1
|
Santocildes G, Viscor G, Pagès T, Torrella JR. Simulated altitude is medicine: intermittent exposure to hypobaric hypoxia and cold accelerates injured skeletal muscle recovery. J Physiol 2024; 602:5855-5878. [PMID: 38153352 DOI: 10.1113/jp285398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Muscle injuries are the leading cause of sports casualties. Because of its high plasticity, skeletal muscle can respond to different stimuli to maintain and improve functionality. Intermittent hypobaric hypoxia (IHH) improves muscle oxygen delivery and utilization. Hypobaria coexists with cold in the biosphere, opening the possibility to consider the combined use of both environmental factors to achieve beneficial physiological adjustments. We studied the effects of IHH and cold exposure, separately and simultaneously, on muscle regeneration. Adult male rats were surgically injured in one gastrocnemius and randomly assigned to the following groups: (1) CTRL: passive recovery; (2) COLD: intermittently exposed to cold (4°C); (3) HYPO: submitted to IHH (4500 m); (4) COHY: exposed to intermittent simultaneous cold and hypoxia. Animals were subjected to these interventions for 4 h/day for 9 or 21 days. COLD and COHY rats showed faster muscle regeneration than CTRL, evidenced after 9 days at histological (dMHC-positive and centrally nucleated fibre reduction) and functional levels after 21 days. HYPO rats showed a full recovery from injury (at histological and functional levels) after 9 days, while COLD and COHY needed more time to induce a total functional recovery. IHH can be postulated as an anti-fibrotic treatment since it reduces collagen I deposition. The increase in the pSer473Akt/total Akt ratio observed after 9 days in COLD, HYPO and COHY, together with the increase in the pThr172AMPKα/total AMPKα ratio observed in the gastrocnemius of HYPO, provides clues to the molecular mechanisms involved in the improved muscle regeneration. KEY POINTS: Only intermittent hypobaric exposure accelerated muscle recovery as early as 9 days following injury at histological and functional levels. Injured muscles from animals treated with intermittent (4 h/day) cold, hypobaric hypoxia or a simultaneous combination of both stimuli regenerated histological structure and recovered muscle function 21 days after injury. The combination of cold and hypoxia showed a blunting effect as compared to hypoxia alone in the time course of the muscle recovery. The increased expression of the phosphorylated forms of Akt observed in all experimental groups could participate in the molecular cascade of events leading to a faster regeneration. The elevated levels of phosphorylated AMPKα in the HYPO group could play a key role in the modulation of the inflammatory response during the first steps of the muscle regeneration process.
Collapse
Affiliation(s)
- Garoa Santocildes
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Pagès
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Ramon Torrella
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Siebenmann C, Roche J, Schlittler M, Simpson LL, Stembridge M. Regulation of haemoglobin concentration at high altitude. J Physiol 2024; 602:5587-5600. [PMID: 38051656 DOI: 10.1113/jp284578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Lowlanders sojourning for more than 1 day at high altitude (HA) experience a reduction in plasma volume (PV) that increases haemoglobin concentration and thus restores arterial oxygen content. If the sojourn extends over weeks, an expansion of total red cell volume (RCV) occurs and contributes to the haemoconcentration. While the reduction in PV was classically attributed to an increased diuretic fluid loss, recent studies support fluid redistribution, rather than loss, as the underlying mechanism. The fluid redistribution is presumably driven by a disappearance of proteins from the circulation and the resulting reduction in oncotic pressure exerted by the plasma, although the fate of the disappearing proteins remains unclear. The RCV expansion is the result of an accelerated erythropoietic activity secondary to enhanced renal erythropoietin release, but a contribution of other mechanisms cannot be excluded. After return from HA, intravascular volumes return to normal values and the normalisation of RCV might involve selective destruction of newly formed erythrocytes, although this explanation has been strongly challenged by recent studies. In contrast to acclimatised lowlanders, native highlanders originating from the Tibetan and the Ethiopian plateaus present with a normal or only mildly elevated haemoglobin concentration. Genetic adaptations blunting the erythropoietic response to HA exposure have been proposed as an explanation for the absence of more pronounced haemoconcentration in these populations, but new evidence also supports a contribution of a larger than expected PV. The functional significance of the relatively low haemoglobin concentration in Tibetan and Ethiopian highlanders is incompletely understood and warrants further investigation.
Collapse
Affiliation(s)
| | - Johanna Roche
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Maja Schlittler
- AO Research Institute Davos, Regenerative Orthopaedics Program, Davos, Switzerland
| | - Lydia L Simpson
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
3
|
Peltonen JE, Leppävuori A, Lehtonen E, Mikkonen RS, Kettunen O, Nummela A, Ohtonen O, Gagnon DD, Wehrlin JP, Wilber RL, Linnamo V. Combined intermittent hypoxic exposure at rest and continuous hypoxic training can maintain elevated hemoglobin mass after a hypoxic camp. J Appl Physiol (1985) 2024; 137:409-420. [PMID: 38961820 DOI: 10.1152/japplphysiol.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Athletes use hypoxic living and training to increase hemoglobin mass (Hbmass), but Hbmass declines rapidly upon return to sea level. We investigated whether intermittent hypoxic exposure (IHE) + continuous hypoxic training (CHT) after return to sea level maintained elevated Hbmass, and if changes in Hbmass were transferred to changes in maximal oxygen uptake (V̇o2max) and exercise performance. Hbmass was measured in 58 endurance athletes before (PRE), after (POST1), and 30 days after (POST2) a 27 ± 4-day training camp in hypoxia (n = 44, HYP) or at sea level (n = 14, SL). After returning to sea level, 22 athletes included IHE (2 h rest) + CHT (1 h training) in their training every third day for 1 mo (HYPIHE + CHT), whereas the other 22 HYP athletes were not exposed to IHE or CHT (HYPSL). Hbmass increased from PRE to POST1 in both HYPIHE + CHT (4.4 ± 0.7%, means ± SE) and HYPSL (4.1 ± 0.6%) (both P < 0.001). Compared with PRE, Hbmass at POST2 remained 4.2 ± 0.8% higher in HYPIHE + CHT (P < 0.001) and 1.9 ± 0.5% higher in HYPSL (P = 0.023), indicating a significant difference between the groups (P = 0.002). In SL, no significant changes were observed in Hbmass with mean alterations between -0.5% and 0.4%. V̇o2max and time to exhaustion during an incremental treadmill test (n = 35) were elevated from PRE to POST2 only in HYPIHE + CHT (5.8 ± 1.2% and 5.4 ± 1.4%, respectively, both P < 0.001). IHE + CHT possesses the potential to mitigate the typical decline in Hbmass commonly observed during the initial weeks after return to sea level.NEW & NOTEWORTHY Sets of 2-h intermittent hypoxic exposure + 1-h continuous hypoxic training, every third day, possess the potential to mitigate the typical decline in Hbmass that is commonly observed during the initial weeks after return to sea level from an altitude camp. Inclusion of IHE + CHT in the training regimen was also accompanied by improvements in V̇o2max and exercise performance in most but not all Tier 3-Tier 5 level endurance athletes during the training season.
Collapse
Affiliation(s)
- Juha E Peltonen
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Leppävuori
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Elias Lehtonen
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ritva S Mikkonen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Oona Kettunen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Olli Ohtonen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Dominique D Gagnon
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jon P Wehrlin
- Section for Elite Sport, Swiss Federal Institute of Sport Magglingen, Magglingen, Switzerland
| | - Randall L Wilber
- United States Olympic & Paralympic Committee (USOPC), Colorado Springs, Colorado, United States
| | - Vesa Linnamo
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| |
Collapse
|
4
|
Krumm B, Vallance B, Burke L, Garcia J, Bouten J, Brocherie F, Saugy JJ, Botrè F, Faiss R. High-level performances following low altitude training and tapering in warm environments in elite racewalkers. Eur J Sport Sci 2024; 24:1120-1129. [PMID: 38992976 PMCID: PMC11295091 DOI: 10.1002/ejsc.12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Current guidelines for prolonged altitude exposure suggest altitude levels ranging from 2000 to 2500 m to optimize an increase in total hemoglobin mass (Hbmass). However, natural low altitude locations (<2000 m) remain popular, highlighting the interest to investigate any possible benefit of low altitude camps for endurance athletes. Ten elite racewalkers (4 women and 6 men) underwent a 4-week "live high-train high" (LHTH) camp at an altitude of 1720 m (PIO2 = 121 mmHg; 20.1°C; 67% relative humidity [RH]), followed by a 3-week tapering phase (20 m; PIO2 = 150 mmHg; 28.3°C; 53% RH) in preparation for the World Athletics Championships (WC). Venous blood samples were withdrawn weekly during the entire observation period. In addition, blood volumes were determined weekly by carbon monoxide rebreathing during altitude exposure and 2 weeks after return to sea level. High-level performances were achieved at the WC (five placings among the Top 10 WC races and three all-time career personal bests). A slight but significant increase in absolute (+1.7%, p = 0.03) and relative Hbmass (+2.3%, p = 0.02) was observed after 4-week LHTH. In addition, as usually observed during LHTH protocols, weekly training distance (+28%, p = 0.02) and duration (+30%, p = 0.04) significantly increased during altitude compared to the pre-LHTH period. Therefore, although direct causation cannot be inferred, these results suggest that the combination of increased training load at low altitudes with a subsequent tapering period in a warm environment is a suitable competition-preparation strategy for elite endurance athletes.
Collapse
Affiliation(s)
- Bastien Krumm
- Research and Expertise in Anti‐Doping Sciences—REDsInstitute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - Brent Vallance
- Exercise and Nutrition Research ProgramMary Mackillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
- Athletics AustraliaMelbourneVictoriaAustralia
| | - Louise Burke
- Exercise and Nutrition Research ProgramMary Mackillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Johan Garcia
- Research and Expertise in Anti‐Doping Sciences—REDsInstitute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Laboratory SportExpertise and Performance (EA 7370)French Institute of Sport (INSEP)ParisFrance
| | - Janne Bouten
- Laboratory SportExpertise and Performance (EA 7370)French Institute of Sport (INSEP)ParisFrance
| | - Franck Brocherie
- Laboratory SportExpertise and Performance (EA 7370)French Institute of Sport (INSEP)ParisFrance
| | - Jonas J. Saugy
- Research and Expertise in Anti‐Doping Sciences—REDsInstitute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - Francesco Botrè
- Research and Expertise in Anti‐Doping Sciences—REDsInstitute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - Raphael Faiss
- Research and Expertise in Anti‐Doping Sciences—REDsInstitute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
5
|
Kjeld T, Krag TO, Brenøe A, Møller AM, Arendrup HC, Højberg J, Fuglø D, Hancke S, Tolbod LP, Gormsen LC, Vissing J, Hansen EG. Hemoglobin concentration and blood shift during dry static apnea in elite breath hold divers. Front Physiol 2024; 15:1305171. [PMID: 38745836 PMCID: PMC11092981 DOI: 10.3389/fphys.2024.1305171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/23/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Elite breath-hold divers (BHD) enduring apneas of more than 5 min are characterized by tolerance to arterial blood oxygen levels of 4.3 kPa and low oxygen-consumption in their hearts and skeletal muscles, similar to adult seals. Adult seals possess an adaptive higher hemoglobin-concentration and Bohr effect than pups, and when sedated, adult seals demonstrate a blood shift from the spleen towards the brain, lungs, and heart during apnea. We hypothesized these observations to be similar in human BHD. Therefore, we measured hemoglobin- and 2,3-biphosphoglycerate-concentrations in BHD (n = 11) and matched controls (n = 11) at rest, while myocardial mass, spleen and lower extremity volumes were assessed at rest and during apnea in BHD. Methods and results After 4 min of apnea, left ventricular myocardial mass (LVMM) determined by 15O-H2O-PET/CT (n = 6) and cardiac MRI (n = 6), was unaltered compared to rest. During maximum apnea (∼6 min), lower extremity volume assessed by DXA-scan revealed a ∼268 mL decrease, and spleen volume, assessed by ultrasonography, decreased ∼102 mL. Compared to age, BMI and VO2max matched controls (n = 11), BHD had similar spleen sizes and 2,3- biphosphoglycerate-concentrations, but higher total hemoglobin-concentrations. Conclusion Our results indicate: 1) Apnea training in BHD may increase hemoglobin concentration as an oxygen conserving adaptation similar to adult diving mammals. 2) The blood shift during dry apnea in BHD is 162% more from the lower extremities than from the spleen. 3) In contrast to the previous theory of the blood shift demonstrated in sedated adult seals, blood shift is not towards the heart during dry apnea in humans.
Collapse
Affiliation(s)
- Thomas Kjeld
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas O. Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Brenøe
- Department of Clinical Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ann Merete Møller
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Højberg
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dan Fuglø
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Hancke
- Department of Clinical Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Egon Godthaab Hansen
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Bonato G, Goodman S, Tjh L. Physiological and performance effects of live high train low altitude training for elite endurance athletes: A narrative review. Curr Res Physiol 2023; 6:100113. [PMID: 38107789 PMCID: PMC10724230 DOI: 10.1016/j.crphys.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Altitude training has become an important training application for athletes due its potential for altering physiology and enhancing performance. This practice is commonly used by athletes, with a popular choice being the live high - train low approach. This model recommends that athletes live at high altitude (1250-3000 m), but train at low altitude or sea-level (0-1200 m). Exposure to altitude often leads to hypoxic stress and in turn stimulates changes in total haemoglobin mass, erythropoietin, and soluble transferrin receptors, which alter further underlying physiology. Through enhanced physiology, improved exercise performance may arise through enhancement of the oxygen transport system which is important for endurance events. Previous investigations into the effects of altitude training on exercise performance have been completed in a range of contexts, including running, cycling, swimming, and triathlon. Often following a LHTL altitude intervention, athletes realise improvements in maximal oxygen consumption capacity, time trial performance and peak power outputs. Although heterogeneity exists among LHTL methodologies, i.e., exposure durations and altitude ranges, we synthesised this data into kilometre hours, and found that the most common hypoxic doses used in LHTL interventions ranged from ∼578-687 km h. As this narrative review demonstrates, there are potential advantages to using altitude training to enhance physiology and improve performance for endurance athletes.
Collapse
Affiliation(s)
- G. Bonato
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
- College of Arts, Society and Education, James Cook University, Townsville, 4811, Australia
| | - S.P.J Goodman
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
| | - Lathlean Tjh
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
- The Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5000, Australia
| |
Collapse
|
7
|
Feng X, Zhao L, Chen Y, Wang Z, Lu H, Wang C. Optimal type and dose of hypoxic training for improving maximal aerobic capacity in athletes: a systematic review and Bayesian model-based network meta-analysis. Front Physiol 2023; 14:1223037. [PMID: 37745240 PMCID: PMC10513096 DOI: 10.3389/fphys.2023.1223037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Objective: This study aimed to compare and rank the effect of hypoxic practices on maximum oxygen consumption (VO2max) in athletes and determine the hypoxic dose-response correlation using network meta-analysis. Methods: The Web of Science, PubMed, EMBASE, and EBSCO databases were systematically search for randomized controlled trials on the effect of hypoxc interventions on the VO2max of athletes published from inception until 21 February 2023. Studies that used live-high train-high (LHTH), live-high train-low (LHTL), live-high, train-high/low (HHL), intermittent hypoxic training (IHT), and intermittent hypoxic exposure (IHE) interventions were primarily included. LHTL was further defined according to the type of hypoxic environment (natural and simulated) and the altitude of the training site (low altitude and sea level). A meta-analysis was conducted to determine the standardized mean difference between the effects of various hypoxic interventions on VO2max and dose-response correlation. Furthermore, the hypoxic dosage of the different interventions were coordinated using the "kilometer hour" model. Results: From 2,072 originally identified titles, 59 studies were finally included in this study. After data pooling, LHTL, LHTH, and IHT outperformed normoxic training in improving the VO2max of athletes. According to the P-scores, LHTL combined with low altitude training was the most effective intervention for improving VO2max (natural: 0.92 and simulated: 0.86) and was better than LHTL combined with sea level training (0.56). A reasonable hypoxic dose range for LHTH (470-1,130 kmh) and HL (500-1,415 kmh) was reported with an inverted U-shaped curve relationship. Conclusion: Different types of hypoxic training compared with normoxic training serve as significant approaches for improving aerobic capacity in athletes. Regardless of the type of hypoxic training and the residential condition, LHTL with low altitude training was the most effective intervention. The characteristics of the dose-effect correlation of LHTH and LHTL may be associated with the negative effects of chronic hypoxia.
Collapse
Affiliation(s)
- Xinmiao Feng
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Linlin Zhao
- Sports Coaching College, Beijing Sports University, Beijing, China
| | | | - Zihao Wang
- Capital Institute of Physical Education and Sports, Beijing, Beijing, China
| | - Hongyuan Lu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Chuangang Wang
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
8
|
Jorgensen K, Song D, Weinstein J, Garcia OA, Pearson LN, Inclán M, Rivera-Chira M, León-Velarde F, Kiyamu M, Brutsaert TD, Bigham AW, Lee FS. High-Altitude Andean H194R HIF2A Allele Is a Hypomorphic Allele. Mol Biol Evol 2023; 40:msad162. [PMID: 37463421 PMCID: PMC10370452 DOI: 10.1093/molbev/msad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.
Collapse
Affiliation(s)
- Kelsey Jorgensen
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Daisheng Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julien Weinstein
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed A Garcia
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Laurel N Pearson
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA
| | - María Inclán
- División de. Estudios Políticos, Centro de Investigación y Docencia Económicas, Mexico City, CDMX, Mexico
| | - Maria Rivera-Chira
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Fabiola León-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Kettunen O, Leppävuori A, Mikkonen R, Peltonen JE, Nummela A, Wikström B, Linnamo V. Hemoglobin mass and performance responses during 4 weeks of normobaric "live high-train low and high". Scand J Med Sci Sports 2023. [PMID: 37114394 DOI: 10.1111/sms.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE To investigate whether 4 weeks of normobaric "live high-train low and high" (LHTLH) causes different hematological, cardiorespiratory, and sea-level performance changes compared to living and training in normoxia during a preparation season. METHODS Nineteen (13 women, 6 men) cross-country skiers competing at the national or international level completed a 28-day period (∼18 h day-1 ) of LHTLH in normobaric hypoxia of ∼2400 m (LHTLH group) including two 1 h low-intensity training sessions per week in normobaric hypoxia of 2500 m while continuing their normal training program in normoxia. Hemoglobin mass (Hbmass ) was assessed using a carbon monoxide rebreathing method. Time to exhaustion (TTE) and maximal oxygen uptake (VO2max ) were measured using an incremental treadmill test. Measurements were completed at baseline and within 3 days after LHTLH. The control group skiers (CON) (seven women, eight men) performed the same tests while living and training in normoxia with ∼4 weeks between the tests. RESULTS Hbmass in LHTLH increased 4.2 ± 1.7% from 772 ± 213 g (11.7 ± 1.4 g kg-1 ) to 805 ± 226 g (12.5 ± 1.6 g kg-1 ) (p < 0.001) while it was unchanged in CON (p = 0.21). TTE improved during the study regardless of the group (3.3 ± 3.4% in LHTLH; 4.3 ± 4.8% in CON, p < 0.001). VO2max did not increase in LHTLH (61.2 ± 8.7 mL kg-1 min-1 vs. 62.1 ± 7.6 mL kg-1 min-1 , p = 0.36) while a significant increase was detected in CON (61.3 ± 8.0-64.0 ± 8.1 mL kg-1 min-1 , p < 0.001). CONCLUSIONS Four-week normobaric LHTLH was beneficial for increasing Hbmass but did not support the short-term development of maximal endurance performance and VO2max when compared to the athletes who lived and trained in normoxia.
Collapse
Affiliation(s)
- Oona Kettunen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Antti Leppävuori
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Ritva Mikkonen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Juha E Peltonen
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Bettina Wikström
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Vesa Linnamo
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| |
Collapse
|
10
|
Girard O, Levine BD, Chapman RF, Wilber R. "Living High-Training Low" for Olympic Medal Performance: What Have We Learned 25 Years After Implementation? Int J Sports Physiol Perform 2023; 18:563-572. [PMID: 37116895 DOI: 10.1123/ijspp.2022-0501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Altitude training is often regarded as an indispensable tool for the success of elite endurance athletes. Historically, altitude training emerged as a key strategy to prepare for the 1968 Olympics, held at 2300 m in Mexico City, and was limited to the "Live High-Train High" method for endurance athletes aiming for performance gains through improved oxygen transport. This "classical" intervention was modified in 1997 by the "Live High-Train Low" (LHTL) model wherein athletes supplemented acclimatization to chronic hypoxia with high-intensity training at low altitude. PURPOSE This review discusses important considerations for successful implementation of LHTL camps in elite athletes based on experiences, both published and unpublished, of the authors. APPROACH The originality of our approach is to discuss 10 key "lessons learned," since the seminal work by Levine and Stray-Gundersen was published in 1997, and focusing on (1) optimal dose, (2) individual responses, (3) iron status, (4) training-load monitoring, (5) wellness and well-being monitoring, (6) timing of the intervention, (7) use of natural versus simulated hypoxia, (8) robustness of adaptative mechanisms versus performance benefits, (9) application for a broad range of athletes, and (10) combination of methods. Successful LHTL strategies implemented by Team USA athletes for podium performance at Olympic Games and/or World Championships are presented. CONCLUSIONS The evolution of the LHTL model represents an essential framework for sport science, in which field-driven questions about performance led to critical scientific investigation and subsequent practical implementation of a unique approach to altitude training.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA,Australia
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX,USA
- University of Texas Southwestern Medical Center, Dallas, TX,USA
| | - Robert F Chapman
- Human Performance Laboratory, Department of Kinesiology, Indiana University Bloomington, Bloomington, IN,USA
| | - Randall Wilber
- United States Olympic Committee, Colorado Springs, CO,USA
| |
Collapse
|
11
|
Scariot PPM, Papoti M, Polisel EEC, Orsi JB, Van Ginkel PR, Prolla TA, Manchado-Gobatto FB, Gobatto CA. Living high - training low model applied to C57BL/6J mice: Effects on physiological parameters related to aerobic fitness and acid-base balance. Life Sci 2023; 317:121443. [PMID: 36709910 DOI: 10.1016/j.lfs.2023.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.
Collapse
Affiliation(s)
- Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | - Juan Bordon Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Paul R Van Ginkel
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Tomas A Prolla
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
12
|
Relationships between Changes in Hematological Adaptations and Exercise Capacity in Olympic Rowers after a Period of Reduced Training Loads. J Hum Kinet 2023; 86:155-164. [PMID: 37181268 PMCID: PMC10170542 DOI: 10.5114/jhk/159463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Endurance performance is positively associated with hematological adaptations; therefore, high total hemoglobin mass and intravascular volumes are commonly observed in high-level endurance athletes. However, it is still unclear whether the fluctuations in exercise capacity that typically occur in endurance athletes during the annual training cycle are directly associated with changes in hematological adaptations, which appear to be relatively stable during this time. To better understand this issue, a study was conducted with 10 Olympic rowers, who followed the same training program. Athletes underwent laboratory testing in the competitive and the general preparation phase of an annual training cycle (a 34% reduction in training volume). This included a graded exercise test on a rowing ergometer (GXT) and blood measurements of hemoglobin concentration (Hb), total hemoglobin mass (tHb-mass), plasma volume (PV), and blood volume (BV). Decreases in maximal values of power relative to body mass (p = 0.028), lactate concentration (p = 0.005), and heart rate (p = 0.017) in the GXT were registered. At the same time, absolute (p = 0.017) and relative (p = 0.005) PV decreased. Changes in PV (rS = 0.842, p = 0.002) and BV (rS = 0.818, p = 0.004), but not in tHb-mass (rS = 0.588, p = 0.074) and Hb (rS = −0.188, p = 0.602), were significantly correlated with changes in maximal power in the GXT. Our results indicate a close relationship between changes in intravascular volumes and maximal exercise capacity after a period of reduced training loads in elite endurance athletes.
Collapse
|
13
|
Mallet RT, Burtscher J, Pialoux V, Pasha Q, Ahmad Y, Millet GP, Burtscher M. Molecular Mechanisms of High-Altitude Acclimatization. Int J Mol Sci 2023; 24:ijms24021698. [PMID: 36675214 PMCID: PMC9866500 DOI: 10.3390/ijms24021698] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
High-altitude illnesses (HAIs) result from acute exposure to high altitude/hypoxia. Numerous molecular mechanisms affect appropriate acclimatization to hypobaric and/or normobaric hypoxia and curtail the development of HAIs. The understanding of these mechanisms is essential to optimize hypoxic acclimatization for efficient prophylaxis and treatment of HAIs. This review aims to link outcomes of molecular mechanisms to either adverse effects of acute high-altitude/hypoxia exposure or the developing tolerance with acclimatization. After summarizing systemic physiological responses to acute high-altitude exposure, the associated acclimatization, and the epidemiology and pathophysiology of various HAIs, the article focuses on molecular adjustments and maladjustments during acute exposure and acclimatization to high altitude/hypoxia. Pivotal modifying mechanisms include molecular responses orchestrated by transcription factors, most notably hypoxia inducible factors, and reciprocal effects on mitochondrial functions and REDOX homeostasis. In addition, discussed are genetic factors and the resultant proteomic profiles determining these hypoxia-modifying mechanisms culminating in successful high-altitude acclimatization. Lastly, the article discusses practical considerations related to the molecular aspects of acclimatization and altitude training strategies.
Collapse
Affiliation(s)
- Robert T. Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, FR-69008 Lyon, France
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Yasmin Ahmad
- Defense Institute of Physiology & Allied Sciences (DIPAS), Defense Research & Development Organization(DRDO), New Delhi 110054, India
| | - Grégoire P. Millet
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria
- Austrian Society for Alpine and High-Altitude Medicine, A-6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
14
|
Hu J, Lv S, Zhou T, Chen H, Xiao L, Huang X, Wang L, Wu P. Identification of Pulmonary Hypertension Animal Models Using a New Evolutionary Machine Learning Framework Based on Blood Routine Indicators. JOURNAL OF BIONIC ENGINEERING 2022; 20:762-781. [PMID: 36466726 PMCID: PMC9703443 DOI: 10.1007/s42235-022-00292-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Pulmonary Hypertension (PH) is a global health problem that affects about 1% of the global population. Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease. The present study proposes a Kernel Extreme Learning Machine (KELM) model based on an improved Whale Optimization Algorithm (WOA) for predicting PH mouse models. The experimental results showed that the selected blood indicators, including Haemoglobin (HGB), Hematocrit (HCT), Mean, Platelet Volume (MPV), Platelet distribution width (PDW), and Platelet-Large Cell Ratio (P-LCR), were essential for identifying PH mouse models using the feature selection method proposed in this paper. Remarkably, the method achieved 100.0% accuracy and 100.0% specificity in classification, demonstrating that our method has great potential to be used for evaluating and identifying mouse PH models.
Collapse
Affiliation(s)
- Jiao Hu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 People’s Republic of China
| | - Shushu Lv
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 People’s Republic of China
| | - Tao Zhou
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 People’s Republic of China
| | - Lei Xiao
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 People’s Republic of China
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| |
Collapse
|
15
|
Furian M, Tannheimer M, Burtscher M. Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease. J Clin Med 2022; 11:6699. [PMID: 36431176 PMCID: PMC9697047 DOI: 10.3390/jcm11226699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Maximal values of aerobic power (VO2max) and peripheral oxygen saturation (SpO2max) decline in parallel with gain in altitude. Whereas this relationship has been well investigated when acutely exposed to high altitude, potential benefits of acclimatization on SpO2 and related VO2max in healthy and diseased individuals have been much less considered. Therefore, this narrative review was primarily aimed to identify relevant literature reporting altitude-dependent changes in determinants, in particular SpO2, of VO2max and effects of acclimatization in athletes, healthy non-athletes, and patients suffering from cardiovascular, respiratory and/or metabolic diseases. Moreover, focus was set on potential differences with regard to baseline exercise performance, age and sex. Main findings of this review emphasize the close association between individual SpO2 and VO2max, and demonstrate similar altitude effects (acute and during acclimatization) in healthy people and those suffering from cardiovascular and metabolic diseases. However, in patients with ventilatory constrains, i.e., chronic obstructive pulmonary disease, steep decline in SpO2 and V̇O2max and reduced potential to acclimatize stress the already low exercise performance. Finally, implications for prevention and therapy are briefly discussed.
Collapse
Affiliation(s)
- Michael Furian
- Pulmonary Division, University Hospital Zurich, 8092 Zurich, Switzerland
- Research Department, Swiss University of Traditional Chinese Medicine, 5330 Bad Zurzach, Switzerland
| | - Markus Tannheimer
- Department of Sport and Rehabilitation Medicine, University of Ulm, 89075 Ulm, Germany
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Teległów A, Mardyła M, Myszka M, Pałka T, Maciejczyk M, Bujas P, Mucha D, Ptaszek B, Marchewka J. Effect of Intermittent Hypoxic Training on Selected Biochemical Indicators, Blood Rheological Properties, and Metabolic Activity of Erythrocytes in Rowers. BIOLOGY 2022; 11:biology11101513. [PMID: 36290417 PMCID: PMC9598061 DOI: 10.3390/biology11101513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
The study assessed the effect of 3-week intermittent hypoxic training on blood biochemical indicators (blood morphology, fibrinogen), blood rheological properties (erythrocyte deformability, aggregation), erythrocyte enzymatic activity (acetylcholinesterase), and maximal oxygen uptake in competitive rowers. Fourteen male rowers were divided into two equal groups: experimental, training on ergometers under normobaric hypoxia (FiO2 = 16.0%), and control, training on ergometers under normoxia (FiO2 = 21%). Fasting blood was taken before and after training. A significant between-group difference in neutrophil levels before training was noted and a significant decrease in white blood cells in the hypoxia group. Both groups exhibited an increase in elongation index. In the normoxia group, a significant increase in erythrocyte aggregation amplitude was revealed. No significant changes occurred in the other biochemical indicators or those evaluating erythrocyte metabolic activity. Normobaric hypoxia increased erythrocyte deformability, improving blood rheological properties. Maximal oxygen uptake significantly increased only in the experimental group.
Collapse
Affiliation(s)
- Aneta Teległów
- Department of Health Promotion, Institute of Basic Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
- Correspondence:
| | - Mateusz Mardyła
- Institute of Biomedical Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | | | - Tomasz Pałka
- Institute of Biomedical Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Marcin Maciejczyk
- Institute of Biomedical Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Przemysław Bujas
- Department of Sports Theory and Anthropomotorics, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Dariusz Mucha
- Institute of Biomedical Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Bartłomiej Ptaszek
- Institute of Applied Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Jakub Marchewka
- Department of Rehabilitation in Traumatology, Institute of Clinical Rehabilitation, University of Physical Education in Krakow, 31-571 Krakow, Poland
| |
Collapse
|
17
|
Kellenberger K, Steiner T, Wehrlin JP. Comparison of the automatised and the optimised carbon monoxide rebreathing methods. Scandinavian Journal of Clinical and Laboratory Investigation 2022; 82:474-480. [PMID: 36129418 DOI: 10.1080/00365513.2022.2122078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Recently, a new automated carbon monoxide (CO) rebreathing method (aCO) to estimate haemoglobin mass (Hbmass) was introduced. The aCO method uses the same CO dilution principle as the widely used optimised CO rebreathing method (oCO). The two methods differ in terms of CO administration, body position, and rebreathing time. Whereas with aCO, CO is administered automatically by the system in a supine position of the subject, with oCO, CO is administered manually by an experienced operator with the subject sitting. Therefore, the aim of this study was to quantify possible differences in Hbmass estimated with the two methods. Hbmass was estimated in 18 subjects (9 females, 9 males) with oCO using capillary blood samples (oCOc) and aCO taking simultaneously venous blood samples (aCOv) and capillary blood samples (aCOc). Overall, Hbmass was different between the three measurement procedures (F = 57.55, p < .001). Hbmass was lower (p < .001) for oCOc (737 g ± 179 g) than for both aCOv (825 g ± 189 g, -9.3%) and aCOc (835 g ± 189 g, -10.6%). There was no difference in Hbmass estimated with aCOv and aCOc procedures (p = .12). Three factors can likely explain the 10% difference in Hbmass: differences in calculations (including a factor for myoglobin flux), body position (distribution of CO in blood circulation) during rebreathing, and time of blood sampling. Moreover, the determination of Hbmass with aCO is possible with capillary blood sampling instead of venous blood sampling.
Collapse
Affiliation(s)
- Katja Kellenberger
- Section for Elite Sport, Swiss Federal Institute of Sport, Magglingen, Switzerland
| | - Thomas Steiner
- Section for Elite Sport, Swiss Federal Institute of Sport, Magglingen, Switzerland
| | - Jon Peter Wehrlin
- Section for Elite Sport, Swiss Federal Institute of Sport, Magglingen, Switzerland
| |
Collapse
|
18
|
Skattebo Ø, Hallén J. Individual variations in pre‐altitude hemoglobin mass influence hemoglobin mass responses to repeated altitude sojourns. Scand J Med Sci Sports 2022; 32:1493-1501. [DOI: 10.1111/sms.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Jostein Hallén
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| |
Collapse
|
19
|
Saugy JJ, Schmoutz T, Botrè F. Altitude and Erythropoietin: Comparative Evaluation of Their Impact on Key Parameters of the Athlete Biological Passport: A Review. Front Sports Act Living 2022; 4:864532. [PMID: 35847455 PMCID: PMC9282833 DOI: 10.3389/fspor.2022.864532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The hematological module of the Athlete's Biological Passport (ABP) identifies doping methods and/or substances used to increase the blood's capacity to transport or deliver oxygen to the tissues. Recombinant human erythropoietin (rhEPOs) are doping substances known to boost the production of red blood cells and might have an effect on the blood biomarkers of the ABP. However, hypoxic exposure influences these biomarkers similarly to rhEPOs. This analogous impact complicates the ABP profiles' interpretation by antidoping experts. The present study aimed to collect and identify, through a literature search, the physiological effects on ABP blood biomarkers induced by these external factors. A total of 43 studies were selected for this review. A positive correlation (R2 = 0.605, r = 0.778, p < 0.001) was identified between the hypoxic dose and the increase in hemoglobin concentration (HGB) percentage. In addition, the change in the reticulocyte percentage (RET%) has been identified as one of the most sensitive parameters to rhEPO use. The mean effects of rhEPO on blood parameters were greater than those induced by hypoxic exposure (1.7 times higher for HGB and RET% and 4 times higher for hemoglobin mass). However, rhEPO micro-doses have shown effects that are hardly distinguishable from those identified after hypoxic exposure. The results of the literature search allowed to identify temporal and quantitative evolution of blood parameters in connection with different hypoxic exposure doses, as well as different rhEPOs doses. This might be considered to provide justified and well-documented interpretations of physiological changes in blood parameters of the Athlete Biological Passport.
Collapse
Affiliation(s)
- Jonas J. Saugy
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
- *Correspondence: Jonas J. Saugy
| | - Tania Schmoutz
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Francesco Botrè
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Tanner V, Faiss R, Saugy J, Bourdillon N, Schmitt L, Millet GP. Similar Supine Heart Rate Variability Changes During 24-h Exposure to Normobaric vs. Hypobaric Hypoxia. Front Neurosci 2021; 15:777800. [PMID: 34955728 PMCID: PMC8695977 DOI: 10.3389/fnins.2021.777800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose: This study aimed to investigate the differences between normobaric (NH) and hypobaric hypoxia (HH) on supine heart rate variability (HRV) during a 24-h exposure. We hypothesized a greater decrease in parasympathetic-related parameters in HH than in NH. Methods: A pooling of original data from forty-one healthy lowland trained men was analyzed. They were exposed to altitude either in NH (FIO2 = 15.7 ± 2.0%; PB = 698 ± 25 mmHg) or HH (FIO2 = 20.9%; PB = 534 ± 42 mmHg) in a randomized order. Pulse oximeter oxygen saturation (SpO2), heart rate (HR), and supine HRV were measured during a 7-min rest period three times: before (in normobaric normoxia, NN), after 12 (H12), and 24 h (H24) of either NH or HH exposure. HRV parameters were analyzed for time- and frequency-domains. Results: SpO2 was lower in both hypoxic conditions than in NN and was higher in NH than HH at H24. Subjects showed similarly higher HR during both hypoxic conditions than in NN. No difference in HRV parameters was found between NH and HH at any time. The natural logarithm of root mean square of the successive differences (LnRMSSD) and the high frequency spectral power (HF), which reflect parasympathetic activity, decreased similarly in NH and HH when compared to NN. Conclusion: Despite SpO2 differences, changes in supine HRV parameters during 24-h exposure were similar between NH and HH conditions indicating a similar decrease in parasympathetic activity. Therefore, HRV can be analyzed similarly in NH and HH conditions.
Collapse
Affiliation(s)
- Valérian Tanner
- Medicine School, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raphael Faiss
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,REDs, Research and Expertise in Anti-Doping Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas Saugy
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,REDs, Research and Expertise in Anti-Doping Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Laurent Schmitt
- National Centre of Nordic-Ski, Research and Performance, Prémanon, France
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Royal JT, Eiken O, Keramidas ME, McDonnell AC, Mekjavic IB. Heterogeneity of Hematological Response to Hypoxia and Short-Term or Medium-Term Bed Rest. Front Physiol 2021; 12:777611. [PMID: 34975531 PMCID: PMC8715762 DOI: 10.3389/fphys.2021.777611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Hematological changes are commonly observed following prolonged exposure to hypoxia and bed rest. Typically, such responses have been reported as means and standard deviations, however, investigation into the responses of individuals is insufficient. Therefore, the present study retrospectively assessed individual variation in the hematological responses to severe inactivity (bed rest) and hypoxia. The data were derived from three-bed rest projects: two 10-d (LunHab project: 8 males; FemHab project: 12 females), and one 21-d (PlanHab project: 11 males). Each project comprised a normoxic bed rest (NBR; PIO2=133mmHg) and hypoxic bed rest (HBR; PIO2=91mmHg) intervention, where the subjects were confined in the Planica facility (Rateče, Slovenia). During the HBR intervention, subjects were exposed to normobaric hypoxia equivalent to an altitude of 4,000m. NBR and HBR interventions were conducted in a random order and separated by a washout period. Blood was drawn prior to (Pre), during, and post bed rest (R1, R2, R4) to analyze the individual variation in the responses of red blood cells (RBC), erythropoietin (EPO), and reticulocytes (Rct) to bed rest and hypoxia. No significant differences were found in the mean ∆(Pre-Post) values of EPO across projects (LunHab, FemHab, and PlanHab; p>0.05), however, female EPO responses to NBR (Range - 17.39, IQR – 12.97 mIU.ml−1) and HBR (Range – 49.00, IQR – 10.91 mIU.ml−1) were larger than males (LunHab NBR Range – 4.60, IQR – 2.03; HBR Range – 7.10, IQR – 2.78; PlanHab NBR Range – 7.23, IQR – 1.37; HBR Range – 9.72, IQR – 4.91 mIU.ml−1). Bed rest duration had no impact on the heterogeneity of EPO, Rct, and RBC responses (10-d v 21-d). The resultant hematological changes that occur during NBR and HBR are not proportional to the acute EPO response. The following cascade of hematological responses to NBR and HBR suggests that the source of variability in the present data is due to mechanisms related to hypoxia as opposed to inactivity alone. Studies investigating hematological changes should structure their study design to explore these mechanistic responses and elucidate the discord between the EPO response and hematological cascade to fully assess heterogeneity.
Collapse
Affiliation(s)
- Joshua T. Royal
- Environmental Physiology and Ergonomics Lab, Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ola Eiken
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Michail E. Keramidas
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Adam C. McDonnell
- Environmental Physiology and Ergonomics Lab, Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Igor B. Mekjavic
- Environmental Physiology and Ergonomics Lab, Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Igor B. Mekjavic,
| |
Collapse
|
22
|
Bonafiglia JT, Preobrazenski N, Gurd BJ. A Systematic Review Examining the Approaches Used to Estimate Interindividual Differences in Trainability and Classify Individual Responses to Exercise Training. Front Physiol 2021; 12:665044. [PMID: 34819869 PMCID: PMC8606564 DOI: 10.3389/fphys.2021.665044] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Many reports describe statistical approaches for estimating interindividual differences in trainability and classifying individuals as "responders" or "non-responders." The extent to which studies in the exercise training literature have adopted these statistical approaches remains unclear. Objectives: This systematic review primarily sought to determine the extent to which studies in the exercise training literature have adopted sound statistical approaches for examining individual responses to exercise training. We also (1) investigated the existence of interindividual differences in trainability, and (2) tested the hypothesis that less conservative thresholds inflate response rates compared with thresholds that consider error and a smallest worthwhile change (SWC)/minimum clinically important difference (MCID). Methods: We searched six databases: AMED, CINAHL, EMBASE, Medline, PubMed, and SportDiscus. Our search spanned the aerobic, resistance, and clinical or rehabilitation training literature. Studies were included if they used human participants, employed standardized and supervised exercise training, and either: (1) stated that their exercise training intervention resulted in heterogenous responses, (2) statistically estimated interindividual differences in trainability, and/or (3) classified individual responses. We calculated effect sizes (ESIR) to examine the presence of interindividual differences in trainability. We also compared response rates (n = 614) across classification approaches that considered neither, one of, or both errors and an SWC or MCID. We then sorted response rates from studies that also reported mean changes and response thresholds (n = 435 response rates) into four quartiles to confirm our ancillary hypothesis that larger mean changes produce larger response rates. Results: Our search revealed 3,404 studies, and 149 were included in our systematic review. Few studies (n = 9) statistically estimated interindividual differences in trainability. The results from these few studies present a mixture of evidence for the presence of interindividual differences in trainability because several ESIR values lay above, below, or crossed zero. Zero-based thresholds and larger mean changes significantly (both p < 0.01) inflated response rates. Conclusion: Our findings provide evidence demonstrating why future studies should statistically estimate interindividual differences in trainability and consider error and an SWC or MCID when classifying individual responses to exercise training. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
- Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | | | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
23
|
Krumm B, Faiss R. Factors Confounding the Athlete Biological Passport: A Systematic Narrative Review. SPORTS MEDICINE - OPEN 2021; 7:65. [PMID: 34524567 PMCID: PMC8443715 DOI: 10.1186/s40798-021-00356-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Through longitudinal, individual and adaptive monitoring of blood biomarkers, the haematological module of the athlete biological passport (ABP) has become a valuable tool in anti-doping efforts. The composition of blood as a vector of oxygen in the human body varies in athletes with the influence of multiple intrinsic (genetic) or extrinsic (training or environmental conditions) factors. In this context, it is fundamental to establish a comprehensive understanding of the various causes that may affect blood variables and thereby alter a fair interpretation of ABP profiles. METHODS This literature review described the potential factors confounding the ABP to outline influencing factors altering haematological profiles acutely or chronically. RESULTS Our investigation confirmed that natural variations in ABP variables appear relatively small, likely-at least in part-because of strong human homeostasis. Furthermore, the significant effects on haematological variations of environmental conditions (e.g. exposure to heat or hypoxia) remain debatable. The current ABP paradigm seems rather robust in view of the existing literature that aims to delineate adaptive individual limits. Nevertheless, its objective sensitivity may be further improved. CONCLUSIONS This narrative review contributes to disentangling the numerous confounding factors of the ABP to gather the available scientific evidence and help interpret individual athlete profiles.
Collapse
Affiliation(s)
- Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Raphael Faiss
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Center of Research and Expertise in Anti-Doping Sciences - REDs, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
24
|
Xu Y, Kong X, Li J, Cui T, Wei Y, Xu J, Zhu Y, Zhu X. Mild Hypoxia Enhances the Expression of HIF and VEGF and Triggers the Response to Injury in Rat Kidneys. Front Physiol 2021; 12:690496. [PMID: 34248676 PMCID: PMC8267573 DOI: 10.3389/fphys.2021.690496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Hypoxia contributes to a cascade of inflammatory response mechanisms in kidneys that result in the development of renal interstitial fibrosis and subsequent chronic renal failure. Nonetheless, the kidney possesses a self-protection mechanism under a certain degree of hypoxia and this mechanism its adaptation to hypoxia. As the hypoxia-inducible factor (HIF)–vascular endothelial growth factor (VEGF) axis is a key pathway for neovascularization, the activation of this axis is a target for renal hypoxia therapies. Methods Sprague–Dawley rats were exposed to normobaric hypoxia and subdivided into three groups, namely group A (21% O2), group B (10% O2), and group C (7% O2). Renal tissue samples were processed and analyzed to determine pathological morphological changes, the expression of HIF, VEGF, inflammation factor and vascular density. Results We found that as the duration of hypoxia increased, destructive changes in the kidney tissues became more severe in group C (7% O2). In contrast, the increased duration of hypoxia did not exacerbate kidney damage in group B (10% O2). As the hypoxia was prolonged and the degree of hypoxia increased, the expression of HIF-1α increased gradually. As hypoxia time increased, the expression of VEGF increased gradually, but VEGF expression in group B (10% O2) was the highest. Group C (7% O2) had higher levels of IL-6, IL-10, and TNF-alpha. Additionally, the highest vascular density was observed in group B. Conclusion These findings suggest that activating the HIF–VEGF signaling pathway to regulate angiogenesis after infliction of hypoxic kidney injury may provide clues for the development of novel CKD treatments.
Collapse
Affiliation(s)
- Yaya Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Xiangmei Kong
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Jiru Li
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Cui
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Wei
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Jiayue Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Yueniu Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Wehrlin JP, Steiner T. Is Hemoglobin Mass at Age 16 a Predictor for National Team Membership at Age 25 in Cross-Country Skiers and Triathletes? Front Sports Act Living 2021; 3:580486. [PMID: 33791598 PMCID: PMC8005519 DOI: 10.3389/fspor.2021.580486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/18/2021] [Indexed: 12/02/2022] Open
Abstract
We recently measured the development of hemoglobin mass (Hbmass) in 10 Swiss national team endurance athletes between ages 16–19. Level of Hbmass at age 16 was an important predictor for Hbmass and endurance performance at age 19. The aim was to determine how many of these young athletes were still members of Swiss national teams (NT) at age 25, how many already terminated their career (TC), and whether Hbmass at ages 16 and 19 was different between the NT and TC group. We measured Hbmass using the optimized carbon monoxide re-breathing technique in 10 high-performing endurance athletes every 0.5 years beginning at age 16 and ending at age 19. At age 25, two athletes were in the NT group and eight athletes in the TC group. Mean absolute, body weight-, and lean body mass (LBM) related Hbmass at age 16 was 833 ± 61 g, 13.7 ± 0.2 g/kg and 14.2 ± 0.2 g/kg LBM in the NT group and 742 ± 83 g, 12.2 ± 0.7 g/kg and 12.8 ± 0.8 g/kg LBM in the TC group. At age 19, Hbmass was 1,042 ± 89 g, 14.6 ± 0.2 g/kg and 15.4 ± 0.2 g/kg LBM in the NT group and 863 ± 109 g, 12.7 ± 1.1 g/kg and 13.5 ± 1.1 g/kg LBM in the TC group. Body weight- and LBM related Hbmass were higher in the NT group than in the TC group at ages 16 and 19 (p < 0.05). These results indicate, that Hbmass at ages 16 and 19 possibly could be an important predictor for later national team membership in endurance disciplines.
Collapse
Affiliation(s)
- Jon Peter Wehrlin
- Section for Elite Sport, Swiss Federal Institute of Sport, Magglingen, Switzerland
| | - Thomas Steiner
- Section for Elite Sport, Swiss Federal Institute of Sport, Magglingen, Switzerland
| |
Collapse
|
26
|
Meng Z, Gao H, Li T, Ge P, Xu Y, Gao B. Effects of Eight Weeks Altitude Training on the Aerobic Capacity and Microcirculation Function in Trained Rowers. High Alt Med Biol 2021; 22:24-31. [PMID: 33719550 DOI: 10.1089/ham.2020.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meng, Zhijun, Huan Gao, Tao Li, Peng Ge, Yixiao Xu, and Binghong Gao. Effects of eight weeks altitude training on the aerobic capacity and microcirculation function in trained rowers. High Alt Med Biol. 22:24-31, 2021. Background: The mechanism of aerobic improvement after altitude training (AT) has not been resolved yet. Few studies have looked at microcirculation changes after AT in athletes. Materials and Methods: Thirty-three male rowers were recruited and divided into either the AT (n = 18, altitude 2,280 m) or the sea level training (ST group, n = 15, altitude 50 m) for 8 weeks training. Microcirculation function was monitored using a laser Doppler flowmeter. VO2peak and ergometer 5 km time trial (Er5k) were conducted. Results: Within the AT group there was an 8.8% increment in VO2peak from pre- to post-training (4,708.9 ± 455.2 vs. 5,123.3 ± 391.2 ml/min, p < 0.01), whereas in ST group there was a 3.1% increase of VO2peak from pre- to post-training (4,975.4 ± 501.1 vs. 5,128.0 ± 499.3 m/min, p = 0.125). Er5k performance in AT group was significantly improved (1,040.3 ± 26.3 vs. 1,033.2 ± 27.5 seconds, p = 0.038), whereas in ST group Er5k performance was not improved (1,059.6 ± 30.9 vs. 1,060.4 ± 33.2 seconds, p = 0.819). Postocclusive reactive hyperemia reserve and heat reserve in the forearm of AT subjects increased significantly after 8 weeks. Meanwhile, the AT group's resting blood flow and cutaneous vascular conductance (CVC) of the thigh were higher after AT. For the ST group, resting blood flow and CVC in the thigh decreased significantly at third week post-training. There was a low correlation between the change of VO2peak and blood flow of the thigh (r = 0.45, p = 0.01). Conclusions: Trained rowers benefit more from 8 weeks of AT than from 8 weeks ST in terms of aerobic capacity. We have found that 8 weeks of AT increases thigh blood flow and improves endothelial function.
Collapse
Affiliation(s)
- Zhijun Meng
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China.,The Research Institute of Sports Science of Yunnan Province, Kunming, China
| | - Huan Gao
- The First Research Center of Competitive Sports, Shanghai Research Institute of Sports Science, Shanghai, China
| | - Tao Li
- The First Research Center of Competitive Sports, Shanghai Research Institute of Sports Science, Shanghai, China
| | - Peng Ge
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yixiao Xu
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
27
|
[Into thin air - Altitude training and hypoxic conditioning: From athlete to patient]. Rev Mal Respir 2021; 38:404-417. [PMID: 33722445 DOI: 10.1016/j.rmr.2021.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Hypoxic exposure should be considered as a continuum, the effects of which depend on the dose and individual response to hypoxia. Hypoxic conditioning (HC) represents an innovative and promising strategy, ranging from improved human performance to therapeutic applications. STATE OF THE ART With the aim of improving sports performance, the effectiveness of hypoxic exposure, whether natural or simulated, is difficult to demonstrate because of the large variability of the protocols used. In therapeutics, the benefits of HC are described in many pathological conditions such as obesity or cardiovascular pathologies. If the HC benefits from a strong preclinical rationale, its application to humans remains limited. PERSPECTIVES Advances in training and acclimation will require greater personalization and precise periodization of hypoxic exposures. For patients, the harmonization of HC protocols, the identification of biomarkers and the development and subsequent validation of devices allowing a precise control of the hypoxic stimulus are necessary steps for the development of HC. CONCLUSIONS From the athlete to the patient, HC represents an innovative and promising field of research, ranging from the improvement of human performance to the prevention and treatment of certain pathologies.
Collapse
|
28
|
Yan B, Ge X, Yu J, Hu Y, Girard O. Hypoxic re-exposure retains hematological but not performance adaptations post-altitude training. Eur J Appl Physiol 2021; 121:1049-1059. [PMID: 33426576 DOI: 10.1007/s00421-020-04589-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To test the hypothesis that hypoxic re-exposure after return from natural altitude training is beneficial in retaining hematological and performance adaptations. METHODS Eighteen mixed martial art fighters completed a 3-weeks natural altitude training camp at 2418 m. Afterwards, participants were randomly assigned to a living high-training low (12 h/d at a simulated altitude of 2800 m) group (LHTL, n = 9) or a living low-training low group (LLTL, n = 9) for a 3-week sea-level training period. At baseline and after return to sea level, hematological [hemoglobin mass (Hbmass) on days 2, 6, 9, 12, 15 and 21] and performance (3000 m time trial and maximal oxygen uptake on days 4, 6, 9, 15 and 21) markers were assessed. RESULTS Mean Hbmass increased from baseline to day 2 (11.7 ± 0.9 vs. 12.4 ± 1.3 g/kg; + 6.6 ± 7.5%; P < 0.05). While Hbmass remained elevated above baseline in LHTL (P < 0.001), it returned near baseline levels from day 9 in LLTL. Irrespective of groups, mean V̇O2max was only elevated above baseline at day 2 (+ 4.5 ± 0.8%) and day 9 (+ 3.8 ± 8.0%) (both P < 0.05). Compared to baseline, 3000 m running time decreased at day 4 (- 3.1 ± 3.3%; P < 0.05) and day 15 (- 2.8 ± 2.3%; P < 0.05) only. CONCLUSIONS Despite re-exposure to hypoxia allowing a recovery of the hypoxic stimulus to retain Hbmass gains from previous altitude sojourn, there is no performance advantage of this practice above sea level residence. Our results also give support to empirical observations describing alternance of periods of optimal and attenuated performance upon return to sea level.
Collapse
Affiliation(s)
- Bing Yan
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xiaochuan Ge
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Jiabei Yu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.,Beijing Institute of Sports Science, Beijing, China
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| |
Collapse
|
29
|
Baranauskas MN, Constantini K, Paris HL, Wiggins CC, Schlader ZJ, Chapman RF. Heat Versus Altitude Training for Endurance Performance at Sea Level. Exerc Sport Sci Rev 2021; 49:50-58. [PMID: 33044330 DOI: 10.1249/jes.0000000000000238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmental stressors, such as heat or altitude, elicit dissimilar physiological adaptations to endurance training programs. Whether these differences (i.e., increased hemoglobin mass vs plasma volume) differentially influence performance is debated. We review data in support of our novel hypothesis, which proposes altitude as the preferred environmental training stimulus for elite endurance athletes preparing to compete in temperate, sea-level climates (5°C-18°C).
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Keren Constantini
- School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Hunter L Paris
- Division of Natural Sciences, Pepperdine University, Malibu, CA
| | - Chad C Wiggins
- Department of Anaesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| |
Collapse
|
30
|
Gao WD, Zheng PP, Pan JW, Fang HB, Kan J, Chen Q. Prediction of VO2max based on a 3-kilometer running test for water sports athletes. J Sports Med Phys Fitness 2020; 61:542-550. [PMID: 33092333 DOI: 10.23736/s0022-4707.20.11440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND No studies have reported the 3-kilometer running test (3KRT) intending to predict VO2max for water sports athletes. Therefore, the purpose of this study was to develop a new model to predict the maximal aerobic capacity (VO2max) for water sports athletes based on 3KRT. METHODS One hundred and two water sports athletes completed two sessions of experiments consisting of a maximal graded exercise test (GXT) and a 3KRT. Multiple linear regression was applied to predict VO2max value based on the performance and physiological responses of 3KRT, along with participants' anthropometric and demographic variables. The predicted residual error sum of square (PRESS) and error terms (constant error and total error) were calculated to further evaluate the predictive accuracy. RESULTS Two significant prediction models based on elapsed exercise time (T3KRT), post-exercise heart rate (PHR3KRT), body mass, and gender were proposed. One model including PHR3KRT was identified (VO2max=120.77-0.028×T3KRT [second]-0.11×PHR3KRT [bpm]-0.334×body mass [kg]+8.70×gender [1: male, 0: female]), with an adjusted R2 of 0.723. Another model excluding PHR3KRT was also identified (VO2max=103.65-0.034×T3KRT [second]-0.317×Body mass [kg] + 7.89×gender [1: male, 0: female]), with an adjusted R2 of 0.713. Both models were further validated by the result of PRESS statistics. CONCLUSIONS This endurance 3-kilometer running test accurately predicted VO2max value for water sports athletes (rowers, canoeists, and kayakers), and the model excluding PHR3KRT would be easier to use.
Collapse
Affiliation(s)
- Wei D Gao
- Zhejiang Institute of Sports Science, Hangzhou, China
| | - Pan P Zheng
- Department of Physical Education and Military Sports, Zhejiang Financial College, Hangzhou, China
| | - Jing W Pan
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Hai B Fang
- Zhejiang Institute of Sports Science, Hangzhou, China
| | - Jie Kan
- Zhejiang Institute of Sports Science, Hangzhou, China
| | - Qian Chen
- Zhejiang Institute of Sports Science, Hangzhou, China -
| |
Collapse
|
31
|
Siebenmann C, Dempsey JA. Hypoxic Training Is Not Beneficial in Elite Athletes. Med Sci Sports Exerc 2020; 52:519-522. [PMID: 31939915 DOI: 10.1249/mss.0000000000002141] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Jerome A Dempsey
- Department Population Health Sciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
32
|
Mujika I, Sharma AP, Stellingwerff T. Contemporary Periodization of Altitude Training for Elite Endurance Athletes: A Narrative Review. Sports Med 2020; 49:1651-1669. [PMID: 31452130 DOI: 10.1007/s40279-019-01165-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since the 1960s there has been an escalation in the purposeful utilization of altitude to enhance endurance athletic performance. This has been mirrored by a parallel intensification in research pursuits to elucidate hypoxia-induced adaptive mechanisms and substantiate optimal altitude protocols (e.g., hypoxic dose, duration, timing, and confounding factors such as training load periodization, health status, individual response, and nutritional considerations). The majority of the research and the field-based rationale for altitude has focused on hematological outcomes, where hypoxia causes an increased erythropoietic response resulting in augmented hemoglobin mass. Hypoxia-induced non-hematological adaptations, such as mitochondrial gene expression and enhanced muscle buffering capacity may also impact athletic performance, but research in elite endurance athletes is limited. However, despite significant scientific progress in our understanding of hypobaric hypoxia (natural altitude) and normobaric hypoxia (simulated altitude), elite endurance athletes and coaches still tend to be trailblazers at the coal face of cutting-edge altitude application to optimize individual performance, and they already implement novel altitude training interventions and progressive periodization and monitoring approaches. Published and field-based data strongly suggest that altitude training in elite endurance athletes should follow a long- and short-term periodized approach, integrating exercise training and recovery manipulation, performance peaking, adaptation monitoring, nutritional approaches, and the use of normobaric hypoxia in conjunction with terrestrial altitude. Future research should focus on the long-term effects of accumulated altitude training through repeated exposures, the interactions between altitude and other components of a periodized approach to elite athletic preparation, and the time course of non-hematological hypoxic adaptation and de-adaptation, and the potential differences in exercise-induced altitude adaptations between different modes of exercise.
Collapse
Affiliation(s)
- Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Odontology, University of the Basque Country, Leioa, Basque Country, Spain. .,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Avish P Sharma
- Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Triathlon Australia, Burleigh Heads, QLD, Australia
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, BC, Canada.,Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
33
|
Faiss R, Saugy J, Zollinger A, Robinson N, Schuetz F, Saugy M, Garnier PY. Prevalence Estimate of Blood Doping in Elite Track and Field Athletes During Two Major International Events. Front Physiol 2020; 11:160. [PMID: 32161553 PMCID: PMC7052379 DOI: 10.3389/fphys.2020.00160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
In elite sport, the Athlete Biological Passport (ABP) was invented to tackle cheaters by monitoring closely changes in biological parameters, flagging atypical variations. The hematological module of the ABP was indeed adopted in 2011 by World Athletics (WA). This study estimates the prevalence of blood doping based on hematological parameters in a large cohort of track and field athletes measured at two international major events (2011 and 2013 WA World Championships) with a hypothesized decrease in prevalence due to the ABP introduction. A total of 3683 blood samples were collected and analyzed from all participating athletes originating from 209 countries. The estimate of doping prevalence was obtained by using a Bayesian network with seven variables, as well as "blood doping" as a variable mimicking doping with low-doses of recombinant human erythropoietin (rhEPO), to generate reference cumulative distribution functions (CDFs) for the Abnormal Blood Profile Score (ABPS) from the ABP. Our results from robust hematological parameters indicate an estimation of an overall blood doping prevalence of 18% in 2011 and 15% in 2013 (non-significant difference) in average in endurance athletes [95% Confidence Interval (CI) 14-22 and 12-19% for 2011 and 2013, respectively]. A higher prevalence was observed in female athletes (22%, CI 16-28%) than in male athletes (15%, CI 9-20%) in 2011. In conclusion, this study presents the first comparison of blood doping prevalence in elite athletes based on biological measurements from major international events that may help scientists and experts to use the ABP in a more efficient and deterrent way.
Collapse
Affiliation(s)
- Raphael Faiss
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas Saugy
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alix Zollinger
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Neil Robinson
- Swiss Laboratory for Doping Analyses, University Centre of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Frederic Schuetz
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Martial Saugy
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
34
|
Millet GP, Debevec T. CrossTalk proposal: Barometric pressure, independent of , is the forgotten parameter in altitude physiology and mountain medicine. J Physiol 2020; 598:893-896. [DOI: 10.1113/jp278673] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Tadej Debevec
- Faculty of SportUniversity of Ljubljana Ljubljana Slovenia
- Department of AutomationBiocybernetics and RoboticsJozef Stefan Institute Ljubljana Slovenia
- School of Life sciencesFaculty of Medicine and Health SciencesNottingham University Nottingham UK
| |
Collapse
|
35
|
MILLET GRÉGOIREP, BROCHERIE FRANCK. Hypoxic Training Is Beneficial in Elite Athletes. Med Sci Sports Exerc 2020; 52:515-518. [DOI: 10.1249/mss.0000000000002142] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Hematological status and endurance performance predictors after low altitude training supported by normobaric hypoxia: a double-blind, placebo controlled study. Biol Sport 2020; 36:341-349. [PMID: 31938005 PMCID: PMC6945048 DOI: 10.5114/biolsport.2019.88760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/04/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
The benefits of altitude/hypoxic training for sea level performance are still under debate. This study examined the effects of low altitude training supported by normobaric hypoxia on hematological status and endurance performance predictors in elite female cyclists. Twenty-two female cyclists trained for 3 weeks at low altitude (<1100 m) and 2 weeks near sea level. During the first 3 weeks, 15 subjects stayed in hypoxic rooms simulating an altitude of 2200 m (+NH group, n = 8) or 1000 m (placebo group, n = 7), and 7 (control group) stayed in regular rooms. Significant increases in total hemoglobin mass (tHb-mass: p = 0.008, p = 0.025), power at 4 mmol·l-1 lactate (PAT4: p = 0.004, p = 0.005) (in absolute and relative values, respectively) and maximal power (PF: p = 0.034) (in absolute values) were observed. However, these effects were not associated with normobaric hypoxia. Changes in tHb-mass were not associated with initial concentrations of ferritin or transferrin receptor, whereas changes in relative tHb-mass (r = -0.53, p = 0.012), PF (r = -0.53, p = 0.01) and PAT4 (r = -0.65, p = 0.001) were inversely correlated with initial values. Changes in tHb-mass and PAT4 were positively correlated (r = 0.50, p = 0.017; r = 0.47, p = 0.028). Regardless of normobaric hypoxia application, low altitude training followed by sea-level training might improve hematological status in elite female cyclists, especially with relatively low initial values of tHb-mass, which could translate into enhanced endurance performance.
Collapse
|
37
|
Training to Compete at Altitude:Natural Altitude or Simulated Live High:Train Low? Int J Sports Physiol Perform 2019; 14:509-517. [PMID: 30300037 DOI: 10.1123/ijspp.2018-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the effects of natural altitude training (NAT) and simulated (SIM) live high:train low altitude training on road-race walking performance (min), as well as treadmill threshold walking speed (km·h-1) at 4 mmol·L-1 and maximal oxygen consumption, at 1380 m. METHODS Twenty-two elite-level male (n = 15) and female (n = 7) race walkers completed 14 d of NAT at 1380 m (n = 7), SIM live high:train low at 3000:600 m (n = 7), or control conditions (600-m altitude; CON, n = 8). All preintervention and postintervention testing procedures were conducted at 1380 m and consisted of an incremental treadmill test, completed prior to a 5 × 2-km road-race walking performance test. Differences between groups were analyzed via mixed-model analysis of variance and magnitude-based inferences, with a substantial change detected with >75% likelihood of exceeding the smallest worthwhile change. RESULTS The improvement in total performance time for the 5 × 2-km test in NAT was not substantially different from SIM but was substantially greater (85% likely) than CON. The improvement in percentage decrement in the 5 × 2-km performance test in NAT was greater than in both SIM (93% likely) and CON (93% likely). The increase in maximal oxygen consumption was substantially greater (91% likely) in NAT than in SIM. Improvement in threshold walking speed was substantially greater than CON for both SIM (91% likely) and NAT (90% likely). CONCLUSIONS Both NAT and SIM may allow athletes to achieve reasonable acclimation prior to competition at low altitude.
Collapse
|
38
|
Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, Ventura JL. Physiological and Biological Responses to Short-Term Intermittent Hypobaric Hypoxia Exposure: From Sports and Mountain Medicine to New Biomedical Applications. Front Physiol 2018; 9:814. [PMID: 30038574 PMCID: PMC6046402 DOI: 10.3389/fphys.2018.00814] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the altitude acclimatization responses elicited by short-term intermittent exposure to hypoxia have been subject to renewed attention. The main goal of short-term intermittent hypobaric hypoxia exposure programs was originally to improve the aerobic capacity of athletes or to accelerate the altitude acclimatization response in alpinists, since such programs induce an increase in erythrocyte mass. Several model programs of intermittent exposure to hypoxia have presented efficiency with respect to this goal, without any of the inconveniences or negative consequences associated with permanent stays at moderate or high altitudes. Artificial intermittent exposure to normobaric hypoxia systems have seen a rapid rise in popularity among recreational and professional athletes, not only due to their unbeatable cost/efficiency ratio, but also because they help prevent common inconveniences associated with high-altitude stays such as social isolation, nutritional limitations, and other minor health and comfort-related annoyances. Today, intermittent exposure to hypobaric hypoxia is known to elicit other physiological response types in several organs and body systems. These responses range from alterations in the ventilatory pattern to modulation of the mitochondrial function. The central role played by hypoxia-inducible factor (HIF) in activating a signaling molecular cascade after hypoxia exposure is well known. Among these targets, several growth factors that upregulate the capillary bed by inducing angiogenesis and promoting oxidative metabolism merit special attention. Applying intermittent hypobaric hypoxia to promote the action of some molecules, such as angiogenic factors, could improve repair and recovery in many tissue types. This article uses a comprehensive approach to examine data obtained in recent years. We consider evidence collected from different tissues, including myocardial capillarization, skeletal muscle fiber types and fiber size changes induced by intermittent hypoxia exposure, and discuss the evidence that points to beneficial interventions in applied fields such as sport science. Short-term intermittent hypoxia may not only be useful for healthy people, but could also be considered a promising tool to be applied, with due caution, to some pathophysiological states.
Collapse
Affiliation(s)
- Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joan R. Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Luisa Corral
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Ricart
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Casimiro Javierre
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Pages
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josep L. Ventura
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
39
|
Robach P, Pichon A, Siebenmann C, Rønnestad BR, Lundby C. Response to Millet and Brocherie. Scand J Med Sci Sports 2018; 28:2244-2245. [PMID: 29981191 DOI: 10.1111/sms.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul Robach
- Ecole Nationale des Sports de Montagne, Site de l'Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise (MOVE) - EA 6314, Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Christoph Siebenmann
- The Centre for Physical Activity Research, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Bent R Rønnestad
- Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Carsten Lundby
- The Centre for Physical Activity Research, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Koivisto AE, Paulsen G, Paur I, Garthe I, Tønnessen E, Raastad T, Bastani NE, Hallén J, Blomhoff R, Bøhn SK. Antioxidant-rich foods and response to altitude training: A randomized controlled trial in elite endurance athletes. Scand J Med Sci Sports 2018; 28:1982-1995. [PMID: 29749641 DOI: 10.1111/sms.13212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
Abstract
High doses of isolated antioxidant supplements such as vitamin C and E have demonstrated the potential to blunt cellular adaptations to training. It is, however, unknown whether intake of high doses of antioxidants from foods has similar effects. Hence, the aim of the study was to investigate whether intake of antioxidant-rich foods affects adaptations to altitude training in elite athletes. In a randomized controlled trial, 31 national team endurance athletes (23 ± 5 years) ingested antioxidant-rich foods (n = 16) or eucaloric control foods (n = 15) daily during a 3-week altitude training camp (2320 m). Changes from baseline to post-altitude in hemoglobin mass (Hbmass ; optimized CO rebreathing), maximal oxygen uptake (VO2max ; n = 16) or 100 m swimming performance (n = 10), and blood parameters were compared between the groups. The antioxidant group significantly increased total intake of antioxidant-rich foods (~118%) compared to the control group during the intervention. The total study population improved VO2max by 2.5% (1.7 mL/kg/min, P = .006) and Hbmass by 4.7% (48 g, P < .001), but not 100 m swimming performance. No difference was found between the groups regarding changes in Hbmass , VO2max or swimming performance. However, hemoglobin concentration increased more in the antioxidant group (effect size = 0.7; P = .045) with a concomitantly larger decrease in plasma and blood volumes compared to control group. Changes in ferritin and erythropoietin from pre- to post-altitude did not differ between the groups. Doubling the intake of antioxidant-rich foods was well tolerated and did not negatively influence the adaptive response to altitude training in elite endurance athletes.
Collapse
Affiliation(s)
| | - G Paulsen
- Norwegian Olympic Sports Centre, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - I Paur
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - I Garthe
- Norwegian Olympic Sports Centre, Oslo, Norway
| | - E Tønnessen
- Norwegian Olympic Sports Centre, Oslo, Norway
| | - T Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - N E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - J Hallén
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - R Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - S K Bøhn
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Bejder J, Nordsborg NB. Specificity of “Live High-Train Low” Altitude Training on Exercise Performance. Exerc Sport Sci Rev 2018; 46:129-136. [DOI: 10.1249/jes.0000000000000144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Robach P, Hansen J, Pichon A, Meinild Lundby AK, Dandanell S, Slettaløkken Falch G, Hammarström D, Pesta DH, Siebenmann C, Keiser S, Kérivel P, Whist JE, Rønnestad BR, Lundby C. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers. Scand J Med Sci Sports 2018; 28:1636-1652. [DOI: 10.1111/sms.13075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 01/16/2023]
Affiliation(s)
- P. Robach
- Ecole Nationale des Sports de Montagne; site de l'Ecole Nationale de Ski et d'Alpinisme; Chamonix France
- HP2, Université Grenoble Alpes; Grenoble France
| | - J. Hansen
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - A. Pichon
- Laboratory Mobility, Aging & Exercise (MOVE) - EA 6314; Faculty of Sport Sciences; University of Poitiers; Poitiers France
| | - A.-K. Meinild Lundby
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| | - S. Dandanell
- Center for Healthy Aging; Department of Biomedical Sciences; XLab; University of Copenhagen; Copenhagen Denmark
- Department for Physiotherapy and Occupational Therapy; Metropolitan University College; Copenhagen Denmark
| | | | - D. Hammarström
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - D. H. Pesta
- Department of Sport Science; Faculty for Sports Science and Psychology; University of Innsbruck; Innsbruck Austria
- Department of Visceral, Transplant, and Thoracic Surgery; D. Swarovski Research Laboratory; Medical University of Innsbruck; Innsbruck Austria
| | - C. Siebenmann
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| | - S. Keiser
- Institute of Physiology; University of Zürich; Zürich Switzerland
| | - P. Kérivel
- Ecole Nationale des Sports de Montagne; site de l'Ecole Nationale de Ski et d'Alpinisme; Chamonix France
| | - J. E. Whist
- Innlandet Hospital Trust; Lillehammer Norway
| | - B. R. Rønnestad
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - C. Lundby
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| |
Collapse
|
43
|
Lobigs LM, Sharpe K, Garvican-Lewis LA, Gore CJ, Peeling P, Dawson B, Schumacher YO. The athlete's hematological response to hypoxia: A meta-analysis on the influence of altitude exposure on key biomarkers of erythropoiesis. Am J Hematol 2018; 93:74-83. [PMID: 29027252 DOI: 10.1002/ajh.24941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/11/2022]
Abstract
Altitude training is associated with changes in blood markers, which can confound results of the Athlete?s Biological Passport (ABP). This meta-analysis aims to describe the fluctuations during- and post-altitude in key ABP variables; hemoglobin concentration ([Hb]), square-root transformed reticulocyte percentage (sqrt(retic%)) and the OFF-score. Individual de-identified raw data were provided from 17 studies. Separate linear mixed effects analyses were performed for delta values from baseline for [Hb], sqrt(retic%) and OFF-score, by altitude phase (during and post). Mixed models were fitted with the hierarchical structure: study and subject within study as random effects. Delta values as response variables and altitude dose (in kilometer hours; km.hr = altitude (m) / 1000 x hours), sex, age, protocol and baseline values as fixed effects. Allowances were made for potential autocorrelation. Within two days at natural altitude [Hb] rapidly increased. Subsequent delta [Hb] values increased with altitude dose, reaching a plateau of 0.94 g/dL [95%CI (0.69, 1.20)] at ~1000 km.hr. Delta sqrt(retic%) and OFF-score were the first to identify an erythrocyte response, with respective increases and decreases observed within 100 to 200 km.hr. Post-altitude, [Hb] remained elevated for two weeks. Delta sqrt(retic%) declined below baseline, the magnitude of change was dependent on altitude dose. Baseline values were a significant covariate (p<0.05). The response to altitude is complex resulting in a wide range of individual responses, influenced primarily by altitude dose and baseline values. Improved knowledge of the plausible hematological variations during- and post-altitude provides fundamental information for both the ABP expert and sports physician.
Collapse
Affiliation(s)
- Louisa M. Lobigs
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
- Aspetar Sports Medicine Hospital, PO Box 29222; Doha Qatar
| | - Ken Sharpe
- Statistical Consulting Centre, School of Mathematics and Statistics; University of Melbourne; Vic 3010 Australia
| | - Laura A. Garvican-Lewis
- Australian Institute of Sport; Canberra 2617 Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University; Melbourne Australia
| | | | - Peter Peeling
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
- Western Australian Institute of Sport, Mt Claremont; WA 6010 Australia
| | - Brian Dawson
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
| | | |
Collapse
|
44
|
Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur J Appl Physiol 2017; 118:419-428. [DOI: 10.1007/s00421-017-3784-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022]
|
45
|
Millet GP, Chapman RF, Girard O, Brocherie F. Is live high -train low altitude training relevant for elite athletes? Flawed analysis from inaccurate data. Br J Sports Med 2017; 53:923-925. [PMID: 29247024 DOI: 10.1136/bjsports-2017-098083] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 11/04/2022]
Affiliation(s)
- Gregoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, ISSUL, University of Lausanne, Lausanne, Switzerland
| | - Robert F Chapman
- Department of Kinesiology, HH Morris Human Performance Laboratory, Indiana University, Bloomington, Indiana, USA
| | - Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar
| | - Franck Brocherie
- Research Department, Laboratory Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
46
|
Hauser A, Troesch S, Steiner T, Brocherie F, Girard O, Saugy JJ, Schmitt L, Millet GP, Wehrlin JP. Do male athletes with already high initial haemoglobin mass benefit from 'live high-train low' altitude training? Exp Physiol 2017; 103:68-76. [PMID: 29024137 DOI: 10.1113/ep086590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/09/2017] [Indexed: 01/19/2023]
Abstract
NEW FINDINGS What is the central question of this study? It has been assumed that athletes embarking on an 'live high-train low' (LHTL) camp with already high initial haemoglobin mass (Hbmass ) have a limited ability to increase their Hbmass further post-intervention. Therefore, the relationship between initial Hbmass and post-intervention increase was tested with duplicate Hbmass measures and comparable hypoxic doses in male athletes. What is the main finding and its importance? There were trivial to moderate inverse relationships between initial Hbmass and percentage Hbmass increase in endurance and team-sport athletes after the LHTL camp, indicating that even athletes with higher initial Hbmass can reasonably expect Hbmass gains post-LHTL. It has been proposed that athletes with high initial values of haemoglobin mass (Hbmass ) will have a smaller Hbmass increase in response to 'live high-train low' (LHTL) altitude training. To verify this assumption, the relationship between initial absolute and relative Hbmass values and their respective Hbmass increase following LHTL in male endurance and team-sport athletes was investigated. Overall, 58 male athletes (35 well-trained endurance athletes and 23 elite male field hockey players) undertook an LHTL training camp with similar hypoxic doses (200-230 h). The Hbmass was measured in duplicate pre- and post-LHTL by the carbon monoxide rebreathing method. Although there was no relationship (r = 0.02, P = 0.91) between initial absolute Hbmass (in grams) and the percentage increase in absolute Hbmass , a moderate relationship (r = -0.31, P = 0.02) between initial relative Hbmass (in grams per kilogram) and the percentage increase in relative Hbmass was detected. Mean absolute and relative Hbmass increased to a similar extent (P ≥ 0.81) in endurance (from 916 ± 88 to 951 ± 96 g, +3.8%, P < 0.001 and from 13.1 ± 1.2 to 13.6 ± 1.1 g kg-1 , +4.1%, P < 0.001, respectively) and team-sport athletes (from 920 ± 120 to 957 ± 127 g, +4.0%, P < 0.001 and from 11.9 ± 0.9 to 12.3 ± 0.9 g kg-1 , +4.0%, P < 0.001, respectively) after LHTL. The direct comparison study using individual data of male endurance and team-sport athletes and strict methodological control (duplicate Hbmass measures and matched hypoxic dose) indicated that even athletes with higher initial Hbmass can reasonably expect Hbmass gain post-LHTL.
Collapse
Affiliation(s)
- Anna Hauser
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland.,Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Severin Troesch
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| | - Thomas Steiner
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| | - Franck Brocherie
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,Institut National du Sport de l'Expertise et de la Performance, Paris, France
| | - Olivier Girard
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,Aspetar, Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar
| | - Jonas J Saugy
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Laurent Schmitt
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,National School of Mountain Sports/National Ski-Nordic Centre, Prémanon, France
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Jon P Wehrlin
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| |
Collapse
|
47
|
Siebenmann C, Keiser S, Robach P, Lundby C. CORP: The assessment of total hemoglobin mass by carbon monoxide rebreathing. J Appl Physiol (1985) 2017; 123:645-654. [DOI: 10.1152/japplphysiol.00185.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/14/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022] Open
Abstract
In this Cores of Reproducibility in Physiology (CORP) article, we present the theory and practical aspects of the carbon monoxide (CO) rebreathing method for the determination of total hemoglobin mass in humans. With CO rebreathing, a small quantity of CO is diluted in O2and rebreathed for a specified time period, during which most of the CO is absorbed and bound to circulating hemoglobin. The dilution principle then allows calculation of the total number of circulating hemoglobin molecules based on the number of absorbed CO molecules and the resulting changes in the fraction of carboxyhemoglobin in blood. Total hemoglobin mass is derived by multiplication with the molar weight of hemoglobin. CO rebreathing has been used for >100 yr and has undergone steady improvement so that today excellent values in terms of accuracy and precision can be achieved if the methodological precautions are carefully followed.
Collapse
Affiliation(s)
- Christoph Siebenmann
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Keiser
- Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland; and
| | - Paul Robach
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Carsten Lundby
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Hypoxic dose, intensity distribution, and fatigue monitoring are paramount for "live high-train low". Eur J Appl Physiol 2017; 117:2121-2122. [PMID: 28664345 DOI: 10.1007/s00421-017-3665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
|
49
|
Esteve-Lanao J, Moreno-Pérez D, Cardona CA, Larumbe-Zabala E, Muñoz I, Sellés S, Cejuela R. Is Marathon Training Harder than the Ironman Training? An ECO-method Comparison. Front Physiol 2017; 8:298. [PMID: 28611674 PMCID: PMC5447032 DOI: 10.3389/fphys.2017.00298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/24/2017] [Indexed: 11/13/2022] Open
Abstract
Purpose: To compare the absolute and relative training load of the Marathon (42k) and the Ironman (IM) training in recreational trained athletes. Methods: Fifteen Marathoners and Fifteen Triathletes participated in the study. Their performance level was the same relative to the sex's absolute winner at the race. No differences were presented neither in age, nor in body weight, height, BMI, running VO2max max, or endurance training experience (p > 0.05). They all trained systematically for their respective event (IM or 42k). Daily training load was recorded in a training log, and the last 16 weeks were compared. Before this, gas exchange and lactate metabolic tests were conducted in order to set individual training zones. The Objective Load Scale (ECOs) training load quantification method was applied. Differences between IM and 42k athletes' outcomes were assessed using Student's test and significance level was set at p < 0.05. Results: As expected, Competition Time was significantly different (IM 11 h 45 min ± 1 h 54 min vs. 42k 3 h 6 min ± 28 min, p < 0.001). Similarly, Training Weekly Avg Time (IM 12.9 h ± 2.6 vs. 42k 5.2 ± 0.9), and Average Weekly ECOs (IM 834 ± 171 vs. 42k 526 ± 118) were significantly higher in IM (p < 0.001). However, the Ratio between Training Load and Training Time was superior for 42k runners when comparing ECOs (IM 65.8 ± 11.8 vs. 42k 99.3 ± 6.8) (p < 0.001). Finally, all ratios between training time or load vs. Competition Time were superior for 42k (p < 0.001) (Training Time/Race Time: IM 1.1 ± 0.3 vs. 42k 1.7 ± 0.5), (ECOs Training Load/Race Time: IM 1.2 ± 0.3 vs. 42k 2.9 ± 1.0). Conclusions: In spite of IM athletes' superior training time and total or weekly training load, when comparing the ratios between training load and training time, and training time or training load vs. competition time, the preparation of a 42k showed to be harder.
Collapse
Affiliation(s)
| | - Diego Moreno-Pérez
- All In Your Mind TMMadrid, España.,Fundamentos de los Deportes, Universidad Europea de MadridMadrid, España
| | - Claudia A Cardona
- All In Your Mind TMMadrid, España.,Departamento de Fisioterapia, Universidad del Valle de MéxicoMérida, Mexico
| | | | - Iker Muñoz
- Ciencias de la Salud, Universidad Europea del AtlánticoSantander, España
| | - Sergio Sellés
- Departmental Section of Physical Education and Sports, University of AlicanteAlicante, Spain
| | - Roberto Cejuela
- All In Your Mind TMMadrid, España.,Departmental Section of Physical Education and Sports, University of AlicanteAlicante, Spain
| |
Collapse
|
50
|
De Smet S, van Herpt P, D'Hulst G, Van Thienen R, Van Leemputte M, Hespel P. Physiological Adaptations to Hypoxic vs. Normoxic Training during Intermittent Living High. Front Physiol 2017; 8:347. [PMID: 28620311 PMCID: PMC5449743 DOI: 10.3389/fphys.2017.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
In the setting of “living high,” it is unclear whether high-intensity interval training (HIIT) should be performed “low” or “high” to stimulate muscular and performance adaptations. Therefore, 10 physically active males participated in a 5-week “live high-train low or high” program (TR), whilst eight subjects were not engaged in any altitude or training intervention (CON). Five days per week (~15.5 h per day), TR was exposed to normobaric hypoxia simulating progressively increasing altitude of ~2,000–3,250 m. Three times per week, TR performed HIIT, administered as unilateral knee-extension training, with one leg in normobaric hypoxia (~4,300 m; TRHYP) and with the other leg in normoxia (TRNOR). “Living high” elicited a consistent elevation in serum erythropoietin concentrations which adequately predicted the increase in hemoglobin mass (r = 0.78, P < 0.05; TR: +2.6%, P < 0.05; CON: −0.7%, P > 0.05). Muscle oxygenation during training was lower in TRHYP vs. TRNOR (P < 0.05). Muscle homogenate buffering capacity and pH-regulating protein abundance were similar between pretest and posttest. Oscillations in muscle blood volume during repeated sprints, as estimated by oscillations in NIRS-derived tHb, increased from pretest to posttest in TRHYP (~80%, P < 0.01) but not in TRNOR (~50%, P = 0.08). Muscle capillarity (~15%) as well as repeated-sprint ability (~8%) and 3-min maximal performance (~10–15%) increased similarly in both legs (P < 0.05). Maximal isometric strength increased in TRHYP (~8%, P < 0.05) but not in TRNOR (~4%, P > 0.05). In conclusion, muscular and performance adaptations were largely similar following normoxic vs. hypoxic HIIT. However, hypoxic HIIT stimulated adaptations in isometric strength and muscle perfusion during intermittent sprinting.
Collapse
Affiliation(s)
- Stefan De Smet
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Paul van Herpt
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Ruud Van Thienen
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Marc Van Leemputte
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Peter Hespel
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium.,Athletic Performance Center, Bakala Academy, KU LeuvenLeuven, Belgium
| |
Collapse
|