1
|
Das AS, Basu A, Mukhopadhyay R. Ribosomal proteins: the missing piece in the inflammation puzzle? Mol Cell Biochem 2025; 480:785-797. [PMID: 38951378 DOI: 10.1007/s11010-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
2
|
Li S, Jin Z, Song X, Ma J, Peng Z, Yu H, Song J, Zhang Y, Sun X, He M, Yu X, Jin F, Zheng A. The small nucleolar RNA SNORA51 enhances breast cancer stem cell-like properties via the RPL3/NPM1/c-MYC pathway. Mol Carcinog 2024; 63:1117-1132. [PMID: 38421204 DOI: 10.1002/mc.23713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer stem cells (BCSCs) are key players in carcinogenesis and development. Small nucleolar RNAs (snoRNAs) seem to have a crucial influence on regulating stem cell-like properties in various cancers, but the underlying mechanism in breast cancer has not been determined. In this study, we first found that the expression of SNORA51 might be strongly and positively related to BCSCs-like properties. SNORA51 expression was assessed in breast cancer tissues (n = 158 patients) by in situ hybridization. Colony formation, cell counting kit-8, and sphere formation assays were used to detect cell proliferation and self-renewal, respectively. Wound healing and transwell assays were used to detect cell migration. Coimmunoprecipitation and molecular docking were used to determine the underlying mechanism through which SNORA51 regulates BCSCs-like properties. High SNORA51 expression was associated with a worse prognosis, overall survival, and disease-free survival, in 158 breast cancer patients and was also closely related to lymph node status, ER status, the Ki-67 index, histological grade, and TNM stage. Further analysis proved that SNORA51 could enhance and maintain stem cell-like properties, including cell proliferation, self-renewal, and migration, in breast cancer. Moreover, high SNORA51 expression could reduce nucleolar RPL3 expression, induce changes in the expression of NPM1 in the nucleolus and nucleoplasm, and ultimately increase c-MYC expression. Taken together, our findings demonstrated that SNORA51 could enhance BCSCs-like properties via the RPL3/NPM1/c-MYC pathway both in vitro and in vivo. Therefore, SNORA51 might be a significant biomarker and potential therapeutic target and might even provide a new viewpoint on the regulatory mechanism of snoRNAs in breast cancer or other malignant tumors.
Collapse
Affiliation(s)
- Shan Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jinfei Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziqi Peng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Song
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiqi Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Borges FS, Quilles JC, Lorenzon LB, Espada CR, Freitas-Castro F, Defina TPA, Holetz FB, Cruz AK. Leishmania Ribosomal Protein (RP) paralogous genes compensate each other's expression maintaining protein native levels. PLoS One 2024; 19:e0292152. [PMID: 38753846 PMCID: PMC11098316 DOI: 10.1371/journal.pone.0292152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
In the protozoan parasite Leishmania, most genes encoding for ribosomal proteins (RPs) are present as two or more copies in the genome. However, their untranslated regions (UTRs) are predominantly divergent and might be associated with a distinct regulation of the expression of paralogous genes. Herein, we investigated the expression profiles of two RPs (S16 and L13a) encoded by duplicated genes in Leishmania major. The genes encoding for the S16 protein possess identical coding sequences (CDSs) and divergent UTRs, whereas the CDSs of L13a diverge by two amino acids and by their UTRs. Using CRISPR/Cas9 genome editing, we generated knockout (Δ) and endogenously tagged transfectants for each paralog of L13a and S16 genes. Combining tagged and Δ cell lines we found evidence of differential expression of both RPS16 and RPL13a isoforms throughout parasite development, with one isoform consistently more abundant than its respective copy. In addition, compensatory expression was observed for each paralog upon deletion of the corresponding isoform, suggesting functional conservation between these proteins. This differential expression pattern relates to post-translational processes, given compensation occurs at the level of the protein, with no alterations detected at transcript level. Ribosomal profiles for RPL13a indicate a standard behavior for these paralogues suggestive of interaction with heavy RNA-protein complexes, as already reported for other RPs in trypanosomatids. We identified paralog-specific bound to their 3'UTRs which may be influential in regulating paralog expression. In support, we identified conserved cis-elements within the 3'UTRs of RPS16 and RPL13a; cis-elements exclusive to the UTR of the more abundant paralog or to the less abundant ones were identified.
Collapse
Affiliation(s)
- Francisca S. Borges
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - José C. Quilles
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Lucas B. Lorenzon
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Caroline R. Espada
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Felipe Freitas-Castro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Tânia P. A. Defina
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Fabíola B. Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Fausset H, Spietz RL, Cox S, Cooper G, Spurzem S, Tokmina-Lukaszewska M, DuBois J, Broderick JB, Shepard EM, Boyd ES, Bothner B. A shift between mineral and nonmineral sources of iron and sulfur causes proteome-wide changes in Methanosarcina barkeri. Microbiol Spectr 2024; 12:e0041823. [PMID: 38179920 PMCID: PMC10846266 DOI: 10.1128/spectrum.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Iron (Fe) and sulfur (S) are required elements for life, and changes in their availability can limit the ecological distribution and function of microorganisms. In anoxic environments, soluble Fe typically exists as ferrous iron [Fe(II)] and S as sulfide (HS-). These species exhibit a strong affinity that ultimately drives the formation of sedimentary pyrite (FeS2). Recently, paradigm-shifting studies indicate that Fe and S in FeS2 can be made bioavailable by methanogens through a reductive dissolution process. However, the impact of the utilization of FeS2, as opposed to canonical Fe and S sources, on the phenotype of cells is not fully understood. Here, shotgun proteomics was utilized to measure changes in the phenotype of Methanosarcina barkeri MS grown with FeS2, Fe(II)/HS-, or Fe(II)/cysteine. Shotgun proteomics tracked 1,019 proteins overall, with 307 observed to change between growth conditions. Functional characterization and pathway analyses revealed these changes to be systemic and largely tangential to Fe/S metabolism. As a final step, the proteomics data were viewed with respect to previously collected transcriptomics data to deepen the analysis. Presented here is evidence that M. barkeri adopts distinct phenotypes to exploit specific sources of Fe and S in its environment. This is supported by observed protein abundance changes across broad categories of cellular biology. DNA adjacent metabolism, central carbon metabolism methanogenesis, metal trafficking, quorum sensing, and porphyrin biosynthesis pathways are all features in the phenotypic differentiation. Differences in trace metal availability attributed to complexation with HS-, either as a component of the growth medium [Fe(II)/HS-] or generated through reduction of FeS2, were likely a major factor underpinning these phenotypic differences.IMPORTANCEThe methanogenic archaeon Methanosarcina barkeri holds great potential for industrial bio-mining and energy generation technologies. Much of the biochemistry of this microbe is poorly understood, and its characterization will provide a glimpse into biological processes that evolved close to life's origin. The discovery of its ability to extract iron and sulfur from bulk, solid-phase minerals shifted a longstanding paradigm that these elements were inaccessible to biological systems. The full elucidation of this process has the potential to help scientists and engineers extract valuable metals from low-grade ore and mine waste generating energy in the form of methane while doing so.
Collapse
Affiliation(s)
- Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Savannah Cox
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Scott Spurzem
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Jennifer DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M. Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
5
|
Kour R, Kim J, Roy A, Richardson B, Cameron MJ, Knott JG, Mazumder B. Loss of function of ribosomal protein L13a blocks blastocyst formation and reveals a potential nuclear role in gene expression. FASEB J 2023; 37:e23275. [PMID: 37902531 PMCID: PMC10999073 DOI: 10.1096/fj.202301475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
Ribosomal proteins play diverse roles in development and disease. Most ribosomal proteins have canonical roles in protein synthesis, while some exhibit extra-ribosomal functions. Previous studies in our laboratory revealed that ribosomal protein L13a (RPL13a) is involved in the translational silencing of a cohort of inflammatory proteins in myeloid cells. This prompted us to investigate the role of RPL13a in embryonic development. Here we report that RPL13a is required for early development in mice. Crosses between Rpl13a+/- mice resulted in no Rpl13a-/- offspring. Closer examination revealed that Rpl13a-/- embryos were arrested at the morula stage during preimplantation development. RNA sequencing analysis of Rpl13a-/- morulae revealed widespread alterations in gene expression, including but not limited to several genes encoding proteins involved in the inflammatory response, embryogenesis, oocyte maturation, stemness, and pluripotency. Ex vivo analysis revealed that RPL13a was localized to the cytoplasm and nucleus between the two-cell and morula stages. RNAi-mediated depletion of RPL13a phenocopied Rpl13a-/- embryos and knockdown embryos exhibited increased expression of IL-7 and IL-17 and decreased expression of the lineage specifier genes Sox2, Pou5f1, and Cdx2. Lastly, a protein-protein interaction assay revealed that RPL13a is associated with chromatin, suggesting an extra ribosomal function in transcription. In summary, our data demonstrate that RPL13a is essential for the completion of preimplantation embryo development. The mechanistic basis of the absence of RPL13a-mediated embryonic lethality will be addressed in the future through follow-up studies on ribosome biogenesis, global protein synthesis, and identification of RPL13a target genes using chromatin immunoprecipitation and RNA-immunoprecipitation-based sequencing.
Collapse
Affiliation(s)
- Ravinder Kour
- Center for Gene Regulation in Health and Disease, Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Jaehwan Kim
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Antara Roy
- Center for Gene Regulation in Health and Disease, Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jason G. Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health and Disease, Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Decle-Carrasco S, Rodríguez-Piña AL, Rodríguez-Zapata LC, Castano E. Current research on viral proteins that interact with fibrillarin. Mol Biol Rep 2023; 50:4631-4643. [PMID: 36928641 PMCID: PMC10018631 DOI: 10.1007/s11033-023-08343-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
The nucleolus is a multifunctional nuclear domain primarily dedicated to ribosome biogenesis. Certain viruses developed strategies to manipulate host nucleolar proteins to facilitate their replication by modulating ribosomal RNA (rRNA) processing. This association interferes with nucleolar functions resulting in overactivation or arrest of ribosome biogenesis, induction or inhibition of apoptosis, and affecting stress response. The nucleolar protein fibrillarin (FBL) is an important target of some plant and animal viruses. FBL is an essential and highly conserved S-adenosyl methionine (SAM) dependent methyltransferase, capable of rRNA degradation by its intrinsically disordered region (IDR), the glycine/arginine-rich (GAR) domain. It forms a ribonucleoprotein complex that directs 2'-O-methylations in more than 100 sites of pre-rRNAs. It is involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. The interaction with animal viruses, including human viruses, triggered its redistribution to the nucleoplasm and cytoplasm, interfering with its role in pre-rRNA processing. Viral-encoded proteins with IDRs as nucleocapsids, matrix, Tat protein, and even a viral snoRNA, can associate with FBL, forcing the nucleolar protein to undergo atypical functions. Here we review the molecular mechanisms employed by animal and human viruses to usurp FBL functions and the effect on cellular processes, particularly in ribosome biogenesis.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Alma Laura Rodríguez-Piña
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
7
|
Luan Y, Tang N, Yang J, Liu S, Cheng C, Wang Y, Chen C, Guo YN, Wang H, Zhao W, Zhao Q, Li W, Xiang M, Ju R, Xie Z. Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells. Nucleic Acids Res 2022; 50:6601-6617. [PMID: 35137207 PMCID: PMC9262593 DOI: 10.1093/nar/gkac053] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/13/2022] [Accepted: 02/03/2022] [Indexed: 01/05/2023] Open
Abstract
Human ribosomes have long been thought to be uniform factories with little regulatory function. Accumulating evidence emphasizes the heterogeneity of ribosomal protein (RP) expression in specific cellular functions and development. However, a systematic understanding of functional relevance of RPs is lacking. Here, we surveyed translational and transcriptional changes after individual knockdown of 75 RPs, 44 from the large subunit (60S) and 31 from the small subunit (40S), by Ribo-seq and RNA-seq analyses. Deficiency of individual RPs altered specific subsets of genes transcriptionally and translationally. RP genes were under cotranslational regulation upon ribosomal stress, and deficiency of the 60S RPs and the 40S RPs had opposite effects. RP deficiency altered the expression of genes related to eight major functional classes, including the cell cycle, cellular metabolism, signal transduction and development. 60S RP deficiency led to greater inhibitory effects on cell growth than did 40S RP deficiency, through P53 signaling. Particularly, we showed that eS8/RPS8 deficiency stimulated apoptosis while eL13/RPL13 or eL18/RPL18 deficiency promoted senescence. We also validated the phenotypic impacts of uL5/RPL11 and eL15/RPL15 deficiency on retina development and angiogenesis, respectively. Overall, our study provides a valuable resource for and novel insights into ribosome regulation in cellular activities, development and diseases.
Collapse
Affiliation(s)
- Yizhao Luan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nan Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chichi Cheng
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Congying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya-Nan Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Zhao
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
9
|
Qin Y, Huttlin EL, Winsnes CF, Gosztyla ML, Wacheul L, Kelly MR, Blue SM, Zheng F, Chen M, Schaffer LV, Licon K, Bäckström A, Vaites LP, Lee JJ, Ouyang W, Liu SN, Zhang T, Silva E, Park J, Pitea A, Kreisberg JF, Gygi SP, Ma J, Harper JW, Yeo GW, Lafontaine DLJ, Lundberg E, Ideker T. A multi-scale map of cell structure fusing protein images and interactions. Nature 2021; 600:536-542. [PMID: 34819669 PMCID: PMC9053732 DOI: 10.1038/s41586-021-04115-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.
Collapse
Affiliation(s)
- Yue Qin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Casper F Winsnes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | - Marcus R Kelly
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fan Zheng
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Michael Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Katherine Licon
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anna Bäckström
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - John J Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wei Ouyang
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sophie N Liu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Erica Silva
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jisoo Park
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Adriana Pitea
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jianzhu Ma
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gene W Yeo
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
11
|
Molavi G, Samadi N, Hashemzadeh S, Halimi M, Hosseingholi EZ. Moonlight human ribosomal protein L13a downregulation is associated with p53 and HER2/neu expression in breast cancer. J Appl Biomed 2020; 18:46-53. [PMID: 34907725 DOI: 10.32725/jab.2020.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignancy among females worldwide. Recent studies have shown extra-ribosomal roles of the moonlight ribosomal proteins in the development of human cancers. Accurate quantification of the gene expression level is based on the selection of the reference genes whose expression is independent of cancer properties and patient's characteristics. The aim of this study was the evaluation of the expression level of a previously proposed ribosomal protein as moonlight, L13a (RPL13A), in breast cancer samples and their adjacent tissues. Its association with genes of known roles in developing cancers was also investigated. Traditionally used housekeeping genes were selected and their expression was analyzed in 80 surgically excised breast tissue specimens (40 tumors and 40 tumor-adjacent tissues) by applying three software tools including GeNorm, NormFinder, and BestKeeper to select the most stable reference genes. Then, mRNA expression levels of RPL13A and p53 were evaluated. Additionally, protein expression levels of RPL13A were measured. It was demonstrated that PUM1 and ACTB are the most reliable reference genes and RPL13A is the least stable gene. There was a positive correlation between RPL13A and p53 mRNA expression levels in all the tumor samples. Moreover, significant downregulation of RPL13A expression levels was revealed in HER2+ tumor samples compared to HER2- ones. There was also a marked decrease in p53 mRNA expression levels in HER2+ tumor subtypes. Our results suggest that there is a probable relationship between RPL13A decreased expression with p53 and HER2/neu expression in the breast cancer.
Collapse
Affiliation(s)
- Ghader Molavi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Tabriz, Iran.,Tabriz University of Medical Sciences, Faculty of Advanced Medical Sciences, Department of Molecular Medicine, Tabriz, Iran
| | - Nasser Samadi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Tabriz, Iran.,Tabriz University of Medical Sciences, Faculty of Advanced Medical Sciences, Department of Molecular Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Faculty of Medicine, Department of Biochemistry, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Tabriz University of Medical Sciences, Tuberculosis and Lung Disease Research Center, Tabriz, Iran.,Tabriz University of Medical Sciences, Imam Reza Hospital, General and Vascular Surgery Department, Tabriz, Iran
| | - Monireh Halimi
- Tabriz University of Medical Sciences, School of Medicine, Department of Pathology, Tabriz, Iran
| | | |
Collapse
|
12
|
Ghosh A, Shcherbik N. Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E2661. [PMID: 32290431 PMCID: PMC7215667 DOI: 10.3390/ijms21082661] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of disorders that affect the heart and blood vessels. Due to their multifactorial nature and wide variation, CVDs are the leading cause of death worldwide. Understanding the molecular alterations leading to the development of heart and vessel pathologies is crucial for successfully treating and preventing CVDs. One of the causative factors of CVD etiology and progression is acute oxidative stress, a toxic condition characterized by elevated intracellular levels of reactive oxygen species (ROS). Left unabated, ROS can damage virtually any cellular component and affect essential biological processes, including protein synthesis. Defective or insufficient protein translation results in production of faulty protein products and disturbances of protein homeostasis, thus promoting pathologies. The relationships between translational dysregulation, ROS, and cardiovascular disorders will be examined in this review.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
13
|
Basu A, Dvorina N, Baldwin WM, Mazumder B. High-fat diet-induced GAIT element-mediated translational silencing of mRNAs encoding inflammatory proteins in macrophage protects against atherosclerosis. FASEB J 2020; 34:6888-6906. [PMID: 32232901 DOI: 10.1096/fj.201903119r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 11/11/2022]
Abstract
Previously, we identified a mechanism of inflammation control directed by ribosomal protein L13a and "GAIT" (Gamma Activated Inhibitor of Translation) elements in target mRNAs and showed that its elimination in myeloid cell-specific L13a knockout mice (L13a KO) increased atherosclerosis susceptibility and severity. Here, we investigated the mechanistic basis of this endogenous defense against atherosclerosis. We compared molecular and cellular aspects of atherosclerosis in high-fat diet (HFD)-fed L13a KO and intact (control) mice. HFD treatment of control mice induced release of L13a from 60S ribosome, formation of RNA-binding complex, and subsequent GAIT element-mediated translational silencing. Atherosclerotic plaques from HFD-treated KO mice showed increased infiltration of M1 type inflammatory macrophages. Macrophages from KO mice showed increased phagocytic activity and elevated expression of LDL receptor and pro-inflammatory mediators. NanoString analysis of the plaques from KO mice showed upregulation of a number of mRNAs encoding inflammatory proteins. Bioinformatics analysis suggests the presence of the potential GAIT elements in the 3'UTRs of several of these mRNAs. Macrophage induces L13a/GAIT-dependent translational silencing of inflammatory genes in response to HFD as an endogenous defense against atherosclerosis in ApoE-/- model.
Collapse
Affiliation(s)
- Abhijit Basu
- Department of Biology, Geology and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Barsanjit Mazumder
- Department of Biology, Geology and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
14
|
Brumwell A, Fell L, Obress L, Uniacke J. Hypoxia influences polysome distribution of human ribosomal protein S12 and alternative splicing of ribosomal protein mRNAs. RNA (NEW YORK, N.Y.) 2020; 26:361-371. [PMID: 31911497 PMCID: PMC7025504 DOI: 10.1261/rna.070318.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ribosomes were once considered static in their composition because of their essential role in protein synthesis and kingdom-wide conservation. The existence of tolerated mutations in select ribosomal proteins (RPs), such as in Diamond-Blackfan anemia, is evidence that not all ribosome components are essential. Heterogeneity in the protein composition of eukaryotic ribosomes is an emerging concept with evidence that different pools of ribosomes exist with transcript-specificity. Here, we show that the polysome association of ribosomal proteins is altered by low oxygen (hypoxia), a feature of the tumor microenvironment, in human cells. We quantified ribosomal protein abundance in actively translating polysomes of normoxic and hypoxic HEK293 cells by tandem mass tags mass spectrometry. Our data suggest that RPS12 (eS12) is enriched in hypoxic monosomes, which increases the heavy polysome association of structured transcripts APAF-1 and XIAP. Furthermore, hypoxia induced five alternative splicing events within a subset of RP mRNAs in cell lines. One of these events in RPS24 (eS24 protein) alters the coding sequence to produce two protein isoforms that can incorporate into ribosomes. This splicing event is greatly induced in spheroids and correlates with tumor hypoxia in human prostate cancer. Our data suggest that hypoxia may influence the composition of the human ribosome through changes in RP incorporation and the production of hypoxia-specific RP isoforms.
Collapse
Affiliation(s)
- Andrea Brumwell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Leslie Fell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lindsay Obress
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - James Uniacke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
15
|
The functional role of the C-terminal tail of the human ribosomal protein uS19. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194490. [DOI: 10.1016/j.bbagrm.2020.194490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 11/18/2022]
|
16
|
Lo CA, Chen BE. Parental allele-specific protein expression in single cells In vivo. Dev Biol 2019; 454:66-73. [PMID: 31194972 DOI: 10.1016/j.ydbio.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 11/26/2022]
Abstract
Allelic expression from each parent-of-origin is important as a backup and to ensure that enough protein products of a gene are produced. Thus far, it is not known how each cell throughout a tissue differs in parental allele expression at the level of protein synthesis. Here, we measure the expression of the Ribosomal protein L13a (Rpl13a) from both parental alleles simultaneously in single cells in the living animal. We use genome-edited Drosophila that have a quantitative reporter of protein synthesis inserted into the endogenous Rpl13a locus. We find that individual cells can have large (>10-fold) differences in protein expression between the two parental alleles. Cells can produce protein from only one allele oftentimes, and time-lapse imaging of protein production from each parental allele in each cell showed that the imbalance in expression from one parental allele over the other can invert over time. We also identify the histone methyltransferase EHMT to be involved in the protein synthesis dynamics within cells.
Collapse
Affiliation(s)
- Chiu-An Lo
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Brian E Chen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Departments of Medicine and Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Kour R, Komar AA, Mazumder B. Mutually exclusive amino acid residues of L13a are responsible for its ribosomal incorporation and translational silencing leading to resolution of inflammation. RNA (NEW YORK, N.Y.) 2019; 25:1377-1392. [PMID: 31308261 PMCID: PMC6800476 DOI: 10.1261/rna.071118.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/11/2019] [Indexed: 05/09/2023]
Abstract
Eukaryotic ribosomal protein L13a is a member of the conserved universal ribosomal uL13 protein family. Structurally, L13a is distinguished from its prokaryotic counterparts by the presence of an ∼55 amino acid-long carboxy-terminal α-helical extension. The importance of these evolved residues in the carboxy-terminal extension for mammalian ribosome biogenesis as well as L13a's extraribosomal function in GAIT (γ interferon-activated inhibitor of translation) complex-mediated translation silencing during inflammation is not understood. Here, we present biochemical analyses of L13a mutant variants identifying several mutually exclusive amino acid residues in the eukaryote-specific carboxy-terminal extension of human L13a (Tyr149-Val203) important for ribosomal incorporation and translational silencing. Specifically, we show that mutation of Arg169, Lys170, and Lys171 to Ala abrogate GAIT-mediated translational silencing, but not L13a incorporation into ribosomes. Moreover, we show that the carboxy-terminal helix alone can silence translation of GAIT element-containing mRNAs in vitro. We also show through cellular immunofluorescence experiments that nuclear but not nucleolar localization of L13a is resistant to extensive amino acid alterations, suggesting that multiple complex nuclear import signals are present within this protein. These studies provide new insights into L13a structure and its ribosomal and extraribosomal functions in model human cells.
Collapse
Affiliation(s)
- Ravinder Kour
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| |
Collapse
|
18
|
Genuth NR, Barna M. Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat Rev Genet 2019; 19:431-452. [PMID: 29725087 DOI: 10.1038/s41576-018-0008-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of mRNA translation offers the opportunity to diversify the expression and abundance of proteins made from individual gene products in cells, tissues and organisms. Emerging evidence has highlighted variation in the composition and activity of several large, highly conserved translation complexes as a means to differentially control gene expression. Heterogeneity and specialized functions of individual components of the ribosome and of the translation initiation factor complexes eIF3 and eIF4F, which are required for recruitment of the ribosome to the mRNA 5' untranslated region, have been identified. In this Review, we summarize the evidence for selective mRNA translation by components of these macromolecular complexes as a means to dynamically control the translation of the proteome in time and space. We further discuss the implications of this form of gene expression regulation for a growing number of human genetic disorders associated with mutations in the translation machinery.
Collapse
Affiliation(s)
- Naomi R Genuth
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Maria Barna
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Jeffery CJ. An enzyme in the test tube, and a transcription factor in the cell: Moonlighting proteins and cellular factors that affect their behavior. Protein Sci 2019; 28:1233-1238. [PMID: 31087733 PMCID: PMC6566513 DOI: 10.1002/pro.3645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/10/2019] [Indexed: 01/05/2023]
Abstract
In the cell, expression levels, allosteric modulators, post-translational modifications, sequestration, and other factors can affect the level of protein function. For moonlighting proteins, cellular factors like these can also affect the kind of protein function. This minireview discusses examples of moonlighting proteins that illustrate how a single protein can have different functions in different cell types, in different intracellular locations, or under varying cellular conditions. This variability in the kind of protein activity, added to the variability in the amount of protein activity, contributes to the difficulty in predicting the behavior of proteins in the cell.
Collapse
Affiliation(s)
- Constance J. Jeffery
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinois60607
| |
Collapse
|
20
|
Emmott E, Jovanovic M, Slavov N. Ribosome Stoichiometry: From Form to Function. Trends Biochem Sci 2019; 44:95-109. [PMID: 30473427 PMCID: PMC6340777 DOI: 10.1016/j.tibs.2018.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/27/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
Abstract
The existence of eukaryotic ribosomes with distinct ribosomal protein (RP) stoichiometry and regulatory roles in protein synthesis has been speculated for over 60 years. Recent advances in mass spectrometry (MS) and high-throughput analysis have begun to identify and characterize distinct ribosome stoichiometry in yeast and mammalian systems. In addition to RP stoichiometry, ribosomes host a vast array of protein modifications, effectively expanding the number of human RPs from 80 to many thousands of distinct proteoforms. Is it possible that these proteoforms combine to function as a 'ribosome code' to tune protein synthesis? We outline the specific benefits that translational regulation by specialized ribosomes can offer and discuss the means and methodologies available to correlate and characterize RP stoichiometry with function. We highlight previous research with a focus on formulating hypotheses that can guide future experiments and crack the ribosome code.
Collapse
Affiliation(s)
- Edward Emmott
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
21
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
22
|
Burgos-Ramos E, Canelles S, Rodríguez A, Frago LM, Gómez-Ambrosi J, Chowen JA, Frühbeck G, Argente J, Barrios V. The increase in fiber size in male rat gastrocnemius after chronic central leptin infusion is related to activation of insulin signaling. Mol Cell Endocrinol 2018; 470:48-59. [PMID: 28962893 DOI: 10.1016/j.mce.2017.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023]
Abstract
Insulin potentiates leptin effects on muscle accrual and glucose homeostasis. However, the relationship between leptin's central effects on peripheral insulin sensitivity and the associated structural changes remain unclear. We hypothesized that central leptin infusion modifies muscle size through activation of insulin signaling. Muscle insulin signaling, enzymes of fatty acid metabolism, mitochondrial respiratory chain complexes, proliferating cell nuclear antigen (PCNA) and fiber area were analyzed in the gastrocnemius of chronic central infused (L), pair-fed (PF) and control rats. PCNA-positive nuclei, fiber area, GLUT4 and glycogen levels and activation of Akt and mechanistic target of rapamycin were increased in L, with no changes in PF. Acetyl-CoA carboxylase-β mRNA levels and non-esterified fatty acid and triglyceride content were reduced and carnitine palmitoyltransferase-1b expression and mitochondrial complexes augmented in L. These results suggest that leptin promotes an increase in muscle size associated with improved insulin signaling favored by lipid profile.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Área de Bioquímica, Facultad de Ciencias Ambientales y Bioquímica, Universidad Castilla-La Mancha, E-45071, Toledo, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Amaia Rodríguez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain; IMDEA Food Institute, CEI UAM + CSIC, E-28049, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain.
| |
Collapse
|
23
|
Leal-Sena JA, Dos Santos JL, Dos Santos TAR, de Andrade EM, de Oliveira Mendes TA, Santana JO, Mineo TWP, Mineo JR, da Cunha-Júnior JP, Pirovani CP. Toxoplasma gondii antigen SAG2A differentially modulates IL-1β expression in resistant and susceptible murine peritoneal cells. Appl Microbiol Biotechnol 2018; 102:2235-2249. [PMID: 29353306 DOI: 10.1007/s00253-018-8759-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
The cell surface of Toxoplasma gondii is covered by antigens (SAGs) from the SRS family anchored by glycosylphosphatidylinositol (GPI) and includes antigens from the SAG2 family. Among these, the SAG2A surface antigen shows great potential in activating humoral responses and has been used in characterizing the acute phase of infection and in the serological diagnosis of toxoplasmosis. In this study, we aimed to evaluate rSAG2A-induced proteins in BALB/c and C57BL/c mice macrophages and to evaluate the phenotypic polarization induced in the process. We treated the peritoneal macrophages from mouse strains that were resistant or susceptible to T. gondii with rSAG2A to analyze their proteomic profile by mass spectrometry and systems biology. We also examined the gene expression of these cells by RT-qPCR using the phenotypic markers of M1 and M2 macrophages. Differences were observed in the expression of proteins involved in the inflammatory process in both resistant and susceptible cells, and macrophages were preferentially induced to obtain a pro-inflammatory immune response (M1) via the overexpression of IL-1β in mice susceptible to this parasite. These data suggest that the SAG2A antigen induces phenotypic and classical activation of macrophages in both resistant and susceptible strains of mice during the acute phase of the disease.
Collapse
Affiliation(s)
| | - Jane Lima Dos Santos
- Biothecnology and Genetic Center, State University of Santa Cruz, Ilhéus, BA, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Arif A, Yao P, Terenzi F, Jia J, Ray PS, Fox PL. The GAIT translational control system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29152905 PMCID: PMC5815886 DOI: 10.1002/wrna.1441] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
The interferon (IFN)‐γ‐activated inhibitor of translation (GAIT) system directs transcript‐selective translational control of functionally related genes. In myeloid cells, IFN‐γ induces formation of a multiprotein GAIT complex that binds structural GAIT elements in the 3′‐untranslated regions (UTRs) of multiple inflammation‐related mRNAs, including ceruloplasmin and VEGF‐A, and represses their translation. The human GAIT complex is a heterotetramer containing glutamyl‐prolyl tRNA synthetase (EPRS), NS1‐associated protein 1 (NSAP1), ribosomal protein L13a (L13a), and glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). A network of IFN‐γ‐stimulated kinases regulates recruitment and assembly of GAIT complex constituents. Activation of cyclin‐dependent kinase 5 (Cdk5), mammalian target of rapamycin complex 1 (mTORC1), and S6K1 kinases induces EPRS release from its parental multiaminoacyl tRNA synthetase complex to join NSAP1 in a ‘pre‐GAIT’ complex. Subsequently, the DAPK‐ZIPK kinase axis phosphorylates L13a, inducing release from the 60S ribosomal subunit and binding to GAPDH. The subcomplexes join to form the functional GAIT complex. Each constituent has a distinct role in the GAIT system. EPRS binds the GAIT element in target mRNAs, NSAP1 negatively regulates mRNA binding, L13a binds eIF4G to block ribosome recruitment, and GAPDH shields L13a from proteasomal degradation. The GAIT system is susceptible to genetic and condition‐specific regulation. An N‐terminus EPRS truncate is a dominant‐negative inhibitor ensuring a ‘translational trickle’ of target transcripts. Also, hypoxia and oxidatively modified lipoproteins regulate GAIT activity. Mouse models exhibiting absent or genetically modified GAIT complex constituents are beginning to elucidate the physiological role of the GAIT system, particularly in the resolution of chronic inflammation. Finally, GAIT‐like systems in proto‐chordates suggests an evolutionarily conserved role of the pathway in innate immunity. WIREs RNA 2018, 9:e1441. doi: 10.1002/wrna.1441 This article is categorized under:
Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Riboswitches
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
25
|
Thiel CS, Huge A, Hauschild S, Tauber S, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Layer LE, Ullrich O. Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4. NPJ Microgravity 2017; 3:22. [PMID: 28868355 PMCID: PMC5579209 DOI: 10.1038/s41526-017-0028-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5, GAPDH, HPRT1, PLA2G4A, and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10-4 and 9 g), 20-40% remained unchanged in microgravity (between 10-4 and 10-2 g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, D-48149 Muenster, Germany
| | - Swantje Hauschild
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, D-06905 Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, D-06905 Bad Schmiedeberg, Germany.,Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| | - Burkhard Schmitz
- Airbus Defence and Space, Airbus DS GmbH, D-28199 Bremen, Germany
| | - Andreas Schütte
- Airbus Defence and Space, Airbus DS GmbH, D-28199 Bremen, Germany
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Space Life Sciences, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
26
|
Complementary transcriptomic and proteomic analyses reveal regulatory mechanisms of milk protein production in dairy cows consuming different forages. Sci Rep 2017; 7:44234. [PMID: 28290485 PMCID: PMC5349593 DOI: 10.1038/srep44234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
Forage plays a critical role in the milk production of dairy cows; however, the mechanisms regulating bovine milk synthesis in dairy cows fed high forage rations with different basal forage types are not well-understood. In the study, rice straw (RS, low-quality) and alfalfa hay (AH, high-quality) diets were fed to lactating cows to explore how forage quality affected the molecular mechanisms regulating milk production using RNA-seq transcriptomic method with iTRAQ proteomic technique. A total of 554 transcripts (423 increased and 131 decreased) and 517 proteins (231 up-regulated and 286 down-regulated) were differentially expressed in the mammary glands of the two groups. The correlation analysis demonstrated seven proteins (six up-regulated and one down-regulated) had consistent mRNA expression. Functional analysis of the differentially expressed transcripts/proteins suggested that enhanced capacity for energy and fatty acid metabolism, increased protein degradation, reduced protein synthesis, decreased amino acid metabolism and depressed cell growth were related to RS consumption. The results indicated cows consuming RS diets may have had depressed milk protein synthesis because these animals had decreased capacity for protein synthesis, enhanced proteolysis, inefficient energy generation and reduced cell growth. Additional work evaluating RS- and AH-based rations may help better isolate molecular adaptations to low nutrient availability during lactation.
Collapse
|
27
|
Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int J Mol Sci 2017; 18:ijms18010140. [PMID: 28085118 PMCID: PMC5297773 DOI: 10.3390/ijms18010140] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The nucleolus is the site of ribosome biogenesis, a complex process that requires the coordinate activity of all three RNA polymerases and hundreds of non-ribosomal factors that participate in the maturation of ribosomal RNA (rRNA) and assembly of small and large subunits. Nevertheless, emerging studies have highlighted the fundamental role of the nucleolus in sensing a variety of cellular stress stimuli that target ribosome biogenesis. This condition is known as nucleolar stress and triggers several response pathways to maintain cell homeostasis, either p53-dependent or p53-independent. The mouse double minute (MDM2)-p53 stress signaling pathways are activated by multiple signals and are among the most important regulators of cellular homeostasis. In this review, we will focus on the role of ribosomal proteins in p53-dependent and p53-independent response to nucleolar stress considering novel identified regulators of these pathways. We describe, in particular, the role of ribosomal protein uL3 (rpL3) in p53-independent nucleolar stress signaling pathways.
Collapse
|
28
|
The importance of being (slightly) modified: The role of rRNA editing on gene expression control and its connections with cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:330-338. [PMID: 27815156 DOI: 10.1016/j.bbcan.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/12/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
In human ribosomal RNAs, over 200 residues are modified by specific, RNA-driven enzymatic complexes or stand-alone, RNA-independent enzymes. In most cases, modification sites are placed in specific positions within important functional areas of the ribosome. Some evidence indicates that the altered control in ribosomal RNA modifications may affect ribosomal function during mRNA translation. Here we provide an overview of the connections linking ribosomal RNA modifications to ribosome function, and suggest how aberrant modifications may affect the control of the expression of key cancer genes, thus contributing to tumor development. In addition, the future perspectives in this field are discussed.
Collapse
|
29
|
Abstract
In multicellular organisms, the epithelia is a contact surface with the surrounding environment and is exposed to a variety of adverse biotic (pathogenic) and abiotic (chemical) factors. Multi-layered pathways that operate on different time scales have evolved to preserve cellular integrity and elicit stress-specific response. Several stress-response programs are activated until a complete elimination of the stress is achieved. The innate immune response, which is triggered by pathogenic invasion, is rather harmful when active over a prolonged time, thus the response follows characteristic oscillatory trajectories. Here, we review different translation programs that function to precisely fine-tune the time at which various components of the innate immune response dwell between active and inactive. We discuss how different pro-inflammatory pathways are co-ordinated to temporally offset single reactions and to achieve an optimal balance between fighting pathogens and being less harmful for healthy cells.
Collapse
|
30
|
Espinar-Marchena FJ, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Pevida A, Babiano R, de la Cruz J. Role of the yeast ribosomal protein L16 in ribosome biogenesis. FEBS J 2016; 283:2968-85. [PMID: 27374275 DOI: 10.1111/febs.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Most ribosomal proteins play essential roles in ribosome synthesis and function. In this study, we have analysed the contribution of yeast ribosomal protein L16 to ribosome biogenesis. We show that in vivo depletion of the essential L16 protein results in a deficit in 60S subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability and rapid turnover of early and intermediate pre-60S particles, as evidenced by the reduced steady-state levels of 27SBS and 7SL /S pre-rRNA, and the low amounts of de novo synthesized 27S pre-rRNA and 25S rRNA. Additionally, depletion of L16 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we show that L16 assembles in the nucleolus and binds to early 90S preribosomal particles. Many evolutionarily conserved ribosomal proteins possess extra eukaryote-specific amino- or carboxy-terminal extensions and/or internal loops. Here, we have also investigated the role of the eukaryote-specific carboxy-terminal extension of L16. Progressive truncation of this extension recapitulates, albeit to a lesser extent, the growth and ribosome biogenesis defects of the L16 depletion. We conclude that L16 assembly is a prerequisite to properly stabilize rRNA structures within early pre-60S particles, thereby favouring efficient 27S pre-rRNA processing within the internal transcribed spacer 1 at sites A3 and B1 . Upon depletion of L16, the lack of this stabilization aborts early pre-60S particle assembly and subjects these intermediates to turnover.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| |
Collapse
|
31
|
Deffrasnes C, Marsh GA, Foo CH, Rootes CL, Gould CM, Grusovin J, Monaghan P, Lo MK, Tompkins SM, Adams TE, Lowenthal JW, Simpson KJ, Stewart CR, Bean AGD, Wang LF. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection. PLoS Pathog 2016; 12:e1005478. [PMID: 27010548 PMCID: PMC4806981 DOI: 10.1371/journal.ppat.1005478] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/08/2016] [Indexed: 12/16/2022] Open
Abstract
Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections. The henipaviruses Hendra and Nipah are bat-borne paramyxoviruses that are highly pathogenic in humans. The need for high biocontainment when studying Hendra and Nipah virus biology has hindered the development of therapeutics and knowledge of the viral infection cycle. This study describes a genome-wide functional genomics screen of human host genes required for henipavirus infection, to our knowledge the first such study conducted at biosafety level 4. Our study demonstrates that henipavirus infection is critically reliant on fibrillarin, a methyltransferase enzyme residing in the cell nucleolus. Despite henipavirus genome replication occurring in the cytoplasm of infected cells, viral RNA synthesis was greatly impaired in cells lacking fibrillarin. Furthermore during the early stages of infection the Hendra virus matrix protein shuttles to the nucleolus and binds fibrillarin. Collectively these results suggest a hitherto unappreciated role for nucleolar host-virus interactions in the early replication phase of henipavirus infection. Finally, mutating the catalytic activity of fibrillarin inhibits henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections.
Collapse
Affiliation(s)
- Celine Deffrasnes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Chwan Hong Foo
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Christina L. Rootes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cathryn M. Gould
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | - Paul Monaghan
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Michael K. Lo
- Centers for Disease Control & Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, United States of America
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America, and School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - John W. Lowenthal
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America, and School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Cameron R. Stewart
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail:
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Lin-Fa Wang
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
32
|
A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei. Sci Rep 2016; 6:21438. [PMID: 26888608 PMCID: PMC4757839 DOI: 10.1038/srep21438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Most eukaryotic ribosomes contain 26/28S, 5S, and 5.8S large subunit ribosomal RNAs (LSU rRNAs) in addition to the 18S rRNA of the small subunit (SSU rRNA). However, in kinetoplastids, a group of organisms that include medically important members of the genus Trypanosoma and Leishmania, the 26/28S large subunit ribosomal RNA is uniquely composed of 6 rRNA fragments. In addition, recent studies have shown the presence of expansion segments in the large ribosomal subunit (60S) of Trypanosoma brucei. Given these differences in structure, processing and assembly, T. brucei ribosomes may require biogenesis factors not found in other organisms. Here, we show that one of two putative 3-methylcytidine methyltransferases, TbMTase37 (a homolog of human methyltransferase-like 6, METTL6), is important for ribosome stability in T. brucei. TbMTase37 localizes to the nucleolus and depletion of the protein results in accumulation of ribosomal particles lacking srRNA 4 and reduced levels of polysome associated ribosomes. We also find that TbMTase37 plays a role in cytokinesis, as loss of the protein leads to multi-flagellated and multi-nucleated cells.
Collapse
|
33
|
Dinman JD. Pathways to Specialized Ribosomes: The Brussels Lecture. J Mol Biol 2016; 428:2186-94. [PMID: 26764228 DOI: 10.1016/j.jmb.2015.12.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
"Specialized ribosomes" is a topic of intense debate and research whose provenance can be traced to the earliest days of molecular biology. Here, the history of this idea is reviewed, and critical literature in which the specialized ribosomes have come to be presently defined is discussed. An argument supporting the evolution of a variety of ribosomes with specialized functions as a consequence of selective pressures acting on a near-infinite set of possible ribosomes is presented, leading to a discussion of how this may also serve as a biological buffering mechanism. The possible relationship between specialized ribosomes and human health is explored. A set of criteria and possible approaches are also presented to help guide the definitive identification of "specialized" ribosomes, and this is followed by a discussion of how synthetic biology approaches might be used to create new types of special ribosomes.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, MD 20742, USA.
| |
Collapse
|
34
|
Ohmayer U, Gil-Hernández Á, Sauert M, Martín-Marcos P, Tamame M, Tschochner H, Griesenbeck J, Milkereit P. Studies on the Coordination of Ribosomal Protein Assembly Events Involved in Processing and Stabilization of Yeast Early Large Ribosomal Subunit Precursors. PLoS One 2015; 10:e0143768. [PMID: 26642313 PMCID: PMC4671574 DOI: 10.1371/journal.pone.0143768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022] Open
Abstract
Cellular production of ribosomes involves the formation of highly defined interactions between ribosomal proteins (r-proteins) and ribosomal RNAs (rRNAs). Moreover in eukaryotic cells, efficient ribosome maturation requires the transient association of a large number of ribosome biogenesis factors (RBFs) with newly forming ribosomal subunits. Here, we investigated how r-protein assembly events in the large ribosomal subunit (LSU) rRNA domain II are coordinated with each other and with the association of RBFs in early LSU precursors of the yeast Saccharomyces cerevisiae. Specific effects on the pre-ribosomal association of RBFs could be observed in yeast mutants blocked in LSU rRNA domain II assembly. Moreover, formation of a cluster of r-proteins was identified as a downstream event in LSU rRNA domain II assembly. We analyzed in more detail the functional relevance of eukaryote specific bridges established by this r-protein cluster between LSU rRNA domain II and VI and discuss how they can support the stabilization and efficient processing of yeast early LSU precursor RNAs.
Collapse
Affiliation(s)
- Uli Ohmayer
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Álvaro Gil-Hernández
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Martina Sauert
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Pilar Martín-Marcos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Salamanca, Spain
- * E-mail: (MT); (HT); (JG); (PM)
| | - Herbert Tschochner
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (MT); (HT); (JG); (PM)
| | - Joachim Griesenbeck
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (MT); (HT); (JG); (PM)
| | - Philipp Milkereit
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (MT); (HT); (JG); (PM)
| |
Collapse
|
35
|
Abstract
Among the multiple modes of regulation of gene expression, translational control is arguably the least investigated and understood, and its role in vascular biology and pathobiology is not an exception. Here, we review recent studies that have revealed exciting translational regulatory phenomena and mechanisms involving novel RNA binding proteins and microRNA machinery in vascular biology. From these studies, the importance of translational regulation in angiogenesis, atherosclerosis, and blood pressure maintenance is beginning to emerge. We believe that the recent development of powerful techniques such as ribosome profiling and translating ribosome affinity purification (TRAP) will motivate and facilitate additional research in these areas.
Collapse
|
36
|
L13a-dependent translational control in macrophages limits the pathogenesis of colitis. Cell Mol Immunol 2015; 13:816-827. [PMID: 26166763 DOI: 10.1038/cmi.2015.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022] Open
Abstract
Sustained inflammation from infiltrated immune cells plays a pivotal role in the pathogenesis of ulcerative colitis (UC). Previously, we established the role of ribosomal protein L13a in the regulation of an inflammation-responsive post-transcriptional operon in myeloid cells. However, the role of this protein as a molecular cue to control the severity of colitis is not known. Here, we examined whether L13a-dependent translational control in macrophages could serve as an endogenous defense against colitis. The administration of dextran sodium sulfate induced experimental colitis in myeloid-specific L13a-knockout (KO) and control mice. Pathological scoring and injury to the colon mucosa evaluated the severity of colitis. The steady-state levels of several pro-inflammatory cytokines and chemokines were determined through ELISA and polyribosome profile analysis. Rapid weight loss, severe rectal bleeding, shortening of the colon, and significantly reduced survival rate were observed in the KO mice. Histopathological analysis of the colons of KO mice showed a severe disruption of epithelial crypts with immune cell infiltrates. Elevated levels of several inflammatory cytokines and chemokines and abrogation of their naturally imposed translational silencing were observed in the colons of the KO mice. Higher serum levels of several pro-inflammatory cytokines and the release of gut bacteria and endotoxins into the blood streams of KO mice were detected, suggesting the amplification of the inflammatory response to septicemia. Taken together, these results reveal an essential role for L13a in the endogenous protection against UC and demonstrate the potential for new therapeutic opportunities through the deliberate promotion of this mechanism.
Collapse
|
37
|
Penzo M, Rocchi L, Brugiere S, Carnicelli D, Onofrillo C, Couté Y, Brigotti M, Montanaro L. Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation. FASEB J 2015; 29:3472-82. [PMID: 25934701 DOI: 10.1096/fj.15-270991] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022]
Abstract
Dyskerin is a pseudouridine (ψ) synthase involved in fundamental cellular processes including uridine modification in rRNA and small nuclear RNA and telomere stabilization. Dyskerin functions are altered in X-linked dyskeratosis congenita (X-DC) and cancer. Dyskerin's role in rRNA pseudouridylation has been suggested to underlie the alterations in mRNA translation described in cells lacking dyskerin function, although relevant direct evidences are currently lacking. Our purpose was to establish definitely whether defective dyskerin function might determine an intrinsic ribosomal defect leading to an altered synthetic activity. Therefore, ribosomes from dyskerin-depleted human cells were purified and 1) added to a controlled reticulocyte cell-free system devoid of ribosomes to study mRNA translation; 2) analyzed for protein contamination and composition by mass spectrometry, 3) analyzed for global pseudouridylation levels. Ribosomes purified from dyskerin-depleted cells showed altered translational fidelity and internal ribosome entry site (IRES)-mediated translation. These ribosomes displayed reduced uridine modification, whereas they were not different in terms of protein contamination or ribosomal protein composition with respect to ribosomes from matched control cells with full dyskerin activity. In conclusion, lack of dyskerin function in human cells induces a defect in rRNA uridine modification, which is sufficient to alter ribosome activity.
Collapse
Affiliation(s)
- Marianna Penzo
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Laura Rocchi
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Sabine Brugiere
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Domenica Carnicelli
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Carmine Onofrillo
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Yohann Couté
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Maurizio Brigotti
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Lorenzo Montanaro
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| |
Collapse
|
38
|
Wolff KA, de la Peña AH, Nguyen HT, Pham TH, Amzel LM, Gabelli SB, Nguyen L. A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog 2015; 11:e1004839. [PMID: 25884716 PMCID: PMC4401782 DOI: 10.1371/journal.ppat.1004839] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/27/2015] [Indexed: 01/31/2023] Open
Abstract
Survival of M. tuberculosis in host macrophages requires the eukaryotic-type protein kinase G, PknG, but the underlying mechanism has remained unknown. Here, we show that PknG is an integral component of a novel redox homeostaticsystem, RHOCS, which includes the ribosomal protein L13 and RenU, a Nudix hydrolase encoded by a gene adjacent to pknG. Studies in M. smegmatis showed that PknG expression is uniquely induced by NADH, which plays a key role in metabolism and redox homeostasis. In vitro, RenU hydrolyses FAD, ADP-ribose and NADH, but not NAD+. Absence of RHOCS activities in vivo causes NADH and FAD accumulation, and increased susceptibility to oxidative stress. We show that PknG phosphorylates L13 and promotes its cytoplasmic association with RenU, and the phosphorylated L13 accelerates the RenU-catalyzed NADH hydrolysis. Importantly, interruption of RHOCS leads to impaired mycobacterial biofilms and reduced survival of M. tuberculosis in macrophages. Thus, RHOCS represents a checkpoint in the developmental program required for mycobacterial growth in these environments. Nearly one-third of the world’s population is infected with Mycobacterium tuberculosis (Mtb), the causative agent of TB. A key factor that contributes to the widespread infection of Mtb is its capacity to survive inside the host macrophage. Understanding how Mtb withstands the hostile intracellular environment of this phagocytic cell may reveal targets for development of therapeutics that enhance the innate anti-Mtb activities of the macrophage. We discovered a novel signaling pathway in mycobacteria which regulates cellular redox homeostasis through NADH and FAD, regulators of metabolism and redox balance. NADH induces the expression of a protein kinase, PknG, which then phosphorylates the ribosomal protein L13 and promotes its presence in the cytoplasm. L13 therein forms a complex with RenU, a Nudix (Nucleoside diphosphate linked moiety X) hydrolase that degrades NADH and FAD. Genetic disruption of this signaling cascade leads to cellular accumulation of these molecules, increased mycobacterial sensitivity to oxidative stress, impaired surface biofilm growth, and most importantly, reduced survival of Mtb in macrophages.
Collapse
Affiliation(s)
- Kerstin A. Wolff
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Andres H. de la Peña
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hoa T. Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thanh H. Pham
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Xue S, Tian S, Fujii K, Kladwang W, Das R, Barna M. RNA regulons in Hox 5' UTRs confer ribosome specificity to gene regulation. Nature 2015; 517:33-8. [PMID: 25409156 PMCID: PMC4353651 DOI: 10.1038/nature14010] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Emerging evidence suggests that the ribosome has a regulatory function in directing how the genome is translated in time and space. However, how this regulation is encoded in the messenger RNA sequence remains largely unknown. Here we uncover unique RNA regulons embedded in homeobox (Hox) 5' untranslated regions (UTRs) that confer ribosome-mediated control of gene expression. These structured RNA elements, resembling viral internal ribosome entry sites (IRESs), are found in subsets of Hox mRNAs. They facilitate ribosome recruitment and require the ribosomal protein RPL38 for their activity. Despite numerous layers of Hox gene regulation, these IRES elements are essential for converting Hox transcripts into proteins to pattern the mammalian body plan. This specialized mode of IRES-dependent translation is enabled by an additional regulatory element that we term the translation inhibitory element (TIE), which blocks cap-dependent translation of transcripts. Together, these data uncover a new paradigm for ribosome-mediated control of gene expression and organismal development.
Collapse
Affiliation(s)
- Shifeng Xue
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
40
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
UNLABELLED We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3'untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. IMPORTANCE The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal protein L13a is released from the large ribosomal subunit soon after infection and inhibits the translation of a specific viral mRNA, namely, that of the matrix protein M. Regarding its mechanism, we show that the recognition of a specific secondary structure in the 3' untranslated region of the M mRNA leads to translational arrest of the mRNA. We also show that the level of M protein in the infected cell is rate limiting for viral morphogenesis, providing a rationale for L13a to target the M mRNA for suppression of RSV growth. Translational silencing of a viral mRNA by a deployed ribosomal protein is a new paradigm in innate immunity.
Collapse
|
42
|
Basu A, Poddar D, Robinet P, Smith JD, Febbraio M, Baldwin WM, Mazumder B. Ribosomal protein L13a deficiency in macrophages promotes atherosclerosis by limiting translation control-dependent retardation of inflammation. Arterioscler Thromb Vasc Biol 2014; 34:533-42. [PMID: 24436370 DOI: 10.1161/atvbaha.113.302573] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Unresolved inflammatory response of macrophages plays a pivotal role in the pathogenesis of atherosclerosis. Previously we showed that ribosomal protein L13a-dependent translational silencing suppresses the synthesis of a cohort of inflammatory proteins in monocytes and macrophages. We also found that genetic abrogation of L13a expression in macrophages significantly compromised the resolution of inflammation in a mouse model of lipopolysaccharide-induced endotoxemia. However, its function in the pathogenesis of atherosclerosis is not known. Here, we examine whether L13a in macrophage has a protective role against high-fat diet-induced atherosclerosis. APPROACH AND RESULTS We bred the macrophage-specific L13a knockout mice L13a Flox(+/+) Cre(+/+) onto apolipoprotein E-deficient background and generated the experimental double knockout mice L13a Flox(+/+) Cre(+/+) apolipoprotein E deficient (apoE(-/-)). L13a Flox(+/+) Cre(-/-) mice on apolipoprotein E-deficient background were used as controls. Control and knockout mice were subjected to high-fat diet for 10 weeks. Evaluation of aortic sinus sections and entire aorta by en face showed significantly higher atherosclerosis in the knockout mice. Severity of atherosclerosis in knockout mice was accompanied by thinning of the smooth muscle cell layer in the media, larger macrophage area in the intimal plaque region and higher plasma levels of inflammatory cytokines. In addition, macrophages isolated from knockout mice had higher polyribosomal abundance of several target mRNAs, thus showing defect in translation control. CONCLUSIONS Our data demonstrate that loss of L13a in macrophages increases susceptibility to atherosclerosis in apolipoprotein E-deficient mice, revealing an important role of L13a-dependent translational control as an endogenous protection mechanism against atherosclerosis.
Collapse
Affiliation(s)
- Abhijit Basu
- From the Department of Biology, Geology, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH (A.B., D.P., B.M.); Department of Cellular and Molecular Medicine (P.R., J.D.S.), Department of Immunology (W.M.B.), and Department of Molecular Cardiology (M.F), Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | | | | | | | | | | | | |
Collapse
|
43
|
Marcel V, Ghayad S, Belin S, Therizols G, Morel AP, Solano-Gonzàlez E, Vendrell J, Hacot S, Mertani H, Albaret M, Bourdon JC, Jordan L, Thompson A, Tafer Y, Cong R, Bouvet P, Saurin JC, Catez F, Prats AC, Puisieux A, Diaz JJ. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 2013; 24:318-30. [PMID: 24029231 PMCID: PMC7106277 DOI: 10.1016/j.ccr.2013.08.013] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/08/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023]
Abstract
Ribosomes are specialized entities that participate in regulation of gene expression through their rRNAs carrying ribozyme activity. Ribosome biogenesis is overactivated in p53-inactivated cancer cells, although involvement of p53 on ribosome quality is unknown. Here, we show that p53 represses expression of the rRNA methyl-transferase fibrillarin (FBL) by binding directly to FBL. High levels of FBL are accompanied by modifications of the rRNA methylation pattern, impairment of translational fidelity, and an increase of internal ribosome entry site (IRES)-dependent translation initiation of key cancer genes. FBL overexpression contributes to tumorigenesis and is associated with poor survival in patients with breast cancer. Thus, p53 acts as a safeguard of protein synthesis by regulating FBL and the subsequent quality and intrinsic activity of ribosomes.
Collapse
Affiliation(s)
- Virginie Marcel
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Sandra E. Ghayad
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Stéphane Belin
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Gabriel Therizols
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Anne-Pierre Morel
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Eduardo Solano-Gonzàlez
- Université de Toulouse, UPS, TRADGENE, EA4554, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès, BP 84225, F-31432 Toulouse, France
| | - Julie A. Vendrell
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
- Dundee Cancer Centre, Clinical Research Centre, University of Dundee, Dundee DD1 9SY, UK
| | - Sabine Hacot
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Hichem C. Mertani
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Marie Alexandra Albaret
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | | | - Lee Jordan
- Department of Pathology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Alastair Thompson
- Dundee Cancer Centre, Clinical Research Centre, University of Dundee, Dundee DD1 9SY, UK
| | - Yasmine Tafer
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Rong Cong
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS USR 3010, SFR BioSciences UMS3444, Lyon 69364, France
| | - Philippe Bouvet
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS USR 3010, SFR BioSciences UMS3444, Lyon 69364, France
| | - Jean-Christophe Saurin
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- Gastroenterology Unit, Édouard Herriot Hospital, Hospices Civils de Lyon, 69002 Lyon, France
| | - Frédéric Catez
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Anne-Catherine Prats
- Université de Toulouse, UPS, TRADGENE, EA4554, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès, BP 84225, F-31432 Toulouse, France
| | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- Corresponding author
| |
Collapse
|
44
|
Rocchi L, Pacilli A, Sethi R, Penzo M, Schneider RJ, Treré D, Brigotti M, Montanaro L. Dyskerin depletion increases VEGF mRNA internal ribosome entry site-mediated translation. Nucleic Acids Res 2013; 41:8308-18. [PMID: 23821664 PMCID: PMC3783170 DOI: 10.1093/nar/gkt587] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dyskerin is a nucleolar protein encoded by the DKC1 gene that (i) stabilizes the RNA component of the telomerase complex, and (ii) drives the site-specific pseudouridilation of rRNA. It is known that the partial lack of dyskerin function causes a defect in the translation of a subgroup of mRNAs containing internal ribosome entry site (IRES) elements such as those encoding for the tumor suppressors p27 and p53. In this study, we aimed to analyze what is the effect of the lack of dyskerin on the IRES-mediated translation of mRNAs encoding for vascular endothelial growth factor (VEGF). We transiently reduced dyskerin expression and measured the levels of the IRES-mediated translation of the mRNA encoding for VEGF in vitro in transformed and primary cells. We demonstrated a significant increase in the VEGF IRES-mediated translation after dyskerin knock-down. This translational modulation induces an increase in VEGF production in the absence of a significant upregulation in VEGF mRNA levels. The analysis of a list of viral and cellular IRESs indicated that dyskerin depletion can differentially affect IRES-mediated translation. These results indicate for the first time that dyskerin inhibition can upregulate the IRES translation initiation of specific mRNAs.
Collapse
Affiliation(s)
- Laura Rocchi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-Universita' di Bologna, Bologna 40126, Italy, Centro Interdipartimentale di Ricerche sul Cancro 'Giorgio Prodi'-CIRC, Alma Mater Studiorum-Universita' di Bologna 40138, Italy and Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Insights into the mechanism of ribosomal incorporation of mammalian L13a protein during ribosome biogenesis. Mol Cell Biol 2013; 33:2829-42. [PMID: 23689135 DOI: 10.1128/mcb.00250-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.
Collapse
|
46
|
Poddar D, Basu A, Baldwin WM, Kondratov RV, Barik S, Mazumder B. An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:3600-12. [PMID: 23460747 DOI: 10.4049/jimmunol.1201933] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammation is an obligatory attempt of the immune system to protect the host from infections. However, unregulated synthesis of proinflammatory products can have detrimental effects. Although mechanisms that lead to inflammation are well appreciated, those that restrain it are not adequately understood. Creating macrophage-specific L13a-knockout mice, we report that depletion of ribosomal protein L13a abrogates the endogenous translation control of several chemokines in macrophages. Upon LPS-induced endotoxemia, these animals displayed symptoms of severe inflammation caused by widespread infiltration of macrophages in major organs causing tissue injury and reduced survival rates. Macrophages from these knockout animals show unregulated expression of several chemokines (e.g., CXCL13, CCL22, CCL8, and CCR3). These macrophages failed to show L13a-dependent RNA binding complex formation on target mRNAs. In addition, increased polyribosomal abundance of these mRNAs shows a defect in translation control in the macrophages. Thus, to our knowledge, our studies provide the first evidence of an essential extraribosomal function of ribosomal protein L13a in resolving physiological inflammation in a mammalian host.
Collapse
Affiliation(s)
- Darshana Poddar
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ruggero D. Translational control in cancer etiology. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012336. [PMID: 22767671 DOI: 10.1101/cshperspect.a012336] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The link between perturbations in translational control and cancer etiology is becoming a primary focus in cancer research. It has now been established that genetic alterations in several components of the translational apparatus underlie spontaneous cancers as well as an entire class of inherited syndromes known as "ribosomopathies" associated with increased cancer susceptibility. These discoveries have illuminated the importance of deregulations in translational control to very specific cellular processes that contribute to cancer etiology. In addition, a growing body of evidence supports the view that deregulation of translational control is a common mechanism by which diverse oncogenic pathways promote cellular transformation and tumor development. Indeed, activation of these key oncogenic pathways induces rapid and dramatic translational reprogramming both by increasing overall protein synthesis and by modulating specific mRNA networks. These translational changes promote cellular transformation, impacting almost every phase of tumor development. This paradigm represents a new frontier in the multihit model of cancer formation and offers significant promise for innovative cancer therapies. Current research, in conjunction with cutting edge technologies, will further enable us to explore novel mechanisms of translational control, functionally identify translationally controlled mRNA groups, and unravel their impact on cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Cancer Center, School of Medicine, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
48
|
Contreras E, Rausell C, Real MD. Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains. PLoS One 2013; 8:e55330. [PMID: 23372850 PMCID: PMC3555829 DOI: 10.1371/journal.pone.0055330] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/21/2012] [Indexed: 12/16/2022] Open
Abstract
Susceptibility of Tribolium castaneum (Tc) larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50) values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively). Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18) and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II). Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge on how insects respond to Bt intoxication will allow designing more effective management strategies for pest control.
Collapse
Affiliation(s)
- Estefanía Contreras
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Carolina Rausell
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
- * E-mail:
| | - M. Dolores Real
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
49
|
Robinson KG, Nie T, Baldwin A, Yang E, Kiick KL, Akins RE. Differential effects of substrate modulus on human vascular endothelial, smooth muscle, and fibroblastic cells. J Biomed Mater Res A 2012; 100:1356-67. [PMID: 22374788 PMCID: PMC3351091 DOI: 10.1002/jbm.a.34075] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 12/18/2022]
Abstract
Regenerative medicine approaches offer attractive alternatives to standard vascular reconstruction; however, the biomaterials to be used must have optimal biochemical and mechanical properties. To evaluate the effects of biomaterial properties on vascular cells, heparinized poly(ethylene glycol) (PEG)-based hydrogels of three different moduli, 13.7, 5.2, and 0.3 kPa, containing fibronectin and growth factor were utilized to support the growth of three human vascular cell types. The cell types exhibited differences in attachment, proliferation, and gene expression profiles associated with the hydrogel modulus. Human vascular smooth muscle cells demonstrated preferential attachment on the highest-modulus hydrogel, adventitial fibroblasts demonstrated preferential growth on the highest-modulus hydrogel, and human umbilical vein endothelial cells demonstrated preferential growth on the lowest-modulus hydrogel investigated. Our studies suggest that the growth of multiple vascular cell types can be supported by PEG hydrogels and that different populations can be controlled by altering the mechanical properties of biomaterials.
Collapse
Affiliation(s)
- Karyn G. Robinson
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ting Nie
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Aaron Baldwin
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Elaine Yang
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19716, USA
| | - Robert E. Akins
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
50
|
Requirement of rRNA methylation for 80S ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol Cell Biol 2011; 31:4482-99. [PMID: 21930789 DOI: 10.1128/mcb.05804-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein syntheses mediated by cellular and viral internal ribosome entry sites (IRESs) are believed to have many features in common. Distinct mechanisms for ribosome recruitment and preinitiation complex assembly between the two processes have not been identified thus far. Here we show that the methylation status of rRNA differentially influenced the mechanism of 80S complex formation on IRES elements from the cellular sodium-coupled neutral amino acid transporter 2 (SNAT2) versus the hepatitis C virus mRNA. Translation initiation involves the assembly of the 48S preinitiation complex, followed by joining of the 60S ribosomal subunit and formation of the 80S complex. Abrogation of rRNA methylation did not affect the 48S complex but resulted in impairment of 80S complex assembly on the cellular, but not the viral, IRESs tested. Impairment of 80S complex assembly on the amino acid transporter SNAT2 IRES was rescued by purified 60S subunits containing fully methylated rRNA. We found that rRNA methylation did not affect the activity of any of the viral IRESs tested but affected the activity of numerous cellular IRESs. This work reveals a novel mechanism operating on a cohort of cellular IRESs that involves rRNA methylation for proper 80S complex assembly and efficient translation initiation.
Collapse
|