1
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
2
|
Ghatak S, Khanna S, Roy S, Thirunavukkarasu M, Pradeep SR, Wulff BC, El Masry MS, Sharma A, Palakurti R, Ghosh N, Xuan Y, Wilgus TA, Maulik N, Yoder MC, Sen CK. Driving adult tissue repair via re-engagement of a pathway required for fetal healing. Mol Ther 2023; 31:454-470. [PMID: 36114673 PMCID: PMC9931555 DOI: 10.1016/j.ymthe.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and β-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Seetur R Pradeep
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Brian C Wulff
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Plastic Surgery, Zagazig University, Zagazig 44519, Egypt
| | - Anu Sharma
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ravichand Palakurti
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Traci A Wilgus
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Ganapathy K, Ngo C, Andl T, Coppola D, Park J, Chakrabarti R. Anti-cancer function of microRNA-30e is mediated by negative regulation of HELLPAR, a noncoding macroRNA, and genes involved in ubiquitination and cell cycle progression in prostate cancer. Mol Oncol 2022; 16:2936-2958. [PMID: 35612714 PMCID: PMC9394257 DOI: 10.1002/1878-0261.13255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022] Open
Abstract
Prostate cancer (PCa) progression relies on androgen receptor (AR) function, making AR a top candidate for PCa therapy. However, development of drug resistance is common, which eventually leads to development of castration‐resistant PCa. This warrants a better understanding of the pathophysiology of PCa that facilitates the aberrant activation of key signaling pathways including AR. MicroRNAs (miRNAs) function as regulators of cancer progression as they modulate various cellular processes. Here, we demonstrate a multidimensional function of miR‐30e through the regulation of genes involved in various signaling pathways. We noted loss of miR‐30e expression in prostate tumors, which, when restored, led to cell cycle arrest, induction of apoptosis, improved drug sensitivity of PCa cells and reduced tumor progression in xenograft models. We show that experimental upregulation of miR‐30e reduces expression of mRNAs including AR, FBXO45, SRSF7 and MYBL2 and a novel long noncoding RNA (lncRNA) HELLPAR, which are involved in cell cycle, apoptosis and ubiquitination, and the effects could be rescued by inhibition of miR‐30e expression. RNA immunoprecipitation analysis confirmed direct interactions between miR‐30e and its RNA targets. We noted a newly identified reciprocal relationship between miR‐30e and HELLPAR, as inhibition of HELLPAR improved stabilization of miR‐30e. Transcriptome profiling and quantitative real‐time PCR (qRT‐PCR) validation of miR‐30e‐expressing PCa cells showed differential expression of genes involved in cell cycle progression, apoptosis and ubiquitination, which supports our in vitro study. This study demonstrates an integrated function of miR‐30e on dysregulation of miRNA/lncRNA/mRNA axes that may have diagnostic and therapeutic significance in aggressive PCa.
Collapse
Affiliation(s)
- Kavya Ganapathy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Christopher Ngo
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Domenico Coppola
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, USA.,Florida Digestive Health Specialists, Bradenton, Florida, USA
| | - Jong Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Drobna-Śledzińska M, Maćkowska-Maślak N, Jaksik R, Dąbek P, Witt M, Dawidowska M. CRISPRi for specific inhibition of miRNA clusters and miRNAs with high sequence homology. Sci Rep 2022; 12:6297. [PMID: 35428787 PMCID: PMC9012752 DOI: 10.1038/s41598-022-10336-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022] Open
Abstract
miRNAs form a class of noncoding RNAs, involved in post-transcriptional regulation of gene expression, broadly studied for their involvement in physiological and pathological context. Inhibition of mature miRNA transcripts, commonly used in miRNA loss-of-function experiments, may not be specific in case of miRNAs with high sequence homology, e.g. miRNAs from the same seed family. Phenotypic effects of miRNA repression might be biased by the repression of highly similar miRNAs. Another challenge is simultaneous inhibition of multiple miRNAs encoded within policistronic clusters, potentially co-regulating common biological processes. To elucidate roles of miRNA clusters and miRNAs with high sequence homology, it is of key importance to selectively repress only the miRNAs of interest. Targeting miRNAs on genomic level with CRISPR/dCas9-based methods is an attractive alternative to blocking mature miRNAs. Yet, so far no clear guidelines on the design of CRISPR inhibition (CRISPRi) experiments, specifically for miRNA repression, have been proposed. To address this need, here we propose a strategy for effective inhibition of miRNAs and miRNA clusters using CRISPRi. We provide clues on how to approach the challenges in using CRISPR/dCas in miRNA studies, which include prediction of miRNA transcription start sites (TSSs) and the design of single guide RNAs (sgRNAs). The strategy implements three TSS prediction online tools, dedicated specifically for miRNAs: miRStart, FANTOM 5 miRNA atlas, DIANA-miRGen, and CRISPOR tool for sgRNAs design; it includes testing and selection of optimal sgRNAs. We demonstrate that compared to siRNA/shRNA-based miRNA silencing, CRISPRi improves the repression specificity for miRNAs with highly similar sequence and contribute to higher uniformity of the effects of silencing the whole miRNA clusters. This strategy may be adapted for CRISPR-mediated activation (CRISPRa) of miRNA expression.
Collapse
Affiliation(s)
- Monika Drobna-Śledzińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznań, Poland.
| | - Natalia Maćkowska-Maślak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznań, Poland
| | - Roman Jaksik
- Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Paulina Dąbek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznań, Poland
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznań, Poland
| | - Małgorzata Dawidowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznań, Poland.
| |
Collapse
|
5
|
Zummo L, Vitale AM, Caruso Bavisotto C, De Curtis M, Garbelli R, Giallonardo AT, Di Bonaventura C, Fanella M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms22168601. [PMID: 34445306 PMCID: PMC8395327 DOI: 10.3390/ijms22168601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.
Collapse
Affiliation(s)
- Leila Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Department of Neurology and Stroke Unit, A.R.N.A.S. Ospedale Civico—Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Marco De Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Anna Teresa Giallonardo
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Martina Fanella
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Correspondence:
| |
Collapse
|
6
|
Abdelhady AM, Hirano Y, Onizuka K, Okamura H, Komatsu Y, Nagatsugi F. Synthesis of crosslinked 2'-OMe RNA duplexes and their application for effective inhibition of miRNA function. Bioorg Med Chem Lett 2021; 48:128257. [PMID: 34246752 DOI: 10.1016/j.bmcl.2021.128257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
The interstrand crosslinking of nucleic acids is one of the strategies to create the stable complex between an oligonucleotide and RNA by covalent bond formation. We previously reported that fully 2'-O-methylated (2'-OMe) RNAs having the 2-amino-6-vinylpurine (AVP) exhibited an efficient crosslinking to uracil in the target RNA. In this study, we established a chemical method to efficiently synthesize the crosslinked 2'-OMe RNA duplexes using AVP and prepared the anti-miRNA oligonucleotides (AMOs) containing the antisense targeting miR-21 and crosslinked duplex at the terminal sequences. These AMOs showed a markedly higher anti miRNA activity than that of the commercially-available miR-21 inhibitor which has locked nucleic acid (LNA) residues.
Collapse
Affiliation(s)
- Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hidenori Okamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
7
|
Okumura S, Hirano Y, Komatsu Y. Stable duplex-linked antisense targeting miR-148a inhibits breast cancer cell proliferation. Sci Rep 2021; 11:11467. [PMID: 34075147 PMCID: PMC8169724 DOI: 10.1038/s41598-021-90972-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/20/2021] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) regulate cancer cell proliferation by binding directly to the untranslated regions of messenger RNA (mRNA). MicroRNA-148a (miR-148a) is expressed at low levels in breast cancer (BC). However, little attention has been paid to the sequestration of miR-148a. Here, we performed a knockdown of miR-148a using anti-miRNA oligonucleotides (AMOs) and investigated the effect on BC cell proliferation. BC cell proliferation was significantly suppressed by AMO flanked by interstrand cross-linked duplexes (CL-AMO), whereas single-stranded and commercially available AMOs had no effect. The suppression was caused by sequestering specifically miR-148a. Indeed, miR-148b, another member of the miR-148 family, was not affected. Importantly, the downregulation of miR-148a induced a greater and longer-lasting inhibition of BC cell proliferation than the targeting of oncogenic microRNA-21 (miR-21) did. We identified thioredoxin-interacting protein (TXNIP), a tumor suppressor gene, as a target of miR-148a and showed that CL-AMO provoked an increase in TXNIP mRNA expression. This study provide evidence that lowly expressed miRNAs such as miR-148a have an oncogenic function and might be a promising target for cancer treatment.
Collapse
Affiliation(s)
- Sho Okumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
- Graduate School of Life Science, Hokkaido University, 8, Kita 10-jo-Nishi, Kita-ku, Sapporo, 060-0810, Japan
- Cosmo Bio Co., Ltd., 3-513-2, Zenibako, Otaru, Hokkaido, 047-0261, Japan
| | - Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
- Graduate School of Life Science, Hokkaido University, 8, Kita 10-jo-Nishi, Kita-ku, Sapporo, 060-0810, Japan
| | - Yasuo Komatsu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- Graduate School of Life Science, Hokkaido University, 8, Kita 10-jo-Nishi, Kita-ku, Sapporo, 060-0810, Japan.
| |
Collapse
|
8
|
Opportunities and challenges for microRNA-targeting therapeutics for epilepsy. Trends Pharmacol Sci 2021; 42:605-616. [PMID: 33992468 DOI: 10.1016/j.tips.2021.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a common and serious neurological disorder characterised by recurrent spontaneous seizures. Frontline pharmacotherapy includes small-molecule antiseizure drugs that typically target ion channels and neurotransmitter systems, but these fail in 30% of patients and do not prevent either the development or progression of epilepsy. An emerging therapeutic target is microRNA (miRNA), small noncoding RNAs that negatively regulate sets of proteins. Their multitargeting action offers unique advantages for certain forms of epilepsy with complex underlying pathophysiology, such as temporal lobe epilepsy (TLE). miRNA can be inhibited by designed antisense oligonucleotides (ASOs; e.g., antimiRs). Here, we outline the prospects for miRNA-based therapies. We review design considerations for nucleic acid-based approaches and the challenges and next steps in developing therapeutic miRNA-targeting molecules for epilepsy.
Collapse
|
9
|
Tachibana A, Yamamoto A. Improvement of a miRNA inhibitor by intracellular selection. Biosci Biotechnol Biochem 2020; 84:1451-1454. [PMID: 32178591 DOI: 10.1080/09168451.2020.1743167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sequences surrounding the miRNA binding domain of the miRNA inhibitor LidNA were selected intracellularly. The library was transfected into cells, and then, inhibitors that were associated with argonaute 2 were selected. The potent inhibitors were slowly degraded intracellularly, while the lower-activity inhibitors were rapidly degraded. A combination of the selected sequences surrounding the miRNA binding domain enhanced miRNA inhibitory activity. ABBREVIATIONS LidNA: DNA that puts a lid on miRNA function; LNA: locked nucleic acid; Ago2: argonaute 2; LNA: locked nucleic acid.
Collapse
Affiliation(s)
- Akira Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Aiko Yamamoto
- Department of Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| |
Collapse
|
10
|
Tachibana A, Saito S, Fujiyama Y, Tanabe T. LidNA, a miRNA inhibitor constructed with unmodified DNA, requires an xxxA insertion sequence in miRNA binding site for its potent inhibitory activity. FEBS Lett 2020; 594:1608-1614. [DOI: 10.1002/1873-3468.13756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Akira Tachibana
- Department of Bioengineering Graduate School of Engineering Osaka City University JapanOsaka
| | - Satoshi Saito
- Department of Bioengineering Graduate School of Engineering Osaka City University JapanOsaka
| | - Yukiko Fujiyama
- Department of Bioengineering Graduate School of Engineering Osaka City University JapanOsaka
| | - Toshizumi Tanabe
- Department of Bioengineering Graduate School of Engineering Osaka City University JapanOsaka
| |
Collapse
|
11
|
Tachibana A, Komeda Y, Yamamoto A. Structural improvement of LidNA: delta-type LidNA is a potent miRNA inhibitor constructed with unmodified DNA. Biosci Biotechnol Biochem 2020; 84:1168-1175. [PMID: 32108562 DOI: 10.1080/09168451.2020.1734443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Many miRNA inhibitors have been developed, including chemically modified oligonucleotides, such as 2'-O-methylated RNA and locked nucleic acid (LNA). Unmodified DNA has not yet been reported as a miRNA inhibitor due to relatively low DNA/miRNA binding affinity. We designed a structured DNA, LidNA, which was constructed with unmodified DNA, consisting of a complementary sequence to the target miRNA flanked by two structured DNA regions, such as double-stranded DNA. LidNA inhibited miRNA activity more potently than 2'-O-methylated RNA or LNA. To optimize LidNA, two double-stranded regions were joined, causing the molecule to assume a delta-like shape, which we termed delta-type LidNA. Delta-type LidNAs were developed to target endogenous and exogenous miRNAs, and exhibited potent miRNA inhibitory effects with a duration of at least 10 days. Delta-type LidNA-21, which targeted miR-21, inhibited the growth of cancer cell lines. This newly developed LidNA could contribute to miRNA studies across multiple fields.Abbreviations: LidNA: DNA that puts a lid on miRNA function; LNA: locked nucleic acid; 3'-UTR: 3'-untranslated regions; RISC: RNA-induced silencing complex; MBL: Molecular beacon-like LidNA; YMBL: Y-type molecular beacon-like LidNA; TDMD: target-directed microRNA degradation.
Collapse
Affiliation(s)
- Akira Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Yoshiki Komeda
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Aiko Yamamoto
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| |
Collapse
|
12
|
Yoshioka K, Kunieda T, Asami Y, Guo H, Miyata H, Yoshida-Tanaka K, Sujino Y, Piao W, Kuwahara H, Nishina K, Hara RI, Nagata T, Wada T, Obika S, Yokota T. Highly efficient silencing of microRNA by heteroduplex oligonucleotides. Nucleic Acids Res 2019; 47:7321-7332. [PMID: 31214713 PMCID: PMC6698647 DOI: 10.1093/nar/gkz492] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
AntimiR is an antisense oligonucleotide that has been developed to silence microRNA (miRNA) for the treatment of intractable diseases. Enhancement of its in vivo efficacy and improvement of its toxicity are highly desirable but remain challenging. We here design heteroduplex oligonucleotide (HDO)-antimiR as a new technology comprising an antimiR and its complementary RNA. HDO-antimiR binds targeted miRNA in vivo more efficiently by 12-fold than the parent single-stranded antimiR. HDO-antimiR also produced enhanced phenotypic effects in mice with upregulated expression of miRNA-targeting messenger RNAs. In addition, we demonstrated that the enhanced potency of HDO-antimiR was not explained by its bio-stability or delivery to the targeted cell, but reflected an improved intracellular potency. Our findings provide new insights into biology of miRNA silencing by double-stranded oligonucleotides and support the in vivo potential of this technology based on a new class of for the treatment of miRNA-related diseases.
Collapse
Affiliation(s)
- Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Taiki Kunieda
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yutaro Asami
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Huijia Guo
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Haruka Miyata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yumiko Sujino
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Wenying Piao
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Hiroya Kuwahara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Kazutaka Nishina
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Rintaro Iwata Hara
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Takeshi Wada
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoshi Obika
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
13
|
Dai Y, Ghosh S, Shin BC, Devaskar SU. Role of microRNA-122 in hepatic lipid metabolism of the weanling female rat offspring exposed to prenatal and postnatal caloric restriction. J Nutr Biochem 2019; 73:108220. [PMID: 31630081 PMCID: PMC6896790 DOI: 10.1016/j.jnutbio.2019.108220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/23/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
We examined the role of hepatocyte micro-RNA-122 and hypothalamic neuropeptides, in weanling (21d) female rats exposed to calorie restriction induced growth restriction either prenatally (IUGR), postnatally (PNGR) or both (IPGR) vs. ad lib fed controls (CON). IUGR were hyperinsulinemic, hyperleptinemic and dyslipidemic with high circulating miR-122. In contrast, PNGR and IPGR displayed insufficient glucose, insulin and leptin amidst high ketones with a dichotomy in circulating miR-122 of PNGR
Collapse
Affiliation(s)
- Yun Dai
- Department of Pediatrics and the Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| | - Shubhamoy Ghosh
- Department of Pediatrics and the Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| | - Bo-Chul Shin
- Department of Pediatrics and the Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| | - Sherin U Devaskar
- Department of Pediatrics and the Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA.
| |
Collapse
|
14
|
Patutina OA, Miroshnichenko SK, Mironova NL, Sen'kova AV, Bichenkova EV, Clarke DJ, Vlassov VV, Zenkova MA. Catalytic Knockdown of miR-21 by Artificial Ribonuclease: Biological Performance in Tumor Model. Front Pharmacol 2019; 10:879. [PMID: 31456683 PMCID: PMC6698794 DOI: 10.3389/fphar.2019.00879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Control of the expression of oncogenic small non-coding RNAs, notably microRNAs (miRNAs), is an attractive therapeutic approach. We report a design platform for catalytic knockdown of miRNA targets with artificial, sequence-specific ribonucleases. miRNases comprise a peptide [(LeuArg)2Gly]2 capable of RNA cleavage conjugated to the miRNA-targeted oligodeoxyribonucleotide, which becomes nuclease-resistant within the conjugate design, without resort to chemically modified nucleotides. Our data presented here showed for the first time a truly catalytic character of our miR-21-miRNase and its ability to cleave miR-21 in a multiple catalytic turnover mode. We demonstrate that miRNase targeted to miR-21 (miR-21-miRNase) knocked down malignant behavior of tumor cells, including induction of apoptosis, inhibition of cell invasiveness, and retardation of tumor growth, which persisted on transplantation into mice of tumor cells treated once with miR-21-miRNase. Crucially, we discover that the high biological activity of miR-21-miRNase can be directly related not only to its truly catalytic sequence-specific cleavage of miRNA but also to its ability to recruit the non-sequence specific RNase H found in most cells to elevate catalytic turnover further. miR-21-miRNase worked synergistically even with low levels of RNase H. Estimated degradation in the presence of RNase H exceeded 103 miRNA target molecules per hour for each miR-21-miRNase molecule, which provides the potency to minimize delivery requirements to a few molecules per cell. In contrast to the comparatively high doses required for the simple steric block of antisense oligonucleotides, truly catalytic inactivation of miRNA offers more effective, irreversible, and persistent suppression of many copy target sequences. miRNase design can be readily adapted to target other pathogenic microRNAs overexpressed in many disease states.
Collapse
Affiliation(s)
- Olga A Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Svetlana K Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Nadezhda L Mironova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Aleksandra V Sen'kova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Marina A Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
15
|
Henry RJ, Doran SJ, Barrett JP, Meadows VE, Sabirzhanov B, Stoica BA, Loane DJ, Faden AI. Inhibition of miR-155 Limits Neuroinflammation and Improves Functional Recovery After Experimental Traumatic Brain Injury in Mice. Neurotherapeutics 2019; 16:216-230. [PMID: 30225790 PMCID: PMC6361054 DOI: 10.1007/s13311-018-0665-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Micro-RNAs (miRs) are short, noncoding RNAs that negatively regulate gene expression at the post-transcriptional level and have been implicated in the pathophysiology of secondary damage after traumatic brain injury (TBI). Among miRs linked to inflammation, miR-155 has been implicated as a pro-inflammatory factor in a variety of organ systems. We examined the expression profile of miR-155, following experimental TBI (controlled cortical impact) in adult male C57Bl/6 mice, as well as the effects of acute or delayed administration of a miR-155 antagomir on post-traumatic neuroinflammatory responses and neurological recovery. Trauma robustly increased miR-155 expression in the injured cortex over 7 days. Similar TBI-induced miR-155 expression changes were also found in microglia/macrophages isolated from the injured cortex at 7 days post-injury. A miR-155 hairpin inhibitor (antagomir; 0.5 nmol), administered intracerebroventricularly (ICV) immediately after injury, attenuated neuroinflammatory markers at both 1 day and 7 days post-injury and reduced impairments in spatial working memory. Delayed ICV infusion of the miR-155 antagomir (0.5 nmol/day), beginning 24 h post-injury and continuing for 6 days, attenuated neuroinflammatory markers at 7 days post-injury and improved motor, but not cognitive, function through 28 days. The latter treatment limited NADPH oxidase 2 expression changes in microglia/macrophages in the injured cortex and reduced cortical lesion volume. In summary, TBI causes a robust and persistent neuroinflammatory response that is associated with increased miR-155 expression in microglia/macrophages, and miR-155 inhibition reduces post-traumatic neuroinflammatory responses and improves neurological recovery. Thus, miR-155 may be a therapeutic target for TBI-related neuroinflammation.
Collapse
Affiliation(s)
- Rebecca J. Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Sarah J. Doran
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - James P. Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Victoria E. Meadows
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Boris Sabirzhanov
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Bogdan A. Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Anesthesiology, University of Maryland School of Medicine, 655 West Baltimore Street, No. 6-011, Baltimore, MD 21201 USA
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Anesthesiology, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF No. 6-02, Baltimore, MD 21201 USA
| |
Collapse
|
16
|
Hirano Y, Kojima N, Komatsu Y. Synthesis and Application of Interstrand Cross-Linked Duplexes by Covalently Linking a Pair of Abasic Sites. ACTA ACUST UNITED AC 2018; 75:e63. [PMID: 30315733 DOI: 10.1002/cpnc.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interstrand cross-linking of DNA or RNA inhibits the double strands from dissociating into single strands. This article contains detailed procedures for the synthesis of a novel interstrand cross-linker that comprises a bis-aminooxy naphthalene derivative and a description of its use in the preparation of sequence-specific interstrand cross-linked oligonucleotide duplexes. The interstrand cross-linker covalently connects a pair of apurinic/apyrimidinic sites in DNA/RNA duplexes with bis(aminooxy) groups. The resulting oxime linkages are stable under physiological conditions and greatly improve the thermal stability of the duplex. In addition, we construct a novel anti-miRNA oligonucleotide (AMO) flanked by interstrand cross-linked 2'-O-methylated RNA duplexes (CLs). AMO flanked by CLs at the 5'- and 3'-termini exhibited high inhibition activity toward miRNA function in cells. The novel interstrand cross-linker indicates potent activity and is applicable in biophysical studies, oligonucleotide therapeutics, and materials science. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Naoshi Kojima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| |
Collapse
|
17
|
Patutina OA, Bazhenov MA, Miroshnichenko SK, Mironova NL, Pyshnyi DV, Vlassov VV, Zenkova MA. Peptide-oligonucleotide conjugates exhibiting pyrimidine-X cleavage specificity efficiently silence miRNA target acting synergistically with RNase H. Sci Rep 2018; 8:14990. [PMID: 30302012 PMCID: PMC6177439 DOI: 10.1038/s41598-018-33331-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Taking into account the important role of miRNA in carcinogenesis, oncogenic miRNAs are attractive molecules for gene-targeted therapy. Here, we developed a novel series of peptide-oligonucleotide conjugates exhibiting ribonuclease activity targeted to highly oncogenic miRNAs miR-21 and miR-17. When designing the conjugates, we enhanced both nuclease resistance of the targeted oligodeoxyribonucleotide by introducing at its 3'-end mini-hairpin structure displaying high thermostability and robustness against nuclease digestion and the efficiency of its functioning by attachment of the catalytic construction (amide)NH2-Gly(ArgLeu)4-TCAA displaying ribonuclease activity to its 5'-end. Designed miRNases efficiently cleaved miRNA targets, exhibiting Pyr-X specificity, and cleavage specificity had strong dependence on the miRNA sequence in the site of peptide location. In vitro, designed miRNases do not prevent cleavage of miRNA bound with the conjugate by RNase H, and more than an 11-fold enhancement of miRNA cleavage by the conjugate is observed in the presence of RNase H. In murine melanoma cells, miRNase silences mmu-miR-17 with very high efficiency as a result of miR-17 cleavage by miRNase and by recruited RNase H. Thus, miRNases provide a system of double attack of the miRNA molecules, significantly increasing the efficiency of miRNA downregulation in the cells in comparison with antisense oligonucleotide.
Collapse
Affiliation(s)
- O A Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - M A Bazhenov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - S K Miroshnichenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - N L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - D V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - V V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - M A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
18
|
Enhanced Tailored MicroRNA Sponge Activity of RNA Pol II-Transcribed TuD Hairpins Relative to Ectopically Expressed ciRS7-Derived circRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:365-375. [PMID: 30347350 PMCID: PMC6198105 DOI: 10.1016/j.omtn.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
As key regulators of gene expression, microRNAs (miRNAs) have emerged as targets in basic experimentation and therapy. Administration of DNA-encoded RNA molecules, targeting miRNAs through base pairing, is one viable strategy for inhibiting specific miRNAs. A naturally occurring circular RNA (circRNA), ciRS-7, serving as a miRNA-7 (miR-7) sponge was recently identified. This has sparked tremendous interest in adapting circRNAs for suppressing miRNA function. In parallel, we and others have demonstrated efficacy of expressed anti-miRNA Tough Decoy (TuD) hairpins. To compare properties of such inhibitors, we express ciRS-7 and TuD-containing miRNA suppressor transcripts from identical vector formats adapted from RNA polymerase II-directed expression plasmids previously used for production of ciRS-7. In general, markedly higher levels of miR-7 suppression with TuD transcripts relative to ciRS-7 are observed, leading to superior miRNA sponge effects using expressed TuD hairpins. Notably however, we find that individual ciRS-7 transcripts are more potent inhibitors of miR-7 activity than individual TuD7-containing transcripts, although each miR-7 seed match target site in ciRS-7 is, on average, less potent than the perfectly matched target sites in the TuD motif. All together, our studies call for improved means of designing and producing circRNAs for customized miRNA targeting to match TuD hairpins for tailored miRNA suppression.
Collapse
|
19
|
Nguyen TH, Liu X, Su ZZ, Hsu ACY, Foster PS, Yang M. Potential Role of MicroRNAs in the Regulation of Antiviral Responses to Influenza Infection. Front Immunol 2018; 9:1541. [PMID: 30022983 PMCID: PMC6039551 DOI: 10.3389/fimmu.2018.01541] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza is a major health burden worldwide and is caused by influenza viruses that are enveloped and negative stranded RNA viruses. Little progress has been achieved in targeted intervention, either at a population level or at an individual level (to treat the cause), due to the toxicity of drugs and ineffective vaccines against influenza viruses. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene expression, cell differentiation, and tissue development and have been shown to silence viral replication in a sequence-specific manner. Investigation of these small endogenous nucleotides may lead to new therapeutics against influenza virus infection. Here, we describe our current understanding of the role of miRNAs in host defense response against influenza virus, as well as their potential and limitation as new therapeutic approaches.
Collapse
Affiliation(s)
- Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xiaoming Liu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Zhen Zhong Su
- Department of Respiratory Medicine, The Second Hospital, Jilin University, ChangChun, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
20
|
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15:338-352. [PMID: 29570036 DOI: 10.1080/15476286.2018.1445959] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. As a consequence of their function towards mRNA, miRNAs are widely associated with the pathogenesis of several human diseases, making miRNAs a target for new therapeutic strategies based on the control of their expression. Indeed, numerous works were published in the past decades showing the potential use of antisense oligonucleotides to target aberrant miRNAs (AMOs) involved in several human pathologies. New classes of chemical-modified-AMOs, including locked nucleic acid oligonucleotides, have recently proved their worth in silencing miRNAs. A correct design of a specific AMOs can help to improve their performance and potency towards the target miRNA by increasing for instance nuclease resistance and target affinity. This review outlines the technologies involved to suppress aberrant miRNAs. From the design strategies used in AMOs to its application in novel miRNA-based therapeutics and detection methodologies.
Collapse
Affiliation(s)
- Joana Filipa Lima
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal.,b Biomode 2, S. A., INL - Avda. Mestre José Veiga s/n, Braga , Portugal.,c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal
| | - Laura Cerqueira
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal.,b Biomode 2, S. A., INL - Avda. Mestre José Veiga s/n, Braga , Portugal
| | - Ceu Figueiredo
- c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal.,e FMUP, Faculty of Medicine of the University of Porto , Al. Prof. Hernâni Monteiro, Porto , Portugal
| | - Carla Oliveira
- c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal.,e FMUP, Faculty of Medicine of the University of Porto , Al. Prof. Hernâni Monteiro, Porto , Portugal
| | - Nuno Filipe Azevedo
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal
| |
Collapse
|
21
|
Mie Y, Hirano Y, Kowata K, Nakamura A, Yasunaga M, Nakajima Y, Komatsu Y. Function Control of Anti-microRNA Oligonucleotides Using Interstrand Cross-Linked Duplexes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:64-74. [PMID: 29499957 PMCID: PMC5734696 DOI: 10.1016/j.omtn.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
MicroRNA (miRNA)-guided argonaute (Ago) controls gene expression upon binding to the 3′ UTR of mRNA. The miRNA function can be competitively inhibited by single-stranded anti-miRNA oligonucleotides (AMOs). In this study, we constructed a novel type of AMO flanked by interstrand cross-linked 2′-O-methylated RNA duplexes (CLs) that confer a stable helical conformation. Compared with other structured AMOs, AMO flanked by CLs at the 5′ and 3′ termini exhibited much higher inhibitory activity in cells. Anti-miRNA activity, nuclease resistance, and miRNA modification pattern distinctly differed according to the CL-connected positions in AMOs. Moreover, we found that the 3′-side CL improves nuclease resistance, whereas the 5′-side CL contributes to stable binding with miRNA in Ago upon interaction with the 3′ part of miRNA. These structure-function relationship analyses of AMOs provide important insights into the function control of Ago-miRNA complexes, which will be useful for basic miRNA research as well as for determining therapeutic applications of AMO.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Keiko Kowata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Mayu Yasunaga
- Health Research Institute, AIST, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yoshihiro Nakajima
- Health Research Institute, AIST, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| |
Collapse
|
22
|
Gan J, Qu Y, Li J, Zhao F, Mu D. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci 2016; 26:225-37. [PMID: 25719305 DOI: 10.1515/revneuro-2014-0062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/05/2014] [Indexed: 11/15/2022]
Abstract
Epilepsy is a serious chronic neurologic disorder characterized by recurrent unprovoked seizures resulting from abnormal and highly synchronous neuronal discharges within the brain. Small noncoding RNAs, called microRNAs, play vital roles in epileptogenesis, with potential contributions as valuable biomarkers and targets for the treatment of epilepsy. To maintain cellular homeostasis, cellular components, such as organelles, proteins, protein complexes/oligomers, and pathogens, are delivered to the lysosome for degradation through a process called autophagy, which plays either a protective or a harmful role under epileptic stress. Several autophagic mechanisms have been implicated in epileptogenesis, including the mammalian target of rapamycin pathway, aberrant substrate accumulation, and the formation of epileptic networks. In addition, the regulation of autophagy through microRNAs (miRNAs) represents a novel posttranscriptional regulatory mechanism through 'autophagamiRNAs'. The correlation between autophagy and miRNA has increased our understanding of the underlying pathogenesis of human diseases. Here, we review the current findings regarding the correlations between miRNA, autophagy, and epilepsy to provide a solid foundation for further examination of the miRNA-autophagy pathway involved in epilepsy pathophysiology.
Collapse
|
23
|
Kowata K, Kojima N, Komatsu Y. Development of a 3'-amino linker with high conjugation activity and its application to conveniently cross-link blunt ends of a duplex. Bioorg Med Chem 2016; 24:2108-13. [PMID: 27041396 DOI: 10.1016/j.bmc.2016.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/19/2022]
Abstract
The 2-aminoethyl carbamate linker (ssH linker) exhibits high activity in modifying the 5'-termini of oligonucleotides; however, the ssH linker is not appropriate for 3'-terminal modification because it undergoes intramolecular trans-acylation under heat-aqueous ammonia conditions. We developed an N-(2-aminoethyl)carbamate linker (revH linker), in which the carbamate is oriented in the reverse direction relative to that in 2-aminoethyl carbamate. The revH linker was tolerant to heat-alkaline conditions and retained its high reactivity in conjugation with exogenous molecules. The 3'-revH linker was efficiently linked with the 5'-ssH linker at the termini of complementary double strands with a bifunctional molecule, producing a synthetic loop structure. An anti-microRNA oligonucleotide (AMO) was prepared from the chemical ligation of three-stranded 2'-O-methyl RNAs, and the AMO with two alkyl loops exhibited high inhibition activity toward miRNA function. The revH linker is not only useful for 3'-terminal modification of oligonucleotides but also expands the utility range in combination with the 5'-ssH linker.
Collapse
Affiliation(s)
- Keiko Kowata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Naoshi Kojima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Tsukuba Central 6, Higashi, Tsukuba-shi, Ibaraki 305-8566, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| |
Collapse
|
24
|
A new plasmid-based microRNA inhibitor system that inhibits microRNA families in transgenic mice and cells: a potential new therapeutic reagent. Gene Ther 2016; 23:527-42. [PMID: 26934100 PMCID: PMC4891277 DOI: 10.1038/gt.2016.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
Current tools for the inhibition of microRNA (miR) function are limited to modified antisense oligonucleotides, sponges and decoy RNA molecules and none have been used to understand miR function during development. CRISPR/Cas-mediated deletion of miR sequences within the genome requires multiple chromosomal deletions to remove all functional miR family members because of duplications. Here, we report a novel plasmid-based miR inhibitor system (PMIS) that expresses a new RNA molecule, which inhibits miR family members in cells and mice. The PMIS engineered RNA optimal secondary structure, flanking sequences and specific antisense miR oligonucleotide sequence bind the miR in a stable complex to inhibit miR activity. In cells, one PMIS can effectively inhibit miR family members that share the same seed sequence. The PMIS shows no off-target effects or toxicity and is highly specific for miRs sharing identical seed sequences. Transgenic mice expressing both PMIS-miR-17-18 and PMIS-miR-19-92 show similar phenotypes of miR-17-92-knockout mice. Interestingly, mice only expressing PMIS-miR-17-18 have developmental defects distinct from mice only expressing PMIS-miR-19-92 demonstrating usefulness of the PMIS system to dissect different functions of miRs within clusters. Different PMIS miR inhibitors can be linked together to knock down multiple miRs expressed from different chromosomes. Inhibition of the miR-17-92, miR-106a-363 and miR-106b-25 clusters reveals new mechanisms and developmental defects for these miRs. We report a new tool to dissect the role of miRs in development without genome editing, inhibit miR function in cells and as a potential new therapeutic reagent.
Collapse
|
25
|
Wong JJL, Au AYM, Gao D, Pinello N, Kwok CT, Thoeng A, Lau KA, Gordon JEA, Schmitz U, Feng Y, Nguyen TV, Middleton R, Bailey CG, Holst J, Rasko JEJ, Ritchie W. RBM3 regulates temperature sensitive miR-142-5p and miR-143 (thermomiRs), which target immune genes and control fever. Nucleic Acids Res 2016; 44:2888-97. [PMID: 26825461 PMCID: PMC4824108 DOI: 10.1093/nar/gkw041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40°C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142–5p and miR-143 in turn target endogenous pyrogens including IL-6, IL6ST, TLR2, PGE2 and TNF to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40°C), we further demonstrate the trend by which decreased levels of RBM3 were associated with increased levels of miR-142–5p and miR-143 and vice versa over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142–5p and miR-143.
Collapse
Affiliation(s)
- Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Amy Y M Au
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Dadi Gao
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia
| | - Natalia Pinello
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Chau-To Kwok
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Annora Thoeng
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Katherine A Lau
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Jane E A Gordon
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Yue Feng
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Trung V Nguyen
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Robert Middleton
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, NSW 2006, Australia Origins of Cancer Program, Centenary Institute, Camperdown 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - William Ritchie
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia CNRS, UMR 5203, Montpellier 34094, France
| |
Collapse
|
26
|
Durso M, Gaglione M, Piras L, Mercurio ME, Terreri S, Olivieri M, Marinelli L, Novellino E, Incoronato M, Grieco P, Orsini G, Tonon G, Messere A, Cimmino A. Chemical modifications in the seed region of miRNAs 221/222 increase the silencing performances in gastrointestinal stromal tumor cells. Eur J Med Chem 2016; 111:15-25. [PMID: 26854374 DOI: 10.1016/j.ejmech.2016.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/07/2016] [Accepted: 01/24/2016] [Indexed: 12/12/2022]
Abstract
Most GastroIntestinal Stromal Tumors (GISTs) are characterized by KIT gene overexpression, which in turn is regulated by levels of microRNA 221 and microRNA 222. GISTs can also be distinguished by their miRNAs expression profile in which miRNAs 221/222 result reduced in comparison with GI normal tissues. In this paper, to restore normal miRNAs levels and to improve the silencing performances of miRNAs 221/222, new miRNA mimics in which guide strands are modified by Phosphorothioate (PS) and/or 2'-O-methyl RNA (2'-OMe) inside and outside the seed region, were synthesized and tested in GIST48 cells. We evaluated the positional effect of the chemical modifications on the miRNAs silencing activity, compared to natural and several commercial miRNA mimics. Our results show that chemically modified miRNAs 221/222 with alternating 2'-OMe-PS and natural nucleotides in the seed region are effective inhibitors of KIT gene expression and exhibit increased stability in rat plasma. Besides, their transfection in GIST 48 cells showed significant effects on different cellular processes in which KIT plays a functional role for tumor development (such as migration, cell proliferation, and apoptosis). Therefore, modified miRNAs 221/222 may provide an alternative therapeutic option for GIST treatment also aimed to overcome drug resistance concerns.
Collapse
Affiliation(s)
- Montano Durso
- Institute of Genetic and Biophysics "Adriano Buzzati Traverso", CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Gaglione
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Linda Piras
- National Research Council-CNR, Institute of Crystallography-IC, Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Maria Emilia Mercurio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sara Terreri
- Institute of Genetic and Biophysics "Adriano Buzzati Traverso", CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Michele Olivieri
- Institute of Genetic and Biophysics "Adriano Buzzati Traverso", CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | | | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | | | | | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy.
| | - Amelia Cimmino
- Institute of Genetic and Biophysics "Adriano Buzzati Traverso", CNR, Via Pietro Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
27
|
Han F, Huo Y, Huang CJ, Chen CL, Ye J. MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res 2015; 1611:65-73. [PMID: 25791621 DOI: 10.1016/j.brainres.2015.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/08/2015] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Semaphorin3A (Sema3A) is a major inhibitory factor of optic nerve (ON) regeneration post-injury. Many microRNAs (miRNAs) are expressed specifically in the mammalian brain and retina and are dynamically regulated during development, suggesting that this group of miRNAs may be associated with neural development. We found that microRNA-30b (miR-30b) bound to the three prime untranslated region (3' UTR) of Sema3A and inhibited the expression of Sema3A mRNA. The mRNA expression level of miR-30b and the protein expression levels of Sema3A, Neuropilin1 (NRP1), PlexinA1 (PlexA1), phosphorylated p38MAPK (p-p38MAPK), and active caspase-3 were all upregulated in retinas from rats with a damaged ON relative to those with an intact ON. Transfection of cultured retinal ganglion cells (RGCs) with an miR-30b mimic led to decreased levels of Sema3A, NRP1, PlexA1, p-p38MAPK, and active caspase-3 protein expression, as well as axon elongation and reduced levels of apoptosis. These findings provide evidence that miR-30b inhibits Sema3A expression. Decreased Sema3A expression promotes axon outgrowth in RGCs due to reduced levels of Sema3A binding to NRP1 and PlexA1 and simultaneously reduces apoptosis by inhibiting the p38MAPK and caspase-3 pathways. Our findings provide the first evidence that miR-30b-mediated Sema3A downregulation may serve as a new strategy for the clinical treatment of ON injury.
Collapse
Affiliation(s)
- F Han
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Y Huo
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - C-J Huang
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - C-L Chen
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - J Ye
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
28
|
Chitkara D, Mittal A, Mahato RI. miRNAs in pancreatic cancer: therapeutic potential, delivery challenges and strategies. Adv Drug Deliv Rev 2015; 81:34-52. [PMID: 25252098 DOI: 10.1016/j.addr.2014.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a severe pancreatic malignancy and is predicted to victimize 1.5% of men and women during their lifetime (Cancer statistics: SEER stat fact sheet, National Cancer Institute, 2014). miRNAs have emerged as a promising prognostic, diagnostic and therapeutic tool to fight against pancreatic cancer. miRNAs could modulate gene expression by imperfect base-pairing with target mRNA and hence provide means to fine-tune multiple genes simultaneously and alter various signaling pathways associated with the disease. This exceptional miRNA feature has provided a paradigm shift from the conventional one drug one target concept to one drug multiple target theory. However, in vivo miRNA delivery is not fully realized due to challenges posed by this special class of therapeutic molecules, which involves thorough understanding of the biogenesis and physicochemical properties of miRNA and delivery carriers along with the pathophysiology of the PDAC. This review highlights the delivery strategies of miRNA modulators (mimic/inhibitor) in cancer with special emphasis on PDAC since successful delivery of miRNA in vivo constitutes the major challenge in clinical translation of this promising class of therapeutics.
Collapse
|
29
|
Sarvestani ST, Stunden HJ, Behlke MA, Forster SC, McCoy CE, Tate MD, Ferrand J, Lennox KA, Latz E, Williams BRG, Gantier MP. Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic Acids Res 2014; 43:1177-88. [PMID: 25539920 PMCID: PMC4333393 DOI: 10.1093/nar/gku1343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Anti-microRNA (miRNA) oligonucleotides (AMOs) with 2'-O-Methyl (2'OMe) residues are commonly used to study miRNA function and can achieve high potency, with low cytotoxicity. Not withstanding this, we demonstrate the sequence-dependent capacity of 2'OMe AMOs to inhibit Toll-like receptor (TLR) 7 and 8 sensing of immunostimulatory RNA, independent of their miRNA-targeting function. Through a screen of 29 AMOs targeting common miRNAs, we found a subset of sequences highly inhibitory to TLR7 sensing in mouse macrophages. Interspecies conservation of this inhibitory activity was confirmed on TLR7/8 activity in human peripheral blood mononuclear cells. Significantly, we identified a core motif governing the inhibitory activity of these AMOs, which is present in more than 50 AMOs targeted to human miRNAs in miRBaseV20. DNA/locked nucleic acids (LNA) AMOs synthesized with a phosphorothioate backbone also inhibited TLR7 sensing in a sequence-dependent manner, demonstrating that the off-target effects of AMOs are not restricted to 2'OMe modification. Taken together, our work establishes the potential for off-target effects of AMOs on TLR7/8 function, which should be taken into account in their therapeutic development and in vivo application.
Collapse
Affiliation(s)
- Soroush T Sarvestani
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - H James Stunden
- Institute of Innate Immunity, Biomedical Center, University Hospitals Bonn, Bonn 53127, Germany
| | - Mark A Behlke
- Integrated DNA Technologies Inc., Coralville, IA 52241, USA
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Claire E McCoy
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Michelle D Tate
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Jonathan Ferrand
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Kim A Lennox
- Integrated DNA Technologies Inc., Coralville, IA 52241, USA
| | - Eicke Latz
- Institute of Innate Immunity, Biomedical Center, University Hospitals Bonn, Bonn 53127, Germany Division of Infectious Diseases & Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn 53127, Germany
| | - Bryan R G Williams
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Michael P Gantier
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
30
|
Lin YC, Balakrishnan CN, Clayton DF. Functional genomic analysis and neuroanatomical localization of miR-2954, a song-responsive sex-linked microRNA in the zebra finch. Front Neurosci 2014; 8:409. [PMID: 25565940 PMCID: PMC4267206 DOI: 10.3389/fnins.2014.00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/23/2014] [Indexed: 01/12/2023] Open
Abstract
Natural experience can cause complex changes in gene expression in brain centers for cognition and perception, but the mechanisms that link perceptual experience and neurogenomic regulation are not understood. MicroRNAs (miRNAs or miRs) have the potential to regulate large gene expression networks, and a previous study showed that a natural perceptual stimulus (hearing the sound of birdsong in zebra finches) triggers rapid changes in expression of several miRs in the auditory forebrain. Here we evaluate the functional potential of one of these, miR-2954, which has been found so far only in birds and is encoded on the Z sex chromosome. Using fluorescence in situ hybridization and immunohistochemistry, we show that miR-2954 is present in subsets of cells in the sexually dimorphic brain regions involved in song production and perception, with notable enrichment in cell nuclei. We then probe its regulatory function by inhibiting its expression in a zebra finch cell line (G266) and measuring effects on endogenous gene expression using Illumina RNA sequencing (RNA-seq). Approximately 1000 different mRNAs change in expression by 1.5-fold or more (adjusted p < 0.01), with increases in some but not all of the targets that had been predicted by Targetscan. The population of RNAs that increase after miR-2954 inhibition is notably enriched for ones involved in the MAP Kinase (MAPK) pathway, whereas the decreasing population is dominated by genes involved in ribosomes and mitochondrial function. Since song stimulation itself triggers a decrease in miR-2954 expression followed by a delayed decrease in genes encoding ribosomal and mitochondrial functions, we suggest that miR-2954 may mediate some of the neurogenomic effects of song habituation.
Collapse
Affiliation(s)
- Ya-Chi Lin
- Genomics of Neural and Behavioral Plasticity Theme, Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, IL, USA
| | | | - David F Clayton
- Genomics of Neural and Behavioral Plasticity Theme, Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
31
|
Wong JJL, Ritchie W, Gao D, Lau KA, Gonzalez M, Choudhary A, Taft RJ, Rasko JEJ, Holst J. Identification of nuclear-enriched miRNAs during mouse granulopoiesis. J Hematol Oncol 2014; 7:42. [PMID: 24886830 PMCID: PMC4046156 DOI: 10.1186/1756-8722-7-42] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/10/2014] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) are coordinators of cellular differentiation, including granulopoiesis. Although differential expression of many miRNAs is associated with the maturation of granulocytes, analysis of differentially expressed miRNAs and their cellular localization across all stages of granulopoiesis, starting from hemopoietic stems cells, is not well characterized. Methods We analyzed whole cell miRNA and mRNA expression during granulopoiesis using Taqman low-density and Affymetrix arrays respectively. We also performed nuclear and cytoplasmic fractionation followed by Taqman low-density array and/or quantitative PCR to identify nuclear-enriched miRNAs in hemopoietic stem/progenitor cells, promyelocytes, myelocytes, granulocytes and several hemopoietic cell lines. Anti-correlation between the expression of miRNA and target pairs was used to determine putative miRNA targets. Results Analyses of our array data revealed distinct clusters of differentially expressed miRNAs that are specific to promyelocytes and granulocytes. While the roles of many of these miRNAs in granulopoiesis are not currently known, anti-correlation of the expression of miRNA/mRNA target pairs identified a suite of novel target genes. Clusters of miRNAs (including members of the let-7 and miR-17-92 families) are downregulated in hemopoietic stem/progenitor cells, potentially allowing the expression of target genes known to facilitate stem cell proliferation and homeostasis. Additionally, four miRNAs (miR-709, miR-706, miR-690 and miR-467a*) were found to be enriched in the nucleus of myeloid cells and multiple hemopoietic cell lines compared to other miRNAs, which are predominantly cytoplasmic-enriched. Both miR-709 and miR-706 are nuclear-enriched throughout granulopoiesis and have putative binding sites of extensive complementarity downstream of pri-miRNAs. Nuclear enrichment of miR-467a* is specific to hemopoietic stem/progenitors and promyelocytes. These miRNAs are also nuclear-enriched in other hemopoietic cell lines, where nuclear sequestering may fine-tune the expression of cytoplasmic mRNA targets. Conclusions Overall, we have demonstrated differentially expressed miRNAs that have not previously been associated with hemopoietic differentiation and provided further evidence of regulated nuclear-enrichment of miRNAs. Further studies into miRNA function in granulocyte development may shed light on fundamental aspects of regulatory RNA biology and the role of nuclear miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jeff Holst
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, Australia.
| |
Collapse
|
32
|
Wu LH, Cai QQ, Dong YW, Wang R, He BM, Qi B, Xu CJ, Wu XZ. Decoy oligonucleotide rescues IGF1R expression from MicroRNA-223 suppression. PLoS One 2013; 8:e82167. [PMID: 24324762 PMCID: PMC3852755 DOI: 10.1371/journal.pone.0082167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
A mature miRNA generally suppresses hundreds of mRNA targets. To evaluate the selective effect of synthetic oligonucleotide decoys on hsa-miR-223 activity, reporters containing 3’ untranslated regions (UTR) of IGF1R, FOXO1, POLR3G, FOXO3, CDC27, FBXW7 and PAXIP1 mRNAs were constructed for the luciferase assay. The oligonucleotide decoys were designed and synthesized according to mature miR-223 sequence and its target mRNA sequence. Quantitative RT-PCR & western analysis were used to measure miR-223-targeted mRNA expression, Interestingly, apart from the antisense oligonucleotide, decoy nucleotides which were complementary to the 5’, central or 3’ region of mature miR-223 suppressed miR-223 targeting the 3’UTR of IGF1R, FOXO1, FOXO3, CDC27, POLR3G, and FBXW7 mRNAs and rescued the expression of these genes to varying degrees from miR-223 suppression at both mRNA and protein levels. All decoys had no effect on PAXIP1 which was not targeted by miR-223. The decoy 1 that was based on the sequence of IGF1R 3’UTR rescued the expression of IGF1R more significantly than other decoy nucleotides except the antisense decoy 4. Decoy 1 also rescued the expression of FOXO3 and POLR3G of which their 3’UTRs have similar binding sites for miR-223 with IGF1R 3’UTR. However decoy 1 failed to recover Sp1, CDC27 and FBXW7 expression. These data support that the sequence-specific decoy oligonucleotides might represent exogenous competing RNA which selectively inhibits microRNA targeting.
Collapse
Affiliation(s)
- Li Hui Wu
- Department of Children’s Health Care, Yu Ying Children’s Hospital, Wenzhou Medical College, Wenzhou, China
- * E-mail: (LHW); (XZW)
| | - Qian Qian Cai
- Department of Children’s Health Care, Yu Ying Children’s Hospital, Wenzhou Medical College, Wenzhou, China
| | - Yi Wei Dong
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Rong Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Bao Mei He
- Department of Children’s Health Care, Yu Ying Children’s Hospital, Wenzhou Medical College, Wenzhou, China
| | - Bing Qi
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Chang Jun Xu
- Department of Biochemistry and Molecular Biology, Guiyang college of traditional Chinese medicine, Guizhou province, China
| | - Xing Zhong Wu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
- * E-mail: (LHW); (XZW)
| |
Collapse
|
33
|
Improved Performance of Anti-miRNA Oligonucleotides Using a Novel Non-Nucleotide Modifier. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e117. [PMID: 23982190 PMCID: PMC3759741 DOI: 10.1038/mtna.2013.46] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/24/2013] [Indexed: 01/01/2023]
Abstract
Anti-microRNA oligonucleotides (AMOs) are steric blocking antisense reagents that inhibit microRNA (miRNA) function by hybridizing and repressing the activity of a mature miRNA. First generation AMOs employed 2'-O-Methyl RNA nucleotides (2'OMe) with phosphorothioate (PS) internucleotide linkages positioned at both ends to block exonuclease attack. Second generation AMOs improved potency through the use of chemical modifications that increase binding affinity to the target, such as locked nucleic acid (LNA) residues. However, this strategy can reduce specificity as high binding affinity compounds can bind to and suppress function of related sequences even if one or more mismatches are present. Further, unnatural modified nucleic acid residues can have toxic side effects. In the present study, a variety of non-nucleotide modifiers were screened for utility in steric blocking antisense applications. A novel compound, N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine ("ZEN"), was discovered that increased binding affinity and blocked exonuclease degradation when placed at or near each end of a single-stranded oligonucleotide. This new modification was combined with the 2'OMe RNA backbone to make ZEN-AMOs. The new ZEN-AMOs have high potency and can effectively inhibit miRNA function in vitro at low nanomolar concentrations, show high specificity, and have low toxicity in cell culture.Molecular Therapy-Nucleic Acids (2013) 2, e117; doi:10.1038/mtna.2013.46; published online 27 August 2013.
Collapse
|
34
|
Saito K, Inagaki K, Kamimoto T, Ito Y, Sugita T, Nakajo S, Hirasawa A, Iwamaru A, Ishikura T, Hanaoka H, Okubo K, Onozaki T, Zama T. MicroRNA-196a is a putative diagnostic biomarker and therapeutic target for laryngeal cancer. PLoS One 2013; 8:e71480. [PMID: 23967217 PMCID: PMC3743786 DOI: 10.1371/journal.pone.0071480] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/28/2013] [Indexed: 01/03/2023] Open
Abstract
Background MicroRNA (miRNA) is an emerging subclass of small non-coding RNAs that regulates gene expression and has a pivotal role for many physiological processes including cancer development. Recent reports revealed the role of miRNAs as ideal biomarkers and therapeutic targets due to their tissue- or disease-specific nature. Head and neck cancer (HNC) is a major cause of cancer-related mortality and morbidity, and laryngeal cancer has the highest incidence in it. However, the molecular mechanisms involved in laryngeal cancer development remain to be known and highly sensitive biomarkers and novel promising therapy is necessary. Methodology/Principal Findings To explore laryngeal cancer-specific miRNAs, RNA from 5 laryngeal surgical specimens including cancer and non-cancer tissues were hybridized to microarray carrying 723 human miRNAs. The resultant differentially expressed miRNAs were further tested by using quantitative real time PCR (qRT-PCR) on 43 laryngeal tissue samples including cancers, noncancerous counterparts, benign diseases and precancerous dysplasias. Significant expressional differences between matched pairs were reproduced in miR-133b, miR-455-5p, and miR-196a, among which miR-196a being the most promising cancer biomarker as validated by qRT-PCR analyses on additional 84 tissue samples. Deep sequencing analysis revealed both quantitative and qualitative deviation of miR-196a isomiR expression in laryngeal cancer. In situ hybridization confirmed laryngeal cancer-specific expression of miR-196a in both cancer and cancer stroma cells. Finally, inhibition of miR-196a counteracted cancer cell proliferation in both laryngeal cancer-derived cells and mouse xenograft model. Conclusions/Significance Our study provided the possibilities that miR-196a might be very useful in diagnosing and treating laryngeal cancer.
Collapse
Affiliation(s)
- Koichiro Saito
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Koji Inagaki
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Kamimoto
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ito
- Genetic Testing Section, Center for Genetic & Chromosomal Analysis, SRL, Inc., Tokyo, Japan
| | - Toshiaki Sugita
- Genetic Testing Section, Center for Genetic & Chromosomal Analysis, SRL, Inc., Tokyo, Japan
| | - Satoko Nakajo
- Genetic Testing Section, Center for Genetic & Chromosomal Analysis, SRL, Inc., Tokyo, Japan
| | - Akira Hirasawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Arifumi Iwamaru
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Surgery, Federation of National Public Service Personnel Mutual Aid Associations Tachikawa Hospital, Tokyo, Japan
| | | | | | - Keisuke Okubo
- Department of Otolaryngology, Sano Kousei General Hospital, Tochigi, Japan
| | | | - Takeru Zama
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs. PLoS One 2013; 8:e66796. [PMID: 23805279 PMCID: PMC3689682 DOI: 10.1371/journal.pone.0066796] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/14/2013] [Indexed: 01/07/2023] Open
Abstract
Human protein kinases (HPKs) have profound effects on cellular responses. To better understand the role of HPKs and the signaling networks that influence influenza virus replication, a small interfering RNA (siRNA) screen of 720 HPKs was performed. From the screen, 17 HPKs (NPR2, MAP3K1, DYRK3, EPHA6, TPK1, PDK2, EXOSC10, NEK8, PLK4, SGK3, NEK3, PANK4, ITPKB, CDC2L5 (CDK13), CALM2, PKN3, and HK2) were validated as essential for A/WSN/33 influenza virus replication, and 6 HPKs (CDK13, HK2, NEK8, PANK4, PLK4 and SGK3) were identified as vital for both A/WSN/33 and A/New Caledonia/20/99 influenza virus replication. These HPKs were found to affect multiple host pathways and regulated by miRNAs induced during infection. Using a panel of miRNA agonists and antagonists, miR-149* was found to regulate NEK8 expression, miR-548d-3p was found to regulate MAPK1 transcript expression, and miRs -1228 and -138 to regulate CDK13 expression. Up-regulation of miR-34c induced PLK4 transcript and protein expression and enhanced influenza virus replication, while miR-34c inhibition reduced viral replication. These findings identify HPKs important for influenza viral replication and show the miRNAs that govern their expression.
Collapse
|
36
|
Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia 2013; 56:444-56. [PMID: 23135222 DOI: 10.1007/s00125-012-2768-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/09/2012] [Indexed: 12/23/2022]
Abstract
There is no cure for diabetic nephropathy and the molecular mechanisms underlying disease aetiology remain poorly understood. While current paradigms for clinical management of diabetic nephropathy are useful in delaying disease onset and preventing its progression, they do not do so for a significant proportion of diabetic individuals, who eventually end up developing renal failure. Thus, novel therapeutic targets are needed for the treatment and prevention of the disease. MicroRNAs (miRNAs), a class of non-coding RNAs that negatively regulate gene expression, have recently been identified as attractive targets for therapeutic intervention. It is widely recognised that dysregulation of miRNA expression or action contributes to the development of a number of different human diseases, and evidence of a role for miRNAs in the aetiology of diabetic nephropathy is emerging. The discovery that modulation of miRNA expression in vivo is feasible, combined with recent results from successful clinical trials using this technology, opens the way for future novel therapeutic applications. For instance, inhibition of miRNAs that are commonly upregulated in diabetic nephropathy decreases albuminuria and mesangial matrix accumulation in animal models, suggesting that a therapeutic agent against these molecules may help to prevent the development of diabetic nephropathy. Certain challenges, including the development of safe and reliable delivery systems, remain to be overcome before miRNA-based therapeutics become a reality. However, the findings accumulated to date, in conjunction with newly emerging results, are expected to yield novel insights into the complex pathogenesis of diabetic nephropathy, and may eventually lead to the identification of improved therapeutic targets for treatment of this disease.
Collapse
Affiliation(s)
- M L Alvarez
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 North Fifth St, Phoenix, AZ 85004, USA
| | | |
Collapse
|
37
|
Bak RO, Hollensen AK, Primo MN, Sørensen CD, Mikkelsen JG. Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors. RNA (NEW YORK, N.Y.) 2013; 19:280-93. [PMID: 23249752 PMCID: PMC3543086 DOI: 10.1261/rna.034850.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/09/2012] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and modulators of diverse biological pathways. Analyses of miRNA function as well as therapeutic managing of miRNAs rely on cellular administration of miRNA inhibitors which may be achieved by the use of viral vehicles. This study explores the miRNA-suppressive capacity of inhibitors expressed intracellularly from lentivirus-derived gene vectors. Superior activity of two decoy-type inhibitors, a "Bulged Sponge" with eight miRNA recognition sites and a hairpin-shaped "Tough Decoy" containing two miRNA recognition sites, is demonstrated in a side-by-side comparison of seven types of miRNA inhibitors transcribed as short RNAs from an RNA Pol III promoter. We find that lentiviral vectors expressing Tough Decoy inhibitors are less vulnerable than Bulged Sponge-encoding vectors to targeting by the cognate miRNA and less prone, therefore, to reductions in transfer efficiency. Importantly, it is demonstrated that Tough Decoy inhibitors retain their miRNA suppression capacity in the context of longer RNA transcripts expressed from an RNA Pol II promoter. Such RNA Pol II-transcribed Tough Decoy inhibitors are new tools in managing of miRNAs and may have potential for temporal and spatial regulation of miRNA activity as well as for therapeutic targeting of miRNAs that are aberrantly expressed in human disease.
Collapse
|
38
|
Abstract
AIM To construct a lentivirus-based inhibitor with specific secondary structure that could exert long-term suppression on microRNA-338-3p (miR-338-3p), thus elucidating its molecular function in colorectal carcinoma cells. METHODS The miR-338-3p inhibitor sequence was synthesized and inserted into pLV-THM plasmid. HEK-293T cells were co-transfected with the lentiviral vectors pLV-THM-miR-338-3p-inhibitor, psPAX2, and pMD2.G. The supernatant containing the lentivirus particles was harvested to determine the viral titer, and then used to infect colorectal carcinoma-derived SW-620 cells. eGFP(+) cells were sorted using flow cytometry. The expression of miR-338-3p in SW-620 cells was determined with real-time RT-PCR, and the expression of the smoothened (SMO) protein was detected using Western blot analysis. The migration ability of the transfected SW-620 cells was assessed with transwell assay. RESULTS Restriction endonuclease analysis and DNA sequencing demonstrated that the lentiviral vector pLV-THM-miR-338-3p-inhibitor was successfully constructed. The expression of miR-338-3p in SW-620 cells was significantly decreased by infection with the lentivirus pLV-THM-miR-338-3p-inhibitor. Moreover, the down-regulated expression of miR-338-3p caused up-regulated expression of the SMO protein in SW-620 cells, which showed significantly enhanced migration in transwell assay. CONCLUSION The construction of the lentiviral vector pLV-THM-miR-338-3p-inhibitor with specific secondary structure provides a basis for further studies the molecular function of miR-338-3p in colorectal carcinoma. miR-338-3p may suppress SMO gene expression and thereby inhibit colorectal carcinoma migration.
Collapse
|
39
|
Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, Truitt M, McManus MT, Ruggero D, Goga A, Papa FR, Oakes SA. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 2012; 338:818-22. [PMID: 23042294 DOI: 10.1126/science.1226191] [Citation(s) in RCA: 527] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) is the primary organelle for folding and maturation of secretory and transmembrane proteins. Inability to meet protein-folding demand leads to "ER stress," and activates IRE1α, an ER transmembrane kinase-endoribonuclease (RNase). IRE1α promotes adaptation through splicing Xbp1 mRNA or apoptosis through incompletely understood mechanisms. Here, we found that sustained IRE1α RNase activation caused rapid decay of select microRNAs (miRs -17, -34a, -96, and -125b) that normally repress translation of Caspase-2 mRNA, and thus sharply elevates protein levels of this initiator protease of the mitochondrial apoptotic pathway. In cell-free systems, recombinant IRE1α endonucleolytically cleaved microRNA precursors at sites distinct from DICER. Thus, IRE1α regulates translation of a proapoptotic protein through terminating microRNA biogenesis, and noncoding RNAs are part of the ER stress response.
Collapse
Affiliation(s)
- John-Paul Upton
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Torres AG, Threlfall RN, Gait MJ. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents. ARTIFICIAL DNA, PNA & XNA 2012; 2:71-8. [PMID: 22567190 DOI: 10.4161/adna.17731] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics.
Collapse
Affiliation(s)
- Adrian G Torres
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
41
|
Song FJ, Chen KX. Single-nucleotide polymorphisms among microRNA: big effects on cancer. CHINESE JOURNAL OF CANCER 2012; 30:381-91. [PMID: 21627860 PMCID: PMC4013412 DOI: 10.5732/cjc.011.10142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the transcriptional or posttranscriptional level. Many miRNAs are found to play a significant role in cancer development either as tumor suppressor genes or as oncogenes. Examination of tumor-specific miRNA expression profiles in diverse cancers has revealed widespread deregulation of these molecules, whose loss and overexpression respectively have diagnostic and prognostic significance. Genetic variations, mostly single-nucleotide polymorphisms (SNPs) within miRNA sequences or their target sites, have been found to be associated with many kinds of cancers. In this review, we summarize the current knowledge of miRNAs including their biogenesis and role in cancer development, and finally, how SNPs among miRNAs affect miRNA biogenesis and contribute to cancer.
Collapse
Affiliation(s)
- Feng-Ju Song
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, Tianjin 300060, People's Republic of China
| | | |
Collapse
|
42
|
Bakre A, Mitchell P, Coleman JK, Jones LP, Saavedra G, Teng M, Tompkins SM, Tripp RA. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 2012; 93:2346-2356. [PMID: 22894925 PMCID: PMC3542124 DOI: 10.1099/vir.0.044255-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and life-threatening lower respiratory tract disease in infants, young children and the elderly. Understanding the host response to RSV infection is critical for developing disease-intervention approaches. The role of microRNAs (miRNAs) in post-transcriptional regulation of host genes responding to RSV infection is not well understood. In this study, it was shown that RSV infection of a human alveolar epithelial cell line (A549) induced five miRNAs (let-7f, miR-24, miR-337-3p, miR-26b and miR-520a-5p) and repressed two miRNAs (miR-198 and miR-595), and showed that RSV G protein triggered let-7f expression. Luciferase–untranslated region reporters and miRNA mimics and inhibitors validated the predicted targets, which included cell-cycle genes (CCND1, DYRK2 and ELF4), a chemokine gene (CCL7) and the suppressor of cytokine signalling 3 gene (SOCS3). Modulating let-7 family miRNA levels with miRNA mimics and inhibitors affected RSV replication, indicating that RSV modulates host miRNA expression to affect the outcome of the antiviral host response, and this was mediated in part through RSV G protein expression.
Collapse
Affiliation(s)
- Abhijeet Bakre
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Patricia Mitchell
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Jonathan K Coleman
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Les P Jones
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Geraldine Saavedra
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Michael Teng
- Division of Allergy and Immunology, Department of Internal Medicine, USF Health, Tampa, FL 33612, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
43
|
Thomas M, Lange-Grünweller K, Dayyoub E, Bakowsky U, Weirauch U, Aigner A, Hartmann RK, Grünweller A. PEI-complexed LNA antiseeds as miRNA inhibitors. RNA Biol 2012; 9:1088-98. [PMID: 22894918 DOI: 10.4161/rna.21165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antisense inhibition of oncogenic or other disease-related miRNAs and miRNA families in vivo may provide novel therapeutic strategies. However, this approach relies on the development of potent miRNA inhibitors and their efficient delivery into cells. Here, we introduce short seed-directed LNA oligonucleotides (12- or 14-mer antiseeds) with a phosphodiester backbone (PO) for efficient miRNA inhibition. We have analyzed such LNA (PO) antiseeds using a let-7a-controlled luciferase reporter assay and identified them as active miRNA inhibitors in vitro. Moreover, LNA (PO) 14-mer antiseeds against ongogenic miR-17-5p and miR-20a derepress endogenous p21 expression more persistently than corresponding miRNA hairpin inhibitors, which are often used to inhibit miRNA function. Further analysis of the antiseed-mediated derepression of p21 in luciferase reporter constructs - containing the 3'-UTR of p21 and harboring two binding sites for miRNAs of the miR-106b family - provided evidence that the LNA antiseeds inhibit miRNA families while hairpin inhibitors act in a miRNA-specific manner. The derepression caused by LNA antiseeds is specific, as demonstrated via seed mutagenesis of the miR-106b target sites. Importantly, we show functional delivery of LNA (PO) 14-mer antiseeds into cells upon complexation with polyethylenimine (PEI F25-LMW), which leads to the formation of polymeric nanoparticles. In contrast, attempts to deliver a functional seed-directed tiny LNA 8-mer with a phosphorothioate backbone (PS) by formulation with PEI F25-LMW remained unsuccessful. In conclusion, LNA (PO) 14-mer antiseeds are attractive miRNA inhibitors, and their PEI-based delivery may represent a promising new strategy for therapeutic applications.
Collapse
Affiliation(s)
- Maren Thomas
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Clokie SJH, Lau P, Kim HH, Coon SL, Klein DC. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J Biol Chem 2012; 287:25312-24. [PMID: 22908386 PMCID: PMC3408182 DOI: 10.1074/jbc.m112.356733] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/14/2012] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ~75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3"-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis.
Collapse
Affiliation(s)
- Samuel J. H. Clokie
- From the Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Pierre Lau
- the Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders (LIND), University of Leuven, 3000 Leuven, Belgium
| | - Hyun Hee Kim
- From the Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Steven L. Coon
- From the Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - David C. Klein
- From the Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
45
|
MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One 2012; 7:e37169. [PMID: 22606348 PMCID: PMC3351457 DOI: 10.1371/journal.pone.0037169] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 04/16/2012] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.
Collapse
|
46
|
Tachibana A, Yamada Y, Ida H, Saito S, Tanabe T. LidNA, a novel miRNA inhibitor constructed with unmodified DNA. FEBS Lett 2012; 586:1529-32. [PMID: 22673521 DOI: 10.1016/j.febslet.2012.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 02/07/2023]
Abstract
Many miRNA inhibitors have been developed and they are chemically modified oligonucleotides such as 2?-O-methylated RNA and locked nucleic acid (LNA). Unmodified DNA was not yet reported as a miRNA inhibitor because of the low affinity of DNA/miRNA compared to mRNA/miRNA. We designed a structured unmodified DNA that significantly inhibits miRNA function. The clue structure for activity is the miRNA binding site between double stranded regions which is responsible for the miRNA inhibitory activity and tight binding to miRNA. We developed the miRNA inhibitor constructed with unmodified DNA, and named it LidNA, DNA that puts a lid on miRNA function.
Collapse
Affiliation(s)
- Akira Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka, Japan.
| | | | | | | | | |
Collapse
|
47
|
Abstract
MicroRNAs (miRNAs) are small (∼18-25 nucleotides), endogenous, noncoding RNAs that regulate gene expression in a sequence-specific manner via the degradation of target mRNAs or the inhibition of protein translation. miRNAs are predicted to target up to one-third of all human mRNAs. Each miRNA can target hundreds of transcripts and proteins directly or indirectly, and more than one miRNA can converge on a single target transcript; thus, the potential regulatory circuitry afforded by miRNAs is enormous. Increasing evidence is revealing that the expression of miRNAs is deregulated in cancer. High-throughput miRNA quantification technologies provide powerful tools to study global miRNA profiles. It has become progressively more apparent that, although the number of miRNAs (∼1,000) is much smaller than the number of protein-coding genes (∼22,000), miRNA expression signatures more accurately reflect the developmental lineage and tissue origin of human cancers. Large-scale studies in human cancer have further demonstrated that miRNA expression signatures are associated not only with specific tumor subtypes but also with clinical outcomes.
Collapse
|
48
|
Meliopoulos VA, Andersen LE, Birrer KF, Simpson KJ, Lowenthal JW, Bean AGD, Stambas J, Stewart CR, Tompkins SM, van Beusechem VW, Fraser I, Mhlanga M, Barichievy S, Smith Q, Leake D, Karpilow J, Buck A, Jona G, Tripp RA. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. FASEB J 2012; 26:1372-86. [PMID: 22247330 PMCID: PMC3316894 DOI: 10.1096/fj.11-193466] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/19/2011] [Indexed: 01/23/2023]
Abstract
Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.
Collapse
Affiliation(s)
| | | | - Katherine F. Birrer
- Commonwealth Scientific and Industrial Research Organisation Australian Animal Health LaboratoryGeelongVictoriaAustralia
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Department of PathologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - John W. Lowenthal
- Commonwealth Scientific and Industrial Research Organisation Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Andrew G. D. Bean
- Commonwealth Scientific and Industrial Research Organisation Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - John Stambas
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Cameron R. Stewart
- Commonwealth Scientific and Industrial Research Organisation Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - S. Mark Tompkins
- Department of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Iain Fraser
- Laboratory of Systems BiologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Musa Mhlanga
- Gene Expression and Biophysics GroupSynthetic Biology‐Emerging Research Area, Council for Scientific and Industrial ResearchPretoriaSouth Africa
| | - Samantha Barichievy
- Gene Expression and Biophysics GroupSynthetic Biology‐Emerging Research Area, Council for Scientific and Industrial ResearchPretoriaSouth Africa
| | - Queta Smith
- Thermo Fisher ScientificLafayetteColoradoUSA
| | - Devin Leake
- Thermo Fisher ScientificLafayetteColoradoUSA
| | | | - Amy Buck
- Centre for Immunity, Infection, and EvolutionUniversity of EdinburghEdinburghUK
| | - Ghil Jona
- Department of Biological ServicesWeizmann Institute of ScienceRehovotIsrael
| | - Ralph A. Tripp
- Department of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
49
|
Haraguchi T, Nakano H, Tagawa T, Ohki T, Ueno Y, Yoshida T, Iba H. A potent 2'-O-methylated RNA-based microRNA inhibitor with unique secondary structures. Nucleic Acids Res 2012; 40:e58. [PMID: 22259037 PMCID: PMC3333889 DOI: 10.1093/nar/gkr1317] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in various biological processes and human diseases. The development of strong low-molecular weight inhibitors of specific miRNAs is thus expected to be useful in providing tools for basic research or in generating promising new therapeutic drugs. We have previously described the development of ‘Tough Decoy (TuD) RNA’ molecules, which achieve the long-term suppression of specific miRNA activity in mammalian cells when expressed from a lentivirus vector. In our current study, we describe new synthetic miRNA inhibitors, designated as S-TuD (Synthetic TuD), which are composed of two fully 2′-O-methylated RNA strands. Each of these strands includes a miRNA-binding site. Following the hybridization of paired strands, the resultant S-TuD forms a secondary structure with two stems, which resembles the corresponding TuD RNA molecule. By analyzing the effects of S-TuD against miR-21, miR-200c, miR-16 and miR-106b, we have elucidated the critical design features of S-TuD molecules that will provide optimum inhibitory effects following transfection into human cell lines. We further show that the inhibitory effects of a single transfection of S-TuD-miR200c are quite long-lasting (>7 days) and induce partial EMT, the full establishment of which requires 11 days when using a lentivirus vector that expresses TuD-miR200c continuously.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Long JM, Lahiri DK. Advances in microRNA experimental approaches to study physiological regulation of gene products implicated in CNS disorders. Exp Neurol 2012; 235:402-18. [PMID: 22245616 DOI: 10.1016/j.expneurol.2011.12.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/13/2011] [Accepted: 12/25/2011] [Indexed: 11/28/2022]
Abstract
The central nervous system (CNS) is a remarkably complex organ system, requiring an equally complex network of molecular pathways controlling the multitude of diverse, cellular activities. Gene expression is a critical node at which regulatory control of molecular networks is implemented. As such, elucidating the various mechanisms employed in the physiological regulation of gene expression in the CNS is important both for establishing a reference for comparison to the diseased state and for expanding the set of validated drug targets available for disease intervention. MicroRNAs (miRNAs) are an abundant class of small RNA that mediates potent inhibitory effects on global gene expression. Recent advances have been made in methods employed to study the contribution of these miRNAs to gene expression. Here we review these latest advances and present a methodological workflow from the perspective of an investigator studying the physiological regulation of a gene of interest. We discuss methods for identifying putative miRNA target sites in a transcript of interest, strategies for validating predicted target sites, assays for detecting miRNA expression, and approaches for disrupting endogenous miRNA function. We consider both advantages and limitations, highlighting certain caveats that inform the suitability of a given method for a specific application. Through careful implementation of the appropriate methodologies discussed herein, we are optimistic that important discoveries related to miRNA participation in CNS physiology and dysfunction are on the horizon.
Collapse
Affiliation(s)
- Justin M Long
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|