1
|
Vidal Ceballos A, Geissmann A, Favaro DC, Deshpande P, Elbaum-Garfinkle S. RNA guanine content and G-quadruplex structure tune the phase behavior and material properties of biomolecular condensates. Sci Rep 2025; 15:9295. [PMID: 40102453 PMCID: PMC11920403 DOI: 10.1038/s41598-025-88499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
RNA binding proteins (RBPs) are enriched in phase separated biomolecular assemblies across cell types. These RBPs often harbor arginine-glycine rich RGG motifs, which can drive phase separation, and can preferentially interact with RNA G-quadruplex (G4) structures, particularly in the neuron. Increasing evidence underscores the important role that RNA sequence and structure play in contributing to the form and function of protein condensates, however, less is known about the role of G4 RNAs and their interaction with RGG domains specifically. In this study we focused on the model protein, Fragile X mental retardation protein (FMRP), to investigate how G4-containing RNA sequences impact the phase behavior and material properties of condensates. FMRP is implicated in the development of Fragile X Syndrome, and is enriched in neuronal granules where it is thought to aid in mRNA trafficking and translational control. Here, we examined RNA sequences with increasing G content and G4 propensity in complex with the RGG-containing low complexity region (LCR) of FMRP. We found, that while increasing G content triggers aggregation of poly-arginine, all RNA sequences supported phase separation into liquid droplets with FMRP-LCR. Combining microrheology, and fluorescence recovery after photobleaching, we measured a moderate increase in viscosity and decrease in dynamics for increasing G-content, and detected no measurable increase in elasticity as a function of G4 structure. Additionally, we found that while methylation of FMRP decreased RNA binding affinity, this modification did not impact condensate material properties suggesting that RNA sequence/structure can play a greater role than binding affinity in determining the emergent properties of condensates. Together, this work lends much needed insight into the ways in which G-rich RNA sequences tune the assembly, dynamics and material properties of protein/RNA condensates and/or granules.
Collapse
Affiliation(s)
- Alfredo Vidal Ceballos
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Anna Geissmann
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Denize C Favaro
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Priyasha Deshpande
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
Kaul N, Pradhan SJ, Boin NG, Mason MM, Rosales J, Starke EL, Wilkinson EC, Chapman EG, Barbee SA. FMRP cooperates with miRISC components to repress translation and regulate neurite morphogenesis in Drosophila. RNA Biol 2024; 21:11-22. [PMID: 39190491 PMCID: PMC11352701 DOI: 10.1080/15476286.2024.2392304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and is caused by mutations in the gene encoding the Fragile X messenger ribonucleoprotein (FMRP). FMRP is an evolutionarily conserved and neuronally enriched RNA-binding protein (RBP) with functions in RNA editing, RNA transport, and protein translation. Specific target RNAs play critical roles in neurodevelopment, including the regulation of neurite morphogenesis, synaptic plasticity, and cognitive function. The different biological functions of FMRP are modulated by its cooperative interaction with distinct sets of neuronal RNA and protein-binding partners. Here, we focus on interactions between FMRP and components of the microRNA (miRNA) pathway. Using the Drosophila S2 cell model system, we show that the Drosophila ortholog of FMRP (dFMRP) can repress translation when directly tethered to a reporter mRNA. This repression requires the activity of AGO1, GW182, and MOV10/Armitage, conserved proteins associated with the miRNA-containing RNA-induced silencing complex (miRISC). Additionally, we find that untagged dFMRP can interact with a short stem-loop sequence in the translational reporter, a prerequisite for repression by exogenous miR-958. Finally, we demonstrate that dFmr1 interacts genetically with GW182 to control neurite morphogenesis. These data suggest that dFMRP may recruit the miRISC to nearby miRNA binding sites and repress translation via its cooperative interactions with evolutionarily conserved components of the miRNA pathway.
Collapse
Affiliation(s)
- Navneeta Kaul
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Sarala J. Pradhan
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Nathan G. Boin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Madeleine M. Mason
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Julian Rosales
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Emily L. Starke
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Emily C. Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich G. Chapman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| | - Scott A. Barbee
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| |
Collapse
|
3
|
Ledoux N, Lelong EIJ, Simard A, Hussein S, Adjibade P, Lambert JP, Mazroui R. The Identification of Nuclear FMRP Isoform Iso6 Partners. Cells 2023; 12:2807. [PMID: 38132127 PMCID: PMC10742089 DOI: 10.3390/cells12242807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
A deficiency of FMRP, a canonical RNA-binding protein, causes the development of Fragile X Syndrome (FXS), which is characterised by multiple phenotypes, including neurodevelopmental disorders, intellectual disability, and autism. Due to the alternative splicing of the encoding FMR1 gene, multiple FMRP isoforms are produced consisting of full-length predominantly cytoplasmic (i.e., iso1) isoforms involved in translation and truncated nuclear (i.e., iso6) isoforms with orphan functions. However, we recently implicated nuclear FMRP isoforms in DNA damage response, showing that they negatively regulate the accumulation of anaphase DNA genomic instability bridges. This finding provided evidence that the cytoplasmic and nuclear functions of FMRP are uncoupled played by respective cytoplasmic and nuclear isoforms, potentially involving specific interactions. While interaction partners of cytoplasmic FMRP have been reported, the identity of nuclear FMRP isoform partners remains to be established. Using affinity purification coupled with mass spectrometry, we mapped the nuclear interactome of the FMRP isoform iso6 in U2OS. In doing so, we found FMRP nuclear interaction partners to be involved in RNA processing, pre-mRNA splicing, ribosome biogenesis, DNA replication and damage response, chromatin remodeling and chromosome segregation. By comparing interactions between nuclear iso6 and cytoplasmic iso1, we report a set of partners that bind specifically to the nuclear isoforms, mainly proteins involved in DNA-associated processes and proteasomal proteins, which is consistent with our finding that proteasome targets the nuclear FMRP iso6. The specific interactions with the nuclear isoform 6 are regulated by replication stress, while those with the cytoplasmic isoform 1 are largely insensitive to such stress, further supporting a specific role of nuclear isoforms in DNA damage response induced by replicative stress, potentially regulated by the proteasome.
Collapse
Affiliation(s)
- Nassim Ledoux
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Emeline I. J. Lelong
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Alexandre Simard
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Samer Hussein
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Pauline Adjibade
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Jean-Philippe Lambert
- Centre de Recherche du CHU de Québec—Université Laval, Axe Endocrinologie et néphrologie, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada;
- PROTEO, Le Regroupement Québécois De Recherche Sur La Fonction, L’ingénierie et Les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rachid Mazroui
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| |
Collapse
|
4
|
Qiu C, Zhang Z, Wine RN, Campbell ZT, Zhang J, Hall TMT. Intra- and inter-molecular regulation by intrinsically-disordered regions governs PUF protein RNA binding. Nat Commun 2023; 14:7323. [PMID: 37953271 PMCID: PMC10641069 DOI: 10.1038/s41467-023-43098-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
PUF proteins are characterized by globular RNA-binding domains. They also interact with partner proteins that modulate their RNA-binding activities. Caenorhabditis elegans PUF protein fem-3 binding factor-2 (FBF-2) partners with intrinsically disordered Lateral Signaling Target-1 (LST-1) to regulate target mRNAs in germline stem cells. Here, we report that an intrinsically disordered region (IDR) at the C-terminus of FBF-2 autoinhibits its RNA-binding affinity by increasing the off rate for RNA binding. Moreover, the FBF-2 C-terminal region interacts with its globular RNA-binding domain at the same site where LST-1 binds. This intramolecular interaction restrains an electronegative cluster of amino acid residues near the 5' end of the bound RNA to inhibit RNA binding. LST-1 binding in place of the FBF-2 C-terminus therefore releases autoinhibition and increases RNA-binding affinity. This regulatory mechanism, driven by IDRs, provides a biochemical and biophysical explanation for the interdependence of FBF-2 and LST-1 in germline stem cell self-renewal.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zihan Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
6
|
G4-interacting proteins endangering genomic stability at G4 DNA-forming sites. Biochem Soc Trans 2023; 51:403-413. [PMID: 36629511 PMCID: PMC10018705 DOI: 10.1042/bst20221018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
In guanine-rich DNA strands, base-base interactions among guanines allow the conformational shift from the B-form DNA to the non-canonical quadruplex or G4 structure. The functional significance of G4 DNA in vivo is largely dependent on the interaction with protein factors, many of which contain the arginine-glycine-glycine or RGG repeat and other consensus G4-binding motifs. These G4-interacting proteins can significantly modulate the effect of G4 DNA structure on genome maintenance, either preventing or aggravating G4-assoicated genome instability. While the role of helicases in resolving G4 DNA structure has been extensively discussed, identification and characterization of protein factors contributing to elevation in G4-associated genome instability has been relatively sparse. In this minireview, we will particularly highlight recent discoveries regarding how interaction between certain G4-binding proteins and G4 DNA could exacerbate genome instability potentiated by G4 DNA-forming sequences.
Collapse
|
7
|
Chowdhury MN, Jin H. The RGG motif proteins: Interactions, functions, and regulations. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1748. [PMID: 35661420 PMCID: PMC9718894 DOI: 10.1002/wrna.1748] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023]
Abstract
Proteins with motifs rich in arginines and glycines were discovered decades ago and are functionally involved in a staggering range of essential processes in the cell. Versatile, specific, yet adaptable molecular interactions enabled by the unique combination of arginine and glycine, combined with multiplicity of molecular recognition conferred by repeated di-, tri-, and multiple peptide motifs, allow RGG motif proteins to interact with a broad range of proteins and nucleic acids. Furthermore, posttranslational modifications at the arginines in the motif extend the RGG protein's capacity for a fine-tuned regulation. In this review, we focus on the biochemical properties of the RGG motif, its molecular interactions with RNAs and proteins, and roles of the posttranslational modification in modulating their interactions. We discuss current knowledge of the RGG motif proteins involved in mRNA transport and translation, highlight our merging understanding of their molecular functions in translational regulation and summarize areas of research in the future critical in understanding this important family of proteins. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Mechanisms.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Corresponding author: Phone: (217)244-9493, Fax: (217)244-5858,
| |
Collapse
|
8
|
Kurosaki T, Mitsutomi S, Hewko A, Akimitsu N, Maquat LE. Integrative omics indicate FMRP sequesters mRNA from translation and deadenylation in human neuronal cells. Mol Cell 2022; 82:4564-4581.e11. [PMID: 36356584 PMCID: PMC9753132 DOI: 10.1016/j.molcel.2022.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
How fragile X syndrome protein (FMRP) binds mRNAs and regulates mRNA metabolism remains unclear. Our previous work using human neuronal cells focused on mRNAs targeted for nonsense-mediated mRNA decay (NMD), which we showed are generally bound by FMRP and destabilized upon FMRP loss. Here, we identify >400 high-confidence FMRP-bound mRNAs, only ∼35% of which are NMD targets. Integrative transcriptomics together with SILAC-LC-MS/MS reveal that FMRP loss generally results in mRNA destabilization and more protein produced per FMRP target. We use our established RIP-seq technology to show that FMRP footprints are independent of protein-coding potential, target GC-rich and structured sequences, and are densest in 5' UTRs. Regardless of where within an mRNA FMRP binds, we find that FMRP protects mRNAs from deadenylation and directly binds the cytoplasmic poly(A)-binding protein. Our results reveal how FMRP sequesters polyadenylated mRNAs into stabilized and translationally repressed complexes, whose regulation is critical for neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| | - Shuhei Mitsutomi
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA; Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Alexander Hewko
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
9
|
Scarpitti MR, Warrick JE, Yoder EL, Kearse MG. A noncanonical RNA-binding domain of the fragile X protein, FMRP, elicits translational repression independent of mRNA G-quadruplexes. J Biol Chem 2022; 298:102660. [PMID: 36328245 PMCID: PMC9712993 DOI: 10.1016/j.jbc.2022.102660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome, the leading form of inherited intellectual disability and the most common monogenic cause of autism spectrum disorders. FMRP is an RNA-binding protein that controls neuronal mRNA localization and translation. FMRP is thought to inhibit translation elongation after being recruited to target transcripts via binding RNA G-quadruplexes (G4s) within the coding sequence. Here, we directly test this model and report that FMRP inhibits translation independent of mRNA G4s. Furthermore, we found that the RGG box motif together with its natural C-terminal domain forms a noncanonical RNA-binding domain (ncRBD) that is essential for translational repression. The ncRBD elicits broad RNA-binding ability and binds to multiple reporter mRNAs and all four homopolymeric RNAs. Serial deletion analysis of the ncRBD identified that the regions required for mRNA binding and translational repression overlap but are not identical. Consistent with FMRP stalling elongating ribosomes and causing the accumulation of slowed 80S ribosomes, transcripts bound by FMRP via the ncRBD cosediment with heavier polysomes and were present in puromycin-resistant ribosome complexes. Together, this work identifies a ncRBD and translational repression domain that shifts our understanding of how FMRP inhibits translation independent of mRNA G4s.
Collapse
Affiliation(s)
- MaKenzie R Scarpitti
- The Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Julia E Warrick
- The Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Evelyn L Yoder
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G Kearse
- The Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
10
|
Bhat VD, Jayaraj J, Babu K. RNA and neuronal function: the importance of post-transcriptional regulation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac011. [PMID: 38596700 PMCID: PMC10913846 DOI: 10.1093/oons/kvac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/28/2022] [Indexed: 04/11/2024]
Abstract
The brain represents an organ with a particularly high diversity of genes that undergo post-transcriptional gene regulation through multiple mechanisms that affect RNA metabolism and, consequently, brain function. This vast regulatory process in the brain allows for a tight spatiotemporal control over protein expression, a necessary factor due to the unique morphologies of neurons. The numerous mechanisms of post-transcriptional regulation or translational control of gene expression in the brain include alternative splicing, RNA editing, mRNA stability and transport. A large number of trans-elements such as RNA-binding proteins and micro RNAs bind to specific cis-elements on transcripts to dictate the fate of mRNAs including its stability, localization, activation and degradation. Several trans-elements are exemplary regulators of translation, employing multiple cofactors and regulatory machinery so as to influence mRNA fate. Networks of regulatory trans-elements exert control over key neuronal processes such as neurogenesis, synaptic transmission and plasticity. Perturbations in these networks may directly or indirectly cause neuropsychiatric and neurodegenerative disorders. We will be reviewing multiple mechanisms of gene regulation by trans-elements occurring specifically in neurons.
Collapse
Affiliation(s)
- Vandita D Bhat
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Jagannath Jayaraj
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| |
Collapse
|
11
|
Song C, Leahy SN, Rushton EM, Broadie K. RNA-binding FMRP and Staufen sequentially regulate the Coracle scaffold to control synaptic glutamate receptor and bouton development. Development 2022; 149:274991. [PMID: 35394012 PMCID: PMC9148565 DOI: 10.1242/dev.200045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma M. Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Author for correspondence ()
| |
Collapse
|
12
|
Doron‐Mandel E, Koppel I, Abraham O, Rishal I, Smith TP, Buchanan CN, Sahoo PK, Kadlec J, Oses‐Prieto JA, Kawaguchi R, Alber S, Zahavi EE, Di Matteo P, Di Pizio A, Song D, Okladnikov N, Gordon D, Ben‐Dor S, Haffner‐Krausz R, Coppola G, Burlingame AL, Jungwirth P, Twiss JL, Fainzilber M. The glycine arginine-rich domain of the RNA-binding protein nucleolin regulates its subcellular localization. EMBO J 2021; 40:e107158. [PMID: 34515347 PMCID: PMC8521312 DOI: 10.15252/embj.2020107158] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Ella Doron‐Mandel
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Indrek Koppel
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Ofri Abraham
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Terika P Smith
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | | | - Pabitra K Sahoo
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | - Jan Kadlec
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Juan A Oses‐Prieto
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Riki Kawaguchi
- Departments of Psychiatry and NeurologySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | - Stefanie Alber
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Eitan Erez Zahavi
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Pierluigi Di Matteo
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Agostina Di Pizio
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Didi‐Andreas Song
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Nataliya Okladnikov
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Dalia Gordon
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Shifra Ben‐Dor
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | | | - Giovanni Coppola
- Departments of Psychiatry and NeurologySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | - Alma L Burlingame
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Jeffery L Twiss
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
13
|
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures that arise from the stacking of G-quartets, cyclic arrangements of four guanines engaged in Hoogsteen base-pairing. Until recently, most RNA G4 structures were thought to conform to a sequence pattern in which guanines stacking within the G4 would also be contiguous in sequence (e.g., four successive guanine trinucleotide tracts separated by loop nucleotides). Such a sequence restriction, and the stereochemical constraints inherent to RNA (arising, in particular, from the presence of the 2'-OH), dictate relatively simple RNA G4 structures. Recent crystallographic and solution NMR structure determinations of a number of in vitro selected RNA aptamers have revealed RNA G4 structures of unprecedented complexity. Structures of the Sc1 aptamer that binds an RGG peptide from the Fragile-X mental retardation protein, various fluorescence turn-on aptamers (Corn, Mango, and Spinach), and the spiegelmer that binds the complement protein C5a, in particular, reveal complexity hitherto unsuspected in RNA G4s, including nucleotides in syn conformation, locally inverted strand polarity, and nucleotide quartets that are not all-G. Common to these new structures, the sequences folding into G4s do not conform to the requirement that guanine stacks arise from consecutive (contiguous in sequence) nucleotides. This review highlights how emancipation from this constraint drastically expands the structural possibilities of RNA G-quadruplexes.
Collapse
Affiliation(s)
- Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| |
Collapse
|
14
|
Dupas SJ, Gussakovsky D, Wai A, Brown MJF, Hausner G, McKenna SA. Predicting human RNA quadruplex helicases through comparative sequence approaches and helicase mRNA interactome analyses. Biochem Cell Biol 2021; 99:536-553. [PMID: 33587669 DOI: 10.1139/bcb-2020-0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA quadruplexes are non-canonical nucleic acid structures involved in several human disease states and are regulated by a specific subset of RNA helicases. Given the difficulty in identifying RNA quadruplex helicases due to the multifunctionality of these enzymes, we sought to provide a comprehensive in silico analysis of features found in validated RNA quadruplex helicases to predict novel human RNA quadruplex helicases. Using the 64 human RNA helicases, we correlated their amino acid compositions with subsets of RNA quadruplex helicases categorized by varying levels of evidence of RNA quadruplex interaction. Utilizing phylogenetic and synonymous/non-synonymous substitution analyses, we identified an evolutionarily conserved pattern involving predicted intrinsic disorder and a previously identified motif. We analyzed available next-generation sequencing data to determine which RNA helicases directly interacted with predicted RNA quadruplex regions intracellularly and elucidated the relationship with miRNA binding sites adjacent to RNA quadruplexes. Finally, we performed a phylogenetic analysis of all 64 human RNA helicases to establish how RNA quadruplex detection and unwinding activity may be conserved among helicase subfamilies. This work furthers the understanding of commonalities between RNA quadruplex helicases and provides support for the future validation of several human RNA helicases.
Collapse
Affiliation(s)
- Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | | | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Mira J F Brown
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
A combined NMR and EPR investigation on the effect of the disordered RGG regions in the structure and the activity of the RRM domain of FUS. Sci Rep 2020; 10:20956. [PMID: 33262375 PMCID: PMC7708983 DOI: 10.1038/s41598-020-77899-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Structural disorder represents a key feature in the mechanism of action of RNA-binding proteins (RBPs). Recent insights revealed that intrinsically disordered regions (IDRs) linking globular domains modulate their capability to interact with various sequences of RNA, but also regulate aggregation processes, stress-granules formation, and binding to other proteins. The FET protein family, which includes FUS (Fused in Sarcoma), EWG (Ewing Sarcoma) and TAF15 (TATA binding association factor 15) proteins, is a group of RBPs containing three different long IDRs characterized by the presence of RGG motifs. In this study, we present the characterization of a fragment of FUS comprising two RGG regions flanking the RNA Recognition Motif (RRM) alone and in the presence of a stem-loop RNA. From a combination of EPR and NMR spectroscopies, we established that the two RGG regions transiently interact with the RRM itself. These interactions may play a role in the recognition of stem-loop RNA, without a disorder-to-order transition but retaining high dynamics.
Collapse
|
16
|
Ghosh M, Singh M. Structure specific recognition of telomeric repeats containing RNA by the RGG-box of hnRNPA1. Nucleic Acids Res 2020; 48:4492-4506. [PMID: 32128583 PMCID: PMC7192615 DOI: 10.1093/nar/gkaa134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
The telomere repeats containing RNA (TERRA) is transcribed from the C-rich strand of telomere DNA and comprises of UUAGGG nucleotides repeats in humans. The TERRA RNA repeats can exist in single stranded, RNA-DNA hybrid and G-quadruplex forms in the cell. Interaction of TERRA RNA with hnRNPA1 has been proposed to play critical roles in maintenance of telomere DNA. hnRNPA1 contains an N-terminal UP1 domain followed by an RGG-box containing C-terminal region. RGG-motifs are emerging as key protein motifs that recognize the higher order nucleic acid structures as well as are known to promote liquid-liquid phase separation of proteins. In this study, we have shown that the RGG-box of hnRNPA1 specifically recognizes the TERRA RNA G-quadruplexes that have loops in their topology, whereas it does not interact with the single-stranded RNA. Our results show that the N-terminal UP1 domain in the presence of the RGG-box destabilizes the loop containing TERRA RNA G-quadruplex efficiently compared to the RNA G-quadruplex that lacks loops, suggesting that unfolding of G-quadruplex structures by UP1 is structure dependent. Furthermore, we have compared the telomere DNA and TERRA RNA G-quadruplex binding by the RGG-box of hnRNPA1 and discussed its implications in telomere DNA maintenance.
Collapse
Affiliation(s)
- Meenakshi Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India.,NMR Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
17
|
Agote-Aran A, Schmucker S, Jerabkova K, Jmel Boyer I, Berto A, Pacini L, Ronchi P, Kleiss C, Guerard L, Schwab Y, Moine H, Mandel JL, Jacquemont S, Bagni C, Sumara I. Spatial control of nucleoporin condensation by fragile X-related proteins. EMBO J 2020; 39:e104467. [PMID: 32706158 PMCID: PMC7560220 DOI: 10.15252/embj.2020104467] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/14/2023] Open
Abstract
Nucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve‐like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. Here, we show that fragile X‐related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule‐dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized by a loss of FMRP, accumulate Nup granules. The Nup granule‐containing cells show defects in protein export, nuclear morphology and cell cycle progression. Our results reveal an unexpected role for the FXR protein family in the spatial regulation of nucleoporin condensation.
Collapse
Affiliation(s)
- Arantxa Agote-Aran
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Stephane Schmucker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Katerina Jerabkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Inès Jmel Boyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Alessandro Berto
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Ecole Doctorale SDSV, Université Paris Sud, Orsay, France
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Ronchi
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Charlotte Kleiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Laurent Guerard
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Yannick Schwab
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany.,European Molecular Biology Laboratory, European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Sebastien Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Lai A, Valdez-Sinon AN, Bassell GJ. Regulation of RNA granules by FMRP and implications for neurological diseases. Traffic 2020; 21:454-462. [PMID: 32374065 PMCID: PMC7377269 DOI: 10.1111/tra.12733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
RNA granule formation, which can be regulated by RNA-binding proteins (RBPs) such as fragile X mental retardation protein (FMRP), acts as a mechanism to control both the repression and subcellular localization of translation. Dysregulated assembly of RNA granules has been implicated in multiple neurological disorders, such as amyotrophic lateral sclerosis. Thus, it is crucial to understand the cellular pathways impinging upon granule assembly or disassembly. The goal of this review is to summarize recent advances in our understanding of the role of the RBP, FMRP, in translational repression underlying RNA granule dynamics, mRNA transport and localized. We summarize the known mechanisms of translational regulation by FMRP, the role of FMRP in RNA transport granules, fragile X granules and stress granules. Focusing on the emerging link between FMRP and stress granules, we propose a model for how hyperassembly and hypoassembly of RNA granules may contribute to neurological diseases.
Collapse
Affiliation(s)
- Austin Lai
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Höfler S, Carlomagno T. Structural and functional roles of 2'-O-ribose methylations and their enzymatic machinery across multiple classes of RNAs. Curr Opin Struct Biol 2020; 65:42-50. [PMID: 32610226 DOI: 10.1016/j.sbi.2020.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 01/27/2023]
Abstract
RNA complexity is augmented by numerous post-transcriptional modifications, which influence RNA function by modulating its structure and interactome. One prominent modification is methylation at the ribose 2'-hydroxyl group. 2'-O-methylation has been found in all RNA classes, with rRNA and tRNA being extensively modified. The exact function of 2'-O-methylation at specific RNA sites is still not understood, with a few notable exceptions. The relevance of 2'-O-methylation for cell survival and well-being is proven by the large effort that the cell spends in maintaining a diverse and highly regulated methylation machinery. Here, we review the current knowledge on the impact of 2'-O-methylation on structure and function of different RNAs as well as on the factors determining substrate specificity in the enzymatic machinery.
Collapse
Affiliation(s)
- Simone Höfler
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Teresa Carlomagno
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Helmholz Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
20
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Goering R, Hudish LI, Guzman BB, Raj N, Bassell GJ, Russ HA, Dominguez D, Taliaferro JM. FMRP promotes RNA localization to neuronal projections through interactions between its RGG domain and G-quadruplex RNA sequences. eLife 2020; 9:e52621. [PMID: 32510328 PMCID: PMC7279889 DOI: 10.7554/elife.52621] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
The sorting of RNA molecules to subcellular locations facilitates the activity of spatially restricted processes. We have analyzed subcellular transcriptomes of FMRP-null mouse neuronal cells to identify transcripts that depend on FMRP for efficient transport to neurites. We found that these transcripts contain an enrichment of G-quadruplex sequences in their 3' UTRs, suggesting that FMRP recognizes them to promote RNA localization. We observed similar results in neurons derived from Fragile X Syndrome patients. We identified the RGG domain of FMRP as important for binding G-quadruplexes and the transport of G-quadruplex-containing transcripts. Finally, we found that the translation and localization targets of FMRP were distinct and that an FMRP mutant that is unable to bind ribosomes still promoted localization of G-quadruplex-containing messages. This suggests that these two regulatory modes of FMRP may be functionally separated. These results provide a framework for the elucidation of similar mechanisms governed by other RNA-binding proteins.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Laura I Hudish
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Bryan B Guzman
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nisha Raj
- Departments of Cell Biology and Neurology, Emory University School of MedicineAtlantaGeorgia
| | - Gary J Bassell
- Departments of Cell Biology and Neurology, Emory University School of MedicineAtlantaGeorgia
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusBoulderUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusBoulderUnited States
| |
Collapse
|
22
|
Athar YM, Joseph S. RNA-Binding Specificity of the Human Fragile X Mental Retardation Protein. J Mol Biol 2020; 432:3851-3868. [PMID: 32343993 DOI: 10.1016/j.jmb.2020.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Fragile X syndrome is the most common form of inherited intellectual disability and is caused by a deficiency of the fragile X mental retardation protein (FMRP) in neurons. FMRP regulates the translation of numerous mRNAs within dendritic synapses, but how FMRP recognizes these target mRNAs remains unknown. FMRP has KH0, KH1, KH2, and RGG domains, which are thought to bind to specific RNA recognition elements (RREs). Several studies used high-throughput methods to identify various RREs in mRNAs that FMRP may bind to in vivo. However, there is little overlap in the mRNA targets identified by each study, suggesting that the RNA-binding specificity of FMRP is still unknown. To determine the specificity of FMRP for the RREs, we performed quantitative in vitroRNA binding studies with various constructs of human FMRP. Unexpectedly, our studies show that the KH domains do not bind to the previously identified RREs. To further investigate the RNA-binding specificity of FMRP, we developed a new method called Motif Identification by Analysis of Simple sequences (MIDAS) to identify single-stranded RNA sequences bound by KH domains. We find that the FMRP KH0, KH1, and KH2 domains bind weakly to the single-stranded RNA sequences suggesting that they may have evolved to bind more complex RNA structures. Additionally, we find that the RGG motif of human FMRP binds with a high affinity to an RNAG-quadruplex structure that lacks single-stranded loops, double-stranded stems, or junctions.
Collapse
Affiliation(s)
- Youssi M Athar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093-0314, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093-0314, USA.
| |
Collapse
|
23
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Kenny PJ, Kim M, Skariah G, Nielsen J, Lannom MC, Ceman S. The FMRP-MOV10 complex: a translational regulatory switch modulated by G-Quadruplexes. Nucleic Acids Res 2020; 48:862-878. [PMID: 31740951 PMCID: PMC7145700 DOI: 10.1093/nar/gkz1092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/19/2023] Open
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation and is required for normal cognition. FMRP upregulates and downregulates the activity of microRNA (miRNA)-mediated silencing in the 3' UTR of a subset of mRNAs through its interaction with RNA helicase Moloney leukemia virus 10 (MOV10). This bi-functional role is modulated through RNA secondary structures known as G-Quadruplexes. We elucidated the mechanism of FMRP's role in suppressing Argonaute (AGO) family members' association with mRNAs by mapping the interacting domains of FMRP, MOV10 and AGO and then showed that the RGG box of FMRP protects a subset of co-bound mRNAs from AGO association. The N-terminus of MOV10 is required for this protection: its over-expression leads to increased levels of the endogenous proteins encoded by this co-bound subset of mRNAs. The N-terminus of MOV10 also leads to increased RGG box-dependent binding to the SC1 RNA G-Quadruplex and is required for outgrowth of neurites. Lastly, we showed that FMRP has a global role in miRNA-mediated translational regulation by recruiting AGO2 to a large subset of RNAs in mouse brain.
Collapse
Affiliation(s)
- Phillip J Kenny
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Miri Kim
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Geena Skariah
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Joshua Nielsen
- Integrative Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Monica C Lannom
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Stephanie Ceman
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
26
|
Kim TH, Tsang B, Vernon RM, Sonenberg N, Kay LE, Forman-Kay JD. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 2019; 365:825-829. [DOI: 10.1126/science.aax4240] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Membraneless organelles involved in RNA processing are biomolecular condensates assembled by phase separation. Despite the important role of intrinsically disordered protein regions (IDRs), the specific interactions underlying IDR phase separation and its functional consequences remain elusive. To address these questions, we used minimal condensates formed from the C-terminal disordered regions of two interacting translational regulators, FMRP and CAPRIN1. Nuclear magnetic resonance spectroscopy of FMRP-CAPRIN1 condensates revealed interactions involving arginine-rich and aromatic-rich regions. We found that different FMRP serine/threonine and CAPRIN1 tyrosine phosphorylation patterns control phase separation propensity with RNA, including subcompartmentalization, and tune deadenylation and translation rates in vitro. The resulting evidence for residue-specific interactions underlying co–phase separation, phosphorylation-modulated condensate architecture, and enzymatic activity within condensates has implications for how the integration of signaling pathways controls RNA processing and translation.
Collapse
|
27
|
Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc Natl Acad Sci U S A 2019; 116:4218-4227. [PMID: 30765518 DOI: 10.1073/pnas.1814385116] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activity-dependent translation requires the transport of mRNAs within membraneless protein assemblies known as neuronal granules from the cell body toward synaptic regions. Translation of mRNA is inhibited in these granules during transport but quickly activated in response to neuronal stimuli at the synapse. This raises an important question: how does synaptic activity trigger translation of once-silenced mRNAs? Here, we demonstrate a strong connection between phase separation, the process underlying the formation of many different types of cellular granules, and in vitro inhibition of translation. By using the Fragile X Mental Retardation Protein (FMRP), an abundant neuronal granule component and translational repressor, we show that FMRP phase separates in vitro with RNA into liquid droplets mediated by its C-terminal low-complexity disordered region (i.e., FMRPLCR). FMRPLCR posttranslational modifications by phosphorylation and methylation have opposing effects on in vitro translational regulation, which corroborates well with their critical concentrations for phase separation. Our results, combined with bioinformatics evidence, are supportive of phase separation as a general mechanism controlling activity-dependent translation.
Collapse
|
28
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
29
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
30
|
Gallagher C, Ramos A. Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons. FEBS Lett 2018; 592:2932-2947. [PMID: 29856909 DOI: 10.1002/1873-3468.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation.
Collapse
Affiliation(s)
- Christopher Gallagher
- Institute of Structural and Molecular Biology, University College London, UK.,The Francis Crick Institute, London, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
31
|
Cui W, Yoneda R, Ueda N, Kurokawa R. Arginine methylation of translocated in liposarcoma (TLS) inhibits its binding to long noncoding RNA, abrogating TLS-mediated repression of CBP/p300 activity. J Biol Chem 2018; 293:10937-10948. [PMID: 29784880 DOI: 10.1074/jbc.ra117.000598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
Translocated in liposarcoma (TLS) is an RNA-binding protein and a transcription-regulatory sensor of DNA damage. TLS binds promoter-associated noncoding RNA (pncRNA) and inhibits histone acetyltransferase (HAT) activity of CREB-binding protein (CBP)/E1A-binding protein P300 (p300) on the cyclin D1 (CCND1) gene. Although post-translational modifications of TLS, such as arginine methylation, are known to regulate TLS's nucleocytoplasmic shuttling and assembly in stress granules, its interactions with RNAs remain poorly characterized. Herein, using various biochemical assays, we confirmed the earlier observations that TLS is methylated by protein arginine methyltransferase 1 (PRMT1) in vitro The arginine methylation of TLS disrupted binding to pncRNA and also prevented binding of TLS to and inhibition of CBP/p300. This result indicated that arginine methylation of TLS abrogates both binding to pncRNA and TLS-mediated inhibition of CBP/p300 HAT activities. We also report that an arginine residue within the Arg-Gly-Gly domain of TLS, Arg-476, serves as the major determinant for binding to pncRNA. Either methylation or mutation of Arg-476 of TLS significantly decreased pncRNA binding and thereby prevented a pncRNA-induced allosteric alteration in TLS that is required for its interaction with CBP/p300. Moreover, unlike WT TLS, an R476A TLS mutant did not inhibit CCND1 promoter activity in luciferase reporter assays. Taken together, we propose the hypothesis that arginine methylation of TLS regulates both TLS-nucleic acid and TLS-protein interactions and thereby participates in transcriptional regulation.
Collapse
Affiliation(s)
- Wei Cui
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Ryoma Yoneda
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Naomi Ueda
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Riki Kurokawa
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| |
Collapse
|
32
|
Stowell JAW, Wagstaff JL, Hill CH, Yu M, McLaughlin SH, Freund SMV, Passmore LA. A low-complexity region in the YTH domain protein Mmi1 enhances RNA binding. J Biol Chem 2018; 293:9210-9222. [PMID: 29695507 PMCID: PMC6005420 DOI: 10.1074/jbc.ra118.002291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/19/2018] [Indexed: 01/12/2023] Open
Abstract
Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding.
Collapse
Affiliation(s)
- James A W Stowell
- From the MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Jane L Wagstaff
- From the MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Chris H Hill
- From the MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Minmin Yu
- From the MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | - Stefan M V Freund
- From the MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- From the MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
33
|
Banerjee A, Ifrim MF, Valdez AN, Raj N, Bassell GJ. Aberrant RNA translation in fragile X syndrome: From FMRP mechanisms to emerging therapeutic strategies. Brain Res 2018; 1693:24-36. [PMID: 29653083 PMCID: PMC7377270 DOI: 10.1016/j.brainres.2018.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
Abstract
Research in the past decades has unfolded the multifaceted role of Fragile X mental retardation protein (FMRP) and how its absence contributes to the pathophysiology of Fragile X syndrome (FXS). Excess signaling through group 1 metabotropic glutamate receptors is commonly observed in mouse models of FXS, which in part is attributed to dysregulated translation and downstream signaling. Considering the wide spectrum of cellular and physiologic functions that loss of FMRP can affect in general, it may be advantageous to pursue disease mechanism based treatments that directly target translational components or signaling factors that regulate protein synthesis. Various FMRP targets upstream and downstream of the translational machinery are therefore being investigated to further our understanding of the molecular mechanism of RNA and protein synthesis dysregulation in FXS as well as test their potential role as therapeutic interventions to alleviate FXS associated symptoms. In this review, we will broadly discuss recent advancements made towards understanding the role of FMRP in translation regulation, new pre-clinical animal models with FMRP targets located at different levels of the translational and signal transduction pathways for therapeutic intervention as well as future use of stem cells to model FXS associated phenotypes.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marius F Ifrim
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arielle N Valdez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nisha Raj
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Ozdilek BA, Thompson VF, Ahmed NS, White CI, Batey RT, Schwartz JC. Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Res 2017; 45:7984-7996. [PMID: 28575444 PMCID: PMC5570134 DOI: 10.1093/nar/gkx460] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
RGG/RG domains are the second most common RNA binding domain in the human genome, yet their RNA-binding properties remain poorly understood. Here, we report a detailed analysis of the RNA binding characteristics of intrinsically disordered RGG/RG domains from Fused in Sarcoma (FUS), FMRP and hnRNPU. For FUS, previous studies defined RNA binding as mediated by its well-folded domains; however, we show that RGG/RG domains are the primary mediators of binding. RGG/RG domains coupled to adjacent folded domains can achieve affinities approaching that of full-length FUS. Analysis of RGG/RG domains from FUS, FMRP and hnRNPU against a spectrum of contrasting RNAs reveals that each display degenerate binding specificity, while still displaying different degrees of preference for RNA.
Collapse
Affiliation(s)
- Bagdeser A Ozdilek
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Campus Box 347, Boulder, CO 80309, USA
| | - Valery F Thompson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Nasiha S Ahmed
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Connor I White
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado, Campus Box 596, Boulder, CO 80309, USA
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
35
|
Zimmer SE, Doll SG, Garcia ADR, Akins MR. Splice form-dependent regulation of axonal arbor complexity by FMRP. Dev Neurobiol 2016; 77:738-752. [PMID: 27643955 DOI: 10.1002/dneu.22453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Abstract
The autism-related protein Fragile X mental retardation protein (FMRP) is an RNA binding protein that plays important roles during both nervous system development and experience dependent plasticity. Alternative splicing of the Fmr1 locus gives rise to 12 different FMRP splice forms that differ in the functional and regulatory domains they contain as well as in their expression profile among brain regions and across development. Complete loss of FMRP leads to morphological and functional changes in neurons, including an increase in the size and complexity of the axonal arbor. To investigate the relative contribution of the FMRP splice forms to the regulation of axon morphology, we overexpressed individual splice forms in cultured wild type rat cortical neurons. FMRP overexpression led to a decrease in axonal arbor complexity that suggests that FMRP regulates axon branching. This reduction in complexity was specific to three splice forms-the full-length splice form 1, the most highly expressed splice form 7, and splice form 9. A focused analysis of splice form 7 revealed that this regulation is independent of RNA binding. Instead this regulation is disrupted by mutations affecting phosphorylation of a conserved serine as well as by mutating the nuclear export sequence. Surprisingly, this mutation in the nuclear export sequence also led to increased localization to the distal axonal arbor. Together, these findings reveal domain-specific functions of FMRP in the regulation of axonal complexity that may be controlled by differential expression of FMRP splice forms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 738-752, 2017.
Collapse
Affiliation(s)
| | - Steven G Doll
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - A Denise R Garcia
- Department of Biology, Drexel University, Philadelphia, Pennsylvania.,Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania
| | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, Pennsylvania.,Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Anderson BR, Chopra P, Suhl JA, Warren ST, Bassell GJ. Identification of consensus binding sites clarifies FMRP binding determinants. Nucleic Acids Res 2016; 44:6649-59. [PMID: 27378784 PMCID: PMC5001617 DOI: 10.1093/nar/gkw593] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is a multifunctional RNA-binding protein with crucial roles in neuronal development and function. Efforts aimed at elucidating how FMRP target mRNAs are selected have produced divergent sets of target mRNA and putative FMRP-bound motifs, and a clear understanding of FMRP's binding determinants has been lacking. To clarify FMRP's binding to its target mRNAs, we produced a shared dataset of FMRP consensus binding sequences (FCBS), which were reproducibly identified in two published FMRP CLIP sequencing datasets. This comparative dataset revealed that of the various sequence and structural motifs that have been proposed to specify FMRP binding, the short sequence motifs TGGA and GAC were corroborated, and a novel TAY motif was identified. In addition, the distribution of the FCBS set demonstrates that FMRP preferentially binds to the coding region of its targets but also revealed binding along 3' UTRs in a subset of target mRNAs. Beyond probing these putative motifs, the FCBS dataset of reproducibly identified FMRP binding sites is a valuable tool for investigating FMRP targets and function.
Collapse
Affiliation(s)
- Bart R Anderson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshua A Suhl
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Pastore A, Temussi P. When "IUPs" were "BAPs": How to study the nonconformation of intrinsically unfolded polyaminoacid chains. Biopolymers 2016; 100:592-600. [PMID: 23896858 DOI: 10.1002/bip.22363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/12/2013] [Indexed: 01/21/2023]
Abstract
Ideas often recur. It has been pointed out recently that proteins are not always the well-structured entities we have become accustomed to from crystallographic studies, but may be intrinsically unstructured or contain unstructured regions. This feature, far from making these proteins less interesting, is an essential requirement for their function. Fascinating though it may be, the concept of so-called intrinsically unfolded (or unordered) proteins (IUPs), also often referred to as intrinsically disordered proteins (IDPs), is not new: it directly links back to the 1970s when the attention of many structural biologists was focused on biologically active peptides, which like IUPs lack a specific defined conformation. The recurrent nature of this concept may now be of topical interest since it suggests the transfer, upon suitable adaptation, of old tools to develop new ideas. Here, we review some of the approaches that were developed for the study of peptides and discuss how they could inspire powerful new methodologies for the study of IUPs.
Collapse
Affiliation(s)
- Annalisa Pastore
- National Institute for Medical Research, The Ridgeway, London, NW7 1AA, United Kingdom
| | | |
Collapse
|
38
|
Järvelin AI, Noerenberg M, Davis I, Castello A. The new (dis)order in RNA regulation. Cell Commun Signal 2016; 14:9. [PMID: 27048167 PMCID: PMC4822317 DOI: 10.1186/s12964-016-0132-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important insights into RNA regulation in cellular homeostasis and disease.
Collapse
Affiliation(s)
- Aino I. Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
39
|
Okray Z, de Esch CEF, Van Esch H, Devriendt K, Claeys A, Yan J, Verbeeck J, Froyen G, Willemsen R, de Vrij FMS, Hassan BA. A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function. EMBO Mol Med 2015; 7:423-37. [PMID: 25693964 PMCID: PMC4403044 DOI: 10.15252/emmm.201404576] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5′ untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes.
Collapse
Affiliation(s)
- Zeynep Okray
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium Program in Molecular and Developmental Genetics, Doctoral School of Biomedical Sciences, University of Leuven, Leuven, Belgium
| | - Celine E F de Esch
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hilde Van Esch
- Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Koen Devriendt
- Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Annelies Claeys
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Jiekun Yan
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Jelle Verbeeck
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Guy Froyen
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium Program in Molecular and Developmental Genetics, Doctoral School of Biomedical Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Sosińska P, Mikuła-Pietrasik J, Książek K. The double-edged sword of long non-coding RNA: The role of human brain-specific BC200 RNA in translational control, neurodegenerative diseases, and cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:58-67. [DOI: 10.1016/j.mrrev.2015.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/29/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
|
41
|
Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP. Proc Natl Acad Sci U S A 2015; 112:E5391-400. [PMID: 26374839 DOI: 10.1073/pnas.1515737112] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X Mental Retardation Protein (FMRP) is a regulatory RNA binding protein that plays a central role in the development of several human disorders including Fragile X Syndrome (FXS) and autism. FMRP uses an arginine-glycine-rich (RGG) motif for specific interactions with guanine (G)-quadruplexes, mRNA elements implicated in the disease-associated regulation of specific mRNAs. Here we report the 2.8-Å crystal structure of the complex between the human FMRP RGG peptide bound to the in vitro selected G-rich RNA. In this model system, the RNA adopts an intramolecular K(+)-stabilized G-quadruplex structure composed of three G-quartets and a mixed tetrad connected to an RNA duplex. The RGG peptide specifically binds to the duplex-quadruplex junction, the mixed tetrad, and the duplex region of the RNA through shape complementarity, cation-π interactions, and multiple hydrogen bonds. Many of these interactions critically depend on a type I β-turn, a secondary structure element whose formation was not previously recognized in the RGG motif of FMRP. RNA mutagenesis and footprinting experiments indicate that interactions of the peptide with the duplex-quadruplex junction and the duplex of RNA are equally important for affinity and specificity of the RGG-RNA complex formation. These results suggest that specific binding of cellular RNAs by FMRP may involve hydrogen bonding with RNA duplexes and that RNA duplex recognition can be a characteristic RNA binding feature for RGG motifs in other proteins.
Collapse
|
42
|
Smith R, Rathod RJ, Rajkumar S, Kennedy D. Nervous translation, do you get the message? A review of mRNPs, mRNA-protein interactions and translational control within cells of the nervous system. Cell Mol Life Sci 2014; 71:3917-37. [PMID: 24952431 PMCID: PMC11113408 DOI: 10.1007/s00018-014-1660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
Abstract
In neurons, translation of a message RNA can occur metres away from its transcriptional origin and in normal cells this is orchestrated with perfection. The life of an mRNA will see it pass through multiple steps of processing in the nucleus and the cytoplasm before it reaches its final destination. Processing of mRNA is determined by a myriad of RNA-binding proteins in multi-protein complexes called messenger ribonucleoproteins; however, incorrect processing and delivery of mRNA can cause several human neurological disorders. This review takes us through the life of mRNA from the nucleus to its point of translation in the cytoplasm. The review looks at the various cis and trans factors that act on the mRNA and discusses their roles in different cells of the nervous system and human disorders.
Collapse
Affiliation(s)
- Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| | | | | | | |
Collapse
|
43
|
Campos-Melo D, Droppelmann CA, Volkening K, Strong MJ. RNA-binding proteins as molecular links between cancer and neurodegeneration. Biogerontology 2014; 15:587-610. [PMID: 25231915 DOI: 10.1007/s10522-014-9531-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022]
Abstract
For many years, epidemiological studies have suggested an association between cancer and neurodegenerative disorders-two disease processes that seemingly have little in common. Although these two disease processes share disruptions in a wide range of cellular pathways, including cell survival, cell death and the cell cycle, the end result is very divergent: uncontrolled cell survival and proliferation in cancer and progressive neuronal cell death in neurodegeneration. Despite the clinical data connecting these two disease processes, little is known about the molecular links between them. Among the mechanisms affected in cancer and neurodegenerative diseases, alterations in RNA metabolism are obtaining significant attention given the critical role for RNA transcription, maturation, transport, stability, degradation and translation in normal cellular function. RNA-binding proteins (RBPs) are integral to each stage of RNA metabolism through their participation in the formation of ribonucleoprotein complexes (RNPs). RBPs have a broad range of functions including posttranscriptional regulation of mRNA stability, splicing, editing and translation, mRNA export and localization, mRNA polyadenylation and miRNA biogenesis, ultimately impacting the expression of every single gene in the cell. In this review, we examine the evidence for RBPs as being key a molecular linkages between cancer and neurodegeneration.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | | | | | | |
Collapse
|
44
|
Kimura S, Sakakibara Y, Sato K, Ote M, Ito H, Koganezawa M, Yamamoto D. TheDrosophilalingerer protein cooperates with Orb2 in long-term memory formation. J Neurogenet 2014; 29:8-17. [DOI: 10.3109/01677063.2014.917644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Georgieva D, Dimitrov R, Kitanova M, Genova G. New X-chromosomal interactors of dFMRP regulate axonal and synaptic morphology of brain neurons in Drosophila melanogaster. BIOTECHNOL BIOTEC EQ 2014; 28:697-709. [PMID: 26740770 PMCID: PMC4684054 DOI: 10.1080/13102818.2014.937897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/21/2014] [Indexed: 11/12/2022] Open
Abstract
Fragile X syndrome is a neuro-developmental disease caused by transcriptional inactivation of the gene FMR1 (fragile X mental retardation 1) and loss of its protein product FMRP. FMRP has multiple neuronal functions which are implemented together with other proteins. To better understand these functions, the aim of this study was to reveal new protein interactors of dFMRP. In a forward genetic screen, we isolated ethyl-metanesulphonate-induced X-chromosomal modifier mutations of dfmr1. Four of them were identified and belong to the genes: peb/hindsight, rok, shaggy and ras. They are dominant suppressors of the dfmr1 overexpression wing phenotype ‘notched wings’. These mutations dominantly affected the axonal and synaptic morphology of the lateral ventral neurons (LNv's) in adult Drosophila brains. Heterozygotes for each of them displayed effects in the axonal growth, pathfinding, branching and in the synapse formation of these neurons. Double heterozygotes for both dfmr1-null mutation and for each of the suppressor mutations showed robust genetic interactions in the fly central nervous system. The mutations displayed severe defects in the axonal growth and synapse formation of the LNv's in adult brains. Our biochemical studies showed that neither of the proteins – Rok, Shaggy, Peb/Hnt or Ras – encoded by the four mutated genes regulates the protein level of dFMRP, but dFMRP negatively regulates the protein expression level of Rok in the brain. Altogether, these data suggest that Rok, Shaggy, Peb/Hnt and Ras are functional partners of dFMRP, which are required for correct wing development and for neuronal connectivity in Drosophila brain.
Collapse
Affiliation(s)
- Dimitrina Georgieva
- Faculty of Biology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Roumen Dimitrov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Meglena Kitanova
- Faculty of Biology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Ginka Genova
- Faculty of Biology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| |
Collapse
|
46
|
Doxakis E. RNA binding proteins: a common denominator of neuronal function and dysfunction. Neurosci Bull 2014; 30:610-26. [PMID: 24962082 DOI: 10.1007/s12264-014-1443-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, gene activity is not directly reflected by protein levels because mRNA processing, transport, stability, and translation are co- and post-transcriptionally regulated. These processes, collectively known as the ribonome, are tightly controlled and carried out by a plethora of trans-acting RNA-binding proteins (RBPs) that bind to specific cis elements throughout the RNA sequence. Within the nervous system, the role of RBPs in brain function turns out to be essential due to the architectural complexity of neurons exemplified by a relatively small somal size and an extensive network of projections and connections. Thus far, RBPs have been shown to be indispensable for several aspects of neurogenesis, neurite outgrowth, synapse formation, and plasticity. Consequently, perturbation of their function is central in the etiology of an ever-growing spectrum of neurological diseases, including fragile X syndrome and the neurodegenerative disorders frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Laboratory of Molecular and Cellular Neuroscience, Center of Basic Neuroscience, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens, 11527, Greece,
| |
Collapse
|
47
|
Tan SM, Altschuler G, Zhao TY, Ang HS, Yang H, Lim B, Vardy L, Hide W, Thomson AM, Lareu RR. Divergent LIN28-mRNA associations result in translational suppression upon the initiation of differentiation. Nucleic Acids Res 2014; 42:7997-8007. [PMID: 24860167 PMCID: PMC4081066 DOI: 10.1093/nar/gku430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
LIN28 function is fundamental to the activity and behavior of human embryonic stem cells (hESCs) and induced pluripotent stem cells. Its main roles in these cell types are the regulation of translational efficiency and let-7 miRNA maturation. However, LIN28-associated mRNA cargo shifting and resultant regulation of translational efficiency upon the initiation of differentiation remain unknown. An RNA-immunoprecipitation and microarray analysis protocol, eRIP, that has high specificity and sensitivity was developed to test endogenous LIN28-associated mRNA cargo shifting. A combined eRIP and polysome analysis of early stage differentiation of hESCs with two distinct differentiation cues revealed close similarities between the dynamics of LIN28 association and translational modulation of genes involved in the Wnt signaling, cell cycle, RNA metabolism and proteasomal pathways. Our data demonstrate that change in translational efficiency is a major contributor to early stages of differentiation of hESCs, in which LIN28 plays a central role. This implies that eRIP analysis of LIN28-associated RNA cargoes may be used for rapid functional quality control of pluripotent stem cells under manufacture for therapeutic applications.
Collapse
Affiliation(s)
- Shen Mynn Tan
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Gabriel Altschuler
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Tian Yun Zhao
- Institute of Medical Biology, A*STAR, 138648, Singapore
| | - Haw Siang Ang
- Cancer Science Institute, National University of Singapore (NUS), 117599, Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore (NUS), 117599, Singapore
| | - Bing Lim
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Leah Vardy
- Institute of Medical Biology, A*STAR, 138648, Singapore
| | - Winston Hide
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew M Thomson
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Ricky R Lareu
- Department of Orthopedic Surgery, NUS Tissue Engineering Program, Yong Loo Lin School of Medicine, NUS, 119228, Singapore and School of Pharmacy, CHIRI Biosciences, Curtin University, Western Australia 6102, Australia
| |
Collapse
|
48
|
Ewing sarcoma protein: a key player in human cancer. Int J Cell Biol 2013; 2013:642853. [PMID: 24082883 PMCID: PMC3776376 DOI: 10.1155/2013/642853] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/26/2013] [Indexed: 01/04/2023] Open
Abstract
The Ewing sarcoma protein (EWS) is a well-known player in cancer biology for the specific translocations occurring in sarcomas. The EWS-FLI1 gene fusion is the prototypical translocation that encodes the aberrant, chimeric transcription factor, which is a landmark of Ewing tumors. In all described Ewing sarcoma oncogenes, the EWS RNA binding domains are completely missing; thus RNA binding properties are not retained in the hybrid proteins. However, it is currently unknown whether the absence of EWS function in RNA metabolism plays a role in oncogenic transformation or if EWS plays a role by itself in cancer development besides its contribution to the translocation. In this regard, recent reports have highlighted an essential role for EWS in the regulation of DNA damage response (DDR), a process that counteracts genome stability and is often deregulated in cancer cells. The first part of this review will describe the structural features of EWS and its multiple roles in the regulation of gene expression, which are exerted by coordinating different steps in the synthesis and processing of pre-mRNAs. The second part will examine the role of EWS in the regulation of DDR- and cancer-related genes, with potential implications in cancer therapies. Finally, recent advances on the involvement of EWS in neuromuscular disorders will be discussed. Collectively, the information reviewed herein highlights the broad role of EWS in bridging different cellular processes and underlines the contribution of EWS to genome stability and proper cell-cycle progression in higher eukaryotic cells.
Collapse
|
49
|
Chi H, Xiao ZZ, Sun L. Nuclear factor 45 of half smooth tongue sole Cynoglossus semilaevis: gene structure, expression profile, and immunoregulatory property. FISH & SHELLFISH IMMUNOLOGY 2013; 35:972-978. [PMID: 23872474 DOI: 10.1016/j.fsi.2013.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/23/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
Nuclear factor 45 (NF45) is a component of the protein complex called nuclear factor of activated T-cells (NFAT), which in mammals regulates interleukin (IL)-2 expression. To date very little is known about fish NF45. In this study, we identified a NF45 (named CsNF45) from half smooth tongue sole Cynoglossus semilaevis and examined its gene organization, expression profile, and regulatory function. We found that CsNF45 is composed of 387 residues and shares 90.3%-97.9% overall sequence identities with the NF45 of human and teleosts. Genetic analysis showed that the genomic sequence of the ORF region of CsNF45 consists of 14 exons and 13 introns. Constitutive expression of CsNF45 occurred in multiple tissues including gill, muscle, brain, heart, liver, head kidney, spleen, and gut. Experimental infection with viral and bacterial pathogens upregulated the expression of CsNF45 in head kidney and spleen in a time-dependent manner. Transient transfection analysis showed that CsNF45 was localized in the nucleus and able to stimulate the activity of mouse IL-2 promoter. These results indicate that CsNF45 possesses immunoregulatory property and is possibly involved in host immune defense against bacterial and viral infection.
Collapse
Affiliation(s)
- Heng Chi
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | |
Collapse
|
50
|
Abstract
Motifs rich in arginines and glycines were recognized several decades ago to play functional roles and were termed glycine-arginine-rich (GAR) domains and/or RGG boxes. We review here the evolving functions of the RGG box along with several sequence variations that we collectively term the RGG/RG motif. Greater than 1,000 human proteins harbor the RGG/RG motif, and these proteins influence numerous physiological processes such as transcription, pre-mRNA splicing, DNA damage signaling, mRNA translation, and the regulation of apoptosis. In particular, we discuss the role of the RGG/RG motif in mediating nucleic acid and protein interactions, a function that is often regulated by arginine methylation and partner-binding proteins. The physiological relevance of the RGG/RG motif is highlighted by its association with several diseases including neurological and neuromuscular diseases and cancer. Herein, we discuss the evidence for the emerging diverse functionality of this important motif.
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|