1
|
Clemente-Suárez VJ, Redondo-Flórez L, Martín-Rodríguez A, Curiel-Regueros A, Rubio-Zarapuz A, Tornero-Aguilera JF. Impact of Vegan and Vegetarian Diets on Neurological Health: A Critical Review. Nutrients 2025; 17:884. [PMID: 40077754 PMCID: PMC11901473 DOI: 10.3390/nu17050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES The global shift towards vegan and vegetarian diets has garnered attention for their ethical, environmental, and potential health benefits. These diets are often rich in phytonutrients and antioxidants, which have been associated with lower levels of inflammatory markers, such as C-reactive protein (CRP) and interleukin-6 (IL-6), suggesting a potential protective effect against systemic inflammation and oxidative stress. However, despite these benefits, concerns remain regarding their impact on neurological health due to the possible deficiencies of critical nutrients such as vitamin B12, DHA, EPA, and iron. This review critically evaluates the influence of these dietary patterns on neurological outcomes, emphasizing their nutritional composition, potential deficiencies, and their interplay with inflammation and oxidative stress. METHODS A systematic review of the literature published between 2010 and 2023 was conducted, focusing on studies that explore the relationship between vegan and vegetarian diets and neurological health. Key nutrients such as vitamin B12, omega-3 fatty acids, iron, and zinc were analyzed alongside antinutritional factors and their effects on the nervous system. RESULTS Evidence suggests that vegan and vegetarian diets, when well planned, can be rich in phytonutrients and antioxidants, which have been associated with lower levels of inflammatory markers, such as C-reactive protein (CRP) and interleukin-6 (IL-6). These findings indicate a potential role in reducing systemic inflammation and oxidative stress, both of which are linked to neurodegenerative diseases. However, deficiencies in critical nutrients such as vitamin B12, DHA, EPA, and iron have been consistently associated with an increased risk of cognitive decline, mood disturbances, and neurodegenerative disorders. Additionally, the presence of antinutritional factors like phytates and oxalates may further impair nutrient absorption, necessitating careful dietary planning and supplementation. CONCLUSIONS While plant-based diets provide anti-inflammatory and antioxidant benefits, their neurological implications depend on nutrient adequacy. Proper planning, supplementation, and food preparation techniques are essential to mitigate risks and enhance cognitive health. Further research is needed to explore long-term neurological outcomes and optimize dietary strategies.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Villaviciosa de Odon, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Faculty of Applied Social Sciences and Communications, UNIE University, 28015 Madrid, Spain
| | - Agustín Curiel-Regueros
- Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | | |
Collapse
|
2
|
Principe G, Lezcano V, Tiburzi S, Miravalles AB, García BN, Gumilar F, González-Pardo V. In vitro and in vivo evidence of the antineoplastic activity of quercetin against endothelial cells transformed by Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Biochimie 2025; 229:30-41. [PMID: 39369938 DOI: 10.1016/j.biochi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Quercetin (QUE) is a natural flavonoid with well-known anticancer capabilities, although its effect on viral-induced cancers is less studied. Kaposi's sarcoma (KS) is a viral cancer caused by the human herpesvirus-8, which, during its lytic phase, expresses a constitutively activated viral G protein-coupled receptor (vGPCR) able to induce oncogenic modifications that lead to tumor development. The aim of this work was to investigate the potential effect of QUE on in vitro and in vivo models of Kaposi's sarcoma, developed by transforming endothelial cells with the vGPCR of Kaposi's sarcoma-associated herpesvirus. Initially, the antiproliferative effect of QUE was determined in endothelial cells stably expressing the vGPCR (vGPCR cells), with an IC50 of 30 μM. Additionally, QUE provoked a decrease in vGPCR cell viability, interfered with the cell cycle progression, and induced apoptosis, as revealed by annexin V/PI analysis and caspase-3 activity. The presence of apoptotic bodies and disorganized actin filaments was observed by SEM and phalloidin staining. Furthermore, tumors from vGPCR cells were induced in nude mice, which were treated with QUE (50 or 100 mg/kg/d) resulting in retarded tumor progression and reduced tumor weight. Notably, neither kidney nor liver damage was observed, as indicated by biochemical parameters in serum. In conclusion, this study suggests for the first time that QUE exhibits antineoplastic activity in both in vitro and in vivo models of KS, marking a starting point for further investigations and protocols for therapeutic purpose.
Collapse
Affiliation(s)
- Gabriel Principe
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Virginia Lezcano
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| | - Silvina Tiburzi
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Alicia B Miravalles
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Betina N García
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina; Bioquímica Austral, Laboratorio de Análisis Clínicos y Gestión, 25 de Mayo 1007, 8000, Bahía Blanca, Argentina
| | - Fernanda Gumilar
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Islam MR, Al-Imran MIK, Zehravi M, Sweilam SH, Mortuza MR, Gupta JK, Shanmugarajan TS, Devi K, Tummala T, Alshehri MA, Rajagopal K, Asiri M, Ahmad I, Emran TB. Targeting signaling pathways in neurodegenerative diseases: Quercetin's cellular and molecular mechanisms for neuroprotection. Animal Model Exp Med 2025. [PMID: 39843406 DOI: 10.1002/ame2.12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, and Huntington's disease, are complex and challenging due to their intricate pathophysiology and limited treatment options. METHODS This review systematically sourced articles related to neurodegenerative diseases, neurodegeneration, quercetin, and clinical studies from primary medical databases, including Scopus, PubMed, and Web of Science. RESULTS Recent studies have included quercetin to impact the cellular and molecular pathways involved in neurodegeneration. Quercetin, a flavonoid abundant in vegetables and fruits, is gaining attention for its antioxidant, anti-inflammatory, and antiapoptotic properties. It regulates signaling pathways such as nuclear factor-κB (NF-κB), sirtuins, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt). These pathways are essential for cellular survival, inflammation regulation, and apoptosis. Preclinical and clinical studies have shown that quercetin improves symptoms and pathology in neurodegenerative models, indicating promising outcomes. CONCLUSIONS The study explores the potential of incorporating laboratory research into practical medical treatment, focusing on quercetin's neuroprotective effects on NDs and its optimal dosage.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| | - Md Ibrahim Khalil Al-Imran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Kadirvel Devi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Tanuja Tummala
- Department of Polymer Chemistry, Pittsburg State University, Pittsburg, Kansas, USA
| | | | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| |
Collapse
|
4
|
Ahmed S, Nilofar, Cvetanović Kljakić A, Stupar A, Lončar B, Božunović J, Gašić U, Yıldıztugay E, Ferrante C, Zengin G. Exploring traditional and modern approaches for extracting bioactive compounds from Ferulago trachycarpa. Prep Biochem Biotechnol 2024; 54:1306-1319. [PMID: 38756105 DOI: 10.1080/10826068.2024.2349937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For more than two millennia, Ferulago species have been revered as therapeutic herbs, maintaining their significance in present-day folk medicine practices. Therefore, the present study was conducted to investigate the phytochemical composition, inhibitory effects on metabolic enzymes, and possible therapeutic applications of F. trachycarpa, specifically focusing on its efficacy in diabetes management, anticholinergic effects, and antioxidant capabilities. The current investigation comprised an evaluation of a range of extracts acquired via conventional and modern methodologies, such as soxhlet (SOX), maceration (MAC) accelerated solvent extraction (ASE), homogenizer-assisted extraction (HAE), supercritical fluid extraction (SFE), microwave-assisted extraction (MW), and ultrasound-assisted extraction (UAE). Various techniques were employed to assess their antioxidant capacity and enzyme inhibition. Furthermore, the research utilized ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) to ascertain the principal phenolic compounds that are responsible for the antioxidant capacity observed in the various F. trachycarpa extracts. Among these, extracts from HAE, ASE, and MW revealed the most promise across all methodologies tested for their antioxidant potential. Furthermore, SFE and MAC extracts inhibited the most enzymes, including cholinesterases, tyrosinase, α -amylase, and α -glycosidase, indicating their potential as efficient natural treatments for several health-related issues.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | | | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Biljana Lončar
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
5
|
Bakr AF, El-Shiekh RA, Mahmoud MY, Khalil HMA, Alyami MH, Alyami HS, Galal O, Mansour DF. Efficacy of Quercetin and Quercetin Loaded Chitosan Nanoparticles Against Cisplatin-Induced Renal and Testicular Toxicity via Attenuation of Oxidative Stress, Inflammation, and Apoptosis. Pharmaceuticals (Basel) 2024; 17:1384. [PMID: 39459023 PMCID: PMC11510010 DOI: 10.3390/ph17101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Flavonoids, including quercetin, have attracted much attention due to their potential health-promoting effects. METHODS The current experiment aims to see whether quercetin (QUE) in nanoparticle form could mitigate testicular and renal toxicity caused by cisplatin (CIS) more effectively than normally formulated QUE. Rats were randomly treated with CIS alone or in combination with QUE or QUE.NPs (Quercetin-loaded chitosan nanoparticles) for 4 weeks. QUE and QUE.NPs were given orally (10 mg/kg, three times a week), while CIS was given intraperitoneally (2 mg/kg, twice a week). RESULTS Compared to QUE- and CIS + QUE.NP-treated rats, CIS exposure induced anxiety and emotional stress as well as promoted oxidative stress in both testicular and renal tissues. Moreover, CIS reduced serum testosterone levels and diminished testicular IL-10, as well as CIS-induced renal failure, as indicated by hypokalemia, and increased levels of creatinine, urea, sodium, IL-18, and KIM-1. Further, severe histological changes were observed in the testis and kidney of CIS-intoxicated rats. Regarding immunohistochemical staining, CIS significantly upregulated Bax, downregulated Bcl-2, and moderately enhanced PCNA expression. CONCLUSIONS Our findings suggest that both QUE and QUE.NPs modulated emotional disturbance and improved testicular and renal functions via modulation of oxidation, inflammation, and apoptosis. However, QUE.NPs performed better than QUE-treated rats.
Collapse
Affiliation(s)
- Alaa F. Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Mohamed Y. Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Faculty of Veterinary Medicine, King Salman International University, South Sinai, Ras Sudr 43312, Egypt
| | - Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Omneya Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt;
| | - Dina F. Mansour
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo 12622, Egypt;
- Department of Pharmacy, Faculty of Pharmacy, Galala University, Attaka, Suez 43511, Egypt
| |
Collapse
|
6
|
Nishikawa T, Hirono T, Holobar A, Kunugi S, Okudaira M, Ohya T, Watanabe K. Acute effects of caffeine or quercetin ingestion on motor unit firing pattern before and after resistance exercise. Eur J Appl Physiol 2024; 124:1645-1658. [PMID: 38193908 DOI: 10.1007/s00421-023-05376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024]
Abstract
The aim of the present study was to investigate the acute effect of caffeine or quercetin ingestion on motor unit firing patterns and muscle contractile properties before and after resistance exercise. High-density surface electromyography (HDs-EMG) during submaximal contractions and electrically elicited torque in knee extensor muscles were measured before (PRE) and 60 min after (POST1) ingestion of caffeine, quercetin glycosides, or placebo, and after resistance exercise (POST2) in ten young males. The Convolution Kernel Compensation technique was used to identify individual motor units of the vastus lateralis muscle for the recorded HDs-EMG. Ingestion of caffeine or quercetin induced significantly greater decreases in recruitment thresholds (RTs) from PRE to POST1 compared with placebo (placebo: 94.8 ± 9.7%, caffeine: 84.5 ± 16.2%, quercetin: 91.9 ± 36.7%), and there were significant negative correlations between the change in RTs (POST1-PRE) and RT at PRE for caffeine (rs = - 0.448, p < 0.001) and quercetin (rs = - 0.415, p = 0.003), but not placebo (rs = - 0.109, p = 0.440). Significant positive correlations between the change in firing rates (POST2-POST1) and RT at PRE were noted with placebo (rs = 0.380, p = 0.005) and quercetin (rs = 0.382, p = 0.007), but not caffeine (rs = 0.069, p = 0.606). No significant differences were observed in electrically elicited torque among the three conditions. These results suggest that caffeine or quercetin ingestion alters motor unit firing patterns after resistance exercise in different threshold-dependent manners in males.
Collapse
Affiliation(s)
- Taichi Nishikawa
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan
| | - Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Shun Kunugi
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan
- Center for General Education, Aichi Institute of Technology, Toyota, Japan
| | - Masamichi Okudaira
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan
| | - Toshiyuki Ohya
- Laboratory for Exercise Physiology and Biomechanics, Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan.
| |
Collapse
|
7
|
Cifuentes-Araya N, Simirgiotis M, Sepúlveda B, Areche C. Green Separation by Using Nanofiltration of Tristerix tetrandus Fruits and Identification of Its Bioactive Molecules through MS/MS Spectrometry. PLANTS (BASEL, SWITZERLAND) 2024; 13:1521. [PMID: 38891330 PMCID: PMC11175056 DOI: 10.3390/plants13111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Membrane technology allows the separation of active compounds, providing an alternative to conventional methods such as column chromatography, liquid-liquid extraction, and solid-liquid extraction. The nanofiltration of a Muérdago (Tristerix tetrandus Mart.) fruit juice was realized to recover valuable metabolites using three different membranes (DL, NFW, and NDX (molecular weight cut-offs (MWCOs): 150~300, 300~500, and 500~700 Da, respectively)). The metabolites were identified by ESI-MS/MS. The results showed that the target compounds were effectively fractionated according to their different molecular weights (MWs). The tested membranes showed retention percentages (RPs) of up to 100% for several phenolics. However, lower RPs appeared in the case of coumaric acid (84.51 ± 6.43% (DL), 2.64 ± 2.21% (NFW), 51.95 ± 1.23% (NDX)) and some other phenolics. The RPs observed for the phenolics cryptochlorogenic acid and chlorogenic acid were 99.74 ± 0.21 and 99.91 ± 0.01% (DL membrane), 96.85 ± 0.83 and 99.20 ± 0.05% (NFW membrane), and 92.98 ± 2.34 and 98.65 ± 0.00% (NDX membrane), respectively. The phenolic quantification was realized by UHPLC-ESI-MS/MS. The DL membrane allowed the permeation of amino acids with the MW range of about 300~100 Da (aspartic acid, proline, tryptophan). This membrane allowed the highest permeate flux (22.10-27.73 L/m2h), followed by the membranes NDX (16.44-20.82 L/m2h) and NFW (12.40-14.45 L/m2h). Moreover, the DL membrane allowed the highest recovery of total compounds in the permeate during the concentration process (19.33%), followed by the membranes NFW (16.28%) and NDX (14.02%). Permeate fractions containing phenolics and amino acids were identified in the membrane permeates DL (10 metabolites identified), NFW (13 metabolites identified), and NDX (10 metabolites identified). Particularly, tryptophan was identified only in the DL permeate fractions obtained. Leucine and isoleucine were identified only in the NFW permeate fractions, whereas methionine and arginine were identified only in the NDX ones. Liquid permeates of great interest to the food and pharmaceutical industries were obtained from plant resources and are suitable for future process optimization and scale-up.
Collapse
Affiliation(s)
- Nicolás Cifuentes-Araya
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago 8320000, Chile;
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Beatriz Sepúlveda
- Departamento de Ciencias Químicas, Universidad Andrés Bello, Campus Viña del Mar, Quillota 980, Viña del Mar 2520000, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago 8320000, Chile;
| |
Collapse
|
8
|
Nishikawa T, Hirono T, Takeda R, Okudaira M, Ohya T, Watanabe K. Effects of 7-day quercetin intervention on motor unit activity and muscle contractile properties before and after resistance exercise in young adults randomized controlled trials. Appl Physiol Nutr Metab 2024; 49:447-458. [PMID: 38033306 DOI: 10.1139/apnm-2023-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We investigated whether the alteration of the motor unit recruitment threshold (MURT) caused by quercetin ingestion intervention for 7 days modifies motor unit activation patterns before and after a single session of resistance exercise. Twenty young male and female adults were divided into two groups: ingestion of placebo (PLA) or quercetin glycosides at 200 mg/day (QUE). High-density surface electromyography during submaximal contractions was measured to assess the motor unit firing rate (MUFR) and MURT of the vastus lateralis muscle before (PRE) and after (POST) resistance exercise (DAY1). The same measurements were repeated after 7 days of placebo or quercetin glycoside ingestion (DAY8). In QUE, MURT decreased more from DAY1-PRE to DAY8-PRE (29.1 ± 9.1 to 27.1 ± 9.5% MVC, p < 0.001) but not in PLA (29.8 ± 10.4 to 28.9 ± 9.7% MVC, p < 0.167). For percentage change in MUFR following resistance exercise, there was a significant interaction (day × group, p < 0.001). The degree of changes in MURT from DAY1-PRE to DAY8-PRE was significantly correlated with the percentage change of MUFR from DAY8-PRE to DAY8-POST in QUE (p = 0.014, r = -0.363) but not in PLA (p = 0.518). The study suggests that 7-day quercetin ingestion alters the motor unit recruitment pattern, and this may induce changes in motor unit firing patterns during a single session of resistance training (Trial registration: UMIN000052255, R000059650).
Collapse
Affiliation(s)
- Taichi Nishikawa
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Masamichi Okudaira
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Toshiyuki Ohya
- School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| |
Collapse
|
9
|
Li X, He X, Lin B, Li L, Deng Q, Wang C, Zhang J, Chen Y, Zhao J, Li X, Li Y, Xi Q, Zhang R. Quercetin Limits Tumor Immune Escape through PDK1/CD47 Axis in Melanoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:541-563. [PMID: 38490807 DOI: 10.1142/s0192415x2450023x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Quercetin (3,3[Formula: see text],4[Formula: see text],5,7-pentahydroxyflavone) is a bioactive plant-derived flavonoid, abundant in fruits and vegetables, that can effectively inhibit the growth of many types of tumors without toxicity. Nevertheless, the effect of quercetin on melanoma immunology has yet to be determined. This study aimed to investigate the role and mechanism of the antitumor immunity action of quercetin in melanoma through both in vivo and in vitro methods. Our research revealed that quercetin has the ability to boost antitumor immunity by modulating the tumor immune microenvironment through increasing the percentages of M1 macrophages, CD8[Formula: see text] T lymphocytes, and CD4[Formula: see text] T lymphocytes and promoting the secretion of IL-2 and IFN-[Formula: see text] from CD8[Formula: see text] T cells, consequently suppressing the growth of melanoma. Furthermore, we revealed that quercetin can inhibit cell proliferation and migration of B16 cells in a dose-dependent manner. In addition, down-regulating PDK1 can inhibit the mRNA and protein expression levels of CD47. In the rescue experiment, we overexpressed PDK1 and found that the protein and mRNA expression levels of CD47 increased correspondingly, while the addition of quercetin reversed this effect. Moreover, quercetin could stimulate the proliferation and enhance the function of CD8[Formula: see text] T cells. Therefore, our results identified a novel mechanism through which CD47 is regulated by quercetin to promote phagocytosis, and elucidated the regulation of quercetin on macrophages and CD8[Formula: see text] T cells in the tumor immune microenvironment. The use of quercetin as a therapeutic drug holds potential benefits for immunotherapy, enhancing the efficacy of existing treatments for melanoma.
Collapse
Affiliation(s)
- Xin Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xue He
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Lin
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Li Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qifeng Deng
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Chengzhi Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin 300203, P. R. China
| | - Jing Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ying Chen
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jingyi Zhao
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xinrui Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Yan Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qing Xi
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, P. R. China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Abarova S, Alexova R, Dragomanova S, Solak A, Fagone P, Mangano K, Petralia MC, Nicoletti F, Kalfin R, Tancheva L. Emerging Therapeutic Potential of Polyphenols from Geranium sanguineum L. in Viral Infections, Including SARS-CoV-2. Biomolecules 2024; 14:130. [PMID: 38275759 PMCID: PMC10812934 DOI: 10.3390/biom14010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.
Collapse
Affiliation(s)
- Silviya Abarova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria;
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blvd 84A, 9002 Varna, Bulgaria;
| | - Ayten Solak
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd. 53, 1407 Sofia, Bulgaria;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
| |
Collapse
|
11
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Arai T, Kawasumi K. Natural products exhibiting antiobesity effects in dogs and cats. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2024:293-304. [DOI: 10.1016/b978-0-443-22214-6.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Watanabe K, Kunugi S, Holobar A. The dose-response relationship of quercetin on the motor unit firing patterns and contractile properties of muscle in men and women. J Int Soc Sports Nutr 2023; 20:2265140. [PMID: 37786989 PMCID: PMC10548840 DOI: 10.1080/15502783.2023.2265140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Quercetin is one type of ergogenic aid and its effects on the neuromuscular system have recently attracted interest, but its dose-effect is not yet fully understood. The aim of this study was to examine the effect of different doses of quercetin ingestion on motor unit firing patterns and muscle contractile properties in humans. Thirteen young males and females conducted neuromuscular performance tests before (PRE) and 60 min after (POST) ingestions of 500 or 200 mg of quercetin glycosides (Qg500/Qg200, respectively) or placebo (PLA) on three different days. At PRE and POST, motor unit firing rates were calculated from high-density surface electromyography of the vastus lateralis muscle during 120-s isometric contraction of knee extension at 10% of maximal voluntary contraction. Electrically elicited forces in knee extensor muscles were also measured. After 60 s of voluntary contraction, motor unit firing rates, normalized by the exerted muscle force at POST, were significantly lower at POST than PRE with Qg500 and Qg200 (p < 0.05), but not with PLA (p > 0.05). Changes in motor unit firing rates normalized by the exerted force from PRE to POST were significantly greater with Qg500 than Qg200 at the end of contraction (p < 0.05). Under all three conditions, the electrically elicited force did not significantly change from PRE to POST (p > 0.05). These results suggest that both 500 and 200-mg quercetin ingestions alter motor unit firing patterns, and that quercetin's effect is at least partially dose-dependent.
Collapse
Affiliation(s)
- Kohei Watanabe
- Chukyo University, Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Toyota, Japan
| | - Shun Kunugi
- Chukyo University, Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Toyota, Japan
| | - Aleš Holobar
- University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor, Slovenia
| |
Collapse
|
14
|
Parsaei M, Akhbari K. Magnetic UiO-66-NH 2 Core-Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells. ACS OMEGA 2023; 8:41321-41338. [PMID: 37969997 PMCID: PMC10633860 DOI: 10.1021/acsomega.3c04863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
In this study, a magnetic core-shell metal-organic framework (MOF) nanocomposite, Fe3O4-COOH@UiO-66-NH2, was synthesized for tumor-targeting drug delivery by incorporating carboxylate groups as functional groups onto ferrite nanoparticle surfaces, followed by fabrication of the UiO-66-NH2 shell using a facile self-assembly approach. The anticancer drug quercetin (QU) was loaded into the magnetic core-shell nanoparticles. The synthesized magnetic nanoparticles were comprehensively evaluated through multiple techniques, including FT-IR, PXRD, FE-SEM, TEM, EDX, BET, UV-vis, ZP, and VSM. Drug release investigations were conducted to investigate the release behavior of QU from the nanocomposite at two different pH values (7.4 and 5.4). The results revealed that QU@Fe3O4-COOH@UiO-66-NH2 exhibited a high loading capacity of 43.1% and pH-dependent release behavior, maintaining sustained release characteristics over a prolonged duration of 11 days. Furthermore, cytotoxicity assays using the human breast cancer cell line MDA-MB-231 and the normal cell line HEK-293 were performed to evaluate the cytotoxic effects of QU, UiO-66-NH2, Fe3O4-COOH, Fe3O4-COOH@UiO-66-NH2, and QU@Fe3O4-COOH@UiO-66-NH2. Treatment with QU@Fe3O4-COOH@UiO-66-NH2 substantially reduced the cell viability in cancerous MDA-MB-231 cells. Cellular uptake and cell death mechanisms were further investigated, demonstrating the internalization of QU@Fe3O4-COOH@UiO-66-NH2 by cancer cells and the induction of cancer cell death through the apoptosis pathway. These findings highlight the considerable potential of Fe3O4-COOH@UiO-66-NH2 as a targeted nanocarrier for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
15
|
Hatami M, Kouchak M, Kheirollah A, Khorsandi L, Rashidi M. Quercetin-loaded solid lipid nanoparticles exhibit antitumor activity and suppress the proliferation of triple-negative MDA-MB 231 breast cancer cells: implications for invasive breast cancer treatment. Mol Biol Rep 2023; 50:9417-9430. [PMID: 37831347 DOI: 10.1007/s11033-023-08848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Quercetin (QC) is a naturally occurring flavonoid found in abundance in fruits and vegetables. Its anti-cancer and anti-inflammatory properties have been previously demonstrated, but its low bioavailability hampers its clinical use. Triple-negative breast cancer is a subtype of breast cancer with a poor response to chemotherapy. This study investigates the anti-cancer effects of quercetin-solid lipid nanoparticles (QC-SLN) on the triple-negative breast cancer cell line MDA-MB231. MATERIALS AND METHODS MCF-7 and MDA-MB231 cells were treated with 18.9 µM of QC and QC-SLN for 48 h. Cell viability, apoptosis, colony formation assay, and the anti-angiogenic effects of the treatment were evaluated. RESULTS QC-SLN displayed optimal properties (particle size of 154 nm, zeta potential of -27.7 mV, encapsulation efficiency of 99.6%, and drug loading of 1.81%) and exhibited sustained release of QC over 72 h. Compared to the QC group, the QC-SLN group showed a significant decrease in cell viability, colony formation, angiogenesis, and a substantial increase in apoptosis through the modulation of Bax and Bcl-2 at both gene and protein levels. The augmentation in the proportion of cleaved-to-pro caspases 3 and 9, as well as poly (ADP-ribose) polymerase (PARP), under the influence of QC-SLN, was conspicuously observed in both cancer cell lines. CONCLUSIONS This study showcases quercetin-solid lipid nanoparticles (QC-SLN) as a promising therapy for triple-negative breast cancer. The optimized QC-SLN formulation improved physicochemical properties and sustained quercetin release, resulting in reduced cell viability, colony formation, angiogenesis, and increased apoptosis in the MDA-MB231 cell line. These effects were driven by modulating Bax and Bcl-2 expression, activating caspases 3 and 9, and poly (ADP-ribose) polymerase (PARP). Further in vivo studies are needed to confirm QC-SLN's efficacy and safety.
Collapse
Affiliation(s)
- Mahdi Hatami
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
Liu J, Zhou M, Xu Q, Lv Q, Guo J, Qin X, Xu X, Chen S, Zhao J, Xiao K, Liu Y. Quercetin Ameliorates Deoxynivalenol-Induced Intestinal Injury and Barrier Dysfunction Associated with Inhibiting Necroptosis Signaling Pathway in Weaned Pigs. Int J Mol Sci 2023; 24:15172. [PMID: 37894853 PMCID: PMC10607508 DOI: 10.3390/ijms242015172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Quercetin (Que) is a flavonol compound found in plants, which has a variety of biological activities. Necroptosis, a special form of programmed cell death, plays a vital role in the development of many gastrointestinal diseases. This study aimed to explore whether Que could attenuate the intestinal injury and barrier dysfunction of piglets after deoxynivalenol (DON) exposure through modulating the necroptosis signaling pathway. Firstly, twenty-four weaned piglets were used in a 2 × 2 factorial design and the main factors, including Que (basal diet or diet supplemented with 100 mg/kg Que) and DON exposure (control feed or feed contaminated with 4 mg/kg DON). After feeding for 21 d, piglets were killed for samples. Next, the intestinal porcine epithelial cell line (IPEC-1) was pretreated with or without Que (10 μmol/mL) in the presence or absence of a DON challenge (0.5 μg/mL). Dietary Que increased the body weight, average daily gain, and average daily feed intake (p < 0.05) through the trial. Que supplementation improved the villus height, and enhanced the intestinal barrier function (p < 0.05) indicated by the higher protein expression of occludin and claudin-1 (p < 0.05) in the jejunum of the weaned piglets after DON exposure. Dietary Que also down-regulated the protein abundance of total receptor interacting protein kinase 1 (t-RIP1), phosphorylated RIP1 (p-RIP1), p-RIP3, total mixed lineage kinase domain-like protein (t-MLKL), and p-MLKL (p < 0.05) in piglets after DON exposure. Moreover, Que pretreatment increased the cell viability and decreased the lactate dehydrogenase (LDH) activity (p < 0.05) in the supernatant of IPEC-1 cells after DON challenge. Que treatment also improved the epithelial barrier function indicated by a higher transepithelial electrical resistance (TEER) (p < 0.001), lower fluorescein isothiocyanate-labeled dextran (FD4) flux (p < 0.001), and better distribution of occludin and claudin-1 (p < 0.05) after DON challenge. Additionally, pretreatment with Que also inhibited the protein abundance of t-RIP1, p-RIP1, t-RIP3, p-RIP3, t-MLKL, and p-MLKL (p < 0.05) in IPEC-1 cells after DON challenge. In general, our data suggest that Que can ameliorate DON-induced intestinal injury and barrier dysfunction associated with suppressing the necroptosis signaling pathway.
Collapse
Affiliation(s)
- Jiahao Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Mohan Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Xiaoye Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| |
Collapse
|
17
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Banerjee A, Somasundaram I, Das D, Jain Manoj S, Banu H, Mitta Suresh P, Paul S, Bisgin A, Zhang H, Sun XF, Duttaroy AK, Pathak S. Functional Foods: A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants. Nutrients 2023; 15:nu15112631. [PMID: 37299594 DOI: 10.3390/nu15112631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.
Collapse
Affiliation(s)
- Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Indumathi Somasundaram
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416012, Maharashtra, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Samatha Jain Manoj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Husaina Banu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Pavane Mitta Suresh
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, San Pablo 76130, Mexico
| | - Atil Bisgin
- Department of Medical Genetics, Medical Faculty, Cukurova University, Adana 01250, Turkey
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Ocology, Department of Biomedical and Clinical Sciences, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
19
|
Hatami M, Kouchak M, Kheirollah A, Khorsandi L, Rashidi M. Effective inhibition of breast cancer stem cell properties by quercetin-loaded solid lipid nanoparticles via reduction of Smad2/Smad3 phosphorylation and β-catenin signaling pathway in triple-negative breast cancer. Biochem Biophys Res Commun 2023; 664:69-76. [PMID: 37141640 DOI: 10.1016/j.bbrc.2023.03.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND The presence of cancer stem cells (CSCs) is a major cause of resistance to cancer therapy and recurrence. Triple-negative breast cancer (TNBC) is a subtype that responds poorly to therapy, making it a significant global health issue. Quercetin (QC) has been shown to affect CSC viability, but its low bioavailability limits its clinical use. This study aims to increase the effectiveness of QC in inhibiting CSC generation by using solid lipid nanoparticles (SLNs) in MDA-MB231 cells. MATERIALS AND METHODS After treating MCF-7 and MDA-MB231 cells with 18.9 μM and 13.4 μM of QC and QC-SLN for 48 h, respectively, cell viability, migration, sphere formation, protein expression of β-catenin, p-Smad 2 and 3, and gene expression of EMT and CSC markers were evaluated. RESULTS The QC-SLN with particle size of 154 nm, zeta potential of -27.7 mV, and encapsulation efficacy of 99.6% was found to be the most effective. Compared to QC, QC-SLN significantly reduced cell viability, migration, sphere formation, protein expression of β-catenin and p-Smad 2 and 3, and gene expression of CD44, zinc finger E-box binding homeobox 1 (ZEB1), vimentin, while increasing the gene expression of E-cadherin. CONCLUSIONS Our findings demonstrate that SLNs improve the cytotoxic effect of QC in MDA-MB231 cells by increasing its bioavailability and inhibiting epithelial-mesenchymal transition (EMT), thereby effectively inhibiting CSC generation. Therefore, SLNs could be a promising new treatment for TNBC, but more in vivo studies are needed to confirm their efficacy.
Collapse
Affiliation(s)
- Mahdi Hatami
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
20
|
Hovorun DM, Voiteshenko IS, Gorb L. Manifestations of intramolecular H-bonds of CH… O and OH… C type in quercetin molecule: Analysis of IR spectra by mean of density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122065. [PMID: 36356398 DOI: 10.1016/j.saa.2022.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The IR spectra of 48 conformers of quercetin which represent full conformation space of its tautomers have been modeled at B3LYP/6-311++G(d,p) level of the density functional theory. The presence of intramolecular H-bonds C2'H/C6'H…O3 and O3H…C2'/C6' was characterized by their spectral manifestations. The C2'H/C6'H…O3 contacts were found to have a spectral blue-shift. The O3H…C2'/C6' contacts were mostly red-shifted. The stretching vibrations of H-bonds C2'H/C6'H…O3 demonstrate an increase in the intensity of the modes of stretching vibrations ν(C2'H)/ν(C6'H) and an increase in the frequency of their out-of-plane vibrations γ(C2'H)/γ(C6'H). Most of the spectral parameters correlate a little with the energy of the H-bonds.
Collapse
Affiliation(s)
- Dmytro M Hovorun
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo str., 03680 Kyiv, Ukraine
| | - Ivan S Voiteshenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo str., 03680 Kyiv, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| | - Leonid Gorb
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo str., 03680 Kyiv, Ukraine; QSAR Lab Sp. z o.o. Trzy Lipy 3, B, 80-172 Gdańsk, Poland.
| |
Collapse
|
21
|
Alper Öztürk A, Başaran E, Şenel B, Demirel M, Sarica Ş. Synthesis, characterization, antioxidant activity of Quercetin, Rutin and Quercetin-Rutin incorporated β-cyclodextrin inclusion complexes and determination of their activity in NIH-3T3, MDA-MB-231 and A549 cell lines. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
22
|
Duan N, Hu X, Zhou R, Li Y, Wu W, Liu N. A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Mol Nutr Food Res 2023; 67:e2200435. [PMID: 36698331 DOI: 10.1002/mnfr.202200435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is the local environment where malignant cells strive and survive, composed of cancer cells and their surroundings, regulating essential tumor survival, and promotion functions. Dietary flavonoids are abundantly present in common vegetables and fruits and exhibit good anti-cancer activities, which significantly inhibit tumorigenesis by targeting TME constituents and their interaction with cancer cells. This review aims to synthesize information concerning the modulation of TME by dietary flavonoids, as well as to provide insights into the molecular basis of its potential anti-tumor activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the TME processes, involving cell proliferation, invasion and migration, continuous angiogenesis, and immune inflammation. This study will provide a theoretical basis for the development of the leading compound targeting TME for anti-cancer therapies from these dietary flavonoids.
Collapse
Affiliation(s)
- Namin Duan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.,Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
23
|
Rivas-Chacón LDM, Yanes-Díaz J, de Lucas B, Riestra-Ayora JI, Madrid-García R, Sanz-Fernández R, Sánchez-Rodríguez C. Cocoa Polyphenol Extract Inhibits Cellular Senescence via Modulation of SIRT1 and SIRT3 in Auditory Cells. Nutrients 2023; 15:544. [PMID: 36771251 PMCID: PMC9921725 DOI: 10.3390/nu15030544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Cocoa, rich in polyphenols, has been reported to provide many health benefits due to its antioxidant properties. In this study, we investigated the effect of Cocoa polyphenols extract (CPE) against oxidative stress-induced cellular senescence using a hydrogen peroxide (H2O2)-induced cellular senescence model in three auditory cells lines derived from the auditory organ of a transgenic mouse: House Ear Institute-Organ of Corti 1 (HEI-OC1), Organ of Corti-3 (OC-k3), and Stria Vascularis (SV-k1) cells. Our results showed that CPE attenuated senescent phenotypes, including senescence-associated β-galactosidase expression, cell proliferation, alterations of morphology, oxidative DNA damage, mitochondrial dysfunction by inhibiting mitochondrial reactive oxygen species (mtROS) generation, and related molecules expressions such as forkhead box O3 (FOXO3) and p53. In addition, we determined that CPE induces expression of sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), and it has a protective role against cellular senescence by upregulation of SIRT1 and SIRT3. These data indicate that CPE protects against senescence through SIRT1, SIRT3, FOXO3, and p53 in auditory cells. In conclusion, these results suggest that Cocoa has therapeutic potential against age-related hearing loss (ARHL).
Collapse
Affiliation(s)
- Luz del Mar Rivas-Chacón
- Department Clinical Analysis, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain
| | - Joaquín Yanes-Díaz
- Department Otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain
| | - Beatriz de Lucas
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Juan Ignacio Riestra-Ayora
- Department Otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Raquel Madrid-García
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Ricardo Sanz-Fernández
- Department Otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain
| | - Carolina Sánchez-Rodríguez
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| |
Collapse
|
24
|
VanderVeen BN, Cardaci TD, Cunningham P, McDonald SJ, Bullard BM, Fan D, Murphy EA, Velázquez KT. Quercetin Improved Muscle Mass and Mitochondrial Content in a Murine Model of Cancer and Chemotherapy-Induced Cachexia. Nutrients 2022; 15:102. [PMID: 36615760 PMCID: PMC9823918 DOI: 10.3390/nu15010102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
A cachexia diagnosis is associated with a doubling in hospital stay and increased healthcare cost for cancer patients and most cachectic patients do not survive treatment. Unfortunately, complexity in treating cachexia is amplified by both the underlying malignancy and the anti-cancer therapy which can independently promote cachexia. Quercetin, an organic polyphenolic flavonoid, has demonstrated anti-inflammatory and antioxidant properties with promise in protecting against cancer and chemotherapy-induced dysfunction; however, whether quercetin is efficacious in maintaining muscle mass in tumor-bearing animals receiving chemotherapy has not been investigated. C26 tumor-bearing mice were given 5-fluorouracil (5FU; 30 mg/kg of lean mass i.p.) concomitant with quercetin (Quer; 50 mg/kg of body weight via oral gavage) or vehicle. Both C26 + 5FU and C26 + 5FU + Quer had similar body weight loss; however, muscle mass and cross-sectional area was greater in C26 + 5FU + Quer compared to C26 + 5FU. Additionally, C26 + 5FU + Quer had a greater number and larger intermyofibrillar mitochondria with increased relative protein expression of mitochondrial complexes V, III, and II as well as cytochrome c expression. C26 + 5FU + Quer also had increased MFN1 and reduced FIS1 relative protein expression without apparent benefits to muscle inflammatory signaling. Our data suggest that quercetin protected against cancer and chemotherapy-induced muscle mass loss through improving mitochondrial homeostatic balance.
Collapse
Affiliation(s)
- Brandon N. VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
- AcePre, LLC, Columbia, SC 29209, USA
| | - Thomas D. Cardaci
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Patrice Cunningham
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Sierra J. McDonald
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Brooke M. Bullard
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Daping Fan
- AcePre, LLC, Columbia, SC 29209, USA
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - E. Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
- AcePre, LLC, Columbia, SC 29209, USA
| | - Kandy T. Velázquez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
25
|
Islam Z, Islam J, Tony SR, Anjum A, Ferdous R, Roy AK, Hossain S, Salam KA, Nikkon F, Hossain K, Saud ZA. Mulberry leaves juice attenuates arsenic-induced neurobehavioral and hepatic disorders in mice. Food Sci Nutr 2022; 10:4360-4370. [PMID: 36514774 PMCID: PMC9731539 DOI: 10.1002/fsn3.3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
Arsenic (As) poisoning has caused an environmental catastrophe in Bangladesh as millions of people are exposed to As-contaminated drinking water. Chronic As-exposure causes depression, memory impairment, and liver injury in experimental animals. This study was carried out to assess the protective effect of mulberry leaves juice (Mul) against As-induced neurobehavioral and hepatic dysfunctions in Swiss albino mice. As-exposed mice spent significantly reduced time in open arms and increased time spent in closed arms in the elevated plus maze (EPM) test, whereas they took significantly longer time to find the hidden platform in the Morris water maze (MWM) test and spent significantly less time in the desired quadrant when compared to the control mice. A significant reduction in serum BChE activity, an indicator of As-induced neurotoxicity-associated behavioral changes, was noted in As-exposed mice compared to control mice. Supplementation of Mul to As-exposed mice significantly increased serum BChE activity, increased the time spent in open arms and reduced time latency to find the hidden platform, and stayed more time in the target quadrant in EPM and MWM tests, respectively, compared to As-exposed-only mice. Also, a significantly reduced activity of BChE, AChE, SOD, and GSH in brain, and elevated ALP, AST, and ALT activities in serum were noted in As-exposed mice when compared to control mice. Mul supplementation significantly restored the activity of these enzymes and also recovered As-induced alterations in hepatic tissue in As-exposed mice. In conclusion, this study suggested that mulberry leaves juice attenuates As-induced neurobehavioral and hepatic dysfunction in mice.
Collapse
Affiliation(s)
- Zohurul Islam
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Selim Reza Tony
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Adiba Anjum
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Rafia Ferdous
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - Apurba Kumar Roy
- Department of Genetic Engineering & BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Kazi Abdus Salam
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Khaled Hossain
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| |
Collapse
|
26
|
Sub-chronic oral toxicity screening of quercetin in mice. BMC Complement Med Ther 2022; 22:279. [PMID: 36274141 PMCID: PMC9588244 DOI: 10.1186/s12906-022-03758-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Quercetin is an organic flavonoid present in several fruits and vegetables. The anti-inflammatory, antiviral, antioxidant, cardio-protective, anti-carcinogenic and neuroprotective properties demonstrated by this dietary supplement endorses it as a possible treatment for inflammatory diseases and cancer. Unfortunately, conflicting research has cast uncertainties on the toxicity of quercetin. The main purpose of this study was to determine if quercetin has any toxic properties in mice at doses that have shown efficacy in pre-clinical studies regarding cancer, cancer therapy, and their off-target effects. METHODS A sub-chronic toxicity study of quercetin was examined in male and female CD2F1 mice. Three different doses of quercetin (62, 125, and 250 mg/kg of diet) were infused into the AIN-76A purified diet and administered to mice ad libitum for 98 days. Body weight (BW), food consumption, water intake, body composition, blood count, behavior, and metabolic phenotype were assessed at various timepoints during the course of the experiment. Tissue and organs were evaluated for gross pathological changes and plasma was used to measure alkaline phosphatase (AP), aspartate transaminase (AST), and alanine transaminase (ALT). RESULTS We found that low (62 mg/kg of diet), medium (125 mg/kg of diet), and high (250 mg/kg of diet) quercetin feeding had no discernible effect on body composition, organ function, behavior or metabolism. CONCLUSIONS In summary, our study establishes that quercetin is safe for use in both female and male CD2F1 mice when given at ~ 12.5, 25, or 50 mg/kg of BW daily doses for 14 weeks (i.e. 98 days). Further studies will need to be conducted to determine any potential toxicity of quercetin following chronic ingestion.
Collapse
|
27
|
Gui Y, Qin K, Zhang Y, Bian X, Wang Z, Han D, Peng Y, Yan H, Gao Z. Quercetin improves rapid endothelialization and inflammatory microenvironment in electrospun vascular grafts. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac9266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Abstract
There is a great need for small diameter vascular grafts among patients with cardiovascular diseases annually. However, continuous foreign body reactions and fibrosis capsules brought by biomaterials are both prone to poor vascular tissue regeneration. To address this problem, we fabricated a polycaprolactone (PCL) vascular graft incorporated with quercetin (PCL/QCT graft) in this study. In vitro cell assay showed that quercetin reduced the expressions of pro-inflammatory genes of macrophages while increased the expressions of anti-inflammatory genes. Furthermore, in vivo implantation was performed in a rat abdominal aorta replacement model. Upon implantation, the grafts exhibited sustained quercetin release and effectively enhanced the regeneration of vascular tissue. The results revealed that quercetin improved endothelial layer formation along the lumen of the vascular grafts at 4 weeks. Furthermore, the thickness of vascular smooth muscle layers significantly increased in PCL/QCT group compared with PCL group. More importantly, the presence of quercetin stimulated the infiltration of a large amount of M2 phenotype macrophages into the grafts. Collectively, the above data reinforced our hypothesis that the incorporation of quercetin may be in favor of modulating the inflammatory microenvironment and improving vascular tissue regeneration and remodeling in vascular grafts.
Collapse
|
28
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Gasmi Benahmed A, Beley N, Kovalska N, Bjørklund G. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals (Basel) 2022; 15:1049. [PMID: 36145270 PMCID: PMC9504481 DOI: 10.3390/ph15091049] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 outbreak seems to be the most dangerous challenge of the third millennium due to its highly contagious nature. Amongst natural molecules for COVID-19 treatment, the flavonoid molecule quercetin (QR) is currently considered one of the most promising. QR is an active agent against SARS and MERS due to its antimicrobial, antiviral, anti-inflammatory, antioxidant, and some other beneficial effects. QR may hold therapeutic potential against SARS-CoV-2 due to its inhibitory effects on several stages of the viral life cycle. In fact, QR inhibits viral entry, absorption, and penetration in the SARS-CoV virus, which might be at least partly explained by the ability of QR and its derivatives to inhibit 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). QR is a potent immunomodulatory molecule due to its direct modulatory effects on several immune cells, cytokines, and other immune molecules. QR-based nanopreparations possess enhanced bioavailability and solubility in water. In this review, we discuss the prospects for the application of QR as a preventive and treatment agent for COVID-19. Given the multifactorial beneficial action of QR, it can be considered a very valid drug as a preventative, mitigating, and therapeutic agent of COVID-19 infection, especially in synergism with zinc, vitamins C, D, and E, and other polyphenols.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | | | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| |
Collapse
|
29
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
30
|
Ravindra PV, Janhavi P, Divyashree S, Muthukumar SP. Nutritional interventions for improving the endurance performance in athletes. Arch Physiol Biochem 2022; 128:851-858. [PMID: 32223574 DOI: 10.1080/13813455.2020.1733025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endurance refers to the ability of skeletal muscles to perform continuously withstanding the hardships of exercise. Endurance exercises have three phases: pre-, during-, and post-workout phase. The nutritional requirements that drive these phases vary on intensity, type of workout, individual's body composition, training, weather conditions, etc. Generally, the pre-workout phase requires glycogen synthesis and spare glycogen breakdown. While workout phase, requires rapid absorption of exogenous glucose, insulin release to transport glucose into muscle cells, replenish the loss of electrolytes, promote fluid retention, etc. However, post-workout phase requires quick amino acid absorption, muscle protein synthesis, repair of damaged muscle fibres and tendon, ameliorate inflammation, oxidative stress, etc. Therefore, nutritional sources that can help these metabolic requirements is recommended. In this review, various dietary interventions including timing and amount of nutrient consumption that can promote the above metabolic requirements that in turn support in improving the endurance potential in athletes are discussed.HIGHLIGHTSReview article describes nutritional requirements of endurance exercises.It also describes nutritional interventions to enhance the endurance potential in athletes.
Collapse
Affiliation(s)
- P V Ravindra
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | - P Janhavi
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | - S Divyashree
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | | |
Collapse
|
31
|
Buhrman K, Aravena-Calvo J, Ross Zaulich C, Hinz K, Laursen T. Anthocyanic Vacuolar Inclusions: From Biosynthesis to Storage and Possible Applications. Front Chem 2022; 10:913324. [PMID: 35836677 PMCID: PMC9273883 DOI: 10.3389/fchem.2022.913324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022] Open
Abstract
The ability of plants to accumulate specific metabolites in concentrations beyond their solubility in both aqueous and lipid environments remains a key question in plant biology. Natural Deep Eutectic Solvents (NADES) are mixtures of natural compounds in specific molar ratios, which interact through hydrogen bonding. This results in a viscous liquid that can solubilize high amounts of natural products while maintaining a negligible vapor pressure to prevent release of volatile compounds. While all the components are presents in plant cells, identifying experimental evidence for the occurrence of NADES phases remains a challenging quest. Accumulation of anthocyanin flavonoids in highly concentrated inclusions have been speculated to involve NADES as an inert solvent. The inherent pigment properties of anthocyanins provide an ideal system for studying the formation of NADES in a cellular environment. In this mini-review we discuss the biosynthesis of modified anthocyanins that facilitate their organization in condensates, their transport and storage as a specific type of phase separated inclusions in the vacuole, and the presence of NADES constituents as a natural solution for storing high amounts of flavonoids and other natural products. Finally, we highlight how the knowledge gathered from studying the discussed processes could be used for specific applications within synthetic biology to utilize NADES derived compartments for the production of valuable compounds where the production is challenged by poor solubility, toxic intermediates or unstable and volatile products.
Collapse
Affiliation(s)
- Kees Buhrman
- Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Javiera Aravena-Calvo
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Ross Zaulich
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Hinz
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Laursen
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Tomas Laursen,
| |
Collapse
|
32
|
Masumi M, Noormohammadi F, Kianisaba F, Nouri F, Taheri M, Taherkhani A. Methicillin-Resistant Staphylococcus aureus: Docking-Based Virtual Screening and Molecular Dynamics Simulations to Identify Potential Penicillin-Binding Protein 2a Inhibitors from Natural Flavonoids. Int J Microbiol 2022; 2022:9130700. [PMID: 35571353 PMCID: PMC9095385 DOI: 10.1155/2022/9130700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 04/15/2022] [Indexed: 01/17/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is responsible for several disorders including skin and soft tissue infections, bacteremia, pulmonary infections, septic arthritis, osteomyelitis, meningitis, gastroenteritis, toxic-shock syndrome, and urinary tract infections. Methicillin-resistant S. aureus (MRSA) contains penicillin-binding protein 2a (SauPBP2a) responsible for catalyzing the peptidoglycan production within the bacterial cell wall. The binding affinity of SauPBP2a to beta-lactam antibiotics is low, and thus, it is necessary to discover new effective SauPBP2a inhibitors to combat mortality and morbidity in patients affected by MRSA. The binding affinity of 46 natural flavonoids to the SauPBP2a active site was examined via molecular docking analysis. The stability of docked poses associated with the top-ranked flavonoids was tested by performing molecular dynamics (MD) in 10 nanoseconds (ns) computer simulations. Kaempferol 3-rutinoside-7-sophoroside and rutin demonstrated a considerable binding affinity to the SauPBP2a active site (ΔG binding < -11 kcal/mol). Their docked poses were found to be stable for 10 ns MD simulations. Kaempferol 3-rutinoside-7-sophoroside and rutin also exhibited salient binding affinity to the enzyme's allosteric site. This study suggests that kaempferol 3-rutinoside-7-sophoroside and rutin may be considered as drug candidates for therapeutic aims in several human infections associated with MRSA. Nevertheless, in vitro and in vivo confirmations are warranted.
Collapse
Affiliation(s)
- Motahareh Masumi
- Students Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Fatemeh Kianisaba
- Students Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
33
|
Tsao JP, Bernard JR, Hsu HC, Hsu CL, Liao SF, Cheng IS. Short-Term Oral Quercetin Supplementation Improves Post-exercise Insulin Sensitivity, Antioxidant Capacity and Enhances Subsequent Cycling Time to Exhaustion in Healthy Adults: A Pilot Study. Front Nutr 2022; 9:875319. [PMID: 35571883 PMCID: PMC9096901 DOI: 10.3389/fnut.2022.875319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Aim Quercetin has been reported to have antioxidant and anti-inflammatory properties on health promotion in human studies. The main purpose of this study was to investigate the effect of short-term oral quercetin supplementation on post-exercise whole-body energy metabolism. This study also aimed to determine the effects of supplementation on oxygen stress, inflammation, muscle damage, and high-intensity cycling exercise performance. Method Twelve healthy participants, physically active students, were recruited to perform a randomized, single-blind crossover study. All subjects completed 7-days of quercetin (quercetin:1,000 mg per day for 7-days) and placebo supplementation in a randomized order. Supplement/placebo was combined with exercise consisting of 70% V̇O2max cycling for 60-min, followed by 3-h of recovery, then a subsequent single bout of cycling exercise with 75% V̇O2max to exhaustion. Time to exhaustion, indicators of muscle damage, as well as blood and gaseous parameters relating to energy metabolism, oxidative stress, inflammatory response, respectively, were determined. Results The results showed that 7-day quercetin supplementation significantly attenuated the post-exercise glucose-induced insulin response, increased total antioxidant capacity (TAC) and superoxidase dismutase (SOD) activities, and mitigated malondialdehyde (MDA) levels during the recovery period (p < 0.05). While subsequent 75% V̇O2max cycling performance was significantly improved after quercetin treatment and accompanied by lower responses of interleukin 6 and creatine kinase at 24-h. However, it’s noted that there were no significant responses in glucose, respiratory exchange rate, tumor necrosis factor-α (TNF-α), myoglobin, and high sensitivity C-reactive protein between quercetin and placebo trials. Conclusion Our findings concluded that 7-day oral quercetin supplementation enhances high-intensity cycling time to exhaustion, which may be due in part to the increase in whole-body insulin-stimulated glucose uptake and attenuation of exercise-induced oxygen stress and pro-inflammation. Therefore, quercetin may be considered an effective ergogenic aid for enhancing high-intensity cycling performance among young adults.
Collapse
Affiliation(s)
- Jung-Piao Tsao
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Jeffrey R. Bernard
- Department of Kinesiology, California State University, Stanislaus, Turlock, CA, United States
| | - Hsiu-Chen Hsu
- Physical Education Office, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | - Chin-Lin Hsu
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung City, Taiwan
- *Correspondence: Chin-Lin Hsu,
| | - Su-Fen Liao
- Department of Physical Medicine and Rehabilitation, Changhua Christian Hospital, Changhua City, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, Taiwan
- Su-Fen Liao,
| | - I-Shiung Cheng
- Department of Physical Education, National Taichung University of Education, Taichung City, Taiwan
- I-Shiung Cheng,
| |
Collapse
|
34
|
Biswas M, Das A, Basu S. Flavonoids: The Innocuous Agents Offering Protection Against Alzheimer's Disease Through Modulation Of Proinflammatory And Apoptotic Pathways. Curr Top Med Chem 2022; 22:769-789. [PMID: 35352661 DOI: 10.2174/1568026622666220330011645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Beginning from mild cognitive impairment in patients suffering from Alzheimer's disease (AD), dementia sets in with the progress of the disease. The pathological changes in the brain begin fifteen to twenty years before AD related dementia develops. Presence of senile plaques and neurofibrillary tangles are considered the hallmarks of AD brain. Chronic inflammation resulting from the disruption of equilibrium between anti-inflammatory and pro-inflammatory signalling emerges as another important feature of AD and also other neurodegenerative diseases. Substantial studies demonstrate that this sustained immune response in the brain is associated with neuronal loss, along with facilitation and aggravation of Aβ and NFT pathologies. Although it is well accepted that neuroinflammation and oxidative stress have both detrimental and beneficial influences on the brain tissues, the involvement of microglia and astrocytes in the onset and progress of the neurodegenerative process in AD is becoming increasingly recognized. The cause of neuronal loss, although, is known to be apoptosis, the mechanism of promotion of neuronal death remains undisclosed. OBJECTIVE Controlling the activation of the resident immune cells and/or the excessive production of pro-inflammatory and pro-oxidant factors could be effective as therapeutics. Among the phytonutrients, the neuroprotective role of flavonoids is beyond doubt. This review is an exploration of literature on the role of flavonoids in these aspects. CONCLUSION Flavonoids are not only effective in ameliorating the adverse consequences of oxidative stress but also impede the development of late onset Alzheimer's disease by modulating affected signalling pathways and boosting signalling crosstalk.
Collapse
Affiliation(s)
- Moumita Biswas
- Department of Microbiology, 35, Ballygunge Circular Road, University of Calcutta, Kolkata 7000019, West Bengal, India
| | - Aritrajoy Das
- Department of Microbiology, 35, Ballygunge Circular Road, University of Calcutta, Kolkata 7000019, West Bengal, India
| | - Soumalee Basu
- Department of Microbiology, 35, Ballygunge Circular Road, University of Calcutta, Kolkata 7000019, West Bengal, India
| |
Collapse
|
35
|
Nunes Alves Paim LF, Dos Santos PR, Patrocinio Toledo CA, Minello L, Lima da Paz JR, Castro Souza V, Salvador M, Moura S. Four almost unexplored species of Brazilian Connarus (Connaraceae): Chemical composition by ESI-QTof-MS/MS-GNPS and a pharmacologic potential. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:286-302. [PMID: 34510611 DOI: 10.1002/pca.3087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Species of Connaraceae are globally used in traditional medicines. However, several of these have not been studied regarding their chemical composition, and some are even at risk of extinction without proper studies. Therefore, the chemical composition and pharmacological potential of Connarus blanchetii Planch., Connarus nodosus Baker, Connarus regnellii G. Schellenb., and Connarus suberosus Planch., which were previously unknown, were analyzed. OBJECTIVE This work aims to investigate the pharmacological potential of these four Connarus species. The chemical composition of different extracts was determined by high-resolution mass spectrometry (HRMS), with subsequent analysis by the GNPS platform and competitive fragmentation modeling (CFM). MATERIALS AND METHODS Leaf extracts (C. blanchetii, C. nodosus, C. regnellii, and C. suberosus) and bark extracts (C. regnellii and C. suberosus) were obtained by decoction, infusion, and maceration. LC/HRMS data were submitted to the GNPS platform and evaluated using CFM in order to confirm the structures. RESULTS The HRMS-GNPS/CFM analysis indicated the presence of 23 compounds that were mainly identified as phenolic derivatives from quercetin and myricetin, of which 21 are unedited in the Connarus genus. Thus, from the analyses performed, we can identify different compounds with pharmacological potential, as well as the most suitable forms of extraction. CONCLUSION Using HRMS-GNPS/CFM, 21 unpublished compounds were identified in the studied species. Therefore, our combination of data analysis techniques can be used to determine their chemical composition.
Collapse
Affiliation(s)
| | - Paulo Roberto Dos Santos
- Laboratory of Biotechnology of Natural and Synthetics Products, University of Caxias do Sul, Brazil
| | | | - Luana Minello
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias do Sul, Brazil
| | | | - Vinicius Castro Souza
- Departamento de Ciências Biológicas. Escola Superior de Agricultura "Luiz de Queiroz"-ESALQ, University of São Paulo-USP, Brazil
| | - Mirian Salvador
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias do Sul, Brazil
| | - Sidnei Moura
- Laboratory of Biotechnology of Natural and Synthetics Products, University of Caxias do Sul, Brazil
| |
Collapse
|
36
|
Effects of Green Cardamom Supplementation on Serum Levels of Hs-CRP, Dimethylarginine, Nitric Oxide and Blood Pressure in Patients with Type 2 Diabetes: A Randomized, Double-blind, Placebo Controlled, Clinical Trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
38
|
HASIZAH A, DJALAL M, MOCHTAR AA, SALENGKE S. Fluidized bed drying characteristics of moringa leaves and the effects of drying on macronutrients. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.103721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Chen H, Ma X, Cao L, Zhao S, Zhao C, Yin S, Hu H. A Multi-Ingredient Formula Ameliorates Exercise-Induced Fatigue by Changing Metabolic Pathways and Increasing Antioxidant Capacity in Mice. Foods 2021; 10:3120. [PMID: 34945671 PMCID: PMC8701726 DOI: 10.3390/foods10123120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms are involved in exercise-induced fatigue, including energy depletion, metabolite accumulation, and oxidative stress, etc. The mechanistic findings provide a rationale for a multi-targeted approach to exercise-induced fatigue management. This study created a multi-ingredient formula mixed with valine, isoleucine, leucine, β-alanine, creatine, l-carnitine, quercetin, and betaine, based on the functional characteristics of these agents, and evaluated the preventive effect of this mechanism-based formula on exercise-induced fatigue. Results showed that the 7-d formula supplement significantly increased the running duration time of mice by 14% and the distance by 20% in an exhaustive treadmill test, indicating that the formula could delay fatigue appearance and improve exercise performance. Mechanistically, the formula enhanced fatty acid oxidation and spared liver glycogen by regulating the fat/glucose metabolism-related signaling pathways, including phospho-adenosine monophosphate-activated protein kinase α (p-AMPKα), phospho-acetyl CoA carboxylase (p-ACC), carnitine palmitoyl-transferase 1B (CPT1B), fatty acid translocase (CD36), and glucose transporter type 4 (GLUT4), and increased antioxidant capacity. The findings suggested that the formula tested in this study effectively ameliorated exercise-induced fatigue by targeting multi-signaling pathways, showing promise as a regimen to fight exercise-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbo Hu
- Department of Food Nutrition and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.C.); (X.M.); (L.C.); (S.Z.); (C.Z.); (S.Y.)
| |
Collapse
|
40
|
Önal H, Arslan B, Üçüncü Ergun N, Topuz Ş, Yilmaz Semerci S, Kurnaz ME, Molu YM, Bozkurt MA, Süner N, Kocataş A. Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial. Turk J Biol 2021; 45:518-529. [PMID: 34803451 PMCID: PMC8573830 DOI: 10.3906/biy-2104-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Scientific research continues on new preventive and therapeutic strategies against severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2). So far, there is no proven curative treatment, and a valid alternative therapeutic approach needs to be developed. This study is designed to evaluate the effect of quercetin in COVID-19 treatment. This was a single-centre, prospective randomized controlled cohort study. Routine care versus QCB (quercetin, vitamin C, bromelain) supplementation was compared between 429 patients with at least one chronic disease and moderate-to-severe respiratory symptoms. Demographic features, signs, laboratory results and drug administration data of patients were recorded. The endpoint was that QCB supplementation was continued throughout the follow-up period from study baseline to discharge, intubation, or death. The most common complaints at the time of hospital admission were fatigue (62.4%), cough (61.1%), anorexia (57%), thirst (53.7%), respiratory distress (51%) and chills (48.3%). The decrease in CRP and ferritin levels was higher in the QCB group (all Ps were < 0.05). In the QCB group, the increase in platelet and lymphocyte counts was higher (all Ps were < 0.05). QCB did not reduce the risk of events during follow-up. Adjustments for statistically significant parameters, including the lung stage, use of favipiravir and presence of comorbidity did not change the results. While there was no difference between the groups in terms of event frequency, the QCB group had more advanced pulmonary findings. QCB supplement is shown to have a positive effect on laboratory recovery. While there was no difference between the groups in terms of event frequency, QCB supplement group had more advanced pulmonar findings, and QCB supplement is shown to have a positive effect on laboratory recovery/results. Therefore, we conclude that further studies involving different doses and plasma level measurements are required to reveal the dose/response relationship and bioavailability of QCB for a better understanding of the role of QCB in the treatment of SARS CoV-2.
Collapse
Affiliation(s)
- Hasan Önal
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Bengü Arslan
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Nurcan Üçüncü Ergun
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Şeyma Topuz
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Seda Yilmaz Semerci
- Department of Neonatology, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Mehmet Eren Kurnaz
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Yulet Miray Molu
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Mehmet Abdussamet Bozkurt
- Department of General Surgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Nurettin Süner
- Department of General Medicine, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Ali Kocataş
- Department of General Surgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| |
Collapse
|
41
|
Si X, Liu N, Jia H, Wang J, Pan L, Dong L, Rong Z, Yang Y, Wu Z. Gut relief formula attenuates dextran sulfate sodium-induced colitis by regulating NF-κB signaling and the intestinal microbiota in mice. Food Funct 2021; 12:10983-10993. [PMID: 34652352 DOI: 10.1039/d1fo01477c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background. Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the gastrointestinal tract. The nutrition care gut relief formula (GR), a combination of natural products and nutrients, has been shown to benefit gastrointestinal health. However, the underlying mechanism responsible for this effect is incompletely defined. Objective. This study was conducted to evaluate the hypothesis that GR could attenuate dextran sulfate sodium (DSS)-induced colitis by enhancing intestinal mucosal immunity and regulating intestinal microflora in mice. Methods. Six-week-old C57BL/6J mice orally administered with GR (7.5 mg per mouse per day) or an equal volume of vehicle were treated with sterile water or 2.5% DSS for 6 days to induce colitis. Histological damage, inflammatory cell infiltration, and colonic microbiome community were analyzed to evaluate the beneficial effect of GR. Results. GR administration ameliorated the severity of colitis as evidenced by reduced body weight loss, decreased colon shortening, reduced myeloperoxidase (MPO) activity, inhibited proinflammatory cytokine secretion, and decreased histological damage in DSS-challenged mice. Additionally, enhancement of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in response to DSS was attenuated by GR administration. Meanwhile, DSS treatment resulted in reduction of the glutathione (GSH) level and tight junction protein abundance, as compared with the controls. Of note, these adverse effects were remarkably eliminated by GR administration. Further study showed that the protective effect of GR was associated with the inhibited activation of STAT3 and NF-κB signaling pathways, as well as upregulated abundances of Lactobacillus in the colon tissues of mice. Conclusion. Collectively, the data provided herein demonstrated that GR administration alleviated intestinal mucosal inflammation and mucosal barrier dysfunction. These beneficial effects were associated with inhibited activation of STAT3 and NF-κB signaling pathways, as well as upregulated abundances of Lactobacillus in the colon tissues of mice.
Collapse
Affiliation(s)
- Xuemeng Si
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Jiaqi Wang
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Lina Pan
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Ling Dong
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Zhixing Rong
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
42
|
Uyanga VA, Amevor FK, Liu M, Cui Z, Zhao X, Lin H. Potential Implications of Citrulline and Quercetin on Gut Functioning of Monogastric Animals and Humans: A Comprehensive Review. Nutrients 2021; 13:3782. [PMID: 34836037 PMCID: PMC8621968 DOI: 10.3390/nu13113782] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
The importance of gut health in animal welfare and wellbeing is undisputable. The intestinal microbiota plays an essential role in the metabolic, nutritional, physiological, and immunological processes of animals. Therefore, the rapid development of dietary supplements to improve gut functions and homeostasis is imminent. Recent studies have uncovered the beneficial effects of dietary supplements on the immune response, microbiota, gut homeostasis, and intestinal health. The application of citrulline (a functional gut biomarker) and quercetin (a known potent flavonoid) to promote gut functions has gained considerable interest as both bioactive substances possess anti-inflammatory, anti-oxidative, and immunomodulatory properties. Research has demonstrated that both citrulline and quercetin can mediate gut activities by combating disruptions to the intestinal integrity and alterations to the gut microbiota. In addition, citrulline and quercetin play crucial roles in maintaining intestinal immune tolerance and gut health. However, the synergistic benefits which these dietary supplements (citrulline and quercetin) may afford to simultaneously promote gut functions remain to be explored. Therefore, this review summarizes the modulatory effects of citrulline and quercetin on the intestinal integrity and gut microbiota, and further expounds on their potential synergistic roles to attenuate intestinal inflammation and promote gut health.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya;
| | - Felix Kwame Amevor
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya;
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
| |
Collapse
|
43
|
Pinheiro RGR, Pinheiro M, Neves AR. Nanotechnology Innovations to Enhance the Therapeutic Efficacy of Quercetin. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2658. [PMID: 34685098 PMCID: PMC8539325 DOI: 10.3390/nano11102658] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Quercetin is a flavonol present in many vegetables and fruits. Generally, quercetin can be found in aglycone and glycoside forms, mainly in leaves. The absorption of this compound occurs in the large and small intestine, where it suffers glucuronidation, sulfidation, and methylation to improve hydrophilicity. After metabolization, which occurs mainly in the gut, it is distributed throughout the whole organism and is excreted by feces, urine, and exhalation of carbon dioxide. Despite its in vitro cytotoxicity effects, in vivo studies with animal models ensure its safety. This compound can protect against cancer, cardiovascular diseases, chronic inflammation, oxidative stress, and neurodegenerative diseases due to its radical scavenging and anti-inflammatory properties. However, its poor bioavailability dampens the potential beneficial effects of this flavonoid. In that sense, many types of nanocarriers have been developed to improve quercetin solubility, as well as to design tissue-specific delivery systems. All these studies manage to improve the bioavailability of quercetin, allowing it to increase its concentration in the desired places. Collectively, quercetin can become a promising compound if nanotechnology is employed as a tool to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Rúben G. R. Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
| | - Ana Rute Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
44
|
Chakraborty A, Majumdar S, Bhowal J. Phytochemical screening and antioxidant and antimicrobial activities of crude extracts of different filamentous fungi. Arch Microbiol 2021; 203:6091-6108. [PMID: 34609530 DOI: 10.1007/s00203-021-02572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
Five filamentous fungal strains that grew in different whey-based media under submerged fermentation were investigated for antioxidant properties and phytochemicals. Phytochemical analysis revealed the presence of alkaloids, tannin, flavonoids, glycosides, phenols, saponins, and terpenes in the crude intra- and extracellular ethyl acetate extracts of different strains. All fungal extracts exhibited effective antioxidant activities in terms of TPC, TFC, DPPH, FRAP, ABTS, reducing power, and metal chelating capacity. The activities of intracellular extracts were higher than the extracellular metabolites. Fermentation media with sugar and salt supplementation significantly influenced antioxidant production. Aspergillus niger in glucose-supplemented whey medium was found to exhibit the highest antioxidant properties. The antimicrobial activity of A. niger and Penicillium expansum extracts by microtiter plate assay showed a promising result against some pathogenic bacterial strains. Chromatographic analysis of the fungal extracts revealed the presence of chlorogenic acid, trans-cinnamic acid, ferulic acid quercetin, myricetin, kaempferol, and catechin which are known for their antioxidant properties. Accumulation of nutrients in fungal biomass under constraint environment produces secondary metabolites which has demonstrated efficacy towards alleviation of several degenerative diseases. The antioxidative enriched phytochemicals present in these five different fungal strains will provide a breakthrough in the utilisation of whey as inexpensive source of substrate for the growth of these fungi. Moreover, phytochemicals could be utilized as therapeutic agents in a cost-effective and environmentally friendly manner.
Collapse
Affiliation(s)
- Ankita Chakraborty
- School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, West Bengal, 711 103, India
| | - Sayari Majumdar
- School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, West Bengal, 711 103, India
| | - Jayati Bhowal
- School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, West Bengal, 711 103, India.
| |
Collapse
|
45
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
46
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
47
|
Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Abdel-Daim MM. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 2021; 140:111729. [PMID: 34044274 DOI: 10.1016/j.biopha.2021.111729] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the primary cause of disabilities in the elderly people. Growing evidence indicates that oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis are associated with aging and the basis of most neurodegenerative disorders. Quercetin is a flavonoid with significant pharmacological effects and promising therapeutic potential. It is widely distributed among plants and typically found in daily diets mainly in fruits and vegetables. It shows a number of biological properties connected to its antioxidant activity. Neuroprotection by quercetin has been reported in many in vitro as well as in in vivo studies. However, the exact mechanism of action is still mystery and similarly there are a number of hypothesis exploring the mechanism of neuroprotection. Quercetin enhances neuronal longevity and neurogenesis by modulating and inhibiting wide number of pathways. This review assesses the food sources of quercetin, its pharmacokinetic profile, structure activity relationship and its pathophysiological role in various NDDs and it also provides a synopsis of the literature exploring the relationship between quercetin and various downstream signalling pathways modulated by quercetin for neuroprotection for eg. nuclear factor erythroid 2-related factor 2 (Nrf2), Paraoxonase-2 (PON2), c-Jun N-terminal kinase (JNK), Tumour Necrosis Factor alpha (TNF-α), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α), Sirtuins, Mitogen-activated protein kinases (MAPKs) signalling cascades, CREB (Cyclic AMP response element binding protein) and Phosphoinositide 3- kinase(PI3K/Akt). Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against NDDs.
Collapse
Affiliation(s)
| | | | - Deepak Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Magdalena Walasek-Janusz
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
48
|
Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111668] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Salehi M, Mashhadi NS, Esfahani PS, Feizi A, Hadi A, Askari G. The Effects of Curcumin Supplementation on Muscle Damage, Oxidative Stress, and Inflammatory Markers in Healthy Females with Moderate Physical Activity: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Int J Prev Med 2021; 12:94. [PMID: 34584659 PMCID: PMC8428303 DOI: 10.4103/ijpvm.ijpvm_138_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/04/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Exercise-induced oxidative stress, muscle damage, and inflammation represent major contributors to why athletes use ergogenic aids. Turmeric is used as a spice because of its polyphenol ingredient named curcumin. We assessed the effects of curcumin supplementation on inflammatory, oxidative stress markers, muscle damage, and anthropometric indices in women with moderate physical activity. METHODS This double-blind, placebo-controlled clinical trial was conducted on 80 women with moderate physical activity levels (defined as walking or swimming for at least 1 h per day) for 8 weeks. Mean ± SD of age (years) all participants was 21 ± 2. Participants were randomly assigned into two groups: curcumin (500 mg/day) and placebo (500 mg/day cornstarch). Serum C-reactive protein (CRP), total antioxidant capacity (TAC), malondialdehyde (MDA), lactate dehydrogenase (LDH) levels, body composition, and maximum oxygen uptake (VO2 max) were evaluated before and after an intervention. RESULTS Sixty-five subjects completed the 8-week intervention. Within analysis indicated a significant decrease in CRP, LDH, MDA levels, and a significant increase in VO2 max in the curcumin group after an intervention (P < 0.05). There were significant decreases in CRP (P = 0.002), LDH (P = 0.041), and MDA (P = 0.005), no significant increase in TAC, and significant increase in VO2 max (P = 0.0001) levels in the curcumin group compared with placebo group. There were no significant changes in weight, body mass index, body fat, and lean body mass between two groups. CONCLUSIONS Our findings indicated that 8-week curcumin administration could significantly improve CRP, LDH, MDA, and VO2 max. Curcumin supplementation did not elicit significant changes in anthropometric indices in this study.
Collapse
Affiliation(s)
- Mina Salehi
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Hezar jerib st, Isfahan, Iran
| | - Nafiseh Shokri Mashhadi
- Nutrition and Metabolic Diseases Research Center and Department of Nutrition, Isfahan University of Medical Sciences, Hezar jerib st, Isfahan, Iran
| | | | - Awat Feizi
- Isfahan Endocrine and Metabolism Research Center and Department of Biostatistics and Epidemiology School of Health, Isfahan University of Medical Sciences, Hezar jerib st, Isfahan, Iran
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Hezar jerib st, Isfahan, Iran
| |
Collapse
|
50
|
Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities. Molecules 2021; 26:molecules26154544. [PMID: 34361697 PMCID: PMC8347471 DOI: 10.3390/molecules26154544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are a class of natural polyphenolic compounds sharing a common 2-phenyl-3,4-dihydro-2H-1-benzopyran (flavan) backbone. Typically known for their antioxidant activity, flavonoids are also being investigated regarding antitumour and antimicrobial properties. In this review, we report on the complexation of both natural and synthetic flavonoids with ruthenium as a strategy to modulate the biological activity. The ruthenoflavonoid complexes are divided into three subclasses, according to their most prominent bioactivity: antitumour, antimicrobial, and protection of the cardiovascular system. Whenever possible the activity of the ruthenoflavonoids is compared with that of commercial drugs for a critical assessment of the feasibility of using them in future clinical applications.
Collapse
|