1
|
Sikarwar J, Meynier V, Tisné C. Advances in Human Pre-tRNA Maturation: TRMT10C and ELAC2 in Focus. J Mol Biol 2025:168989. [PMID: 39938738 DOI: 10.1016/j.jmb.2025.168989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Mitochondrial pre-tRNA maturation is a multi-step process involving the removal of the 5'-leader by PRORP, 3'-trailer processing by ELAC2, 3'-CCA addition by TRNT1, and the incorporation of post-transcriptional modifications. In metazoans, the low structural stability of mitochondrial pre-tRNAs adds significant complexity to these steps, and defects in their maturation have been implicated in various human mitochondrial disorders. In this case, the tRNA methyltransferase complex TRMT10C/SDR5C1 compensates for the pre-tRNA structural alteration to present the pre-tRNA to maturation enzymes. Cryo-electron microscopy structures of human mitochondrial pre-tRNA maturation complexes have provided critical insights into these essential processes. Here we review the current understanding of tRNA maturation within human mitochondria and explore its implications for nuclear pre-tRNA maturation.
Collapse
Affiliation(s)
- Juhi Sikarwar
- Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), Microbial Gene Expression Unit, 75005 Paris, France
| | - Vincent Meynier
- Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), Microbial Gene Expression Unit, 75005 Paris, France
| | - Carine Tisné
- Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), Microbial Gene Expression Unit, 75005 Paris, France.
| |
Collapse
|
2
|
Liang Y, Ji D, Ying X, Ma R, Ji W. tsRNA modifications: An emerging layer of biological regulation in disease. J Adv Res 2024:S2090-1232(24)00401-6. [PMID: 39260796 DOI: 10.1016/j.jare.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Transfer RNA (tRNA)-derived small RNA (tsRNA) represents an important and increasingly valued type of small non-coding RNA (sncRNA). The investigation of tRNA and tsRNA modification crosswalks has not only provided novel insights into the information and functions of tsRNA, but has also expanded the diversity and complexity of the tsRNA biological regulation network. AIM OF REVIEW Comparing with other sncRNAs, tsRNA biogenesis show obvious correlation with RNA modifications from mature tRNA and harbor various tRNA modifications. In this review, we aim to present the current aspect of tsRNA modifications and that modified tsRNA shape different regulatory mechanisms in physiological and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW Strategies for studying tsRNA mechanisms include its specific generation and functional effects induced by sequence/RNA modification/secondary structure. tsRNAs could harbor more than one tRNA modifications such as 5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (Ψ) and N7-methylguanosine (m7G). This review consolidates the current knowledge of tRNA modification regulating tsRNA biogenesis, outlines the functional roles of various modified tsRNA and highlights their specific contributions in various disease pathogenesis. Therefore, the improvement of tsRNA modification detection technology and the introduction of experimental methods of tsRNA modification are conducive to further broadening the understanding of tsRNA function at the level of RNA modification.
Collapse
Affiliation(s)
- Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Ding Ji
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China
| | - Xiaoling Ying
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510220, PR China
| | - Renqiang Ma
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
3
|
Fujita S, Sugio Y, Kawamura T, Yamagami R, Oka N, Hirata A, Yokogawa T, Hori H. ArcS from Thermococcus kodakarensis transfers L-lysine to preQ 0 nucleoside derivatives as minimum substrate RNAs. J Biol Chem 2024; 300:107505. [PMID: 38944122 PMCID: PMC11298593 DOI: 10.1016/j.jbc.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Yuzuru Sugio
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Tokushima, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
4
|
Matsuda T, Hori H, Yamagami R. Rational design of oligonucleotides for enhanced in vitro transcription of small RNA. RNA (NEW YORK, N.Y.) 2024; 30:710-727. [PMID: 38423625 PMCID: PMC11098460 DOI: 10.1261/rna.079923.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
All kinds of RNA molecules can be produced by in vitro transcription using T7 RNA polymerase using DNA templates obtained by solid-phase chemical synthesis, primer extension, PCR, or DNA cloning. The oligonucleotide design, however, is a challenge to nonexperts as this relies on a set of rules that have been established empirically over time. Here, we describe a Python program to facilitate the rational design of oligonucleotides, calculated with kinetic parameters for enhanced in vitro transcription (ROCKET). The Python tool uses thermodynamic parameters, performs folding-energy calculations, and selects oligonucleotides suitable for the polymerase extension reaction. These oligonucleotides improve yields of template DNA. With the oligonucleotides selected by the program, the tRNA transcripts can be prepared by a one-pot reaction of the DNA polymerase extension reaction and the transcription reaction. Also, the ROCKET-selected oligonucleotides provide greater transcription yields than that from oligonucleotides selected by Primerize, a leading software for designing oligonucleotides for in vitro transcription, due to the enhancement of template DNA synthesis. Apart from over 50 tRNA genes tested, an in vitro transcribed self-cleaving ribozyme was found to have catalytic activity. In addition, the program can be applied to the synthesis of mRNA, demonstrating the wide applicability of the ROCKET software.
Collapse
MESH Headings
- Transcription, Genetic
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/chemical synthesis
- Software
- DNA-Directed RNA Polymerases/metabolism
- DNA-Directed RNA Polymerases/genetics
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Catalytic/chemistry
- Thermodynamics
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Kinetics
- RNA, Messenger/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Teppei Matsuda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Yamagami
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
5
|
Bowles IE, Jackman JE. A tRNA-specific function for tRNA methyltransferase Trm10 is associated with a new tRNA quality control mechanism in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2024; 30:171-187. [PMID: 38071471 PMCID: PMC10798241 DOI: 10.1261/rna.079861.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
In Saccharomyces cerevisiae, a single homolog of the tRNA methyltransferase Trm10 performs m1G9 modification on 13 different tRNAs. Here we provide evidence that the m1G9 modification catalyzed by S. cerevisiae Trm10 plays a biologically important role for one of these tRNA substrates, tRNATrp Overexpression of tRNATrp (and not any of 38 other elongator tRNAs) rescues growth hypersensitivity of the trm10Δ strain in the presence of the antitumor drug 5-fluorouracil (5FU). Mature tRNATrp is depleted in trm10Δ cells, and its levels are further decreased upon growth in 5FU, while another Trm10 substrate (tRNAGly) is not affected under these conditions. Thus, m1G9 in S. cerevisiae is another example of a tRNA modification that is present on multiple tRNAs but is only essential for the biological function of one of those species. In addition to the effects of m1G9 on mature tRNATrp, precursor tRNATrp species accumulate in the same strains, an effect that is due to at least two distinct mechanisms. The levels of mature tRNATrp are rescued in the trm10Δmet22Δ strain, consistent with the known role of Met22 in tRNA quality control, where deletion of met22 causes inhibition of 5'-3' exonucleases that catalyze tRNA decay. However, none of the known Met22-associated exonucleases appear to be responsible for the decay of hypomodified tRNATrp, based on the inability of mutants of each enzyme to rescue the growth of the trm10Δ strain in the presence of 5FU. Thus, the surveillance of tRNATrp appears to constitute a distinct tRNA quality control pathway in S. cerevisiae.
Collapse
Affiliation(s)
- Isobel E Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, Columbus, Ohio 43210, USA
| |
Collapse
|
6
|
Kohno Y, Ito A, Okamoto A, Yamagami R, Hirata A, Hori H. Escherichia coli tRNA (Gm18) methyltransferase (TrmH) requires the correct localization of its methylation site (G18) in the D-loop for efficient methylation. J Biochem 2023; 175:43-56. [PMID: 37844264 PMCID: PMC11640301 DOI: 10.1093/jb/mvad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
TrmH is a eubacterial tRNA methyltransferase responsible for formation of 2'-O-methylguaosine at position 18 (Gm18) in tRNA. In Escherichia coli cells, only 14 tRNA species possess the Gm18 modification. To investigate the substrate tRNA selection mechanism of E. coli TrmH, we performed biochemical and structural studies. Escherichia coli TrmH requires a high concentration of substrate tRNA for efficient methylation. Experiments using native tRNA SerCGA purified from a trmH gene disruptant strain showed that modified nucleosides do not affect the methylation. A gel mobility-shift assay reveals that TrmH captures tRNAs without distinguishing between relatively good and very poor substrates. Methylation assays using wild-type and mutant tRNA transcripts revealed that the location of G18 in the D-loop is very important for efficient methylation by E. coli TrmH. In the case of tRNASer, tRNATyrand tRNALeu, the D-loop structure formed by interaction with the long variable region is important. For tRNAGln, the short distance between G18 and A14 is important. Thus, our biochemical study explains all Gm18 modification patterns in E. coli tRNAs. The crystal structure of E. coli TrmH has also been solved, and the tRNA binding mode of E. coli TrmH is discussed based on the structure.
Collapse
Affiliation(s)
- Yoh Kohno
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Asako Ito
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Aya Okamoto
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social
Science, Tokushima University, 2-1 Minamijosanjimacho,
Tokushima, Tokushima 770-8506, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| |
Collapse
|
7
|
Bowles IE, Jackman JE. Diversity in Biological Function and Mechanism of the tRNA Methyltransferase Trm10. Acc Chem Res 2023; 56:3595-3603. [PMID: 38048440 PMCID: PMC11210281 DOI: 10.1021/acs.accounts.3c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Transfer ribonucleic acid (tRNA) is the most highly modified RNA species in the cell, and loss of tRNA modifications can lead to growth defects in yeast as well as metabolic, neurological, and mitochondrial disorders in humans. Significant progress has been made toward identifying the enzymes that are responsible for installing diverse modifications in tRNA, revealing a landscape of fascinating biological and mechanistic diversity that remains to be fully explored. Most early discoveries of tRNA modification enzymes were in model systems, where many enzymes were not strictly required for viability, an observation somewhat at odds with the extreme conservation of many of the same enzymes throughout multiple domains of life. Moreover, many tRNA modification enzymes act on more than one type of tRNA substrate, which is not necessarily surprising given the similar overall secondary and tertiary structures of tRNA, yet biochemical characterization has revealed interesting patterns of substrate specificity that can be challenging to rationalize on a molecular level. Questions about how many enzymes efficiently select a precise set of target tRNAs from among a structurally similar pool of molecules persist.The tRNA methyltransferase Trm10 provides an exciting paradigm to study the biological and mechanistic questions surrounding tRNA modifications. Even though the enzyme was originally characterized in Saccharomyces cerevisiae where its deletion causes no detectable phenotype under standard lab conditions, several more recently identified phenotypes provide insight into the requirement for this modification in the overall quality control of the tRNA pool. Studies of Trm10 in yeast also revealed another characteristic feature that has turned out to be a conserved feature of enzymes throughout the Trm10 family tree. We were initially surprised to see that purified S. cerevisiae Trm10 was capable of modifying tRNA substrates that were not detectably modified by the enzyme in vivo in yeast. This pattern has continued to emerge as we and others have studied Trm10 orthologs from Archaea and Eukarya, with enzymes exhibiting in vitro substrate specificities that can differ significantly from in vivo patterns of modification. While this feature complicates efforts to predict substrate specificities of Trm10 enzymes in the absence of appropriate genetic systems, it also provides an exciting opportunity for studying how enzyme activities can be regulated to achieve dynamic patterns of biological tRNA modification, which have been shown to be increasingly important for stress responses and human disease. Finally, the intriguing diversity in target nucleotide modification that has been revealed among Trm10 orthologs is distinctive among known tRNA modifying enzymes and necessitates unusual and likely novel catalytic strategies for methylation that are being revealed by biochemical and structural studies directed toward various family members. These efforts will no doubt yield more surprising discoveries in terms of tRNA modification enzymology.
Collapse
Affiliation(s)
- Isobel E. Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Jane E. Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Saleh S, Farabaugh PJ. Posttranscriptional modification to the core of tRNAs modulates translational misreading errors. RNA (NEW YORK, N.Y.) 2023; 30:37-51. [PMID: 37907335 PMCID: PMC10726164 DOI: 10.1261/rna.079797.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Protein synthesis on the ribosome involves successive rapid recruitment of cognate aminoacyl-tRNAs and rejection of the much more numerous incorrect near- or non-cognates. The principal feature of translation elongation is that at every step, many incorrect aa-tRNAs unsuccessfully enter the A site for each cognate accepted. Normal levels of translational accuracy require that cognate tRNAs have relatively similar acceptance rates by the ribosome. To achieve that, tRNAs evolved to compensate for differences in amino acid properties and codon-anticodon strength that affect acceptance. Part of that response involved tRNA posttranscriptional modifications, which can affect tRNA decoding efficiency, accuracy, and structural stability. The most intensively modified regions of the tRNA are the anticodon loop and structural core of the tRNA. Anticodon loop modifications directly affect codon-anticodon pairing and therefore modulate accuracy. Core modifications have been thought to ensure consistent decoding rates principally by stabilizing tRNA structure to avoid degradation; however, degradation due to instability appears to only be a significant issue above normal growth temperatures. We suspected that the greater role of modification at normal temperatures might be to tune tRNAs to maintain consistent intrinsic rates of acceptance and peptide transfer and that hypomodification by altering these rates might degrade the process of discrimination, leading to increased translational errors. Here, we present evidence that most tRNA core modifications do modulate the frequency of misreading errors, suggesting that the need to maintain accuracy explains their deep evolutionary conservation.
Collapse
Affiliation(s)
- Sima Saleh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Philip J Farabaugh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
9
|
Strassler SE, Bowles IE, Krishnamohan A, Kim H, Edgington CB, Kuiper EG, Hancock CJ, Comstock LR, Jackman JE, Conn GL. tRNA m 1G9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10. J Biol Chem 2023; 299:105443. [PMID: 37949221 PMCID: PMC10704376 DOI: 10.1016/j.jbc.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the ninth nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 13 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) that allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.
Collapse
Affiliation(s)
- Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Isobel E Bowles
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Hyejeong Kim
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Catherine B Edgington
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Emily G Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Clio J Hancock
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lindsay R Comstock
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Strassler SE, Bowles IE, Krishnamohan A, Kim H, Edgington CB, Kuiper EG, Hancock CJ, Comstock LR, Jackman JE, Conn GL. tRNA m 1G9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526536. [PMID: 36778341 PMCID: PMC9915607 DOI: 10.1101/2023.02.01.526536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the 9th nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 14 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) which allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.
Collapse
Affiliation(s)
- Sarah E. Strassler
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Isobel E. Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Hyejeong Kim
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Catherine B. Edgington
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Emily G. Kuiper
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Clio J. Hancock
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
| | - Lindsay R. Comstock
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27106, USA
| | - Jane E. Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| |
Collapse
|
11
|
Wang Z, Xu X, Li X, Fang J, Huang Z, Zhang M, Liu J, Qiu X. Investigations of Single-Subunit tRNA Methyltransferases from Yeast. J Fungi (Basel) 2023; 9:1030. [PMID: 37888286 PMCID: PMC10608323 DOI: 10.3390/jof9101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
tRNA methylations, including base modification and 2'-O-methylation of ribose moiety, play critical roles in the structural stabilization of tRNAs and the fidelity and efficiency of protein translation. These modifications are catalyzed by tRNA methyltransferases (TRMs). Some of the TRMs from yeast can fully function only by a single subunit. In this study, after performing the primary bioinformatic analyses, the progress of the studies of yeast single-subunit TRMs, as well as the studies of their homologues from yeast and other types of eukaryotes and the corresponding TRMs from other types of organisms was systematically reviewed, which will facilitate the understanding of the evolutionary origin of functional diversity of eukaryotic single-subunit TRM.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xiangbin Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Mengli Zhang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Jiameng Liu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| |
Collapse
|
12
|
Witzenberger M, Burczyk S, Settele D, Mayer W, Welp L, Heiss M, Wagner M, Monecke T, Janowski R, Carell T, Urlaub H, Hauck S, Voigt A, Niessing D. Human TRMT2A methylates tRNA and contributes to translation fidelity. Nucleic Acids Res 2023; 51:8691-8710. [PMID: 37395448 PMCID: PMC10484741 DOI: 10.1093/nar/gkad565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
5-Methyluridine (m5U) is one of the most abundant RNA modifications found in cytosolic tRNA. tRNA methyltransferase 2 homolog A (hTRMT2A) is the dedicated mammalian enzyme for m5U formation at tRNA position 54. However, its RNA binding specificity and functional role in the cell are not well understood. Here we dissected structural and sequence requirements for binding and methylation of its RNA targets. Specificity of tRNA modification by hTRMT2A is achieved by a combination of modest binding preference and presence of a uridine in position 54 of tRNAs. Mutational analysis together with cross-linking experiments identified a large hTRMT2A-tRNA binding surface. Furthermore, complementing hTRMT2A interactome studies revealed that hTRMT2A interacts with proteins involved in RNA biogenesis. Finally, we addressed the question of the importance of hTRMT2A function by showing that its knockdown reduces translation fidelity. These findings extend the role of hTRMT2A beyond tRNA modification towards a role in translation.
Collapse
Affiliation(s)
- Monika Witzenberger
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - David Settele
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Wieland Mayer
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Heiss
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Mirko Wagner
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Carell
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Aaron Voigt
- Department of Neurology, Faculty of Medicine, RWTH Aachen, Aachen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
13
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
14
|
Brener A, Zeitlin L, Wilnai Y, Birk OS, Rosenfeld T, Chorna E, Lebenthal Y. Looking for the skeleton in the closet-rare genetic diagnoses in patients with diabetes and skeletal manifestations. Acta Diabetol 2022; 59:711-719. [PMID: 35137278 DOI: 10.1007/s00592-022-01854-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
AIMS The precision medicine approach of tailoring treatment to the individual characteristics of each patient has been a great success in monogenic diabetes subtypes, highlighting the importance of accurate clinical and genetic diagnoses of the type of diabetes. We sought to describe three unique cases of childhood-onset diabetes in whom skeletal manifestations led to the revelation of a rare type of diabetes. METHODS : Case-scenarios and review of the literature. RESULTS Case 1: A homozygous mutation in TRMT10A, a tRNA methyltransferase, was identified in a 15-year-old boy with new-onset diabetes, developmental delay, microcephaly, dysmorphism, short stature and central obesity. The progressive apoptosis of pancreatic beta cells required insulin replacement therapy, with increased demand due to an unfavorable body composition. Case 2: Congenital generalized lipodystrophy type 1 was suspected in an adolescent male with an acromegaloid facial appearance, muscular habitus, and diabetes who presented with a pathological fracture in a cystic bone lesion. A homozygous mutation in AGPAT2, an acyl transferase which mediates the formation of phospholipid precursors, was identified. Leptin replacement therapy initiation resulted in a remarkable improvement in clinical parameters. Case 3: A 12-year-old boy with progressive lower limb weakness and pain was diagnosed with diabetic ketoacidosis. Diffuse diaphyseal osteosclerosis compatible with the diagnosis of Camurati-Engelmann disease and a heterozygous mutation in TGFβ1 were identified. Preservation of euglycemia by insulin replacement relieved pain, suggesting that the diabetic milieu may have augmented TGFβ1 overexpression. CONCLUSION Unraveling the precise genetic cause for the clinical manifestations led to the prediction of phenotypic manifestations, and enhanced the clinical outcomes.
Collapse
Affiliation(s)
- Avivit Brener
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Leonid Zeitlin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Orthopedic Department, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Wilnai
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ohad S Birk
- Genetics Institute at Soroka Medical Center and the Morris Kahn Laboratory of Human GeneticsFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Talya Rosenfeld
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
- The Nutrition & Dietetics Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Efrat Chorna
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
- Social Services, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Lebenthal
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
16
|
Liu B, Cao J, Wang X, Guo C, Liu Y, Wang T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 2021; 13:24. [PMID: 34934044 PMCID: PMC8692627 DOI: 10.1038/s41419-021-04472-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs), a novel category of small noncoding RNAs, are enzymatically cleaved from tRNAs. Previous reports have shed some light on the roles of tsRNAs in the development of human diseases. However, our knowledge about tsRNAs is still relatively lacking. In this paper, we review the biogenesis, classification, subcellular localization as well as action mechanism of tsRNAs, and discuss the association between chemical modifications of tRNAs and the production and functions of tsRNAs. Furthermore, using immunity, metabolism, and malignancy as examples, we summarize the molecular mechanisms of tsRNAs in diseases and evaluate the potential of tsRNAs as new biomarkers and therapeutic targets. At the same time, we compile and introduce several resource databases that are currently publicly available for analyzing tsRNAs. Finally, we discuss the challenges associated with research in this field and future directions.
Collapse
Affiliation(s)
- Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China.
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Chunlei Guo
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, 300071, Tianjin, PR China
| |
Collapse
|
17
|
Krishnamohan A, Dodbele S, Jackman JE. Transient kinetic analysis for studying ionizations in RNA modification enzyme mechanisms. Methods Enzymol 2021; 658:251-275. [PMID: 34517950 DOI: 10.1016/bs.mie.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The application of in vitro kinetic tools has the potential to provide important insight into the molecular mechanisms of RNA modification enzymes. Utilizing quantitative biochemical approaches can reveal information about enzyme preferences for specific substrates that are relevant for understanding modification reactions in their biological contexts. Moreover, kinetic tools have been powerfully applied to identify and characterize roles for specific amino acid residues in catalysis, which can be essential information for understanding the molecular basis for human disease, as well as for targeting these enzymes for potential therapeutic interventions. RNA methyltransferases are a particularly interesting group of RNA modification enzymes because of the diversity in structure and mechanism that has been revealed among members of this group, even including some examples of enzymes that use entirely distinct reaction mechanisms to form identical methylated nucleotides in RNA. Yet, many questions remain unanswered about how these distinct catalytic strategies are facilitated by the relevant enzyme families. We have applied in vitro kinetic analysis to specifically focus on catalytically relevant ionizations in the context of tRNA methyltransferase reactions, by measuring rates under conditions of varied pH. This analysis can be applied broadly to RNA methyltransferases to expand our understanding of these important enzymes.
Collapse
Affiliation(s)
- Aiswarya Krishnamohan
- Ohio State Biochemistry Program, Center for RNA Biology and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Samantha Dodbele
- Ohio State Biochemistry Program, Center for RNA Biology and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Jane E Jackman
- Ohio State Biochemistry Program, Center for RNA Biology and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
18
|
A semi-quantitative pull-down assay to study tRNA substrate specificity of modification enzymes. Methods Enzymol 2021; 658:359-377. [PMID: 34517954 DOI: 10.1016/bs.mie.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A tRNA interacts with numerous proteins throughout its biogenesis and during translation, and a significant portion of these interacting proteins are involved in post-transcriptional modifications. While some of the modifying enzymes use relatively simple recognition elements for substrate recognition, many enzymes selectively modify a specific subset of tRNA species without obvious recognition rules. In this chapter we describe a semi-quantitative pull-down assay to study tRNA substrate specificity of modification enzymes, by using the yeast Saccharomyces cerevisiae m3C32 methyltransferase Trm140 as an example. We also discuss some overall considerations for a successful pull-down experiment, with a focus on practical applications of the dissociation constant KD between the protein and the tRNA and the off-rate.
Collapse
|
19
|
Alam J, Rahman FT, Sah-Teli SK, Venkatesan R, Koski MK, Autio KJ, Hiltunen JK, Kastaniotis AJ. Expression and analysis of the SAM-dependent RNA methyltransferase Rsm22 from Saccharomyces cerevisiae. Acta Crystallogr D Struct Biol 2021; 77:840-853. [PMID: 34076597 PMCID: PMC8171064 DOI: 10.1107/s2059798321004149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/17/2021] [Indexed: 12/04/2022] Open
Abstract
Rsm22-family proteins are conserved putative SAM-dependent methyltransferases with important functions in mitochondrial translation. Here, the results of a comparative bioinformatics analysis of Rsm22-type proteins are presented, the expression, biophysical characterization and crystallization of Saccharomyces cerevisiae Rsm22 are reported, a low-resolution SAXS structure of the protein is revealed, and SAM-dependent RNA methyl transferase activity of the protein is demonstrated. The Saccharomyces cerevisiae Rsm22 protein (Sc-Rsm22), encoded by the nuclear RSM22 (systematic name YKL155c) gene, is a distant homologue of Rsm22 from Trypanosoma brucei (Tb-Rsm22) and METTL17 from mouse (Mm-METTL17). All three proteins have been shown to be associated with mitochondrial gene expression, and Sc-Rsm22 has been documented to be essential for mitochondrial respiration. The Sc-Rsm22 protein comprises a polypeptide of molecular weight 72.2 kDa that is predicted to harbor an N-terminal mitochondrial targeting sequence. The precise physiological function of Rsm22-family proteins is unknown, and no structural information has been available for Sc-Rsm22 to date. In this study, Sc-Rsm22 was expressed and purified in monomeric and dimeric forms, their folding was confirmed by circular-dichroism analyses and their low-resolution structures were determined using a small-angle X-ray scattering (SAXS) approach. The solution structure of the monomeric form of Sc-Rsm22 revealed an elongated three-domain arrangement, which differs from the shape of Tb-Rsm22 in its complex with the mitochondrial small ribosomal subunit in T. brucei (PDB entry 6sg9). A bioinformatic analysis revealed that the core domain in the middle (Leu117–Asp462 in Sc-Rsm22) resembles the corresponding region in Tb-Rsm22, including a Rossmann-like methyltransferase fold followed by a zinc-finger-like structure. The latter structure is not present in this position in other methyltransferases and is therefore a unique structural motif for this family. The first half of the C-terminal domain is likely to form an OB-fold, which is typically found in RNA-binding proteins and is also seen in the Tb-Rsm22 structure. In contrast, the N-terminal domain of Sc-Rsm22 is predicted to be fully α-helical and shares no sequence similarity with other family members. Functional studies demonstrated that the monomeric variant of Sc-Rsm22 methylates mitochondrial tRNAs in vitro. These data suggest that Sc-Rsm22 is a new and unique member of the RNA methyltransferases that is important for mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Jahangir Alam
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, FIN-90220 Oulu, Finland
| | - Farah Tazkera Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, FIN-90220 Oulu, Finland
| | - Shiv K Sah-Teli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, FIN-90220 Oulu, Finland
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, FIN-90220 Oulu, Finland
| | | | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, FIN-90220 Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, FIN-90220 Oulu, Finland
| | - Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, FIN-90220 Oulu, Finland
| |
Collapse
|
20
|
Behrens A, Rodschinka G, Nedialkova DD. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol Cell 2021; 81:1802-1815.e7. [PMID: 33581077 PMCID: PMC8062790 DOI: 10.1016/j.molcel.2021.01.028] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Measurements of cellular tRNA abundance are hampered by pervasive blocks to cDNA synthesis at modified nucleosides and the extensive similarity among tRNA genes. We overcome these limitations with modification-induced misincorporation tRNA sequencing (mim-tRNAseq), which combines a workflow for full-length cDNA library construction from endogenously modified tRNA with a comprehensive and user-friendly computational analysis toolkit. Our method accurately captures tRNA abundance and modification status in yeast, fly, and human cells and is applicable to any organism with a known genome. We applied mim-tRNAseq to discover a dramatic heterogeneity of tRNA isodecoder pools among diverse human cell lines and a surprising interdependence of modifications at distinct sites within the same tRNA transcript. mim-tRNAseq overcomes experimental and computational hurdles to tRNA quantitation mim-tRNAseq includes a comprehensive computational toolkit for tRNA read analysis tRNA abundance, aminoacylation, and modification status quantified in one reaction mim-tRNAseq reveals an interdependence of modifications at distinct tRNA positions
Collapse
Affiliation(s)
- Andrew Behrens
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Geraldine Rodschinka
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
21
|
Vilardo E, Amman F, Toth U, Kotter A, Helm M, Rossmanith W. Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B. Nucleic Acids Res 2020; 48:6157-6169. [PMID: 32392304 PMCID: PMC7293042 DOI: 10.1093/nar/gkaa353] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
The TRM10 family of methyltransferases is responsible for the N1-methylation of purines at position 9 of tRNAs in Archaea and Eukarya. The human genome encodes three TRM10-type enzymes, of which only the mitochondrial TRMT10C was previously characterized in detail, whereas the functional significance of the two presumably nuclear enzymes TRMT10A and TRMT10B remained unexplained. Here we show that TRMT10A is m1G9-specific and methylates a subset of nuclear-encoded tRNAs, whilst TRMT10B is the first m1A9-specific tRNA methyltransferase found in eukaryotes and is responsible for the modification of a single nuclear-encoded tRNA. Furthermore, we show that the lack of G9 methylation causes a decrease in the steady-state levels of the initiator tRNAiMet-CAT and an alteration in its further post-transcriptional modification. Our work finally clarifies the function of TRMT10A and TRMT10B in vivo and provides evidence that the loss of TRMT10A affects the pool of cytosolic tRNAs required for protein synthesis.
Collapse
Affiliation(s)
- Elisa Vilardo
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabian Amman
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Annika Kotter
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Mark Helm
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
22
|
Hirata A, Okada K, Yoshii K, Shiraishi H, Saijo S, Yonezawa K, Shimizu N, Hori H. Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a novel binding interface for tRNA recognition. Nucleic Acids Res 2020; 47:10942-10955. [PMID: 31586407 PMCID: PMC6847430 DOI: 10.1093/nar/gkz856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
The complex between Trm7 and Trm734 (Trm7–Trm734) from Saccharomyces cerevisiae catalyzes 2′-O-methylation at position 34 in tRNA. We report biochemical and structural studies of the Trm7–Trm734 complex. Purified recombinant Trm7–Trm734 preferentially methylates tRNAPhe transcript variants possessing two of three factors (Cm32, m1G37 and pyrimidine34). Therefore, tRNAPhe, tRNATrp and tRNALeu are specifically methylated by Trm7–Trm734. We have solved the crystal structures of the apo and S-adenosyl-L-methionine bound forms of Trm7–Trm734. Small angle X-ray scattering reveals that Trm7–Trm734 exists as a hetero-dimer in solution. Trm7 possesses a Rossmann-fold catalytic domain, while Trm734 consists of three WD40 β-propeller domains (termed BPA, BPB and BPC). BPA and BPC form a unique V-shaped cleft, which docks to Trm7. The C-terminal region of Trm7 is required for binding to Trm734. The D-arm of substrate tRNA is required for methylation by Trm7–Trm734. If the D-arm in tRNAPhe is docked onto the positively charged area of BPB in Trm734, the anticodon-loop is located near the catalytic pocket of Trm7. This model suggests that Trm734 is required for correct positioning of tRNA for methylation. Additionally, a point-mutation in Trm7, which is observed in FTSJ1 (human Trm7 ortholog) of nosyndromic X-linked intellectual disability patients, decreases the methylation activity.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Keisuke Okada
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazuaki Yoshii
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Shiraishi
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shinya Saijo
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- To whom correspondence should be addressed. Tel: +81 89 927 8548; Fax: +81 89 927 9941;
| |
Collapse
|
23
|
Abstract
The posttranscriptional modification of messenger RNA (mRNA) and transfer RNA (tRNA) provides an additional layer of regulatory complexity during gene expression. Here, we show that a tRNA methyltransferase, TRMT10A, interacts with an mRNA demethylase FTO (ALKBH9), both in vitro and inside cells. TRMT10A installs N 1-methylguanosine (m1G) in tRNA, and FTO performs demethylation on N 6-methyladenosine (m6A) and N 6,2'-O-dimethyladenosine (m6Am) in mRNA. We show that TRMT10A ablation not only leads to decreased m1G in tRNA but also significantly increases m6A levels in mRNA. Cross-linking and immunoprecipitation, followed by high-throughput sequencing results show that TRMT10A shares a significant overlap of associated mRNAs with FTO, and these mRNAs have accelerated decay rates potentially through the regulation by a specific m6A reader, YTHDF2. Furthermore, transcripts with increased m6A upon TRMT10A ablation contain an overrepresentation of m1G9-containing tRNAs codons read by tRNAGln(TTG), tRNAArg(CCG), and tRNAThr(CGT) These findings collectively reveal the presence of coordinated mRNA and tRNA methylations and demonstrate a mechanism for regulating gene expression through the interactions between mRNA and tRNA modifying enzymes.
Collapse
|
24
|
Dégut C, Roovers M, Barraud P, Brachet F, Feller A, Larue V, Al Refaii A, Caillet J, Droogmans L, Tisné C. Structural characterization of B. subtilis m1A22 tRNA methyltransferase TrmK: insights into tRNA recognition. Nucleic Acids Res 2019; 47:4736-4750. [PMID: 30931478 PMCID: PMC6511850 DOI: 10.1093/nar/gkz230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
1-Methyladenosine (m1A) is a modified nucleoside found at positions 9, 14, 22 and 58 of tRNAs, which arises from the transfer of a methyl group onto the N1-atom of adenosine. The yqfN gene of Bacillus subtilis encodes the methyltransferase TrmK (BsTrmK) responsible for the formation of m1A22 in tRNA. Here, we show that BsTrmK displays a broad substrate specificity, and methylates seven out of eight tRNA isoacceptor families of B. subtilis bearing an A22. In addition to a non-Watson–Crick base-pair between the target A22 and a purine at position 13, the formation of m1A22 by BsTrmK requires a full-length tRNA with intact tRNA elbow and anticodon stem. We solved the crystal structure of BsTrmK showing an N-terminal catalytic domain harbouring the typical Rossmann-like fold of Class-I methyltransferases and a C-terminal coiled-coil domain. We used NMR chemical shift mapping to drive the docking of BstRNASer to BsTrmK in complex with its methyl-donor cofactor S-adenosyl-L-methionine (SAM). In this model, validated by methyltransferase activity assays on BsTrmK mutants, both domains of BsTrmK participate in tRNA binding. BsTrmK recognises tRNA with very few structural changes in both partner, the non-Watson–Crick R13–A22 base-pair positioning the A22 N1-atom close to the SAM methyl group.
Collapse
Affiliation(s)
- Clément Dégut
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | - Pierre Barraud
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Franck Brachet
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - André Feller
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Valéry Larue
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Abdalla Al Refaii
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Joël Caillet
- Laboratoire d'Expression génétique microbienne, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
25
|
Howell NW, Jora M, Jepson BF, Limbach PA, Jackman JE. Distinct substrate specificities of the human tRNA methyltransferases TRMT10A and TRMT10B. RNA (NEW YORK, N.Y.) 2019; 25:1366-1376. [PMID: 31292261 PMCID: PMC6800469 DOI: 10.1261/rna.072090.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/07/2019] [Indexed: 06/09/2023]
Abstract
The tRNA m1R9 methyltransferase (Trm10) family is conserved throughout Eukarya and Archaea. Despite the presence of a single Trm10 gene in Archaea and most single-celled eukaryotes, metazoans encode up to three homologs of Trm10. Several disease states correlate with a deficiency in the human homolog TRMT10A, despite the presence of another cytoplasmic enzyme, TRMT10B. Here we investigate these phenomena and demonstrate that human TRMT10A (hTRMT10A) and human TRMT10B (hTRMT10B) are not biochemically redundant. In vitro activity assays with purified hTRMT10A and hTRMT10B reveal a robust activity for hTRMT10B as a tRNAAsp-specific m1A9 methyltransferase and suggest that it is the relevant enzyme responsible for this newly discovered m1A9 modification in humans. Moreover, a comparison of the two cytosolic enzymes with multiple tRNA substrates exposes the enzymes' distinct substrate specificities, and suggests that hTRMT10B exhibits a restricted selectivity hitherto unseen in the Trm10 enzyme family. Single-turnover kinetics and tRNA binding assays highlight further differences between the two enzymes and eliminate overall tRNA affinity as a primary determinant of substrate specificity for either enzyme. These results increase our understanding of the important biology of human tRNA modification systems, which can aid in understanding the molecular basis for diseases in which their aberrant function is increasingly implicated.
Collapse
Affiliation(s)
- Nathan W Howell
- Center for RNA Biology and Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA
| | - Manasses Jora
- Department of Chemistry and Biochemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Benjamin F Jepson
- Center for RNA Biology and Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210, USA
| | - Patrick A Limbach
- Department of Chemistry and Biochemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Jane E Jackman
- Center for RNA Biology and Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
26
|
Barraud P, Tisné C. To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs. IUBMB Life 2019; 71:1126-1140. [PMID: 30932315 PMCID: PMC6850298 DOI: 10.1002/iub.2041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNAs (tRNAs) are essential components of the cellular protein synthesis machineries, but are also implicated in many roles outside translation. To become functional, tRNAs, initially transcribed as longer precursor tRNAs, undergo a tightly controlled biogenesis process comprising the maturation of their extremities, removal of intronic sequences if present, addition of the 3'-CCA amino-acid accepting sequence, and aminoacylation. In addition, the most impressive feature of tRNA biogenesis consists in the incorporation of a large number of posttranscriptional chemical modifications along its sequence. The chemical nature of these modifications is highly diverse, with more than hundred different modifications identified in tRNAs to date. All functions of tRNAs in cells are controlled and modulated by modifications, making the understanding of the mechanisms that determine and influence nucleotide modifications in tRNAs an essential point in tRNA biology. This review describes the different aspects that determine whether a certain position in a tRNA molecule is modified or not. We describe how sequence and structural determinants, as well as the presence of prior modifications control modification processes. We also describe how environmental factors and cellular stresses influence the level and/or the nature of certain modifications introduced in tRNAs, and report situations where these dynamic modulations of tRNA modification levels are regulated by active demodification processes. © 2019 IUBMB Life, 71(8):1126-1140, 2019.
Collapse
Affiliation(s)
- Pierre Barraud
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| | - Carine Tisné
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| |
Collapse
|
27
|
Dodbele S, Moreland B, Gardner SM, Bundschuh R, Jackman JE. 5'-End sequencing in Saccharomyces cerevisiae offers new insights into 5'-ends of tRNA H is and snoRNAs. FEBS Lett 2019; 593:971-981. [PMID: 30908619 DOI: 10.1002/1873-3468.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/19/2023]
Abstract
tRNAH is guanylyltransferase (Thg1) specifies eukaryotic tRNAH is identity by catalysing a 3'-5' non-Watson-Crick (WC) addition of guanosine to the 5'-end of tRNAH is . Thg1 family enzymes in Archaea and Bacteria, called Thg1-like proteins (TLPs), catalyse a similar but distinct 3'-5' addition in an exclusively WC-dependent manner. Here, a genetic system in Saccharomyces cerevisiae was employed to further assess the biochemical differences between Thg1 and TLPs. Utilizing a novel 5'-end sequencing pipeline, we find that a Bacillus thuringiensis TLP sustains the growth of a thg1Δ strain by maintaining a WC-dependent addition of U-1 across from A73 . Additionally, we observe 5'-end heterogeneity in S. cerevisiae small nucleolar RNAs (snoRNAs), an observation that may inform methods of annotation and mechanisms of snoRNA processing.
Collapse
Affiliation(s)
- Samantha Dodbele
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Blythe Moreland
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Spencer M Gardner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Insights into Catalytic and tRNA Recognition Mechanism of the Dual-Specific tRNA Methyltransferase from Thermococcus kodakarensis. Genes (Basel) 2019; 10:genes10020100. [PMID: 30704107 PMCID: PMC6410153 DOI: 10.3390/genes10020100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/30/2023] Open
Abstract
The tRNA methyltransferase Trm10, conserved throughout Eukarya and Archaea, catalyzes N1-methylation of purine residues at position 9 using S-adenosyl methionine as the methyl donor. The Trm10 family exhibits diverse target nucleotide specificity, with some homologs that are obligate m¹G₉ or m¹A₉-specific enzymes, while others are bifunctional enzymes catalyzing both m¹G₉ and m¹A₉. This variability is particularly intriguing given different chemical properties of the target N1 atom of guanine and adenine. Here we performed an extensive kinetic and mutational analysis of the m¹G₉ and m¹A₉-catalyzing Trm10 from Thermococcus kodakarensis to gain insight into the active site that facilitates this unique bifunctionality. These results suggest that the rate-determining step for catalysis likely involves a conformational change to correctly position the substrate tRNA in the active site. In this model, kinetic preferences for certain tRNA can be explained by variations in the overall stability of the folded substrate tRNA, consistent with tRNA-specific differences in metal ion dependence. Together, these results provide new insight into the substrate recognition, active site and catalytic mechanism of m¹G/m¹A catalyzing bifunctional enzymes.
Collapse
|
29
|
Krishnamohan A, Jackman JE. A Family Divided: Distinct Structural and Mechanistic Features of the SpoU-TrmD (SPOUT) Methyltransferase Superfamily. Biochemistry 2018; 58:336-345. [PMID: 30457841 DOI: 10.1021/acs.biochem.8b01047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The SPOUT family of enzymes makes up the second largest of seven structurally distinct groups of methyltransferases and is named after two evolutionarily related RNA methyltransferases, SpoU and TrmD. A deep trefoil knotted domain in the tertiary structures of member enzymes defines the SPOUT family. For many years, formation of a homodimeric quaternary structure was thought to be a strict requirement for all SPOUT enzymes, critical for substrate binding and formation of the active site. However, recent structural characterization of two SPOUT members, Trm10 and Sfm1, revealed that they function as monomers without the requirement of this critical dimerization. This unusual monomeric form implies that these enzymes must exhibit a nontraditional substrate binding mode and active site architecture and may represent a new division in the SPOUT family with distinct properties removed from the dimeric enzymes. Here we discuss the mechanistic features of SPOUT enzymes with an emphasis on the monomeric members and implications of this "novel" monomeric structure on cofactor and substrate binding.
Collapse
Affiliation(s)
- Aiswarya Krishnamohan
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jane E Jackman
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
30
|
Cosentino C, Toivonen S, Diaz Villamil E, Atta M, Ravanat JL, Demine S, Schiavo A, Pachera N, Deglasse JP, Jonas JC, Balboa D, Otonkoski T, Pearson ER, Marchetti P, Eizirik DL, Cnop M, Igoillo-Esteve M. Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res 2018; 46:10302-10318. [PMID: 30247717 PMCID: PMC6212784 DOI: 10.1093/nar/gky839] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic β-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in β-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced β-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic β-cell demise relevant to monogenic and polygenic forms of diabetes.
Collapse
Affiliation(s)
- Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Esteban Diaz Villamil
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Mohamed Atta
- CEA/Grenoble, DRF/BIG/LCBM UMR5249, Grenoble, France
| | - Jean-Luc Ravanat
- Université Grenoble Alpes, CEA, CNRS INAC, SyMMES UMR 5819, Grenoble, France
| | - Stéphane Demine
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Nathalie Pachera
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jean-Philippe Deglasse
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’ Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’ Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ewan R Pearson
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
31
|
Han L, Phizicky EM. A rationale for tRNA modification circuits in the anticodon loop. RNA (NEW YORK, N.Y.) 2018; 24:1277-1284. [PMID: 30026310 PMCID: PMC6140457 DOI: 10.1261/rna.067736.118] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The numerous post-transcriptional modifications of tRNA play a crucial role in tRNA function. While most modifications are introduced to tRNA independently, several sets of modifications are found to be interconnected such that the presence of one set of modifications drives the formation of another modification. The vast majority of these modification circuits are found in the anticodon loop (ACL) region where the largest variety and highest density of modifications occur compared to the other parts of the tRNA and where there is relatively limited sequence and structural information. We speculate here that the modification circuits in the ACL region arise to enhance enzyme modification specificity by direct or indirect use of the first modification in the circuit as an additional recognition element for the second modification. We also describe the five well-studied modification circuits in the ACL, and outline possible mechanisms by which they may act. The prevalence of these modification circuits in the ACL and the phylogenetic conservation of some of them suggest that a number of other modification circuits will be found in this region in different organisms.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
32
|
Singh RK, Feller A, Roovers M, Van Elder D, Wauters L, Droogmans L, Versées W. Structural and biochemical analysis of the dual-specificity Trm10 enzyme from Thermococcus kodakaraensis prompts reconsideration of its catalytic mechanism. RNA (NEW YORK, N.Y.) 2018; 24:1080-1092. [PMID: 29848639 PMCID: PMC6049504 DOI: 10.1261/rna.064345.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
tRNA molecules get heavily modified post-transcriptionally. The N-1 methylation of purines at position 9 of eukaryal and archaeal tRNA is catalyzed by the SPOUT methyltranferase Trm10. Remarkably, while certain Trm10 orthologs are specific for either guanosine or adenosine, others show a dual specificity. Structural and functional studies have been performed on guanosine- and adenosine-specific enzymes. Here we report the structure and biochemical analysis of the dual-specificity enzyme from Thermococcus kodakaraensis (TkTrm10). We report the first crystal structure of a construct of this enzyme, consisting of the N-terminal domain and the catalytic SPOUT domain. Moreover, crystal structures of the SPOUT domain, either in the apo form or bound to S-adenosyl-l-methionine or S-adenosyl-l-homocysteine reveal the conformational plasticity of two active site loops upon substrate binding. Kinetic analysis shows that TkTrm10 has a high affinity for its tRNA substrates, while the enzyme on its own has a very low methyltransferase activity. Mutation of either of two active site aspartate residues (Asp206 and Asp245) to Asn or Ala results in only modest effects on the N-1 methylation reaction, with a small shift toward a preference for m1G formation over m1A formation. Only a double D206A/D245A mutation severely impairs activity. These results are in line with the recent finding that the single active-site aspartate was dispensable for activity in the guanosine-specific Trm10 from yeast, and suggest that also dual-specificity Trm10 orthologs use a noncanonical tRNA methyltransferase mechanism without residues acting as general base catalysts.
Collapse
Affiliation(s)
- Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB-VUB Center For Structural Biology, 1050 Brussels, Belgium
| | - André Feller
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Martine Roovers
- Institut de Recherches Microbiologiques Jean-Marie Wiame - Labiris, 1070 Brussels, Belgium
| | - Dany Van Elder
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Lina Wauters
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB-VUB Center For Structural Biology, 1050 Brussels, Belgium
- Department of Cell Biochemistry, University of Groningen, Groningen 9747 AG, Netherlands
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB-VUB Center For Structural Biology, 1050 Brussels, Belgium
| |
Collapse
|
33
|
Vieira GC, D'Ávila MF, Zanini R, Deprá M, da Silva Valente VL. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol 2018; 41:215-234. [PMID: 29668012 PMCID: PMC5913717 DOI: 10.1590/1678-4685-gmb-2017-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/18/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA methyltransferase 2 (DNMT2) protein is the most conserved member of the
DNA methyltransferase family. Nevertheless, its substrate specificity is still
controversial and elusive. The genomic role and determinants of DNA methylation
are poorly understood in invertebrates, and several mechanisms and associations
are suggested. In Drosophila, the only known DNMT gene is
Dnmt2. Here we present our findings from a wide search for
Dnmt2 homologs in 68 species of Drosophilidae. We
investigated its molecular evolution, and in our phylogenetic analyses the main
clades of Drosophilidae species were recovered. We tested whether the
Dnmt2 has evolved neutrally or under positive selection
along the subgenera Drosophila and Sophophora
and investigated positive selection in relation to several physicochemical
properties. Despite of a major selective constraint on Dnmt2,
we detected six sites under positive selection. Regarding the DNMT2 protein, 12
sites under positive-destabilizing selection were found, which suggests a
selection that favors structural and functional shifts in the protein. The
search for new potential protein partners with DNMT2 revealed 15 proteins with
high evolutionary rate covariation (ERC), indicating a plurality of DNMT2
functions in different pathways. These events might represent signs of molecular
adaptation, with molecular peculiarities arising from the diversity of
evolutionary histories experienced by drosophilids.
Collapse
Affiliation(s)
- Gilberto Cavalheiro Vieira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marícia Fantinel D'Ávila
- Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil
| | - Rebeca Zanini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Krishnamohan A, Jackman JE. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10. Nucleic Acids Res 2017; 45:9019-9029. [PMID: 28911116 PMCID: PMC5587797 DOI: 10.1093/nar/gkx620] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
The tRNA m1G9 methyltransferase (Trm10) is a member of the SpoU-TrmD (SPOUT) superfamily of methyltransferases, and Trm10 homologs are widely conserved throughout Eukarya and Archaea. Despite possessing the trefoil knot characteristic of SPOUT enzymes, Trm10 does not share the same quaternary structure or key sequences with other members of the SPOUT family, suggesting a novel mechanism of catalysis. To investigate the mechanism of m1G9 methylation by Trm10, we performed a biochemical and kinetic analysis of Trm10 and variants with alterations in highly conserved residues, using crystal structures solved in the absence of tRNA as a guide. Here we demonstrate that a previously proposed general base residue (D210 in Saccharomyces cerevisiae Trm10) is not likely to play this suggested role in the chemistry of methylation. Instead, pH-rate analysis suggests that D210 and other conserved carboxylate-containing residues at the active site collaborate to establish an active site environment that promotes a single ionization that is required for catalysis. Moreover, Trm10 does not depend on a catalytic metal ion, further distinguishing it from the other known SPOUT m1G methyltransferase, TrmD. These results provide evidence for a non-canonical tRNA methyltransferase mechanism that characterizes the Trm10 enzyme family.
Collapse
Affiliation(s)
- Aiswarya Krishnamohan
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Han L, Marcus E, D'Silva S, Phizicky EM. S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates. RNA (NEW YORK, N.Y.) 2017; 23:406-419. [PMID: 28003514 PMCID: PMC5311504 DOI: 10.1261/rna.059667.116] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 05/25/2023]
Abstract
The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Base Sequence
- Binding Sites
- Cloning, Molecular
- Cytidine/analogs & derivatives
- Cytidine/genetics
- Cytidine/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Nucleic Acid Conformation
- Protein Binding
- Protein Biosynthesis
- Protein Domains
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Transfer, Thr/chemistry
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Thr/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Substrate Specificity
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Sonia D'Silva
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
36
|
Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules 2017; 7:biom7010023. [PMID: 28264529 PMCID: PMC5372735 DOI: 10.3390/biom7010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
The existence of SpoU-TrmD (SPOUT) RNA methyltransferase superfamily was first predicted by bioinformatics. SpoU is the previous name of TrmH, which catalyzes the 2’-O-methylation of ribose of G18 in tRNA; TrmD catalyzes the formation of N1-methylguanosine at position 37 in tRNA. Although SpoU (TrmH) and TrmD were originally considered to be unrelated, the bioinformatics study suggested that they might share a common evolution origin and form a single superfamily. The common feature of SPOUT RNA methyltransferases is the formation of a deep trefoil knot in the catalytic domain. In the past decade, the SPOUT RNA methyltransferase superfamily has grown; furthermore, knowledge concerning the functions of their modified nucleosides in tRNA has also increased. Some enzymes are potential targets in the design of anti-bacterial drugs. In humans, defects in some genes may be related to carcinogenesis. In this review, recent findings on the tRNA methyltransferases with a SPOUT fold and their methylated nucleosides in tRNA, including classification of tRNA methyltransferases with a SPOUT fold; knot structures, domain arrangements, subunit structures and reaction mechanisms; tRNA recognition mechanisms, and functions of modified nucleosides synthesized by this superfamily, are summarized. Lastly, the future perspective for studies on tRNA modification enzymes are considered.
Collapse
|
37
|
Abstract
tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed.
Collapse
Affiliation(s)
- William E Swinehart
- a Center for RNA Biology and Department of Chemistry and Biochemistry ; Ohio State University ; Columbus , OH USA
| | | |
Collapse
|
38
|
Abstract
Methyl transfer from S-adenosyl methionine (abbreviated as AdoMet) to biologically active molecules such as mRNAs and tRNAs is one of the most fundamental and widespread reactions in nature, occurring in all three domains of life. The measurement of kinetic constants of AdoMet-dependent methyl transfer is therefore important for understanding the reaction mechanism in the context of biology. When kinetic constants of methyl transfer are measured in steady state over multiple rounds of turnover, the meaning of these constants is difficult to define and is often limited by non-chemical steps of the reaction, such as product release after each turnover. Here, the measurement of kinetic constants of methyl transfer by tRNA methyltransferases in rapid equilibrium binding condition for one methyl transfer is described. The advantage of such a measurement is that the meaning of kinetic constants can be directly assigned to the steps associated with the chemistry of methyl transfer, including the substrate binding affinity to the methyltransferase, the pre-chemistry re-arrangement of the active site, and the chemical step of methyl transfer. An additional advantage is that kinetic constants measured for one methyl transfer can be correlated with structural information of the methyltransferase to gain direct insight into its reaction mechanism.
Collapse
|
39
|
Abstract
Transfer RNA (tRNA) molecules contain many chemical modifications that are introduced after transcription. A major form of these modifications is methyl transfer to bases and backbone groups, using S-adenosyl methionine (AdoMet) as the methyl donor. Each methylation confers a specific advantage to tRNA in structure or in function. A remarkable methylation is to the G37 base on the 3'-side of the anticodon to generate m(1)G37-tRNA, which suppresses frameshift errors during protein synthesis and is therefore essential for cell growth in all three domains of life. This methylation is catalyzed by TrmD in bacteria and by Trm5 in eukaryotes and archaea. Although TrmD and Trm5 catalyze the same methylation reaction, kinetic analysis reveals that these two enzymes are unrelated to each other and are distinct in their reaction mechanism. This chapter summarizes the kinetic assays that are used to reveal the distinction between TrmD and Trm5. Three types of assays are described, the steady-state, the pre-steady-state, and the single-turnover assays, which collectively provide the basis for mechanistic investigation of AdoMet-dependent methyl transfer reactions.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania USA.
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| |
Collapse
|
40
|
Han L, Kon Y, Phizicky EM. Functional importance of Ψ38 and Ψ39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast. RNA (NEW YORK, N.Y.) 2015; 21:188-201. [PMID: 25505024 PMCID: PMC4338347 DOI: 10.1261/rna.048173.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The numerous modifications of tRNA play central roles in controlling tRNA structure and translation. Modifications in and around the anticodon loop often have critical roles in decoding mRNA and in maintaining its reading frame. Residues U38 and U39 in the anticodon stem-loop are frequently modified to pseudouridine (Ψ) by members of the widely conserved TruA/Pus3 family of pseudouridylases. We investigate here the cause of the temperature sensitivity of pus3Δ mutants of the yeast Saccharomyces cerevisiae and find that, although Ψ38 or Ψ39 is found on at least 19 characterized cytoplasmic tRNA species, the temperature sensitivity is primarily due to poor function of tRNA(Gln(UUG)), which normally has Ψ38. Further investigation reveals that at elevated temperatures there are substantially reduced levels of the s(2)U moiety of mcm(5)s(2)U34 of tRNA(Gln(UUG)) and the other two cytoplasmic species with mcm(5)s(2)U34, that the reduced s(2)U levels occur in the parent strain BY4741 and in the widely used strain W303, and that reduced levels of the s(2)U moiety are detectable in BY4741 at temperatures as low as 33°C. Additional examination of the role of Ψ38,39 provides evidence that Ψ38 is important for function of tRNA(Gln(UUG)) at permissive temperature, and indicates that Ψ39 is important for the function of tRNA(Trp(CCA)) in trm10Δ pus3Δ mutants and of tRNA(Leu(CAA)) as a UAG nonsense suppressor. These results provide evidence for important roles of both Ψ38 and Ψ39 in specific tRNAs, and establish that modification of the wobble position is subject to change under relatively mild growth conditions.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
41
|
Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Genet 2014; 51:581-6. [PMID: 25053765 DOI: 10.1136/jmedgenet-2014-102282] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Trm10 is a tRNA m(1)G9 methyltransferase, which in yeast modifies 12 different tRNA species, yet is considered non-essential for viability under standard growth conditions. In humans, there are three Trm10 orthologs, one mitochondrial and two presumed cytoplasmic. A nonsense mutation in one of the cytoplasmic orthologs (TRMT10A) has recently been associated with microcephaly, intellectual disability, short stature and adolescent onset diabetes. METHODS AND RESULTS The subjects were three patients who suffered from microcephaly, intellectual disability, short stature, delayed puberty, seizures and disturbed glucose metabolism, mainly hyperinsulinaemic hypoglycaemia. A homozygous Gly206Arg (G206R) mutation in the TRMT10A gene was identified using whole exome sequencing. The mutation segregated in the family and was absent from large control cohorts. Determination of the methylation activity of the expressed wild-type (WT) and variant TRMT10A enzymes with transcripts of (32)P -tRNA(Gly) GCC as a substrate revealed a striking defect (<0.1% of WT activity) for the variant enzyme. The binding affinity of the G206R variant enzyme to tRNA, determined by fluorescence anisotropy, was similar to that of the WT enzyme. CONCLUSIONS The completely abolished m(1)G9 methyltransferase activity of the mutant enzyme is likely due to significant defects in its ability to bind the methyl donor S-adenosyl methionine. We propose that TRMT10A deficiency accounts for abnormalities in glucose homeostasis initially manifesting both ketotic and non-ketotic hypoglycaemic events with transition to diabetes in adolescence, perhaps as a consequence of accelerated β cell apoptosis. The seizure disorder and intellectual disability are probably secondary to mutant gene expression in neuronal tissue.
Collapse
Affiliation(s)
- David Gillis
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Jerusalem, Israel
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Barak Yaacov
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
42
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
43
|
Steeb H, Ramsey JM, Guest PC, Stocki P, Cooper JD, Rahmoune H, Ingudomnukul E, Auyeung B, Ruta L, Baron-Cohen S, Bahn S. Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome. Mol Autism 2014; 5:4. [PMID: 24467795 PMCID: PMC3905921 DOI: 10.1186/2040-2392-5-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/31/2013] [Indexed: 01/02/2023] Open
Abstract
Background The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Methods Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls (males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MSE). The main objective was to identify sex-specific serum protein changes associated with AS. Results Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOA1), seven were changed in males (BMP6, CTGF, ICAM1, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MSE profiling led to identification of 13 serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females (APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to controls. Conclusion Taken together, the serum multiplex immunoassay and shotgun LC-MSE profiling results indicate that adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while adult males with AS showed changes predominantly in inflammation signalling. These results provide further evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female subgroups, and could lead to the development of novel targeted treatment approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sabine Bahn
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| |
Collapse
|
44
|
Shao Z, Yan W, Peng J, Zuo X, Zou Y, Li F, Gong D, Ma R, Wu J, Shi Y, Zhang Z, Teng M, Li X, Gong Q. Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate. Nucleic Acids Res 2014; 42:509-25. [PMID: 24081582 PMCID: PMC3874184 DOI: 10.1093/nar/gkt869] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 01/05/2023] Open
Abstract
Transfer RNA (tRNA) methylation is necessary for the proper biological function of tRNA. The N(1) methylation of guanine at Position 9 (m(1)G9) of tRNA, which is widely identified in eukaryotes and archaea, was found to be catalyzed by the Trm10 family of methyltransferases (MTases). Here, we report the first crystal structures of the tRNA MTase spTrm10 from Schizosaccharomyces pombe in the presence and absence of its methyl donor product S-adenosyl-homocysteine (SAH) and its ortholog scTrm10 from Saccharomyces cerevisiae in complex with SAH. Our crystal structures indicated that the MTase domain (the catalytic domain) of the Trm10 family displays a typical SpoU-TrmD (SPOUT) fold. Furthermore, small angle X-ray scattering analysis reveals that Trm10 behaves as a monomer in solution, whereas other members of the SPOUT superfamily all function as homodimers. We also performed tRNA MTase assays and isothermal titration calorimetry experiments to investigate the catalytic mechanism of Trm10 in vitro. In combination with mutational analysis and electrophoretic mobility shift assays, our results provide insights into the substrate tRNA recognition mechanism of Trm10 family MTases.
Collapse
Affiliation(s)
- Zhenhua Shao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Wei Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Junhui Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Xiaobing Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Yang Zou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Deshun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| |
Collapse
|