1
|
Hu Y, Zhao X, Song Y, Jiang J, Long T, Cong M, Miao Y, Liu Y, Yang Z, Zhu Y, Wang J. Anti-inflammatory and Neuroprotective α-Pyrones from a Marine-Derived Strain of the Fungus Arthrinium arundinis and Their Heterologous Expression. JOURNAL OF NATURAL PRODUCTS 2024; 87:1975-1982. [PMID: 38687877 DOI: 10.1021/acs.jnatprod.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Fungal linear polyketides, such as α-pyrones with a 6-alkenyl chain, have been a rich source of biologically active compounds. Two new (1 and 2) and four known (3-6) 6-alkenylpyrone polyketides were isolated from a marine-derived strain of the fungus Arthrinium arundinis. Their structures were determined based on extensive spectroscopic analysis. The biosynthetic gene cluster (alt) for alternapyrones was identified from A. arundinis ZSDS-F3 and validated by heterologous expression in Aspergillus nidulans A1145 ΔSTΔEM, which revealed that the cytochrome P450 monooxygenase Alt2' could convert the methyl group 26-CH3 to a carboxyl group to produce 4 from 3. Another cytochrome P450 monooxygenase, Alt3', catalyzed successive hydroxylation, epoxidation, and oxidation steps to produce 1, 2, 5, and 6 from 4. Alternapyrone G (1) not only suppressed M1 polarization in lipopolysaccharide (LPS)-stimulated BV2 microglia but also stimulated dendrite regeneration and neuronal survival after Aβ treatment, suggesting alternapyrone G may be utilized as a privileged scaffold for Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyang Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yue Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jiahui Jiang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ting Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Mengjing Cong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuhua Miao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Marine Ecology and Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Marine Ecology and Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Marine Ecology and Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
2
|
Zhou YX, Luo WJ, Zhou TT, Zhou Y, Li HL, Sun F, Ge YW, Piao XH. Precursor ions-guided comprehensive profiling of triterpenoid saponins from the Eleutherococcus senticosus stems and their neuroprotective effect evaluation. J Pharm Biomed Anal 2024; 238:115849. [PMID: 37979523 DOI: 10.1016/j.jpba.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Triterpenoid saponins (TS) are the main constituents of Eleutherococcus senticosus, also termed as Siberian ginseng or Ciwujia, a widely used herb in China, Japan, Korea, and Russia for its beneficial effects on memory enhancement, tonifying, heart-nourishing, and tranquilizing. Although the stems, rhizomes, and roots are used identically, a preliminary experiment found TS were specifically distributed in stems rather than the underground parts. However, a comprehensive profiling of the TS compounds in E. senticosus stems (ESS) is still absent. In this study, an MS/MS molecular networking (MN)-based precursor ions (PIs) discovery strategy was applied to fast track the TS compounds from ESS extract. A total of 80 TS were tracked and characterized, among which 78 ones were reported for the first time in ESS. Furthermore, the TS-rich fraction (ESS-TS) was prepared by a series of chromatography separation, and was found with significant neuralprotective effects on attenuating Aβ25-35-induced neurite atrophy, and promoting the outgrowth of damaged neurite in the Aβ25-35-induced primary cortical neuronal damage model. In conclusion, this study highlighted the existence of TS compounds in ESS, a major medicinal parts nowadays adopted as Ciwujia by the Chinese Pharmacopiea and market. In addition, the TS was found with determined roles in the outgrowth of neuritis, and was proposed as crucial constituent when the E. senticosus was used as the therapeutic agents for neural diseases. These results supplies scientific data for the quality control of E. senticosus and the further development of ESS-TS as memory enhancement agents.
Collapse
Affiliation(s)
- Ying-Xin Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Jie Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tian-Tian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Shen Z, Huang D, Jia N, Zhao S, Pei C, Wang Y, Wu Y, Wang X, Shi S, Wang F, He Y, Wang Z. Protective effects of Eleutheroside E against high-altitude pulmonary edema by inhibiting NLRP3 inflammasome-mediated pyroptosis. Biomed Pharmacother 2023; 167:115607. [PMID: 37776644 DOI: 10.1016/j.biopha.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Eleutheroside E (EE) is a primary active component of Acanthopanax senticosus, which has been reported to inhibit the expression of inflammatory genes, but the underlying mechanisms remain elusive. High-altitude pulmonary edema (HAPE) is a severe complication of high-altitude exposure occurring after ascent above 2500 m. However, effective and safe preventative measures for HAPE still need to be improved. This study aimed to elucidate the preventative potential and underlying mechanism of EE in HAPE. Rat models of HAPE were established through hypobaric hypoxia. Mechanistically, hypobaric hypoxia aggravates oxidative stress and upregulates (pro)-inflammatory cytokines, activating NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis, eventually leading to HAPE. EE suppressed NLRP3 inflammasome-mediated pyroptosis by inhibiting the nuclear translocation of nuclear factor kappa-Β (NF-κB), thereby protecting the lung from HAPE. However, nigericin (Nig), an NLRP3 activator, partially abolished the protective effects of EE. These findings suggest EE is a promising agent for preventing HAPE induced by NLRP3 inflammasome-mediated pyroptosis.
Collapse
Affiliation(s)
- Zherui Shen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Demei Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nan Jia
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sijing Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Chongqing Medical University, Chongqing 400016, China
| | - Xiaomin Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fei Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yacong He
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; State Key Laboratory of Southwestern Chinese Medicine Resources School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhenxing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
4
|
Zhuo Y, Fu X, Jiang Q, Lai Y, Gu Y, Fang S, Chen H, Liu C, Pan H, Wu Q, Fang J. Systems pharmacology-based mechanism exploration of Acanthopanax senticosusin for Alzheimer's disease using UPLC-Q-TOF-MS, network analysis, and experimental validation. Eur J Pharmacol 2023:175895. [PMID: 37422122 DOI: 10.1016/j.ejphar.2023.175895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We next performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION Overall, this study applied systems pharmacology approach, via UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiling Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chenchen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
5
|
Malík M, Tlustoš P. Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061364. [PMID: 36987052 PMCID: PMC10056569 DOI: 10.3390/plants12061364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
Plant-based nootropics are a diverse group of natural drugs that can improve cognitive abilities through various physiological mechanisms, especially in cases where these functions are weakened or impaired. In many cases, the nootropics enhance erythrocyte plasticity and inhibit aggregation, which improves the blood's rheological properties and increases its flow to the brain. Many of these formulations possess antioxidant activity that protects brain tissue from neurotoxicity and improves the brain's oxygen supply. They can induce the synthesis of neuronal proteins, nucleic acids, and phospholipids for constructing and repairing neurohormonal membranes. These natural compounds can potentially be present in a great variety of herbs, shrubs, and even some trees and vines. The plant species reviewed here were selected based on the availability of verifiable experimental data and clinical trials investigating potential nootropic effects. Original research articles, relevant animal studies, meta-analyses, systematic reviews, and clinical trials were included in this review. Selected representatives of this heterogeneous group included Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urban, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., Ginkgo biloba L., Lepidium meyenii Walp., Panax ginseng C.A. Meyer, Paullinia cupana Kunth, Rhodiola rosea L., Schisandra chinensis (Turcz.) Baill., and Withania somnifera (L.) Dunal. The species are depicted and described, together with their active components and nootropic effects, and evidence of their efficacy is presented. The study provides brief descriptions of the representative species, their occurrence, history, and the chemical composition of the principle medicinal compounds, with uses, indications, experimental treatments, dosages, possible side effects, and contraindications. Most plant nootropics must be taken at optimal doses for extended periods before measurable improvement occurs, but they are generally very well tolerated. Their psychoactive properties are not produced by a single molecule but by a synergistic combination of several compounds. The available data suggest that including extracts from these plants in medicinal products to treat cognitive disorders can have substantial potential therapeutic benefits.
Collapse
|
6
|
Deng J, Feng X, Zhou L, He C, Li H, Xia J, Ge Y, Zhao Y, Song C, Chen L, Yang Z. Heterophyllin B, a cyclopeptide from Pseudostellaria heterophylla, improves memory via immunomodulation and neurite regeneration in i.c.v.Aβ-induced mice. Food Res Int 2022; 158:111576. [DOI: 10.1016/j.foodres.2022.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
7
|
Li XT, Zhou JC, Zhou Y, Ren YS, Huang YH, Wang SM, Tan L, Yang ZY, Ge YW. Pharmacological effects of Eleutherococcus senticosus on the neurological disorders. Phytother Res 2022; 36:3490-3504. [PMID: 35844057 DOI: 10.1002/ptr.7555] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/07/2022]
Abstract
Eleutherococcus senticosus is a medicinal plant widely used in traditional medicine and edible remedies with effects on anti-fatigue, sleep improvement, and memory enhancement. Recently, the application of E. senticosus to neurological disorders has been a focus. However, its overall pharmacological effect on neural diseases and relevant mechanisms are needed in an in-depth summary. In this review, the traditional uses and the therapeutic effect of E. senticosus on the treatment of fatigue, depression, Alzheimer's disease, Parkinson's disease, and cerebral ischemia were summarized. In addition, the underlying mechanisms involved in the anti-oxidative damage, anti-inflammation, neurotransmitter modulation, improvement of neuronal growth, and anti-apoptosis were discussed. This review will accelerate the understanding of the neuroprotective effects brought from the E. senticosus, and impetus its development as a phytotherapy agent against neurological disorders.
Collapse
Affiliation(s)
- Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying-Shan Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Hong Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Long Tan
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Yang D, Li J, Liang C, Tian L, Shi C, Hui N, Liu Y, Ling M, Xin L, Wan M, Li H, Zhao Q, Ren X, Liu H, Cao W. Syringa microphylla Diels: A comprehensive review of its phytochemical, pharmacological, pharmacokinetic, and toxicological characteristics and an investigation into its potential health benefits. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153770. [PMID: 34678528 DOI: 10.1016/j.phymed.2021.153770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Syringa microphylla Diels is a plant in the family Syringa Linn. For hundreds of years, its flowers and leaves have been used as a folk medicine for the treatment of cough, inflammation, colds, sore throat, acute hepatitis, chronic hepatitis, early liver cirrhosis, fatty liver, and oesophageal cancer. PURPOSE For the first time, we have comprehensively reviewed information on Syringa microphylla Diels that is not included in the Pharmacopoeia, clarified the pharmacological mechanisms of Syringa microphylla Diels and its active ingredients from a molecular biology perspective, compiled in vivo and in vitro animal experimental data and clinical data, and summarized the toxicology and pharmacokinetics of Syringa microphylla Diels. The progress in toxicology research is expected to provide a theoretical basis for the development of new drugs from Syringa microphylla Diels, a natural source of compounds that are potentially beneficial to human health. METHODS The PubMed, Google Scholar, China National Knowledge Infrastructure, Web of Science, SciFinder Scholar and Thomson Reuters databases were utilized to conduct a comprehensive search of published literature as of July 2021 to find original literature related to Syringa microphylla Diels and its active ingredients. RESULTS To date, 72 compounds have been isolated and identified from Syringa microphylla Diels, and oleuropein, verbascoside, isoacteoside, echinacoside, forsythoside B, and eleutheroside B are the main active components. These compounds have antioxidant, antibacterial, anti-inflammatory, and neuroprotective effects, and their safety and effectiveness have been demonstrated in long-term traditional applications. Molecular pharmacology experiments have indicated that the active ingredients of Syringa microphylla Diels exert their pharmacological effects in various ways, primarily by reducing oxidative stress damage via Nrf2/ARE pathway regulation, regulating inflammatory factors and inducing apoptosis through the MAPK and NF-κB pathways. CONCLUSION This comprehensive review of Syringa microphylla Diels provides new insights into the correlations among molecular mechanisms, the importance of toxicology and pharmacokinetics, and potential ways to address the limitations of current research. As Syringa microphylla Diels is a natural low-toxicity botanical medicine, it is worthy of development and utilization and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Dan Yang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Jingyi Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chunyang Shi
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuan Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Mei Ling
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Liang Xin
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an 712046, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Qianqian Zhao
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China.
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China.
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| |
Collapse
|
9
|
Lin B, Chen R, Wang Q, Li Z, Yang S, Feng Y. Transcriptomic and Metabolomic Profiling Reveals the Protective Effect of Acanthopanax senticosus (Rupr. & Maxim.) Harms Combined With Gastrodia elata Blume on Cerebral Ischemia-Reperfusion Injury. Front Pharmacol 2021; 12:619076. [PMID: 33935709 PMCID: PMC8085551 DOI: 10.3389/fphar.2021.619076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of current treatment strategies used in ischemic stroke are weakened by cerebral ischemia-reperfusion (CIR) injury. Suitable treatment regimens targeting CIR injury are still lacking. Two herbs, namely, Acanthopanax senticosus (Rupr. & Maxim.) Harms (ASE) and Gastrodia elata Blume (GEB), have been used as traditional Chinese medicine and are indicated in the treatment of stroke and cerebrovascular diseases. However, there are no studies that report the effects of ASE combined with GEB in the treatment of CIR injury. In this study, we used the Zea Longa method to induce CIR injury in male Wistar rats. Results of the pharmacodynamic studies revealed that co-administration of ASE and GEB may improve neuronal injury and prevent neuronal apoptosis by reducing oxidative stress and inflammation, and also help prevent CIR injury. On the basis of our hypothesis, we combined the results from transcriptomic and metabonomic analyses and found that ASE and GEB could prevent CIR injury by targeting phenylalanine, pyrimidine, methionine, and sphingolipid metabolism. Therefore, our study provides the basis for the compatibility and efficacy of ASE and GEB.
Collapse
Affiliation(s)
- Bingfeng Lin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Renhao Chen
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qi Wang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| | - Zhifeng Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Nanchang Key Laboratory of Active Ingredients of Traditional Chinese Medicine and Natural Medicine, Nanchang, China
| | - ShiLin Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| | - YuLin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| |
Collapse
|
10
|
Eleutheroside B, a selective late sodium current inhibitor, suppresses atrial fibrillation induced by sea anemone toxin II in rabbit hearts. Acta Pharmacol Sin 2021; 42:209-217. [PMID: 32612277 DOI: 10.1038/s41401-020-0453-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022]
Abstract
Eleutheroside B (EB) is the main active constituent derived from the Chinese herb Acanthopanax senticosus (AS) that has been reported to possess cardioprotective effects. In this study we investigated the effects of EB on cardiac electrophysiology and its suppression on atrial fibrillation (AF). Whole-cell recording was conducted in isolated rabbit atrial myocytes. The intracellular calcium ([Ca2+]i) concentration was measured using calcium indicator Fura-2/AM fluorescence. Monophasic action potential (MAP) and electrocardiogram (ECG) synchronous recordings were conducted in Langendorff-perfused rabbit hearts using ECG signal sampling and analysis system. We showed that EB dose-dependently inhibited late sodium current (INaL), transient sodium current (INaT), and sea anemone toxin II (ATX II)-increased INaL with IC50 values of 167, 1582, and 181 μM, respectively. On the other hand, EB (800 μM) did not affect L-type calcium current (ICaL), inward rectifier potassium channel current (IK), and action potential duration (APD). Furthermore, EB (300 μM) markedly decreased ATX II-prolonged the APD at 90% repolarization (APD90) and eliminated ATX II-induced early afterdepolarizations (EADs), delayed afterdepolarizations (DADs), and triggered activities (TAs). Moreover, EB (200 μM) significantly suppressed ATX II-induced Na+-dependent [Ca2+]i overload in atrial myocytes. In the Langendorff-perfused rabbit hearts, application of EB (200 μM) or TTX (2 μM) substantially decreased ATX II-induced incidences of atrial fibrillation (AF), ventricular fibrillation (VF), and heart death. These results suggest that augmented INaL alone is sufficient to induce AF, and EB exerts anti-AF actions mainly via blocking INaL, which put forward the basis of pharmacology for new clinical application of EB.
Collapse
|
11
|
Chen RH, Du WD, Wang Q, Li ZF, Wang DX, Yang SL, Feng YL. Effects of Acanthopanax senticosus (Rupr. & Maxim.) Harms on cerebral ischemia-reperfusion injury revealed by metabolomics and transcriptomics. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113212. [PMID: 32768643 DOI: 10.1016/j.jep.2020.113212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia-reperfusion (CIR) injury is one of the main diseases leading to death and disability. Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Panax ginseng, has neuroprotective effects on anti-CIR injury. However, the underlying molecular mechanism of its therapeutic effects is not clear. AIM OF THE STUDY To systematically study and explore the mechanism of Acanthopanax senticosus (Rupr. & Maxim.) Harms extract (ASE) in the treatment of CIR injury based on metabolomics and transcriptomics. MATERIALS AND METHODS The pharmacological basis of ASE in the treatment of CIR was evaluated, and samples were used in plasma metabolomics and brain tissue transcriptomics to reveal potential biomarkers. Finally, according to online database, we analyzed biomarkers identified by the two technologies, explained reasons for the therapeutic effect of ASE, and identify therapeutic targets. RESULTS A total of 53 differential metabolites (DMs) were identified in plasma and 3138 differentially expressed genes (DEGs) were identified in brain tissue from three groups of rats, including sham, ischemia-reperfusion (I/R), and ASE groups. Enrichment analysis showed that Nme6, Tk1, and Pold1 that are involved in the production of deoxycytidine and thymine were significantly up-regulated and Dck was significantly down-regulated by the intervention with ASE. These findings indicated that ASE participates in the pyrimidine metabolism by significantly regulating the balance between dCTP and dTTP. In addition, ASE repaired and promoted the lipid metabolism in rats, which might be due to the significant expression of Dgkz, Chat, and Gpcpd1. CONCLUSIONS The findings of this study suggest that ASE regulates the significant changes in gene expression in metabolites pyrimidine, and lipid metabolism in CIR rats and plays an active role in the treatment of CIR injury through multiple targets and pathways.
Collapse
Affiliation(s)
- Ren-Hao Chen
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, China
| | - Wei-Dong Du
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, China
| | - Qi Wang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, 330006, China
| | - Zhi-Feng Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, China; Nanchang Key Laboratory of Active Ingredients of Traditional Chinese Medicine and Natural Medicine, Nanchang, 330006, China.
| | - Dong-Xu Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, China
| | - Shi-Lin Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, 330006, China
| | - Yu-Lin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, 330006, China.
| |
Collapse
|
12
|
Majnooni MB, Fakhri S, Shokoohinia Y, Mojarrab M, Kazemi-Afrakoti S, Farzaei MH. Isofraxidin: Synthesis, Biosynthesis, Isolation, Pharmacokinetic and Pharmacological Properties. Molecules 2020; 25:E2040. [PMID: 32349420 PMCID: PMC7248759 DOI: 10.3390/molecules25092040] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
Isofraxidin (7-hydroxy-6, 8-dimethoxy coumarin) (IF) is a hydroxy coumarin with several biological and pharmacological activities. The plant kingdom is of the most prominent sources of IF, which, among them, Eleutherococcus and Fraxinus are the well-known genera in which IF could be isolated/extracted from their species. Considering the complex pathophysiological mechanisms behind some diseases (e.g., cancer, neurodegenerative diseases, and heart diseases), introducing IF as a potent multi-target agent, which possesses several herbal sources and the multiple methods for isolation/purification/synthesis, along with the unique pharmacokinetic profile and low levels of side effects, could be of great importance. Accordingly, a comprehensive review was done without time limitations until February 2020. IF extraction methods include microwave, mechanochemical, and ultrasound, along with other conventional methods in the presence of semi-polar solvents such as ethyl acetate (EtOAc). In addition to the isolation methods, related synthesis protocols of IF is also of great importance. From the synthesis point of view, benzaldehyde derivatives are widely used as precursors for IF synthesis. Along with the methods of isolation and biosynthesis, IF pharmacokinetic studies showed hopeful in vivo results of its rapid absorption after oral uses, leading to different pharmacological effects. In this regard, IF targets varieties of inflammatory mediators including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumor necrosis factor-α (TNF-α), and matrix metalloproteinases (MMPs). thereby indicating anticancer, cardioprotective, and neuroprotective effects. This is the first review on the synthesis, biosynthesis, isolation, and pharmacokinetic and pharmacological properties of IF in combating different diseases.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran; (M.B.M.); (S.K.-A.)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (Y.S.); (M.M.)
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (Y.S.); (M.M.)
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (Y.S.); (M.M.)
| | - Sara Kazemi-Afrakoti
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran; (M.B.M.); (S.K.-A.)
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (Y.S.); (M.M.)
| |
Collapse
|
13
|
Wang S, Yang X. Eleutheroside E decreases oxidative stress and NF-κB activation and reprograms the metabolic response against hypoxia-reoxygenation injury in H9c2 cells. Int Immunopharmacol 2020; 84:106513. [PMID: 32330867 DOI: 10.1016/j.intimp.2020.106513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/21/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023]
Abstract
Ischemia-reperfusion (I/R) injury causes cardiac dysfunction through several mechanisms including oxidative stress and pro-inflammation. Eleutheroside E (EE) has protective effects in ischemia tissue and anti-inflammatory action. However, the effect of EE on I/R-injured cardiomyocytes is unknown. In this study, we used in vitro H9c2 cell model to investigate the favorable role of EE on myocardial I/R injury. We found that EE administration attenuated the cardiomyocyte apoptosis induced by hypoxia-reoxygenation (H/R) injury. Further, pre-treatment with EE dramatically inhibited mitochondrial oxidative stress, IκBα phosphorylation and nuclear factor kappa B (NF-κB) subunit p65 translocation into nuclei. EE might suppress the MAPK signaling pathway to inhibit the H/R-induced NF-κB activation. Moreover, we had analyzed the metabolomic profile of H/R-injured and H/R + 100 EE-treated H9c2 cells and found that the abundance of most metabolites changed by H/R could be re-modulated by EE treatment. Pathway analysis highlighted the inhibition of fatty acid biosynthesis and alternation of arginine and proline metabolism as two potential links to the favorable effect of EE on H/R-injured cardiomyocytes. The further demonstration showed that nitric oxide (NO), a product that is solely catabolized by l-arginine and has profound anti-oxidative stress activity during H/R in cardiomyocytes, was augmented by EE. Altogether, our results provide evidence that EE may be a potential drug for myocardial I/R injury by reducing oxidative stress, NF-κB activation, and metabolic reprogramming.
Collapse
Affiliation(s)
- Shanyue Wang
- Department Cardiovascular Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xuming Yang
- Department Cardiovascular Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
14
|
Zhao Z, Zhang W, Zhang Y, Zhao Y, Zheng C, Tian H, Lei J, Liu Y, Zhao R, Tang Q. Multimodal Magnetic Resonance Imaging and Therapeutic Intervention With Yi-nao-jie-yu Decoction in a Rat Model of Post-stroke Depression. Front Psychiatry 2020; 11:557423. [PMID: 33329096 PMCID: PMC7672154 DOI: 10.3389/fpsyt.2020.557423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023] Open
Abstract
Post-stroke depression (PSD) is the most common neuropsychiatric complication after a stroke, though its neuropathological characteristics have not been fully elucidated. Comprehensive and non-invasive magnetic resonance (MR) assessment techniques are urgently needed for current research, as diffusion tensor imaging (DTI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS) can allow for a comprehensive assessment of neuropathological changes in the brain. These techniques can provide information about microscopic tissue integrity, cerebral perfusion, and cerebral metabolism, and can serve as powerful tools for investigating neurophysiological changes associated with PSD. Yi-nao-jie-yu decoction (YNJYD) is a Chinese herbal formulation based on the theory of traditional Chinese medicine, with demonstrated clinical efficacy in the treatment of PSD. The aim of this study was to use these MR techniques to evaluate changes in PSD and YNJYD-treated rats. This is the first experimental study in animals to investigate neuropathological changes associated with PSD using a combination of multiple MR techniques, including DTI, ASL, and MRS. In addition, we investigated the effect of YNJYD in a rat model of PSD by assessing changes in brain tissue microstructure, brain metabolism, and cerebral perfusion. First, depressive-like behaviors of PSD rats were assessed by the open field test (OFT), sucrose preference test (SPT), and Morris water maze (MWM) test, and then the integrity of the rats' microstructure was assessed by DTI, the levels of regional cerebral perfusion were assessed by ASL, and changes in the relative concentrations of brain metabolites were determined by MRS. The results showed that OFT and SPT scores were significantly reduced in PSD rats, as was performance in the MWM; these PSD-associated changes were attenuated in rats administered YNJYD, with improved depressive-like behaviors evidenced by increased OFT and SPT scores and improved performance in the MWM task. Furthermore, we found that PSD rats had lower perfusion levels in the prefrontal cortex (PFC) and hippocampus (HP), microstructural damage, and abnormal changes in the concentrations of brain metabolites; YNJYD exerted therapeutic effects on PSD rats by improving microcirculation in the PFC and HP, regulating glutamatergic systems and membrane phospholipid metabolism, and repairing microstructural damage.
Collapse
Affiliation(s)
- Zijun Zhao
- Beijing University of Chinese Medicine, Beijing, China
| | - Wen Zhang
- Department of Pediatrics, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Zhang
- Department of Neurology, Beijing Hospital of Traditional Chinese Medicine Shunyi Branch, Beijing, China
| | - Yun Zhao
- Department of Cardiology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chunxiang Zheng
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jianfeng Lei
- Center for Medical Experiments and Testing, Capital Medical University, Beijing, China
| | - Yan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruizhen Zhao
- Center of Treating Potential Diseases, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qisheng Tang
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Adamczyk K, Olech M, Abramek J, Pietrzak W, Kuźniewski R, Bogucka-Kocka A, Nowak R, Ptaszyńska AA, Rapacka-Gackowska A, Skalski T, Strzemski M, Sowa I, Wójciak-Kosior M, Feldo M, Załuski D. Eleutherococcus Species Cultivated in Europe: A New Source of Compounds with Antiacetylcholinesterase, Antihyaluronidase, Anti-DPPH, and Cytotoxic Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8673521. [PMID: 30984341 PMCID: PMC6431473 DOI: 10.1155/2019/8673521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
Abstract
Secondary metabolites of the roots of Eleutherococcus spp. cultivated in Poland, or the bioactivity, are not fully known. The 75% methanol extracts of five Eleutherococcus spp. (E. senticosus, E. divaricatus, E. sessiliflorus, E. gracilistylus, and E. henryi) were examined for the content of polyphenols and phenolic acids as well as for antiacetylcholinesterase, antihyaluronidase, anti-DPPH∗, and cytotoxic activities. The richest in polyphenols were the roots of E. henryi (10.4 mg/g DW), while in flavonoids the roots of E. divaricatus (6.5 mg/g DW). The richest in phenolic acids occurred the roots of E. henryi [protocatechuic acid (1865 μg/g DE), caffeic acid (244 μg/g DE), and p-coumaric and ferulic acids (55 μg/g DE)]. The highest inhibition of AChE was observed for E. gracilistylus and E. sessiliflorus (32%), at the concentration of 100 μg/0.19 mL of the reaction mixture, while that of Hyal for the roots of E. henryi (40.7%), at the concentration of 100 μg/0.16 mL of the reaction mixture. Among five species tested, the E. henryi extract exhibited the strongest HL-60 cell line growth's inhibition (IC50 270 μg/mL). The extracts reduced DPPH∗ in a time-dependent mode, at the concentration of 0.8 mg/mL. After 90 min from 14.7 to 26.2%, DPPH∗was reduced. A phytochemical composition and activity of the Eleutherococcus species, cultivated in Poland, are still under research; however, on the basis of the results obtained, it may be concluded that they may become a source of phytochemicals and be useful for Europe's citizens.
Collapse
Affiliation(s)
- Kuba Adamczyk
- Department of Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Marie Curie-Skłodowska Street, 85-094 Bydgoszcz, Poland
| | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Jagoda Abramek
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Wioleta Pietrzak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Rafał Kuźniewski
- Department of Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Marie Curie-Skłodowska Street, 85-094 Bydgoszcz, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Aneta A. Ptaszyńska
- Department of Botany and Mycology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Alina Rapacka-Gackowska
- Department of Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Marie Curie-Skłodowska Street, 85-094 Bydgoszcz, Poland
| | - Tomasz Skalski
- Department of Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Marie Curie-Skłodowska Street, 85-094 Bydgoszcz, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Lublin, Poland
| | - Daniel Załuski
- Department of Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Marie Curie-Skłodowska Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
16
|
Gu QF, Yu JZ, Wu H, Li YH, Liu CY, Feng L, Zhang GX, Xiao BG, Ma CG. Therapeutic effect of Rho kinase inhibitor FSD-C10 in a mouse model of Alzheimer's disease. Exp Ther Med 2018; 16:3929-3938. [PMID: 30344671 PMCID: PMC6176147 DOI: 10.3892/etm.2018.6701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Fasudil, a Rho kinase (ROCK) inhibitor, effectively inhibits disease severity in a mouse model of Alzheimer's disease (AD). However, given its significant limitations, including a relatively narrow safety window and poor oral bioavailability, Fasudil is not suitable for long-term use. Thus, screening for ROCK inhibitor(s) that are more efficient, safer, can be used orally and suitable for long-term use in the treatment of neurodegenerative disorders is required. The main purpose of the present study is to explore whether FSD-C10, a novel ROCK inhibitor, has therapeutic potential in amyloid precursor protein/presenilin-1 transgenic (APP/PS1 Tg) mice, and to determine possible mechanisms of its action. The results showed that FSD-C10 effectively improved learning and memory impairment, accompanied by reduced expression of amyloid-β 1-42 (Aβ1-42), Tau protein phosphorylation (P-tau) and β-site APP-cleaving enzyme in the hippocampus and cortex area of brain. In addition, FSD-C10 administration boosted the expression of synapse-associated proteins, such as postynaptic density protein 95, synaptophsin, α-amino 3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor and neurotrophic factors, e,g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Taken together, our results demonstrate that FSD-C10 has therapeutic potential in the AD mouse model, possibly through inhibiting the formation of Aβ1-42 and P-tau, and promoting the generation of synapse-associated proteins and neurotrophic factors.
Collapse
Affiliation(s)
- Qing-Fang Gu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Jie-Zhong Yu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Hao Wu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Chun-Yun Liu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Ling Feng
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200025, P.R. China
| | - Cun-Gen Ma
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China.,2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
17
|
Meng Q, Pan J, Liu Y, Chen L, Ren Y. Anti-tumour effects of polysaccharide extracted from Acanthopanax senticosus and cell-mediated immunity. Exp Ther Med 2018; 15:1694-1701. [PMID: 29434755 PMCID: PMC5774378 DOI: 10.3892/etm.2017.5568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
Acanthopanax senticosus, also known as Siberian ginseng, is widely distributed throughout northern Asia and used in traditional Chinese medicine; it has been reported to prevent a number of diseases. However, the association between the antitumour and immunostimulatory activities of polysaccharide extracted from A. senticosus (ASPS) remains to be elucidated. The aim of the present study was to investigate the anti-tumour and immunomodulatory effects of polysaccharide extracted from ASPS on Crocker sarcoma S180, hepatic carcinoma H22 and uterine cervical carcinoma U14 tumour cell lines implanted in mice. High performance liquid chromatography, gas chromatography and infrared spectroscopy were used to analyse the monosaccharide composition of ASPS. The monosaccharide composition of ASPS (Arabic candy: Xylose: Glucose: Mannose) was 7.1:22.3:7.6:1.0. On day 0, female Kunming mice, were injected subcutaneously with 1×108 tumour cells in 0.2 ml. The inoculated mice were subsequently divided into five groups (10 mice/group) as follows: Model group, treated with normal saline; positive control group, treated with 30 mg/kg cyclophosphamide (CTX); and three treatment groups, treated with 200, 100 or 50 mg/kg ASPS. Non-inoculated mice were divided into the normal group, which was treated with normal saline, and the negative control group, which was treated with 200 mg/kg ASPS (n=10/group). CTX and ASPS were administered intragastrically once daily for 10 days. All mice were sacrificed on day 11. ASPS was observed to have an inhibitory effect on the growth of S180, H22 and U14 cells in solid and ascites tumour-bearing mice. Serum interleukin (IL)-2 and IL-12 levels were significantly increased in S180 solid tumour-bearing mice treated with 200 or 100 mg/kg ASPS compared with mice in the normal, control and model groups (P<0.05), whereas serum IL-2 and IL-12 levels were significantly decreased in the cyclophosphamide treatment group compared with the normal, control and model groups (P<0.05). No significant difference in serum levels of tumour necrosis factor-α level was observed between any groups. In S180 and U14 solid tumour-bearing mice, no significant differences in serum levels of interferon (INF)-γ level in were observed between groups; however, in H22 solid tumour-bearing mice, treatment with ASPS significantly increased serum INF-γ compared with the positive control group (P<0.05). The results may provide a basis for the potential application of ASPS in clinical treatment for cancer.
Collapse
Affiliation(s)
- Qinglong Meng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Jingzhi Pan
- Tuberculous Meningitis Research Center, Infectious Disease Hospital, Changchun, Jilin 130123, P.R. China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Li Chen
- Innovation and Development Centre of Small and Medium Enterprises, Siping, Jilin 136000, P.R. China
| | - Yueying Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| |
Collapse
|
18
|
Zhang SN, Li XZ, Yang XY. Drug-likeness prediction of chemical constituents isolated from Chinese materia medica Ciwujia. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:131-138. [PMID: 28065780 DOI: 10.1016/j.jep.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/10/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ciwujia (CWJ), one of the most commonly used Chinese materia medicas (CMMs), is derived from the roots, rhizomes, and stems of Acanthopanax senticosus harms (AS). CWJ has been used for the treatment of various central nervous system (CNS) and peripheral system diseases. Drug-likeness prediction can help to analyze the absorption, distribution, metabolism, and excretion (ADME) processes of the compounds in CWJ, as well as their potential therapeutic and toxic effects, which is of significance in the confirmation of the active material bases of CWJ. MATERIALS AND METHODS The ADME properties of the compounds were calculated through web based PreADMET program and ACD/I-Lab 2.0. The potential therapeutic and toxicity targets of these compounds were screened by the ChemQuery tool in DrugBank and T3DB. RESULTS 14/39 compounds had moderate or good oral bioavailability (OB). 29/39 compounds bound weakly to the plasma proteins. 18/39 compounds might pass across the blood-brain barrier (BBB). Most of these compounds showed low renal excretion ability. 25/39 compounds had 99 structurally similar drugs and 158 potential therapeutic targets. Additionally, 17/39 compounds had 53 structurally similar toxins and 126 potential toxicity targets. CONCLUSION Our study suggests that these compounds have a certain drug-likeness potentials, which are also likely to be the material bases of CWJ. These results may provide a reference for the safe use of CWJ and the expansion of its application scope.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- Department of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025, PR China
| | - Xu-Zhao Li
- Department of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025, PR China.
| | - Xu-Yan Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| |
Collapse
|
19
|
Tohda C. New Age Therapy for Alzheimer's Disease by Neuronal Network Reconstruction. Biol Pharm Bull 2017; 39:1569-1575. [PMID: 27725432 DOI: 10.1248/bpb.b16-00438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a recognized incurable neurodegenerative disorder. Clinically prescribed medicines for AD are expected to bring about only slight symptomatic improvement or a delay of its progression. Another strategy, amyloid β (Aβ) lowing agents, has not been successful at memory improvement. We have hypothesized that an improvement in cognitive function requires the construction of neuronal networks, including neurite regeneration and synapse formation; therefore, we have been exploring candidates for radical anti-AD drugs that can restore Aβ-induced neurite atrophy and memory impairment. Our studies found several promising drug candidates that may improve memory dysfunction in AD model mice. The main activity of these drugs is the restoration of damaged axons. Focusing on candidates based on the recovery of neurite atrophy in vitro certainly leads to positive effects on memory improvement also in vivo. This suggests that neuronal network reconstruction may importantly relate to functional recovery in the brain. When identifying the signaling mechanisms of exogenous compounds like natural medicine-derived constituents, molecules directly activated by the compound are hard to be identified. However, the drug affinity responsive target stability (DARTS) analysis may pave the way to an approach to determine the initial molecule of the signaling pathway. Exploring new drug candidates and clarifying their signaling pathways directly relating to neuronal network reconstruction may provide promising therapeutic strategies with which to overcome AD.
Collapse
Affiliation(s)
- Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
20
|
Li F, Zhang N, Wu Q, Yuan Y, Yang Z, Zhou M, Zhu J, Tang Q. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. Int J Mol Med 2016. [DOI: 10.3892/ijm.2016.2824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4135135. [PMID: 27803761 PMCID: PMC5075622 DOI: 10.1155/2016/4135135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 11/17/2022]
Abstract
Neurodegenerative diseases are one of the most occurring diseases in developed and developing countries. The aim of this work focused on the screening of the natural inhibitors of AChE and BuChE and antioxidants in Eleutherococcus species. We found that the ethanol extracts of E. setchuenensis and E. sessiliflorus showed the strongest inhibition towards AChE (IC50: 0.3 and 0.3 mg/mL, resp.). Among chloroform extracts, the most active appeared to be E. gracilistylus (IC50: 0.37 mg/mL). In turn, the ethanol extract of E. henryi inhibited the strongest BuChE with IC50 value of 0.13 mg/mL. Among chloroform extracts, E. gracilistylus, E. setchuenensis, and E. sessiliflorus appeared to be the strongest with IC50 values of 0.12, 0.18, and 0.19 mg/mL. HPTLC screening confirmed the presence of inhibitors in extracts. All extracts exhibited anti-DPPH⁎ activity and single antioxidants have been identified. To the best of our knowledge, no information was available on this activity of compounds in Eleutherococcus. These studies provide a biochemical basis for the regulation of AChE and BuChE and encourage us to continue isolation of active compounds.
Collapse
|
22
|
Ge YW, Tohda C, Zhu S, He YM, Yoshimatsu K, Komatsu K. Effects of Oleanane-Type Triterpene Saponins from the Leaves of Eleutherococcus senticosus in an Axonal Outgrowth Assay. JOURNAL OF NATURAL PRODUCTS 2016; 79:1834-41. [PMID: 27400231 DOI: 10.1021/acs.jnatprod.6b00329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An aqueous extract of Eleutherococcus senticosus leaves exerted a beneficial effect in restoring the neurite outgrowth from Aβ25-35-induced degeneration using an axonal density assay. Subsequent bioassay-guided fractionation afforded seven new oleanane-type triterpene saponins, ezoukoginosides A-G (1-7), along with nine known analogues. The structures of 1-7 were elucidated through chemical and spectroscopic approaches, and their effects on restoring the neurite outgrowth from Aβ25-35-induced degeneration were investigated. The results revealed that hydrophilic oleanane-type saponins substituted with a free carboxylic acid, hydroxy, or formyl group in the aglycone, especially when the oxidation occurred at C-29, not only restrained Aβ25-35-induced degeneration but also restored axonal outgrowth significantly. Compounds 2 (-COOH at C-29) and 3 (-CH2OH at C-29) showed the most potent bioactivity among the isolates.
Collapse
Affiliation(s)
| | | | | | | | - Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition , Ibaraki 567-0085, Japan
| | | |
Collapse
|
23
|
Proteomics in Traditional Chinese Medicine with an Emphasis on Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:393510. [PMID: 26557146 PMCID: PMC4628675 DOI: 10.1155/2015/393510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
In recent years, there has been an increasing worldwide interest in traditional Chinese medicine (TCM). This increasing demand for TCM needs to be accompanied by a deeper understanding of the mechanisms of action of TCM-based therapy. However, TCM is often described as a concept of Chinese philosophy, which is incomprehensible for Western medical society, thereby creating a gap between TCM and Western medicine (WM). In order to meet this challenge, TCM research has applied proteomics technologies for exploring the mechanisms of action of TCM treatment. Proteomics enables TCM researchers to oversee various pathways that are affected by treatment, as well as the dynamics of their interactions with one another. This review discusses the utility of comparative proteomics to better understand how TCM treatment may be used as a complementary therapy for Alzheimer's disease (AD). Additionally, we review the data from comparative AD-related TCM proteomics studies and establish the relevance of the data with available AD hypotheses, most notably regarding the ubiquitin proteasome system (UPS).
Collapse
|
24
|
Lee MY, Seo CS, Kim YB, Shin HK. Safety assessment of Guibi-tang: Subchronic toxicity study in Crl:CD SD rats. Regul Toxicol Pharmacol 2015; 73:485-93. [PMID: 26432010 DOI: 10.1016/j.yrtph.2015.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/28/2022]
Abstract
Guibi-tang (Kihi-To in Japanese and Qui-Pi-Tang in Chinese) is a multiherbal traditional Korean medicinal formula used for treatment of amnesia, fatigue, poor memory or forgetfulness, anemia, insomnia, and necrosis. The aim of the present study was to investigate potential safety, if any, of subchronic administration of Guibi-tang aqueous extract (GBT) in laboratory animals. For this study, 0, 1000, 2000, and 5000 mg/kg/day of GBT was administered to Crl:CD Sprague Dawley rats (10/sex/group) for 13 weeks via oral gavage. Administration of the GBT did not result in any mortality, body weight, food consumption, hematology, serum biochemistry, clinical or ophthalmological signs or changes in urinalysis, gross findings, or organ weight. However, histopathology revealed forestomach hyperplasia and duodenum mucosal hyperplasia in rats of both sexes at the highest dose of GBT, 5000 mg/kg/day. Therefore, the no-observed-adverse-effect level in rats was established for GBT at 2000 mg/kg/day under the conditions of this study.
Collapse
Affiliation(s)
- Mee-Young Lee
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine, 483 Expo-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Chang-Seob Seo
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine, 483 Expo-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Yong-Bum Kim
- Division of Non-clinical Studies, Korea Institute of Toxicology, P.O.Box 123, 100 Jangdong, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine, 483 Expo-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
25
|
Kumar NS, Nisha N. Phytomedicines as potential inhibitors of β amyloid aggregation: significance to Alzheimer's disease. Chin J Nat Med 2015; 12:801-18. [PMID: 25480511 DOI: 10.1016/s1875-5364(14)60122-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 01/13/2023]
Abstract
Throughout the history of drug development, plants have been an important source for the discovery of novel therapeutically active compounds for many diseases. The ethnopharmacological approach has provided several leads to identify potential new drugs from plant sources, including those for memory disorders. For the treatment of Alzheimer's disease the drug discovery focus shifted from cholinesterase inhibitors, to other targets primarily based on two key neuropathological hallmarks, namely the hyperphosphorylation of the tau protein resulting in the formation of neurofibrillary tangles (NFTs), and the increased formation and aggregation of amyloid-beta peptide (Aβ) derived from amyloid precursor protein (APP). The present article aims to provide a comprehensive literature survey of plants and their constituents that have been tested for Aβ aggregation, thus possibly relieving several features of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- N Satheesh Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research [NIPER-H], Balanagar, Hyderabad-500037, India.
| | - N Nisha
- Department of Biochemistry, Aurigene Discovery Technologies, Hyderabad-500049, India
| |
Collapse
|
26
|
Yim NH, Kim A, Liang C, Cho WK, Ma JY. Guibitang, a traditional herbal medicine, induces apoptotic death in A431 cells by regulating the activities of mitogen-activated protein kinases. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:344. [PMID: 25241226 PMCID: PMC4177594 DOI: 10.1186/1472-6882-14-344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/16/2014] [Indexed: 11/24/2022]
Abstract
Background Guibi-tang (GBT), a traditional herbal formula, mainly has been shown to possess immune regulation, antioxidant and protective effect of the gastric mucosa. Constituent herbs of GBT are frequently used to treat various diseases; however, their pharmacological effects, especially on cancer cells, differ from those of GBT. Furthermore, the molecular mechanisms behind effects of GBT remain unclear. In the present study, we explored the mechanism of chemopreventive/chemotherapeutic efficacy of GBT against human squamous cell carcinoma without cytotoxicity in normal cells and proved the efficacy of GBT through performing in vivo xenograft assay. Methods For analysis of the constituents of GBT, high performance liquid chromatography (HPLC)-DAD system was performed. To detect the anticancer effect of GBT, cell viability assay, caspase activity assay, cell cycle analysis, DNA fragmentation analysis, and Western blot analysis were performed in A431 cells. In addition, the inhibitory effect of tumor growth by GBT was evaluated in athymic nude mice inoculated with A431 cells. Results GBT showed cytotoxic activity against three different squamous cell carcinoma, especially on A431 cells. GBT induced the apoptosis through activating the caspase-8 in A431 cells. Inhibition of A431 cell growth by GBT was caused by G1-phase arrest through regulating proteins associated with cell cycle progression, such as cyclin D1, p21, and p27. Furthermore, GBT regulated the activation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK), and activated p53, a tumor suppressor protein. In MAPKs inhibitor study, inhibitors respectively blocked GBT-induced cell viability, indicating that MAPKs signals play critical role in cell death caused by GBT. In vivo xenografts, daily oral administration of 600 mg/kg GBT efficiently suppressed the tumorigenic growth of A431 cells without side effects such as loss of body weight and change of toxicological parameters compared to vehicle. Conclusions We first elucidate that GBT stimulates the apoptotic signaling pathway and suppresses the proliferation of A431 cells via regulating MAPKs signaling pathway. Furthermore, GBT significantly inhibits tumor growth of A431 cells without causing systemic toxicity. Based on our study, GBT could be useful in the management of skin cancer as chemoprevention and chemotherapy remedy.
Collapse
|
27
|
Schneiderová K, Šmejkal K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 14:799-833. [PMID: 32214918 PMCID: PMC7089068 DOI: 10.1007/s11101-014-9376-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/02/2014] [Indexed: 06/04/2023]
Abstract
Paulownia tomentosa, a member of the plant family Paulowniaceae and a rich source of biologically active secondary metabolites, is traditionally used in Chinese herbal medicine. Flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and miscellaneous other compounds have been isolated from different parts of P. tomentosa plant. Recent interest in this species has focused on isolating and identifying of prenylated flavonoids, that exhibit potent antioxidant, antibacterial, and antiphlogistic activities and inhibit severe acute respiratory syndrome coronavirus papain-like protease. They show cytotoxic activity against various human cancer cell lines and inhibit the effects of human cholinesterase, butyrylcholinesterase, and bacterial neuraminidases. Most of the compounds considered here have never been isolated from any other species of plant. This review summarizes the information about the isolated compounds that are active, their bioactivities, and the structure-activity relationships that have been worked out for them.
Collapse
Affiliation(s)
- Kristýna Schneiderová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| |
Collapse
|
28
|
Biotechnological production of eleutherosides: current state and perspectives. Appl Microbiol Biotechnol 2014; 98:7319-29. [DOI: 10.1007/s00253-014-5899-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
29
|
Guo S, Liu Y, Lin Z, Tai S, Yin S, Liu G. Effects of eleutheroside B and eleutheroside E on activity of cytochrome P450 in rat liver microsomes. Altern Ther Health Med 2014; 14:1. [PMID: 24383621 PMCID: PMC3880977 DOI: 10.1186/1472-6882-14-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chemicals of herbal products may cause unexpected toxicity or adverse effect by the potential for alteration of the activity of CYP450 when co-administered with other drugs. Eleutherococcus senticosus (ES), has been widely used as a traditional herbal medicine and popular herbal dietary supplements, and often co-administered with many other drugs. The main bioactive constituents of ES were considered to be eleutherosides including eleutheroside B (EB) and eleutheroside E (EE). This study was to investigate the effects of EB and EE on CYP2C9, CYP2D6, CYP2E1 and CYP3A4 in rat liver microsomes in vitro. METHOD Probe drugs of tolbutamide (TB), dextromethorphan (DM), chlorzoxazone (CLZ) and testosterone (TS) as well as eleutherosides of different concentrations were added to incubation systems of rat liver microsomes in vitro. After incubation, validated HPLC methods were used to quantify relevant metabolites. RESULTS The results suggested that EB and EE exhibited weak inhibition against the activity of CYP2C9 and CYP2E1, but no effects on CYP2D6 and CYP3A4 activity. The IC50 values for EB and EE were calculated to be 193.20 μM and 188.36 μM for CYP2E1, 595.66 μM and 261.82 μM for CYP2C9, respectively. Kinetic analysis showed that inhibitions of CYP2E1 by EB and EE were best fit to mixed-type with Ki value of 183.95 μM and 171.63 μM, respectively. CONCLUSIONS These results indicate that EB and EE may inhibit the metabolism of drugs metabolized via CYP2C9 and CYP2E1, and have the potential to increase the toxicity of the drugs.
Collapse
|
30
|
Jung SK, Lim TG, Seo SG, Lee HJ, Hwang YS, Choung MG, Lee KW. Cyanidin-3-O-(2″-xylosyl)-glucoside, an anthocyanin from Siberian ginseng (Acanthopanax senticosus) fruits, inhibits UVB-induced COX-2 expression and AP-1 transactivation. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0108-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
31
|
Ma B, Zhang Q, Liu Y, Li J, Xu Q, Li X, Yang X, Yao D, Sun J, Cui G, Ying H. Simultaneous determination of Eleutheroside B and Eleutheroside E in rat plasma by high performance liquid chromatography–electrospray ionization mass spectrometry and its application in a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 917-918:84-92. [DOI: 10.1016/j.jchromb.2012.12.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/29/2022]
|
32
|
Liu SP, An JT, Wang R, Li Q. Simultaneous quantification of five bioactive components of Acanthopanax senticosus and its extract by ultra performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Molecules 2012; 17:7903-13. [PMID: 22751226 PMCID: PMC6268600 DOI: 10.3390/molecules17077903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/19/2012] [Accepted: 06/27/2012] [Indexed: 11/26/2022] Open
Abstract
A simple and reliable ultra performance liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry method (UPLC-TOF-MS) was developed and validated for the simultaneous determination of the major bioactive constituents in Acanthopanax senticosus and its extract. The separation of five compounds was performed on a UPLCTM HSS T3 column (100 mm × 2.1 mm, 1.7 μm) with gradient elution using a mobile phase consisting of 0.1% aqueous formic acid and acetonitrile containing 0.1% formic acid. All targeted compounds (syringin, chlorogenid acid, caffeic acid, eleutheroside E and isofraxidin) were baseline separated within 5.3 min in samples, which represented an approximate six-fold reduction in the analysis time in comparison to published HPLC method. Quantitation was carried out working in the V mode using the narrow widow extracted ion chromatograms (nwXICs) of each compound (extracted using a 20 mDa window). Furthermore, all calibration curves showed good linearity (r > 0.999) within the test ranges. The precision was evaluated by intra- and inter-day tests, which revealed relative standard deviation (RSD) values of less than 3.88%. The recoveries for the quantified compounds were between 96.3% and 103.7%, with RSD values below 2.89%. According to the literature, this study represents the first investigation of the simultaneous analysis of multiple components and the method can be applied to determine the amounts of the major compounds in Acanthopanax senticosus and its extract by UPLC-TOF-MS.
Collapse
Affiliation(s)
- Shi-Ping Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Authors to whom correspondence should be addressed; or (S.-P.L.); (R.W.); Tel.: +86-451-8681-7566 (S.-P.L.)
| | - Jing-Tao An
- Department of Orthodontics, School of Stomatology, Harbin Medical University, Harbin 150001, China
| | - Rui Wang
- Department of Pediatrics, School of Stomatology, Harbin Medical University, Harbin 150001, China
- Authors to whom correspondence should be addressed; or (S.-P.L.); (R.W.); Tel.: +86-451-8681-7566 (S.-P.L.)
| | - Qiang Li
- College of Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
33
|
Lee D, Park J, Yoon J, Kim MY, Choi HY, Kim H. Neuroprotective effects of Eleutherococcus senticosus bark on transient global cerebral ischemia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:6-11. [PMID: 21645606 DOI: 10.1016/j.jep.2011.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eleutherococcus senticosus Maxim., classified into the family of Araliaceae, is used in a variety of diseases in traditional Korean medicine including ischemic heart disease. AIM OF THE STUDY To determine the neuroprotective effects of Eleutherococcus senticosus on global cerebral ischemia. MATERIALS AND METHODS A four-vessel occlusion (4-VO) rat model was used to evaluate the potential protective effects against transient global cerebral ischemia ethanol extracts of Eleutherococcus senticosus was orally administered at doses of 3, 30, and 300 mg/kg twice at times of 0 and 90 min after reperfusion. The effects on memory deficit were investigated by using a Y-maze neurobehavioral test after brain ischemia, and the effects on hippocampal neuronal damage were measured 7 days after ischemia. The expressions of glial fibrillary acid protein (GFAP), CD11b antibody (OX-42), and cyclooxygenase-2 (COX-2) were investigated by immunohistochemistry. RESULTS Oral administration of Eleutherococcus seticosus at 30, 100 and 300 mg/kg significantly reduced hippocampal CA1 neuronal death by 3.5%, 25.9% and 53.1%, respectively, compared with a vehicle-treated group. Oral administration of Eleutherococcus senticosus at 300 mg/kg inhibited 81.9% of the decrease in spontaneous alternation induced by 4-VOin the Y-maze test, and also attenuated ischemia-induced activation of COX-2, GFAP and OX-42 in the hippocampal CA1 region. CONCLUSION Eleutherococcus senticosus protects delayed neuronal death in the CA1 region of the hippocampus against global cerebral ischemia in rats with the recovery of spatial memory, which can be considered as the normal functioning of the hippocampus. Regarding the immunohistochemical study, the effect of Eleutherococcus senticosus may be attributable to its anti-inflammatory properties through the inhibition of COX-2 expression, microglia and astrocyte expression.
Collapse
Affiliation(s)
- Donghun Lee
- Department of Herbal Pharmacology, Kyung Hee University, College of Oriental Medicine, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
Zhu S, Bai Y, Oya M, Tanaka K, Komatsu K, Maruyama T, Goda Y, Kawasaki T, Fujita M, Shibata T. Genetic and chemical diversity of Eleutherococcus senticosus and molecular identification of Siberian ginseng by PCR-RFLP analysis based on chloroplast trnK intron sequence. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.05.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Bai Y, Tohda C, Zhu S, Hattori M, Komatsu K. Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid β(25-35)-induced neuritic atrophy in cultured rat cortical neurons. J Nat Med 2011; 65:417-23. [PMID: 21301979 DOI: 10.1007/s11418-011-0509-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/28/2010] [Indexed: 11/25/2022]
Abstract
Not only neuronal death but also neuritic atrophy and synaptic loss underlie the pathogenesis of Alzheimer's disease as direct causes of the memory deficit. Extracts of Siberian ginseng (the rhizome of Eleutherococcus senticosus) were shown to have protective effects on the regeneration of neurites and the reconstruction of synapses in rat cultured cortical neurons damaged by amyloid β (Aβ)(25-35), and eleutheroside B was one of the active constituents. In this study, a comprehensive evaluation of constituents was conducted to explore active components from Siberian ginseng which can protect against neuritic atrophy induced by Aβ(25-35) in cultured rat cortical neurons. The ethyl acetate, n-butanol and water fractions from the methanol extract of Siberian ginseng showed protective effects against Aβ-induced neuritic atrophy. Twelve compounds were isolated from the active fractions and identified. Among them, eleutheroside B, eleutheroside E and isofraxidin showed obvious protective effects against Aβ(25-35)-induced atrophies of axons and dendrites at 1 and 10 μM.
Collapse
Affiliation(s)
- Yanjing Bai
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | | | | | | | | |
Collapse
|