eleven ADCs (nine containing small-molecule payloads and two with biological toxins) approved for use by the FDA. Compared to traditional small-molecule approaches, ADCs offer enhanced targeting of cancer cells along with reduced toxic side effects, making them an attractive prospect in the field of oncology. To this end, this tutorial review aims to serve as a reference material for ADCs and give readers a comprehensive understanding of ADCs; it explores and explains each ADC component (monoclonal antibody, linker moiety and cytotoxic payload) individually, highlights several EMA- and FDA-approved ADCs by way of case studies and offers a brief future perspective on the field of ADC research.
Collapse
Affiliation(s)
| | | | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (S.B.); (M.L.)
| |
Collapse
|
38
|
The Chemistry Behind ADCs. Pharmaceuticals (Basel) 2021; 14:ph14050442. [PMID: 34067144 PMCID: PMC8152005 DOI: 10.3390/ph14050442] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Combining the selective targeting of tumor cells through antigen-directed recognition and potent cell-killing by cytotoxic payloads, antibody-drug conjugates (ADCs) have emerged in recent years as an efficient therapeutic approach for the treatment of various cancers. Besides a number of approved drugs already on the market, there is a formidable follow-up of ADC candidates in clinical development. While selection of the appropriate antibody (A) and drug payload (D) is dictated by the pharmacology of the targeted disease, one has a broader choice of the conjugating linker (C). In the present paper, we review the chemistry of ADCs with a particular emphasis on the medicinal chemistry perspective, focusing on the chemical methods that enable the efficient assembly of the ADC from its three components and the controlled release of the drug payload.
Collapse
|
39
|
Moquist PN, Bovee TD, Waight AB, Mitchell JA, Miyamoto JB, Mason ML, Emmerton KK, Stevens N, Balasubramanian C, Simmons JK, Lyon RP, Senter PD, Doronina SO. Novel Auristatins with High Bystander and Cytotoxic Activities in Drug Efflux-positive Tumor Models. Mol Cancer Ther 2020; 20:320-328. [PMID: 33288628 DOI: 10.1158/1535-7163.mct-20-0618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Auristatins, a class of clinically validated anti-tubulin agents utilized as payloads in antibody-drug conjugates, are generally classified by their membrane permeability and the extent of cytotoxic bystander activity on neighboring cells after targeted delivery. The drugs typically fall within two categories: membrane permeable monomethyl auristatin E-type molecules with high bystander activities and susceptibility to efflux pumps, or charged and less permeable monomethyl auristatin F (MMAF) analogs with low bystander activities and resistance to efflux pumps. Herein, we report the development of novel auristatins that combine the attributes of each class by having both bystander activity and cytotoxicity on multidrug-resistant (MDR+) cell lines. Structure-based design focused on the hydrophobic functionalization of the N-terminal N-methylvaline of the MMAF scaffold to increase cell permeability. The resulting structure-activity relationships of the new auristatins demonstrate that optimization of hydrophobicity and structure can lead to highly active free drugs and antibody-drug conjugates with in vivo bystander activities.
Collapse
|
40
|
Matsuda Y, Mendelsohn BA. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2020; 21:963-975. [PMID: 33141625 DOI: 10.1080/14712598.2021.1846714] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: We discuss chemical conjugation strategies for antibody-drug conjugates (ADCs) from an industrial perspective and compare three promising chemical conjugation technologies to produce site-specific ADCs.Areas covered: Currently, nine ADCs are commercially approved and all are produced by chemical conjugation technology. However, seven of these ADCs contain a relatively broad drug distribution, potentially limiting their therapeutic indices. In 2019, the first site-specific ADC was launched on the market by Daiichi-Sankyo. This achievement, and an analysis of clinical trials over the last decade, indicates that current industrial interest in the ADC field is shifting toward site-specific conjugation technologies. From an industrial point of view, we aim to provide guidance regarding established conjugation methodologies that have already been applied to scale-up stages. With an emphasis on highly productive, scalable, and synthetic process robustness, conjugation methodologies for ADC production is discussed herein.Expert opinion: All three chemical conjugation technologies described in this review have various advantages and disadvantages, therefore drug developers can utilize these depending on their biological and/or protein targets. The future landscape of the ADC field is also discussed.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Brian A Mendelsohn
- Process Development & Tech Transfer, Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA 92121, United States
| |
Collapse
|
41
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|