1
|
Rousseau C, Morand T, Haas G, Lauret E, Kuhn L, Chicher J, Hammann P, Meignin C. In vivo Dicer-2 interactome during viral infection reveals novel pro and antiviral factors in Drosophila melanogaster. PLoS Pathog 2025; 21:e1013093. [PMID: 40334246 PMCID: PMC12058146 DOI: 10.1371/journal.ppat.1013093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
RNA interference has a major role in the control of viral infection in insects. It is initialized by the sensing of double stranded RNA (dsRNA) by the RNAse III enzyme Dicer-2. Many in vitro studies have helped understand how Dicer-2 discriminates between different dsRNA substrate termini, however it is unclear whether the same mechanisms are at work in vivo, and notably during recognition of viral dsRNA. Indeed, although Dicer-2 associates with several dsRNA-binding proteins (dsRBPs) that can modify its specificity for a substrate, it remains unknown how Dicer-2 is able to recognize the protected termini of viral dsRNAs. In order to study how the ribonucleoprotein network of Dicer-2 impacts antiviral immunity, we used an IP-MS approach to identify in vivo interactants of different versions of GFP::Dicer-2 in transgenic lines. We provide a global overview of the partners of Dicer-2 in vivo, and reveal how this interactome is modulated by different factors such as viral infection and/or different point mutations inactivating the helicase or RNase III domains of GFP::Dicer-2. Our analysis uncovers several previously unknown Dicer-2 interactants associated with RNA granules, i.e., Me31B, Rump, eIF4E1, eIF4G1, Rin and Syncrip. Functional characterization of the candidates, both in cells and in vivo, reveals pro- and antiviral factors in the context of an infection by the picorna-like DCV virus. This work highlights protein complexes assembled around Dicer-2 in vivo, and provides a resource to investigate their contribution to antiviral RNAi and related pathways.
Collapse
Affiliation(s)
- Claire Rousseau
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| | - Thomas Morand
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| | - Gabrielle Haas
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| | - Emilie Lauret
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Université de Strasbourg, CNRS UAR1589, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, Université de Strasbourg, CNRS UAR1589, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Université de Strasbourg, CNRS UAR1589, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| |
Collapse
|
2
|
Li YC, Wang CH, Patra M, Chen YP, Yang WZ, Yuan H. Structural insights into human PNPase in health and disease. Nucleic Acids Res 2025; 53:gkaf119. [PMID: 39997218 PMCID: PMC11851098 DOI: 10.1093/nar/gkaf119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Human polynucleotide phosphorylase (hPNPase) is a 3'-to-5' exoribonuclease located in mitochondria, where it plays crucial roles in RNA degradation and RNA import. Mutations in hPNPase can impair these functions, leading to various mitochondrial dysfunctions and diseases. However, the mechanisms by which hPNPase switches between its roles as an RNA-degrading enzyme and an RNA carrier, as well as how disease-associated mutations may affect these distinct functions, remain unclear. In this study, we present cryo-electron microscopy structures of hPNPase, highlighting the flexibility of its S1 domains, which cap the ring-like RNA-degradation chamber and shift between two distinctive open and closed conformations. We further demonstrate by small-angle X-ray scattering and biochemical analyses that the disease-associated mutations P467S and G499R impair hPNPase's stem-loop RNA-binding and degradation activities by limiting the S1 domain's ability to transition from an open to closed state. Conversely, the D713Y mutation, located within the S1 domain, does not affect the RNA-binding affinity of hPNPase, but diminishes its interaction with Suv3 helicase for cooperative degradation of structured RNA. Collectively, these findings underscore the critical role of S1 domain mobility in capturing structured RNA for degradation and import, as well as its involvement in mitochondrial degradosome assembly. Our study thereby reveals the molecular mechanism of hPNPase in RNA binding and degradation, and the multiple molecular defects that could be induced by disease-linked mutations in hPNPase.
Collapse
Affiliation(s)
- Yi-Ching Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Malay Patra
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, 10048, ROC, Taiwan
| |
Collapse
|
3
|
Farahani RM. An Addendum to the Chemiosmotic Theory of Mitochondrial Activity: The Role of RNA as a Proton Sink. Biomolecules 2025; 15:87. [PMID: 39858481 PMCID: PMC11763203 DOI: 10.3390/biom15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mitochondrial ATP synthesis is driven by harnessing the electrochemical gradient of protons (proton motive force) across the mitochondrial inner membrane via the process of chemiosmosis. While there is consensus that the proton gradient is generated by components of the electron transport chain, the mechanism by which protons are supplied to ATP synthase remains controversial. As opposed to a global coupling model whereby protons diffuse into the intermembrane space, a localised coupling model predicts that protons remain closely associated with the lipid membrane prior to interaction with ATP synthase. Herein, a revised version of the chemiosmotic theory is proposed by introducing an RNA-based proton sink which aligns the release of sequestered protons to availability of ADP and Pi thereby maximising the efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Ramin M. Farahani
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- IDR/Research and Education Network, WSLHD, Westmead, NSW 2145, Australia
| |
Collapse
|
4
|
Vujovic F, Simonian M, Hughes WE, Shepherd CE, Hunter N, Farahani RM. Mitochondria facilitate neuronal differentiation by metabolising nuclear-encoded RNA. Cell Commun Signal 2024; 22:450. [PMID: 39327600 PMCID: PMC11425920 DOI: 10.1186/s12964-024-01825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation. We show that within minutes of exposure to differentiation cues and activation of the electron transport chain, the mitochondrial outer membrane transiently fuses with the nuclear membrane of neural progenitors, leading to efflux of nuclear-encoded RNAs (neRNA) into the positively charged mitochondrial intermembrane space. Subsequent degradation of mitochondrial neRNAs by Polynucleotide phosphorylase 1 (PNPase) located in the intermembrane space curbs the transcriptomic memory of progenitor cells. Further, acquisition of neRNA by mitochondria leads to a collapse of proton motive force, suppression of ATP production, and a resultant amplification of autophagic flux that attenuates proteomic memory. Collectively, these events force the progenitor cells towards a "tipping point" characterised by emergence of a competing neuronal differentiation program. It appears that neuronal differentiation is a consequence of reprogrammed coupling of metabolomic and transcriptomic landscapes of progenitor cells, with mitochondria emerging as key "reprogrammers" that operate by acquiring and metabolising neRNAs. However, the documented role of mitochondria as "reprogrammers" of differentiation remains to be validated in other neuronal lineages and in vivo.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mary Simonian
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
| | - William E Hughes
- Children's Medical Research Institute, Sydney, NSW, 2145, Australia
| | | | - Neil Hunter
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
| | - Ramin M Farahani
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Taylor AD, Hathaway QA, Kunovac A, Pinti MV, Newman MS, Cook CC, Cramer ER, Starcovic SA, Winters MT, Westemeier-Rice ES, Fink GK, Durr AJ, Rizwan S, Shepherd DL, Robart AR, Martinez I, Hollander JM. Mitochondrial sequencing identifies long noncoding RNA features that promote binding to PNPase. Am J Physiol Cell Physiol 2024; 327:C221-C236. [PMID: 38826135 PMCID: PMC11427107 DOI: 10.1152/ajpcell.00648.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Extranuclear localization of long noncoding RNAs (lncRNAs) is poorly understood. Based on machine learning evaluations, we propose a lncRNA-mitochondrial interaction pathway where polynucleotide phosphorylase (PNPase), through domains that provide specificity for primary sequence and secondary structure, binds nuclear-encoded lncRNAs to facilitate mitochondrial import. Using FVB/NJ mouse and human cardiac tissues, RNA from isolated subcellular compartments (cytoplasmic and mitochondrial) and cross-linked immunoprecipitate (CLIP) with PNPase within the mitochondrion were sequenced on the Illumina HiSeq and MiSeq, respectively. lncRNA sequence and structure were evaluated through supervised [classification and regression trees (CART) and support vector machines (SVM)] machine learning algorithms. In HL-1 cells, quantitative PCR of PNPase CLIP knockout mutants (KH and S1) was performed. In vitro fluorescence assays assessed PNPase RNA binding capacity and verified with PNPase CLIP. One hundred twelve (mouse) and 1,548 (human) lncRNAs were identified in the mitochondrion with Malat1 being the most abundant. Most noncoding RNAs binding PNPase were lncRNAs, including Malat1. lncRNA fragments bound to PNPase compared against randomly generated sequences of similar length showed stratification with SVM and CART algorithms. The lncRNAs bound to PNPase were used to create a criterion for binding, with experimental validation revealing increased binding affinity of RNA designed to bind PNPase compared to control RNA. The binding of lncRNAs to PNPase was decreased through the knockout of RNA binding domains KH and S1. In conclusion, sequence and secondary structural features identified by machine learning enhance the likelihood of nuclear-encoded lncRNAs binding to PNPase and undergoing import into the mitochondrion.NEW & NOTEWORTHY Long noncoding RNAs (lncRNAs) are relatively novel RNAs with increasingly prominent roles in regulating genetic expression, mainly in the nucleus but more recently in regions such as the mitochondrion. This study explores how lncRNAs interact with polynucleotide phosphorylase (PNPase), a protein that regulates RNA import into the mitochondrion. Machine learning identified several RNA structural features that improved lncRNA binding to PNPase, which may be useful in targeting RNA therapeutics to the mitochondrion.
Collapse
Affiliation(s)
- Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia, United States
- Department of Medical Education, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Mark V Pinti
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- West Virginia University School of Pharmacy, Morgantown, West Virginia, United States
| | - Mackenzie S Newman
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Chris C Cook
- Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Evan R Cramer
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Sarah A Starcovic
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Michael T Winters
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Cancer Institute, School of Medicine, Morgantown, West Virginia, United States
| | - Emily S Westemeier-Rice
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Cancer Institute, School of Medicine, Morgantown, West Virginia, United States
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Aaron R Robart
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Cancer Institute, School of Medicine, Morgantown, West Virginia, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
6
|
Taylor KE, Miller LG, Contreras LM. RNA-binding proteins that preferentially interact with 8-oxoG-modified RNAs: our current understanding. Biochem Soc Trans 2024; 52:111-122. [PMID: 38174726 DOI: 10.1042/bst20230254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Cells encounter a variety of stresses throughout their lifetimes. Oxidative stress can occur via a myriad of factors, including exposure to chemical toxins or UV light. Importantly, these stressors induce chemical changes (e.g. chemical modifications) to biomolecules, such as RNA. Commonly, guanine is oxidized to form 8-oxo-7,8-hydroxyguanine (8-oxoG) and this modification can disrupt a plethora of cellular processes including messenger RNA translation and stability. Polynucleotide phosphorylase (PNPase), heterogeneous nuclear ribonucleoprotein D (HNRPD/Auf1), poly(C)-binding protein (PCBP1/HNRNP E1), and Y-box binding protein 1 (YB-1) have been identified as four RNA-binding proteins that preferentially bind 8-oxoG-modified RNA over unmodified RNA. All four proteins are native to humans and PNPase is additionally found in bacteria. Additionally, under oxidative stress, cell survival declines in mutants that lack PNPase, Auf1, or PCBP1, suggesting they are critical to the oxidative stress response. This mini-review captures the current understanding of the PNPase, HNRPD/Auf1, PCBP1, and YB-1 proteins and the mechanism that has been outlined so far by which they recognize and interact with 8-oxoG-modified RNAs.
Collapse
Affiliation(s)
- Kathleen E Taylor
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lucas G Miller
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Bárria C, Athayde D, Hernandez G, Fonseca L, Casinhas J, Cordeiro TN, Archer M, Arraiano CM, Brito JA, Matos RG. Structure and function of Campylobacter jejuni polynucleotide phosphorylase (PNPase): Insights into the role of this RNase in pathogenicity. Biochimie 2024; 216:56-70. [PMID: 37806617 DOI: 10.1016/j.biochi.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Ribonucleases are in charge of the processing, degradation and quality control of all cellular transcripts, which makes them crucial factors in RNA regulation. This post-transcriptional regulation allows bacteria to promptly react to different stress conditions and growth phase transitions, and also to produce the required virulence factors in pathogenic bacteria. Campylobacter jejuni is the main responsible for human gastroenteritis in the world. In this foodborne pathogen, exoribonuclease PNPase (CjPNP) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization. Here we report the crystallographic structure of CjPNP, complemented with SAXS, which confirms the characteristic doughnut-shaped trimeric arrangement and evaluates domain arrangement and flexibility. Mutations in highly conserved residues were constructed to access their role in RNA degradation and polymerization. Surprisingly, we found two mutations that altered CjPNP into a protein that is only capable of degrading RNA even in conditions that favour polymerization. These findings will be important to develop new strategies to combat C. jejuni infections.
Collapse
Affiliation(s)
- Cátia Bárria
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Diogo Athayde
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Guillem Hernandez
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Leonor Fonseca
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Jorge Casinhas
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Tiago N Cordeiro
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Margarida Archer
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Cecília M Arraiano
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José A Brito
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Rute G Matos
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
8
|
Falchi FA, Forti F, Carnelli C, Genco A, Pizzoccheri R, Manzari C, Pavesi G, Briani F. Human PNPase causes RNA stabilization and accumulation of R-loops in the Escherichia coli model system. Sci Rep 2023; 13:11771. [PMID: 37479726 PMCID: PMC10362022 DOI: 10.1038/s41598-023-38924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Polyribonucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. In Escherichia coli, PNPase controls complex phenotypic traits like biofilm formation and growth at low temperature. In human cells, PNPase is located in mitochondria, where it is implicated in the RNA import from the cytoplasm, the mitochondrial RNA degradation and the processing of R-loops, namely stable RNA-DNA hybrids displacing a DNA strand. In this work, we show that the human PNPase (hPNPase) expressed in E. coli causes oxidative stress, SOS response activation and R-loops accumulation. Hundreds of E. coli RNAs are stabilized in presence of hPNPase, whereas only few transcripts are destabilized. Moreover, phenotypic traits typical of E. coli strains lacking PNPase are strengthened in presence of the human enzyme. We discuss the hypothesis that hPNPase expressed in E. coli may bind, but not degrade, the RNA, in agreement with previous in vitro data showing that phosphate concentrations in the range of those found in the bacterial cytoplasm and, more relevant, in the mitochondria, inhibit its activity.
Collapse
Affiliation(s)
- Federica A Falchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Cristina Carnelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Aurelia Genco
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Roberto Pizzoccheri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Caterina Manzari
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", 70121, Bari, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
9
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
10
|
Hosseini Bereshneh A, Rezaei Z, Jafarinia E, Rajabi F, Ashrafi MR, Tavasoli AR, Garshasbi M. Crystallographic modeling of the PNPT1:c.1453A>G variant as a cause of mitochondrial dysfunction and autosomal recessive deafness; expanding the neuroimaging and clinical features. Mitochondrion 2021; 59:1-7. [PMID: 33812062 DOI: 10.1016/j.mito.2021.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Deficiency of the proteins involved in oxidative phosphorylation (OXPHOS) can lead to mitochondrial dysfunction. Polyribonucleotide nucleotidyltransferase 1 (PNPT1) is one of the genes involved in the OXPHOS and encodes the mitochondrial polynucleotide phosphorylase (PNPase) which is implicated in RNA-processing exoribonuclease activity. Herein, we report a 34-month-old boy who presented with global developmental delay, muscular hypotonia, hearing impairment, and movement disorders including chorea and dystonia. Mitochondrial genome sequencing and whole-exome sequencing (WES) were performed and a variant in PNPT1:c.1453A>G; p. (Met485Val) was identified. A number of patient's neurologic problems had been already reported in previous studies, however, lower limbs spasticity and bulbar dysfunction were novel phenotypic findings. In addition, delayed myelination during infancy, progressive basal ganglia atrophy, and brain stem abnormal signals including transverse pontine fibers and superior colliculus involvement were also novel neuroimaging findings in this case. Different crystallographic modeling and stereochemical analysis of the c.1453A>G; p. (Met485Val) variant showed this variant affects the active site of the protein and disrupts the normal protein function.
Collapse
Affiliation(s)
- Ali Hosseini Bereshneh
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Prenatal Diagnosis and Genetic Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Mu G, Xiang Q, Zhang Z, Liu C, Zhang H, Liu Z, Pang X, Jiang J, Xie Q, Zhou S, Wang Z, Hu K, Wang Z, Jiang S, Qin X, Cui Y. PNPT1 and PCGF3 variants associated with angiotensin-converting enzyme inhibitor-induced cough: a nested case–control genome-wide study. Pharmacogenomics 2020; 21:601-614. [PMID: 32397904 DOI: 10.2217/pgs-2019-0167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: We aimed to identify genetic variants associated with ACE inhibitor (ACEI)-induced cough. Materials & methods: A nested case–control study was performed among hypertensive Chinese patients receiving enalapril-only therapy. Whole-exome sequencing and genome-wide association analysis were performed. Results: We identified that PNPT1 rs13015243 (odds ratio [OR]: 0.47; 95% CI: 0.34–0.66; p = 7.45 × 10-6), PNPT1 rs13009649 (OR: 0.48; 95% CI: 0.35–0.67; p = 9.96 × 10-6) and PCGF3 rs1044147 (OR: 2.67; 95% CI: 1.71–4.17; p = 9.91 × 10-6) were significantly associated with ACEI-induced cough. Nearly genome-wide significant associations in previously reported candidate risk genes CLASP1, ACE, CES1, CPN1, XPNPEP1, PDE11A or SLC38A were detected in our dataset. Conclusion: Our results suggest that ACEI-induced cough is associated with noncoding SNPs of PNPT1 and PCGF3, all of which are independent of the bradykinin pathway. Study registration: NCT03259399.
Collapse
Affiliation(s)
- Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chengzhang Liu
- Research Center, Shenzhen Evergreen Medical Institute, Shenzhen, 518057, China
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zining Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Kun Hu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Shanqun Jiang
- School of Life Science, Anhui University, Hefei, 230601, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
12
|
Spoelstra W, van der Sluis EO, Dogterom M, Reese L. Nonspherical Coacervate Shapes in an Enzyme-Driven Active System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1956-1964. [PMID: 31995710 PMCID: PMC7057537 DOI: 10.1021/acs.langmuir.9b02719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/27/2020] [Indexed: 04/14/2023]
Abstract
Coacervates are polymer-rich droplets that form through liquid-liquid phase separation in polymer solutions. Liquid-liquid phase separation and coacervation have recently been shown to play an important role in the organization of biological systems. Such systems are highly dynamic and under continuous influence of enzymatic and chemical processes. However, it is still unclear how enzymatic and chemical reactions affect the coacervation process. Here, we present and characterize a system of enzymatically active coacervates containing spermine, RNA, free nucleotides, and the template independent RNA (de)polymerase PNPase. We find that these RNA coacervates display transient nonspherical shapes, and we systematically study how PNPase concentration, UDP concentration, and temperature affect coacervate morphology. Furthermore, we show that PNPase localizes predominantly into the coacervate phase and that its depolymerization activity in high-phosphate buffer causes coacervate degradation. Our observations of nonspherical coacervate shapes may have broader implications for the relationship between (bio)chemical activity and coacervate biology.
Collapse
Affiliation(s)
- Willem
Kasper Spoelstra
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Eli O. van der Sluis
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Marileen Dogterom
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Louis Reese
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
13
|
Golzarroshan B, Lin CL, Li CL, Yang WZ, Chu LY, Agrawal S, Yuan HS. Crystal structure of dimeric human PNPase reveals why disease-linked mutants suffer from low RNA import and degradation activities. Nucleic Acids Res 2018; 46:8630-8640. [PMID: 30020492 PMCID: PMC6144817 DOI: 10.1093/nar/gky642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 07/16/2018] [Indexed: 11/13/2022] Open
Abstract
Human polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'-to-5' exoribonuclease principally located in mitochondria where it is responsible for RNA turnover and import. Mutations in PNPase impair structured RNA transport into mitochondria, resulting in mitochondrial dysfunction and disease. PNPase is a trimeric protein with a doughnut-shaped structure hosting a central channel for single-stranded RNA binding and degradation. Here, we show that the disease-linked human PNPase mutants, Q387R and E475G, form dimers, not trimers, and have significantly lower RNA binding and degradation activities compared to wild-type trimeric PNPase. Moreover, S1 domain-truncated PNPase binds single-stranded RNA but not the stem-loop signature motif of imported structured RNA, suggesting that the S1 domain is responsible for binding structured RNAs. We further determined the crystal structure of dimeric PNPase at a resolution of 2.8 Å and, combined with small-angle X-ray scattering, show that the RNA-binding K homology and S1 domains are relatively inaccessible in the dimeric assembly. Taken together, these results show that mutations at the interface of the trimeric PNPase tend to produce a dimeric protein with destructive RNA-binding surfaces, thus impairing both of its RNA import and degradation activities and leading to mitochondria disorders.
Collapse
Affiliation(s)
- Bagher Golzarroshan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Chia-Liang Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Chia-Lung Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Lee-Ya Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Sashank Agrawal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Molecular and Cell Biology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 11490, Republic of China
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Molecular and Cell Biology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| |
Collapse
|
14
|
Shimada E, Ahsan FM, Nili M, Huang D, Atamdede S, TeSlaa T, Case D, Yu X, Gregory BD, Perrin BJ, Koehler CM, Teitell MA. PNPase knockout results in mtDNA loss and an altered metabolic gene expression program. PLoS One 2018; 13:e0200925. [PMID: 30024931 PMCID: PMC6053217 DOI: 10.1371/journal.pone.0200925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is an essential mitochondria-localized exoribonuclease implicated in multiple biological processes and human disorders. To reveal role(s) for PNPase in mitochondria, we established PNPase knockout (PKO) systems by first shifting culture conditions to enable cell growth with defective respiration. Interestingly, PKO established in mouse embryonic fibroblasts (MEFs) resulted in the loss of mitochondrial DNA (mtDNA). The transcriptional profile of PKO cells was similar to rho0 mtDNA deleted cells, with perturbations in cholesterol (FDR = 6.35 x 10-13), lipid (FDR = 3.21 x 10-11), and secondary alcohol (FDR = 1.04x10-12) metabolic pathway gene expression compared to wild type parental (TM6) MEFs. Transcriptome analysis indicates processes related to axonogenesis (FDR = 4.49 x 10-3), axon development (FDR = 4.74 x 10-3), and axonal guidance (FDR = 4.74 x 10-3) were overrepresented in PKO cells, consistent with previous studies detailing causative PNPase mutations in delayed myelination, hearing loss, encephalomyopathy, and chorioretinal defects in humans. Overrepresentation analysis revealed alterations in metabolic pathways in both PKO and rho0 cells. Therefore, we assessed the correlation of genes implicated in cell cycle progression and total metabolism and observed a strong positive correlation between PKO cells and rho0 MEFs compared to TM6 MEFs. We quantified the normalized biomass accumulation rate of PKO clones at 1.7% (SD ± 2.0%) and 2.4% (SD ± 1.6%) per hour, which was lower than TM6 cells at 3.3% (SD ± 3.5%) per hour. Furthermore, PKO in mouse inner ear hair cells caused progressive hearing loss that parallels human familial hearing loss previously linked to mutations in PNPase. Combined, our study reports that knockout of a mitochondrial nuclease results in mtDNA loss and suggests that mtDNA maintenance could provide a unifying connection for the large number of biological activities reported for PNPase.
Collapse
Affiliation(s)
- Eriko Shimada
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Fasih M. Ahsan
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mahta Nili
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dian Huang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tara TeSlaa
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dana Case
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Perrin
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Carla M. Koehler
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael A. Teitell
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Zheng X, Feng N, Li D, Dong X, Li J. New molecular insights into an archaeal RNase J reveal a conserved processive exoribonucleolysis mechanism of the RNase J family. Mol Microbiol 2017; 106:351-366. [PMID: 28795788 DOI: 10.1111/mmi.13769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/26/2022]
Abstract
RNase J, a prokaryotic 5'-3' exo/endoribonuclease, contributes to mRNA decay, rRNA maturation and post-transcriptional regulation. Yet the processive-exoribonucleolysis mechanism remains obscure. Here, we solved the first RNA-free and RNA-bound structures of an archaeal RNase J, and through intensive biochemical studies provided detailed mechanistic insights into the catalysis and processivity. Distinct dimerization/tetramerization patterns were observed for archaeal and bacterial RNase Js, and unique archaeal Loops I and II were found involved in RNA interaction. A hydrogen-bond-network was identified for the first time that assists catalysis by facilitating efficient proton transfer in the catalytic center. A conserved 5'-monophosphate-binding pocket that coordinates the RNA 5'-end ensures the 5'-monophosphate preferential exoribonucleolysis. To achieve exoribonucleolytic processivity, the 5'-monophosphate-binding pocket and nucleotide +4 binding site anchor RNA within the catalytic track; the 5'-capping residue Leu37 of the sandwich pocket coupled with the 5'-monophosphate-binding pocket are dedicated to translocating and controlling the RNA orientation for each exoribonucleolytic cycle. The processive-exoribonucleolysis mechanism was verified as conserved in bacterial RNase J and also exposes striking parallels with the non-homologous eukaryotic 5'-3' exoribonuclease, Xrn1. The findings in this work shed light on not only the molecular mechanism of the RNase J family, but also the evolutionary convergence of divergent exoribonucleases.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Na Feng
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Defeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
16
|
Liu P, Huang J, Zheng Q, Xie L, Lu X, Jin J, Wang G. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2. Protein Cell 2017; 8:735-749. [PMID: 28730546 PMCID: PMC5636749 DOI: 10.1007/s13238-017-0448-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 10/28/2022] Open
Abstract
Mammalian mitochondrial genome encodes a small set of tRNAs, rRNAs, and mRNAs. The RNA synthesis process has been well characterized. How the RNAs are degraded, however, is poorly understood. It was long assumed that the degradation happens in the matrix where transcription and translation machineries reside. Here we show that contrary to the assumption, mammalian mitochondrial RNA degradation occurs in the mitochondrial intermembrane space (IMS) and the IMS-localized RNASET2 is the enzyme that degrades the RNAs. This provides a new paradigm for understanding mitochondrial RNA metabolism and transport.
Collapse
Affiliation(s)
- Peipei Liu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinliang Huang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qian Zheng
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Leiming Xie
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinping Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jie Jin
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Geng Wang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Matilainen S, Carroll CJ, Richter U, Euro L, Pohjanpelto M, Paetau A, Isohanni P, Suomalainen A. Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome. Hum Mol Genet 2017. [DOI: 10.1093/hmg/ddx221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Stone CM, Butt LE, Bufton JC, Lourenco DC, Gowers DM, Pickford AR, Cox PA, Vincent HA, Callaghan AJ. Inhibition of homologous phosphorolytic ribonucleases by citrate may represent an evolutionarily conserved communicative link between RNA degradation and central metabolism. Nucleic Acids Res 2017; 45:4655-4666. [PMID: 28334892 PMCID: PMC5416783 DOI: 10.1093/nar/gkx114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/17/2017] [Accepted: 02/14/2017] [Indexed: 12/05/2022] Open
Abstract
Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution.
Collapse
Affiliation(s)
- Carlanne M. Stone
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Louise E. Butt
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Joshua C. Bufton
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Daniel C. Lourenco
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Darren M. Gowers
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Andrew R. Pickford
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Paul A. Cox
- School of Pharmacy and Biomedical Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| |
Collapse
|
19
|
Seamon KJ, Bumpus NN, Stivers JT. Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer. Biochemistry 2016; 55:6087-6099. [PMID: 27775344 DOI: 10.1021/acs.biochem.6b00986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.
Collapse
Affiliation(s)
- Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine , 725 North Wolfe Street, WBSB 314, Baltimore, Maryland 21205, United States
| | - Namandjé N Bumpus
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Biophysics 307, Baltimore, Maryland 21205, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine , 725 North Wolfe Street, WBSB 314, Baltimore, Maryland 21205, United States
| |
Collapse
|
20
|
Levy S, Allerston CK, Liveanu V, Habib MR, Gileadi O, Schuster G. Identification of LACTB2, a metallo-β-lactamase protein, as a human mitochondrial endoribonuclease. Nucleic Acids Res 2016; 44:1813-32. [PMID: 26826708 PMCID: PMC4770246 DOI: 10.1093/nar/gkw050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control of mitochondrial gene expression, including the
processing and generation of mature transcripts as well as their degradation, is a
key regulatory step in gene expression in human mitochondria. Consequently,
identification of the proteins responsible for RNA processing and degradation in this
organelle is of great importance. The metallo-β-lactamase (MBL) is a candidate
protein family that includes ribo- and deoxyribonucleases. In this study, we
discovered a function for LACTB2, an orphan MBL protein found in mammalian
mitochondria. Solving its crystal structure revealed almost perfect alignment of the
MBL domain with CPSF73, as well as to other ribonucleases of the MBL superfamily.
Recombinant human LACTB2 displayed robust endoribonuclease activity on ssRNA with a
preference for cleavage after purine-pyrimidine sequences. Mutational analysis
identified an extended RNA-binding site. Knockdown of LACTB2 in cultured cells caused
a moderate but significant accumulation of many mitochondrial transcripts, and its
overexpression led to the opposite effect. Furthermore, manipulation of LACTB2
expression resulted in cellular morphological deformation and cell death. Together,
this study discovered that LACTB2 is an endoribonuclease that is involved in the
turnover of mitochondrial RNA, and is essential for mitochondrial function in human
cells.
Collapse
Affiliation(s)
- Shiri Levy
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Charles K Allerston
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Varda Liveanu
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Mouna R Habib
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Opher Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Gadi Schuster
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
21
|
Wang DDH, Guo XE, Modrek AS, Chen CF, Chen PL, Lee WH. Helicase SUV3, polynucleotide phosphorylase, and mitochondrial polyadenylation polymerase form a transient complex to modulate mitochondrial mRNA polyadenylated tail lengths in response to energetic changes. J Biol Chem 2014; 289:16727-35. [PMID: 24770417 DOI: 10.1074/jbc.m113.536540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mitochondrial mRNA (mt-mRNA) transcripts are polyadenylated at the 3' end with different lengths. The SUV3·PNPase complex and mtPAP have been shown to degrade and polyadenylate mt mRNA, respectively. How these two opposite actions are coordinated to modulate mt-mRNA poly(A) lengths is of interest to pursue. Here, we demonstrated that a fraction of the SUV3·PNPase complex interacts with mitochondrial polyadenylation polymerase (mtPAP) under low mitochondrial matrix inorganic phosphate (Pi) conditions. In vitro binding experiments using purified proteins suggested that SUV3 binds to mtPAP through the N-terminal region around amino acids 100-104, distinctive from the C-terminal region around amino acids 510-514 of SUV3 for PNPase binding. mtPAP does not interact with PNPase directly, and SUV3 served as a bridge capable of simultaneously binding with mtPAP and PNPase. The complex consists of a SUV3 dimer, a mtPAP dimer, and a PNPase trimer, based on the molecular sizing experiments. Mechanistically, SUV3 provides a robust single strand RNA binding domain to enhance the polyadenylation activity of mtPAP. Furthermore, purified SUV3·PNPase·mtPAP complex is capable of lengthening or shortening the RNA poly(A) tail lengths in low or high Pi/ATP ratios, respectively. Consistently, the poly(A) tail lengths of mt-mRNA transcripts can be lengthened or shortened by altering the mitochondrial matrix Pi levels via selective inhibition of the electron transport chain or ATP synthase, respectively. Taken together, these results suggested that SUV3·PNPase·mtPAP form a transient complex to modulate mt-mRNA poly(A) tail lengths in response to cellular energy changes.
Collapse
Affiliation(s)
- Dennis Ding-Hwa Wang
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Xuning Emily Guo
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Aram Sandaldjian Modrek
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Chi-Fen Chen
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Phang-Lang Chen
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Wen-Hwa Lee
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and the Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
22
|
Sokhi UK, DeSalle R, Bacolod MD, Das SK, Dasgupta S, Sarkar D, Fisher PB. Evolutionary dynamics of Polynucelotide phosphorylases. Mol Phylogenet Evol 2014; 73:77-86. [PMID: 24503483 DOI: 10.1016/j.ympev.2014.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/09/2014] [Accepted: 01/21/2014] [Indexed: 11/17/2022]
Abstract
Polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'→5' phosphate-dependent exoribonucease belonging to the PDX family of proteins. It consists of two catalytic RNase PH domains (PNP1 and PNP2), an α-helical domain and two RNA-binding domains. The PNP1 and PNP2 domains share substantial sequence and structural homology with RNase PH (RPH), which is another PDX family member found in all the three major kingdoms of life, suggesting that these three domains originated from a common ancestor. Phylogenetic analysis (based on the PNPase/RNase PH sequence information for 43 vertebrate taxa) shows that PNP2 and RPH are sister taxa which arose through duplication of the ancestral PNP1 domain. Also, all three domains (PNP1, PNP2 and RPH), along with the KH and S1 domains have undergone significant and directional sequence change, as determined by branch and site-specific dN/dS analyses. In general, codons that show dN/dS ratios that are significantly greater than 1.0 are outside the ordered regions (α-helices and β-sheets) of these protein domains. In addition, sites that have been selected for mutagenesis in these proteins lie embedded in regions where there is a preponderance of codons with dN/dS values that are not significantly different from 0.0. Overall, this report is an attempt to further our understanding of the evolutionary history of these three protein domains, and define the evolutionary events that led to their refinement in the vertebrate lineage leading to mammals.
Collapse
Affiliation(s)
- Upneet K Sokhi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Rob DeSalle
- American Museum of Natural History, New York University, New York, NY, United States.
| | - Manny D Bacolod
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Santanu Dasgupta
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
23
|
SCO5745, a bifunctional RNase J ortholog, affects antibiotic production in Streptomyces coelicolor. J Bacteriol 2014; 196:1197-205. [PMID: 24415725 DOI: 10.1128/jb.01422-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial RNases J are considered bifunctional RNases possessing both endo- and exonucleolytic activities. We have isolated an RNase J ortholog from Streptomyces coelicolor encoded by the gene sco5745. We overexpressed a decahistidine-tagged version of SCO5745 and purified the overexpressed protein by immobilized metal ion affinity chromatography. We demonstrated the presence of both 5'-to-3' exonucleolytic and endonucleolytic activities on the Bacillus subtilis thrS transcript. Exonucleoytic activity predominated with 5' monophosphorylated thrS, while endonucleolytic activity predominated with 5' triphosphorylated thrS. While sco5745 is the only RNase J allele in S. coelicolor, the gene is not essential. Its disruption resulted in delayed production of the antibiotic actinorhodin, overproduction of undecylprodigiosin, and diminished production of the calcium-dependent antibiotic, in comparison with the parental strain.
Collapse
|
24
|
Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K, Funk C, Verspoor K, Ben-Hur A, Pandey G, Yunes JM, Talwalkar AS, Repo S, Souza ML, Piovesan D, Casadio R, Wang Z, Cheng J, Fang H, Gough J, Koskinen P, Törönen P, Nokso-Koivisto J, Holm L, Cozzetto D, Buchan DWA, Bryson K, Jones DT, Limaye B, Inamdar H, Datta A, Manjari SK, Joshi R, Chitale M, Kihara D, Lisewski AM, Erdin S, Venner E, Lichtarge O, Rentzsch R, Yang H, Romero AE, Bhat P, Paccanaro A, Hamp T, Kaßner R, Seemayer S, Vicedo E, Schaefer C, Achten D, Auer F, Boehm A, Braun T, Hecht M, Heron M, Hönigschmid P, Hopf TA, Kaufmann S, Kiening M, Krompass D, Landerer C, Mahlich Y, Roos M, Björne J, Salakoski T, Wong A, Shatkay H, Gatzmann F, Sommer I, Wass MN, Sternberg MJE, Škunca N, Supek F, Bošnjak M, Panov P, Džeroski S, Šmuc T, Kourmpetis YAI, van Dijk ADJ, ter Braak CJF, Zhou Y, Gong Q, Dong X, Tian W, Falda M, Fontana P, Lavezzo E, Di Camillo B, Toppo S, Lan L, Djuric N, Guo Y, Vucetic S, Bairoch A, Linial M, Babbitt PC, Brenner SE, Orengo C, Rost B, et alRadivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K, Funk C, Verspoor K, Ben-Hur A, Pandey G, Yunes JM, Talwalkar AS, Repo S, Souza ML, Piovesan D, Casadio R, Wang Z, Cheng J, Fang H, Gough J, Koskinen P, Törönen P, Nokso-Koivisto J, Holm L, Cozzetto D, Buchan DWA, Bryson K, Jones DT, Limaye B, Inamdar H, Datta A, Manjari SK, Joshi R, Chitale M, Kihara D, Lisewski AM, Erdin S, Venner E, Lichtarge O, Rentzsch R, Yang H, Romero AE, Bhat P, Paccanaro A, Hamp T, Kaßner R, Seemayer S, Vicedo E, Schaefer C, Achten D, Auer F, Boehm A, Braun T, Hecht M, Heron M, Hönigschmid P, Hopf TA, Kaufmann S, Kiening M, Krompass D, Landerer C, Mahlich Y, Roos M, Björne J, Salakoski T, Wong A, Shatkay H, Gatzmann F, Sommer I, Wass MN, Sternberg MJE, Škunca N, Supek F, Bošnjak M, Panov P, Džeroski S, Šmuc T, Kourmpetis YAI, van Dijk ADJ, ter Braak CJF, Zhou Y, Gong Q, Dong X, Tian W, Falda M, Fontana P, Lavezzo E, Di Camillo B, Toppo S, Lan L, Djuric N, Guo Y, Vucetic S, Bairoch A, Linial M, Babbitt PC, Brenner SE, Orengo C, Rost B, Mooney SD, Friedberg I. A large-scale evaluation of computational protein function prediction. Nat Methods 2013; 10:221-7. [PMID: 23353650 PMCID: PMC3584181 DOI: 10.1038/nmeth.2340] [Show More Authors] [Citation(s) in RCA: 621] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 12/10/2012] [Indexed: 01/03/2023]
Abstract
A report on the results of the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.
Collapse
Affiliation(s)
- Predrag Radivojac
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sokhi UK, Das SK, Dasgupta S, Emdad L, Shiang R, DeSalle R, Sarkar D, Fisher PB. Human polynucleotide phosphorylase (hPNPaseold-35): should I eat you or not--that is the question? Adv Cancer Res 2013; 119:161-90. [PMID: 23870512 DOI: 10.1016/b978-0-12-407190-2.00005-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA degradation plays a fundamental role in maintaining cellular homeostasis whether it occurs as a surveillance mechanism eliminating aberrant mRNAs or during RNA processing to generate mature transcripts. 3'-5' exoribonucleases are essential mediators of RNA decay pathways, and one such evolutionarily conserved enzyme is polynucleotide phosphorylase (PNPase). The human homologue of this fascinating enzymatic protein (hPNPaseold-35) was cloned a decade ago in the context of terminal differentiation and senescence through a novel "overlapping pathway screening" approach. Since then, significant insights have been garnered about this exoribonuclease and its repertoire of expanding functions. The objective of this review is to provide an up-to-date perspective of the recent discoveries made relating to hPNPaseold-35 and the impact they continue to have on our comprehension of its expanding and diverse array of functions.
Collapse
|
26
|
Abstract
The central dogma states that DNA is transcribed to generate RNA and that the mRNA components are then translated to generate proteins; a simple statement that completely belies the complexities of gene expression. Post-transcriptional regulation alone has many points of control, including changes in the stability, translatability or susceptibility to degradation of RNA species, where both cis- and trans-acting elements will play a role in the outcome. The present review concentrates on just one aspect of this complicated process, which ultimately regulates the protein production in cells, or more specifically what governs RNA catabolism in a particular subcompartment of human cells: the mitochondrion.
Collapse
|
27
|
Borowski LS, Dziembowski A, Hejnowicz MS, Stepien PP, Szczesny RJ. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res 2012; 41:1223-40. [PMID: 23221631 PMCID: PMC3553951 DOI: 10.1093/nar/gks1130] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RNA decay is usually mediated by protein complexes and can occur in specific foci such as P-bodies in the cytoplasm of eukaryotes. In human mitochondria nothing is known about the spatial organization of the RNA decay machinery, and the ribonuclease responsible for RNA degradation has not been identified. We demonstrate that silencing of human polynucleotide phosphorylase (PNPase) causes accumulation of RNA decay intermediates and increases the half-life of mitochondrial transcripts. A combination of fluorescence lifetime imaging microscopy with Förster resonance energy transfer and bimolecular fluorescence complementation (BiFC) experiments prove that PNPase and hSuv3 helicase (Suv3, hSuv3p and SUPV3L1) form the RNA-degrading complex in vivo in human mitochondria. This complex, referred to as the degradosome, is formed only in specific foci (named D-foci), which co-localize with mitochondrial RNA and nucleoids. Notably, interaction between PNPase and hSuv3 is essential for efficient mitochondrial RNA degradation. This provides indirect evidence that degradosome-dependent mitochondrial RNA decay takes place in foci.
Collapse
Affiliation(s)
- Lukasz S Borowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
28
|
von Ameln S, Wang G, Boulouiz R, Rutherford M, Smith G, Li Y, Pogoda HM, Nürnberg G, Stiller B, Volk A, Borck G, Hong J, Goodyear R, Abidi O, Nürnberg P, Hofmann K, Richardson G, Hammerschmidt M, Moser T, Wollnik B, Koehler C, Teitell M, Barakat A, Kubisch C. A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 2012; 91:919-27. [PMID: 23084290 PMCID: PMC3487123 DOI: 10.1016/j.ajhg.2012.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/22/2012] [Accepted: 09/04/2012] [Indexed: 11/24/2022] Open
Abstract
A subset of nuclear-encoded RNAs has to be imported into mitochondria for the proper replication and transcription of the mitochondrial genome and, hence, for proper mitochondrial function. Polynucleotide phosphorylase (PNPase or PNPT1) is one of the very few components known to be involved in this poorly characterized process in mammals. At the organismal level, however, the effect of PNPase dysfunction and impaired mitochondrial RNA import are unknown. By positional cloning, we identified a homozygous PNPT1 missense mutation (c.1424A>G predicting the protein substitution p.Glu475Gly) of a highly conserved PNPase residue within the second RNase-PH domain in a family affected by autosomal-recessive nonsyndromic hearing impairment. In vitro analyses in bacteria, yeast, and mammalian cells showed that the identified mutation results in a hypofunctional protein leading to disturbed PNPase trimerization and impaired mitochondrial RNA import. Immunohistochemistry revealed strong PNPase staining in the murine cochlea, including the sensory hair cells and the auditory ganglion neurons. In summary, we show that a component of the mitochondrial RNA-import machinery is specifically required for auditory function.
Collapse
Affiliation(s)
- Simon von Ameln
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Geng Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Redouane Boulouiz
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Mark A. Rutherford
- InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Geoffrey M. Smith
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yun Li
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
| | - Hans-Martin Pogoda
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics, University of Cologne, 50674 Cologne, Germany
| | - Barbara Stiller
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Alexander E. Volk
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Jason S. Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Omar Abidi
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Cologne Center for Genomics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Matthias Hammerschmidt
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Tobias Moser
- InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Center for Molecular Physiology of the Brain, University of Göttingen, 37073 Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Carla M. Koehler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, California NanoSystems Institute and Center for Cell Control, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abdelhamid Barakat
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
29
|
Vedrenne V, Gowher A, De Lonlay P, Nitschke P, Serre V, Boddaert N, Altuzarra C, Mager-Heckel AM, Chretien F, Entelis N, Munnich A, Tarassov I, Rötig A. Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 2012; 91:912-8. [PMID: 23084291 DOI: 10.1016/j.ajhg.2012.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/10/2012] [Accepted: 09/04/2012] [Indexed: 11/27/2022] Open
Abstract
Multiple-respiratory-chain deficiency represents an important cause of mitochondrial disorders. Hitherto, however, mutations in genes involved in mtDNA maintenance and translation machinery only account for a fraction of cases. Exome sequencing in two siblings, born to consanguineous parents, with severe encephalomyopathy, choreoathetotic movements, and combined respiratory-chain defects allowed us to identify a homozygous PNPT1 missense mutation (c.1160A>G) that encodes the mitochondrial polynucleotide phosphorylase (PNPase). Blue-native polyacrylamide gel electrophoresis showed that no PNPase complex could be detected in subject fibroblasts, confirming that the substitution encoded by c.1160A>G disrupts the trimerization of the protein. PNPase is predominantly localized in the mitochondrial intermembrane space and is implicated in RNA targeting to human mitochondria. Mammalian mitochondria import several small noncoding nuclear RNAs (5S rRNA, MRP RNA, some tRNAs, and miRNAs). By RNA hybridization experiments, we observed a significant decrease in 5S rRNA and MRP-related RNA import into mitochondria in fibroblasts of affected subject 1. Moreover, we found a reproducible decrease in the rate of mitochondrial translation in her fibroblasts. Finally, overexpression of the wild-type PNPT1 cDNA in fibroblasts of subject 1 induced an increase in 5S rRNA import in mitochondria and rescued the mitochondrial-translation deficiency. In conclusion, we report here abnormal RNA import into mitochondria as a cause of respiratory-chain deficiency.
Collapse
|
30
|
Abstract
Mammalian mitochondria contain their own genome that encodes mRNAs for thirteen essential subunits of the complexes performing oxidative phosphorylation as well as the RNA components (two rRNAs and 22 tRNAs) needed for their translation in mitochondria. All RNA species are produced from single polycistronic precursor RNAs, yet the relative concentrations of various RNAs differ significantly. This underscores the essential role of post-transcriptional mechanisms that control the maturation, stability and translation of mitochondrial RNAs. The present review provides a detailed summary on the role of RNA maturation in the regulation of mitochondrial gene expression, focusing mainly on messenger RNA polyadenylation and stability control. Furthermore, the role of mitochondrial ribosomal RNA stability, processing and modifications in the biogenesis of the mitochondrial ribosome is discussed.
Collapse
|
31
|
Lin CL, Wang YT, Yang WZ, Hsiao YY, Yuan HS. Crystal structure of human polynucleotide phosphorylase: insights into its domain function in RNA binding and degradation. Nucleic Acids Res 2011; 40:4146-57. [PMID: 22210891 PMCID: PMC3351181 DOI: 10.1093/nar/gkr1281] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human polynucleotide phosphorylase (hPNPase) is a 3′-to-5′ exoribonuclease that degrades specific mRNA and miRNA, and imports RNA into mitochondria, and thus regulates diverse physiological processes, including cellular senescence and homeostasis. However, the RNA-processing mechanism by hPNPase, particularly how RNA is bound via its various domains, remains obscure. Here, we report the crystal structure of an S1 domain-truncated hPNPase at a resolution of 2.1 Å. The trimeric hPNPase has a hexameric ring-like structure formed by six RNase PH domains, capped with a trimeric KH pore. Our biochemical and mutagenesis studies suggest that the S1 domain is not critical for RNA binding, and conversely, that the conserved GXXG motif in the KH domain directly participates in RNA binding in hPNPase. Our studies thus provide structural and functional insights into hPNPase, which uses a KH pore to trap a long RNA 3′ tail that is further delivered into an RNase PH channel for the degradation process. Structural RNA with short 3′ tails are, on the other hand, transported but not digested by hPNPase.
Collapse
Affiliation(s)
- Chia Liang Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | |
Collapse
|
32
|
Szczesny RJ, Borowski LS, Malecki M, Wojcik MA, Stepien PP, Golik P. RNA degradation in yeast and human mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1027-34. [PMID: 22178375 DOI: 10.1016/j.bbagrm.2011.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/23/2023]
Abstract
Expression of mitochondrially encoded genes must be finely tuned according to the cell's requirements. Since yeast and human mitochondria have limited possibilities to regulate gene expression by altering the transcription initiation rate, posttranscriptional processes, including RNA degradation, are of great importance. In both organisms mitochondrial RNA degradation seems to be mostly depending on the RNA helicase Suv3. Yeast Suv3 functions in cooperation with Dss1 ribonuclease by forming a two-subunit complex called the mitochondrial degradosome. The human ortholog of Suv3 (hSuv3, hSuv3p, SUPV3L1) is also indispensable for mitochondrial RNA decay but its ribonucleolytic partner has so far escaped identification. In this review we summarize the current knowledge about RNA degradation in human and yeast mitochondria. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
33
|
Sharwood RE, Halpert M, Luro S, Schuster G, Stern DB. Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. RNA (NEW YORK, N.Y.) 2011; 17:2165-76. [PMID: 22033332 PMCID: PMC3222129 DOI: 10.1261/rna.028043.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/13/2011] [Indexed: 05/20/2023]
Abstract
Ribonuclease J is an essential enzyme, and the Bacillus subtilis ortholog possesses both endoribonuclease and 5' → 3' exoribonuclease activities. Chloroplasts also contain RNase J, which has been postulated to participate, as both an exo- and endonuclease, in the maturation of polycistronic mRNAs. Here we have examined recombinant Arabidopsis RNase J and found both 5' → 3' exoribonuclease and endonucleolytic activities. Virus-induced gene silencing was used to reduce RNase J expression in Arabidopsis and Nicotiana benthamiana, leading to chlorosis but surprisingly few disruptions in the cleavage of polycistronic rRNA and mRNA precursors. In contrast, antisense RNAs accumulated massively, suggesting that the failure of chloroplast RNA polymerase to terminate effectively leads to extensive symmetric transcription products that are normally eliminated by RNase J. Mung bean nuclease digestion and polysome analysis revealed that this antisense RNA forms duplexes with sense strand transcripts and prevents their translation. We conclude that a major role of chloroplast RNase J is RNA surveillance to prevent overaccumulation of antisense RNA, which would otherwise exert deleterious effects on chloroplast gene expression.
Collapse
Affiliation(s)
- Robert E. Sharwood
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Michal Halpert
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Scott Luro
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Gadi Schuster
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - David B. Stern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Corresponding author.E-mail .
| |
Collapse
|
34
|
Wang G, Shimada E, Koehler CM, Teitell MA. PNPASE and RNA trafficking into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:998-1007. [PMID: 22023881 DOI: 10.1016/j.bbagrm.2011.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/26/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
The mitochondrial genome encodes a very small fraction of the macromolecular components that are required to generate functional mitochondria. Therefore, most components are encoded within the nuclear genome and are imported into mitochondria from the cytosol. Understanding how mitochondria are assembled, function, and dysfunction in diseases requires detailed knowledge of mitochondrial import mechanisms and pathways. The import of nucleus-encoded RNAs is required for mitochondrial biogenesis and function, but unlike pre-protein import, the pathways and cellular machineries of RNA import are poorly defined, especially in mammals. Recent studies have shown that mammalian polynucleotide phosphorylase (PNPASE) localizes in the mitochondrial intermembrane space (IMS) to regulate the import of RNA. The identification of PNPASE as the first component of the RNA import pathway, along with a growing list of nucleus-encoded RNAs that are imported and newly developed assay systems for RNA import studies, suggest a unique opportunity is emerging to identify the factors and mechanisms that regulate RNA import into mammalian mitochondria. Here we summarize what is known in this fascinating area of mitochondrial biogenesis, identify areas that require further investigation, and speculate on the impact unraveling RNA import mechanisms and pathways will have for the field going forward. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Geng Wang
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
35
|
Germain A, Herlich S, Larom S, Kim SH, Schuster G, Stern DB. Mutational analysis of Arabidopsis chloroplast polynucleotide phosphorylase reveals roles for both RNase PH core domains in polyadenylation, RNA 3'-end maturation and intron degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:381-394. [PMID: 21466602 DOI: 10.1111/j.1365-313x.2011.04601.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polynucleotide phosphorylase (PNPase) catalyzes RNA polymerization and 3'→5' phosphorolysis in vitro, but its roles in plant organelles are poorly understood. Here, we have used in vivo and in vitro mutagenesis to study Arabidopsis chloroplast PNPase (cpPNPase). In mutants lacking cpPNPase activity, unusual RNA patterns were broadly observed, implicating cpPNPase in rRNA and mRNA 3'-end maturation, and RNA degradation. Intron-containing fragments also accumulated in mutants, and cpPNPase appears to be required for a degradation step following endonucleolytic cleavage of the excised lariat. Analysis of poly(A) tails, which destabilize chloroplast RNAs, indicated that PNPase and a poly(A) polymerase share the polymerization role in wild-type plants. We also studied two lines carrying mutations in the first PNPase core domain, which does not harbor the catalytic site. These mutants had gene-dependent and intermediate RNA phenotypes, suggesting that reduced enzyme activity differentially affects chloroplast transcripts. The interpretations of in vivo results were confirmed by in vitro analysis of recombinant enzymes, and showed that the first core domain affects overall catalytic activity. In summary, cpPNPase has a major role in maturing mRNA and rRNA 3'-ends, but also participates in RNA degradation through exonucleolytic digestion and polyadenylation. These functions depend absolutely on the catalytic site within the second duplicated RNase PH domain, and appear to be modulated by the first RNase PH domain.
Collapse
Affiliation(s)
- Arnaud Germain
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
36
|
Slomovic S, Schuster G. Exonucleases and endonucleases involved in polyadenylation-assisted RNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:106-23. [PMID: 21956972 DOI: 10.1002/wrna.45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNA polyadenylation occurs in most forms of life, excluding a small number of biological systems. This posttranscriptional modification undertakes two roles, both of which influence the stability of the polyadenylated transcript. One is associated with the mature 3' ends of nucleus-encoded mRNAs in eukaryotic cells and is important for nuclear exit, translatability, and longevity. The second form of RNA polyadenylation assumes an almost opposite role; it is termed 'transient' and serves to mediate the degradation of RNA. Poly(A)-assisted RNA decay pathways were once thought to occur only in prokaryotes/organelles but are now known to be a common phenomenon, present in bacteria, organelles, archaea, and the nucleus and cytoplasm of eukaryotic cells, regardless of the fact that in some of these systems, stable polyadenylation exists as well. This article will summarize the current knowledge of polyadenylation and degradation factors involved in poly(A)-assisted RNA decay in the domains of life, focusing mainly on that which occurs in prokaryotes and organelles. In addition, it will offer an evolutionary view of the development of RNA polyadenylation and degradation and the cellular machinery that is involved.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Faculty of Biology, Technion - Israel Institue of Technology, Haifa, Israel
| | | |
Collapse
|
37
|
Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC, Koehler CM, Teitell MA. PNPASE regulates RNA import into mitochondria. Cell 2010; 142:456-67. [PMID: 20691904 DOI: 10.1016/j.cell.2010.06.035] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/20/2010] [Accepted: 05/13/2010] [Indexed: 02/04/2023]
Abstract
RNA import into mammalian mitochondria is considered essential for replication, transcription, and translation of the mitochondrial genome but the pathway(s) and factors that control this import are poorly understood. Previously, we localized polynucleotide phosphorylase (PNPASE), a 3' --> 5' exoribonuclease and poly-A polymerase, in the mitochondrial intermembrane space, a location lacking resident RNAs. Here, we show a new role for PNPASE in regulating the import of nuclear-encoded RNAs into the mitochondrial matrix. PNPASE reduction impaired mitochondrial RNA processing and polycistronic transcripts accumulated. Augmented import of RNase P, 5S rRNA, and MRP RNAs depended on PNPASE expression and PNPASE-imported RNA interactions were identified. PNPASE RNA processing and import activities were separable and a mitochondrial RNA targeting signal was isolated that enabled RNA import in a PNPASE-dependent manner. Combined, these data strongly support an unanticipated role for PNPASE in mediating the translocation of RNAs into mitochondria.
Collapse
Affiliation(s)
- Geng Wang
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Slomovic S, Fremder E, Staals RHG, Pruijn GJM, Schuster G. Addition of poly(A) and poly(A)-rich tails during RNA degradation in the cytoplasm of human cells. Proc Natl Acad Sci U S A 2010; 107:7407-12. [PMID: 20368444 PMCID: PMC2867691 DOI: 10.1073/pnas.0910621107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyadenylation of RNA is a posttranscriptional modification that can play two somewhat opposite roles: stable polyadenylation of RNA encoded in the nuclear genomes of eukaryote cells contributes to nuclear export, translation initiation, and possibly transcript longevity as well. Conversely, transient polyadenylation targets RNA molecules to rapid exonucleolytic degradation. The latter role has been shown to take place in prokaryotes and organelles, as well as the nucleus of eukaryotic cells. Here we present evidence of hetero- and homopolymeric adenylation of truncated RNA molecules within the cytoplasm of human cells. RNAi-mediated silencing of the major RNA decay machinery of the cell resulted in the accumulation of these polyadenylated RNA fragments, indicating that they are degradation intermediates. Together, these results suggest that a mechanism of RNA decay, involving transient polyadenylation, is present in the cytoplasm of human cells.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel; and
| | - Ella Fremder
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel; and
| | - Raymond H. G. Staals
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, NL-6525 GA, Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, NL-6525 GA, Nijmegen, The Netherlands
| | - Gadi Schuster
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel; and
| |
Collapse
|
39
|
Szczesny RJ, Borowski LS, Brzezniak LK, Dmochowska A, Gewartowski K, Bartnik E, Stepien PP. Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res 2009; 38:279-98. [PMID: 19864255 PMCID: PMC2800237 DOI: 10.1093/nar/gkp903] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanism of human mitochondrial RNA turnover and surveillance is still a matter of debate. We have obtained a cellular model for studying the role of hSuv3p helicase in human mitochondria. Expression of a dominant-negative mutant of the hSUV3 gene which encodes a protein with no ATPase or helicase activity results in perturbations of mtRNA metabolism and enables to study the processing and degradation intermediates which otherwise are difficult to detect because of their short half-lives. The hSuv3p activity was found to be necessary in the regulation of stability of mature, properly formed mRNAs and for removal of the noncoding processing intermediates transcribed from both H and L-strands, including mirror RNAs which represent antisense RNAs transcribed from the opposite DNA strand. Lack of hSuv3p function also resulted in accumulation of aberrant RNA species, molecules with extended poly(A) tails and degradation intermediates truncated predominantly at their 3′-ends. Moreover, we present data indicating that hSuv3p co-purifies with PNPase; this may suggest participation of both proteins in mtRNA metabolism.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
40
|
Zimmer SL, Schein A, Zipor G, Stern DB, Schuster G. Polyadenylation in Arabidopsis and Chlamydomonas organelles: the input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:88-99. [PMID: 19309454 DOI: 10.1111/j.1365-313x.2009.03853.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The polyadenylation-stimulated RNA degradation pathway takes place in plant and algal organelles, yet the identities of the enzymes that catalyze the addition of the tails remain to be clarified. In a search for the enzymes responsible for adding poly(A) tails in Chlamydomonas and Arabidopsis organelles, reverse genetic and biochemical approaches were employed. The involvement of candidate enzymes including members of the nucleotidyltransferase (Ntr) family and polynucleotide phosphorylase (PNPase) was examined. For several of the analyzed nuclear-encoded proteins, mitochondrial localization was established and possible dual targeting to mitochondria and chloroplasts could be predicted. We found that certain members of the Ntr family, when expressed in bacteria, displayed poly(A) polymerase (PAP) activity and partially complemented an Escherichia coli strain lacking the endogenous PAP1 enzyme. Other Ntr proteins appeared to be specific for tRNA maturation. When the expression of PNPase was down-regulated by RNAi in Chlamydomonas, very few poly(A) tails were detected in chloroplasts for the atpB transcript, suggesting that this enzyme may be solely responsible for chloroplast polyadenylation activity in this species. Depletion of PNPase did not affect the number or sequence of mitochondrial mRNA poly(A) tails, where unexpectedly we found, in addition to polyadenylation, poly(U)-rich tails. Together, our results identify several Ntr-PAPs and PNPase in organelle polyadenylation, and reveal novel poly(U)-rich sequences in Chlamydomonas mitochondria.
Collapse
Affiliation(s)
- Sarah L Zimmer
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
41
|
Wang DDH, Shu Z, Lieser SA, Chen PL, Lee WH. Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3'-to-5' directionality. J Biol Chem 2009; 284:20812-21. [PMID: 19509288 DOI: 10.1074/jbc.m109.009605] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient turnover of unnecessary and misfolded RNAs is critical for maintaining the integrity and function of the mitochondria. The mitochondrial RNA degradosome of budding yeast (mtEXO) has been recently studied and characterized; yet no RNA degradation machinery has been identified in the mammalian mitochondria. In this communication, we demonstrated that purified human SUV3 (suppressor of Var1 3) dimer and polynucleotide phosphorylase (PNPase) trimer form a 330-kDa heteropentamer that is capable of efficiently degrading double-stranded RNA (dsRNA) substrates in the presence of ATP, a task the individual components cannot perform separately. The configuration of this complex is similar to that of the core complex of the E. coli RNA degradosome lacking RNase E but very different from that of the yeast mtEXO. The hSUV3-hPNPase complex prefers substrates containing a 3' overhang and degrades the RNA in a 3'-to-5' directionality. Deleting a short stretch of amino acids (positions 510-514) compromises the ability of hSUV3 to form a stable complex with hPNPase to degrade dsRNA substrates but does not affect its helicase activity. Furthermore, two additional hSUV3 mutants with abolished helicase activity because of disrupted ATPase or RNA binding activities were able to bind hPNPase. However, the resulting complexes failed to degrade dsRNA, suggesting that an intact helicase activity is essential for the complex to serve as an effective RNA degradosome. Taken together, these results strongly suggest that the complex of hSUV3-hPNPase is an integral entity for efficient degradation of structured RNA and may be the long sought RNA-degrading complex in the mammalian mitochondria.
Collapse
Affiliation(s)
- Dennis Ding-Hwa Wang
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
42
|
Schuster G, Stern D. RNA polyadenylation and decay in mitochondria and chloroplasts. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:393-422. [PMID: 19215778 DOI: 10.1016/s0079-6603(08)00810-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria and chloroplasts were originally acquired by eukaryotic cells through endosymbiotic events and retain their own gene expression machinery. One hallmark of gene regulation in these two organelles is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on their mechanisms of RNA degradation, and therefore mainly on the polyadenylation-stimulated degradation pathway. Overall, mitochondria and chloroplasts have retained the prokaryotic RNA decay system, despite evolution in the number and character of the enzymes involved. However, several significant differences exist, of which the presence of stable poly(A) tails, and the location of PNPase in the intermembrane space in animal mitochondria, are perhaps the most remarkable. The known and predicted proteins taking part in polyadenylation-stimulated degradation pathways are described, both in chloroplasts and four mitochondrial types: plant, yeast, trypanosome, and animal.
Collapse
Affiliation(s)
- Gadi Schuster
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
43
|
Nagaike T, Suzuki T, Ueda T. Polyadenylation in mammalian mitochondria: insights from recent studies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:266-9. [PMID: 18312863 DOI: 10.1016/j.bbagrm.2008.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/27/2008] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
Abstract
Polyadenylation in animal mitochondria is very unique. Unlike other systems, polyadenylation is needed to generate UAA stop codons that are not encoded in mitochondrial (mt) DNA. In some cases, polyadenylation is required for the mt tRNA maturation by editing of its 3' termini. Furthermore, recent studies on human mt poly(A) polymerase (PAP) and PNPase provide new insights and questions for the regulatory mechanism and functional role of polyadenylation in human mitochondria.
Collapse
Affiliation(s)
- Takashi Nagaike
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
44
|
Slomovic S, Schuster G. Stable PNPase RNAi silencing: its effect on the processing and adenylation of human mitochondrial RNA. RNA (NEW YORK, N.Y.) 2008; 14:310-323. [PMID: 18083837 PMCID: PMC2212247 DOI: 10.1261/rna.697308] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/24/2007] [Indexed: 05/25/2023]
Abstract
Polynucleotide phosphorylase (PNPase) is a diverse enzyme, involved in RNA polyadenylation, degradation, and processing in prokaryotes and organelles. However, in human mitochondria, PNPase is located in the intermembrane space (IMS), where no mitochondrial RNA (mtRNA) is known to be present. In order to determine the nature and degree of its involvement in mtRNA metabolism, we stably silenced PNPase by establishing HeLa cell lines expressing PNPase short-hairpin RNA (shRNA). Processing and polyadenylation of mt-mRNAs were significantly affected, but, to different degrees in different genes. For instance, the stable poly(A) tails at the 3' ends of COX1 transcripts were abolished, while COX3 poly(A) tails remained unaffected and ND5 and ND3 poly(A) extensions increased in length. Despite the lack of polyadenylation at the 3' end, COX1 mRNA and protein accumulated to normal levels, as was the case for all 13 mt-encoded proteins. Interestingly, ATP depletion also altered poly(A) tail length, demonstrating that adenylation of mtRNA can be manipulated by indirect, environmental means and not solely by direct enzymatic activity. When both PNPase and the mitochondrial poly(A)-polymerase (mtPAP) were concurrently silenced, the mature 3' end of ND3 mRNA lacked poly(A) tails but retained oligo(A) extensions. Furthermore, in mtPAP-silenced cells, truncated adenylated COX1 molecules, considered to be degradation intermediates, were present but harbored significantly shorter tails. Together, these results suggest that an additional mitochondrial polymerase, yet to be identified, is responsible for the oligoadenylation of mtRNA and that PNPase, although located in the IMS, is involved, most likely by indirect means, in the processing and polyadenylation of mtRNA.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
45
|
Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G. Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2007; 1779:247-55. [PMID: 18177749 DOI: 10.1016/j.bbagrm.2007.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/29/2007] [Accepted: 12/06/2007] [Indexed: 02/02/2023]
Abstract
The addition of poly(A)-tails to RNA is a phenomenon common to almost all organisms. Not only homopolymeric poly(A)-tails, comprised exclusively of adenosines, but also heteropolymeric poly(A)-rich extensions, which include the other three nucleotides as well, have been observed in bacteria, archaea, chloroplasts, and human cells. Polynucleotide phosphorylase (PNPase) and the archaeal exosome, which bear strong similarities to one another, both functionally and structurally, were found to polymerize the heteropolymeric tails in bacteria, spinach chloroplasts, and archaea. As phosphorylases, these enzymes use diphosphate nucleotides as substrates and can reversibly polymerize or degrade RNA, depending on the relative concentrations of nucleotides and inorganic phosphate. A possible scenario, illustrating the evolution of RNA polyadenylation and its related functions, is presented, in which PNPase (or the archaeal exosome) was the first polyadenylating enzyme to evolve and the heteropolymeric tails that it produced, functioned in a polyadenylation-stimulated RNA degradation pathway. Only at a later stage in evolution, did the poly(A)-polymerases that use only ATP as a substrate, hence producing homopolymeric adenosine extensions, arise. Following the appearance of homopolymeric tails, a new role for polyadenylation evolved; RNA stability. This was accomplished by utilizing stable poly(A)-tails associated with the mature 3' ends of transcripts. Today, stable polyadenylation coexists with unstable heteropolymeric and homopolymeric tails. Therefore, the heteropolymeric poly(A)-rich tails, observed in bacteria, organelles, archaea, and human cells, represent an ancestral stage in the evolution of polyadenylation.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|