1
|
Ibrahim M, Grochowska E, Stadnicka K. Primordial germ cells as a potential model for understanding (Nutri) epigenetic - metabolic interactions: a mini review. Front Cell Dev Biol 2025; 13:1576768. [PMID: 40297518 PMCID: PMC12034734 DOI: 10.3389/fcell.2025.1576768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Primordial germ cells (PGCs) are the progenitors of gametes (sperm and eggs), making them crucial for understanding germline transmission and epigenetic modifications, which are critical for studying transgenerational effects of nutrition and metabolic diseases. This is particularly relevant given the growing evidence that environmental factors, such as diet, can influence metabolic disease risk across generations through modulating epigenetic mechanisms, as seen in both human and animal studies. The unique biological and experimental attributes make PGCs in the chicken embryo a potential model for exploring the complex interactions between nutrition, epigenetic inheritance, and metabolic diseases, providing insights that are translatable to metabolic health and disease prevention tactics. This brief review emphasizes the potential of chicken PGCs as a model system to investigate the mechanisms underlying transgenerational metabolic programming.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Health Sciences Faculty, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
- PBS Doctoral School, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Ewa Grochowska
- Health Sciences Faculty, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Health Sciences Faculty, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
2
|
Sritabtim K, Prukudom S, Piyasanti Y, Chaipipat S, Kuwana T, Jurutha J, Sinsiri R, Tirawattanawanich C, Siripattarapravat K. First study on repeatable culture of primordial germ cells from various embryonic regions with giant feeder cells in Japanese quail (Coturnix japonica). Theriogenology 2024; 213:43-51. [PMID: 37797528 DOI: 10.1016/j.theriogenology.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Japanese quail (JQ, Coturnix japonica) is a farmed animal with a high economic value and has been used extensively as an avian model for research. Germline chimera production based on cryopreserved primordial germ cells (PGCs) is possible for conservation management of quail breeds as successful isolation has been reported of PGCs from their blood and gonads. However, the repeatable cultivation protocol has not been elucidated yet, which has hindered technological development. The current study characterized cultivation of pregonadal PGCs isolated from embryonic parts; embryonic blood (cPGCs), whole embryonic tissues (tPGCs), parts of tail buds (tbPGCs), and a mixture of blood and tail bud tissues (ctbPGCs). The results showed that the cultivation system required the presence of specific embryonic cells to act as a feeder for JQ-PGCs and that such a system facilitated more successful cultivation, as shown by the percentages of isolation and cultivation in tbPGCs (100%, 100%, respectively), tPGCs (60%, 55%, respectively), and ctbPGCs (60%, 30%, respectively), but not in cPGCs (0%) cultured on a mitomycin-treated JQ feeder cell-line. Once the co-culture system had been established, the PGCs could be propagated for at least 5 months. These PGCs expressed germ cell-specific markers (DAZL and CVH) and could colonize embryonic gonads. Conclusively, the isolation of pregonadal PGCs and their long-term cultivation in vitro requires a unique embryonic cell, giant cell feeder, that is indispensable for the proliferation of PGCs. Characterization of cell signaling sustaining a mutual interaction between the PGCs and the specific feeder cells will elucidate a superior environment for in vitro cultivation, as well as support the minimal transfer of used xenobiotics in chimera production.
Collapse
Affiliation(s)
- Kornkanok Sritabtim
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sukumal Prukudom
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand; Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Yanika Piyasanti
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Suparat Chaipipat
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand; Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, Thailand; Center of Excellence on Agricultural Biotechnology:(AG-BIO/PERDO-CHE), Bangkok, Thailand
| | | | - Juthathip Jurutha
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Rungthiwa Sinsiri
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chanin Tirawattanawanich
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kannika Siripattarapravat
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand; Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, Thailand; Center of Excellence on Agricultural Biotechnology:(AG-BIO/PERDO-CHE), Bangkok, Thailand; Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
3
|
Dehdilani N, Yousefi Taemeh S, Rival-Gervier S, Montillet G, Kress C, Jean C, Goshayeshi L, Dehghani H, Pain B. Enhanced cultivation of chicken primordial germ cells. Sci Rep 2023; 13:12323. [PMID: 37516783 PMCID: PMC10387062 DOI: 10.1038/s41598-023-39536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023] Open
Abstract
The cultivation and expansion of chicken primordial germ cells (cPGCs) are of critical importance for both biotechnological applications and the management of poultry genetic biodiversity. The feeder-free culture system has become the most popular approach for the cultivation and expansion of cPGCs. However, despite some success in the cultivation of cPGCs, the reproducibility of culture conditions across different laboratories remains a challenge. This study aimed to compare two defined and enriched media for the growth of cPGCs originating from the Hubbard JA57 broiler. To this end, cPGCs were isolated from the embryonic blood of Hamburger-Hamilton (HH) stages 14-16 and cultured at various time points. The Growth properties and characteristics of these cells were evaluated in two different culture conditions (the defined or enriched medium) and their migratory properties were assessed after genetic engineering and injection into the vasculature of 2.5-day-old chicken embryos. The main finding of this study was that the use of an enriched medium (the defined medium with Knock-Out Serum Replacement; KOSR) resulted in improved growth properties of cPGCs originating from the Hubbard JA57 broiler compared to a defined medium. The ability to cultivate and expand cPGCs is crucial for the generation of both genetically engineered birds and breeds of interest from local or commercial origins. Therefore, these results highlight the importance of choosing an appropriate culture medium for cPGCs growth and expansion.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sylvie Rival-Gervier
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Guillaume Montillet
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Clémence Kress
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Christian Jean
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France.
| |
Collapse
|
4
|
Ichikawa K, Horiuchi H. Fate Decisions of Chicken Primordial Germ Cells (PGCs): Development, Integrity, Sex Determination, and Self-Renewal Mechanisms. Genes (Basel) 2023; 14:genes14030612. [PMID: 36980885 PMCID: PMC10048776 DOI: 10.3390/genes14030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Primordial germ cells (PGCs) are precursor cells of sperm and eggs. The fate decisions of chicken PGCs in terms of their development, integrity, and sex determination have unique features, thereby providing insights into evolutionary developmental biology. Additionally, fate decisions in the context of a self-renewal mechanism have been applied to establish culture protocols for chicken PGCs, enabling the production of genome-edited chickens and the conservation of genetic resources. Thus, studies on the fate decisions of chicken PGCs have significantly contributed to both academic and industrial development. Furthermore, studies on fate decisions have rapidly advanced owing to the recent development of essential research technologies, such as genome editing and RNA sequencing. Here, we reviewed the status of fate decisions of chicken PGCs and provided insight into other important research issues that require attention.
Collapse
Affiliation(s)
- Kennosuke Ichikawa
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- Correspondence:
| | - Hiroyuki Horiuchi
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| |
Collapse
|
5
|
Tagami T. Chicken genome editing technology and its application to the food industry. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takahiro Tagami
- Division of Meat Animal and Poultry Research, NARO Institute of Livestock and Grassland Science
| |
Collapse
|
6
|
Nakamura H, Iwakawa G, Matsubara K. Activation of Migratory Ability in Male Mouse Primordial Germ Cells by in vitro Organ Culture. JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.3923/jms.2022.53.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
7
|
Lázár B, Molnár M, Sztán N, Végi B, Drobnyák Á, Tóth R, Tokodyné Szabadi N, McGrew MJ, Gócza E, Patakiné Várkonyi E. Successful cryopreservation and regeneration of a partridge colored Hungarian native chicken breed using primordial germ cells. Poult Sci 2021; 100:101207. [PMID: 34242944 PMCID: PMC8271167 DOI: 10.1016/j.psj.2021.101207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022] Open
Abstract
Primordial germ cells (PGCs) are the precursors of germline cells that generate sperm and ova in adults. Thus, they are promising tools for gene editing and genetic preservation, especially in avian species. In this study, we established stable male and female PGC lines from 6Hungarian indigenous chicken breeds with derivation rates ranging from 37.5 to 50 percent. We characterized the PGCs for expression of the germ cell-specific markers during prolonged culture in vitro. An in vivo colonization test was performed on PGCs from four Hungarian chicken breeds and the colonization rates were between 76 and 100%. Cryopreserved PGCs of the donor breed (Partridge color Hungarian) were injected into Black Transylvanian Naked Neck host embryos to form chimeric progeny that, after backcrossing, would permit reconstitution of the donor breed. For 24 presumptive chimeras 13 were male and 11 were female. In the course of backcrossing, 340 chicks were hatched and 17 of them (5%) were pure Partridge colored. Based on the backcrossing 1 hen and 3 roosters of the 24 presumptive chimeras (16.6%) have proven to be germline chimeras. Therefore, it was proven that the original breed can be recovered from primordial germ cells which are stored in the gene bank. To our knowledge, our study is a first that applied feeder free culturing conditions for both male and female cell lines successfully and used multiple indigenous chicken breeds to create a gene bank representing a region (Carpathian Basin).
Collapse
Affiliation(s)
- Bence Lázár
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, 200 Isaszegi street, 2100 Gödöllő, Hungary; Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Animal Biotechnology Department, 4 Szent-Györgyi Albert street, 2100 Gödöllő, Hungary.
| | - Mariann Molnár
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, 200 Isaszegi street, 2100 Gödöllő, Hungary
| | - Nikoletta Sztán
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, 200 Isaszegi street, 2100 Gödöllő, Hungary
| | - Barbara Végi
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, 200 Isaszegi street, 2100 Gödöllő, Hungary
| | - Árpád Drobnyák
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, 200 Isaszegi street, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Animal Biotechnology Department, 4 Szent-Györgyi Albert street, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Animal Biotechnology Department, 4 Szent-Györgyi Albert street, 2100 Gödöllő, Hungary
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, EH25 9RG, Midlothian, UK
| | - Elen Gócza
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Animal Biotechnology Department, 4 Szent-Györgyi Albert street, 2100 Gödöllő, Hungary
| | - Eszter Patakiné Várkonyi
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, 200 Isaszegi street, 2100 Gödöllő, Hungary
| |
Collapse
|
8
|
Idrees M, Oh SH, Muhammad T, El-Sheikh M, Song SH, Lee KL, Kong IK. Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 2020; 9:cells9081798. [PMID: 32751109 PMCID: PMC7465981 DOI: 10.3390/cells9081798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Tahir Muhammad
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Marwa El-Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Seok-Hwan Song
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
9
|
Xiong C, Wang M, Ling W, Xie D, Chu X, Li Y, Huang Y, Li T, Otieno E, Qiu X, Xiao X. Advances in Isolation and Culture of Chicken Embryonic Stem Cells In Vitro. Cell Reprogram 2020; 22:43-54. [PMID: 32150690 DOI: 10.1089/cell.2019.0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chicken embryonic stem cells (cESCs) isolated from the egg at the stage X hold great promise for cell therapy, tissue engineering, pharmaceutical, and biotechnological applications. They are considered to be pluripotent cells with the capacity to self-renewal and differentiate into specialized cells. However, long-term maintenance of cESCs cannot be realized now, which impedes the establishment of cESC line and limits their applications. Therefore, the separation locations, isolation methods, and culture conditions especially the supplements and action mechanisms of cytokines, including leukemia inhibitory factor, fibroblast growth factor, transforming growth factor beta, bone morphogenic protein, and activin for cESCs in vitro, have been reviewed here. These defined strategies will contribute to identify the key mechanism on the self-renewal of cESCs, facilitate to optimize system that supports the derivation and longtime maintenance of cESCs, establish the cESC line, and develop the biobank of genetic resources in chicken.
Collapse
Affiliation(s)
- Chunxia Xiong
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenhui Ling
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dengfeng Xie
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xinyue Chu
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yunxin Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tong Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoyan Qiu
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
10
|
|
11
|
Han JY, Park YH. Primordial germ cell-mediated transgenesis and genome editing in birds. J Anim Sci Biotechnol 2018; 9:19. [PMID: 29423217 PMCID: PMC5791193 DOI: 10.1186/s40104-018-0234-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Transgenesis and genome editing in birds are based on a unique germline transmission system using primordial germ cells (PGCs), which is quite different from the mammalian transgenic and genome editing system. PGCs are progenitor cells of gametes that can deliver genetic information to the next generation. Since avian PGCs were first discovered in nineteenth century, there have been numerous efforts to reveal their origin, specification, and unique migration pattern, and to improve germline transmission efficiency. Recent advances in the isolation and in vitro culture of avian PGCs with genetic manipulation and genome editing tools enable the development of valuable avian models that were unavailable before. However, many challenges remain in the production of transgenic and genome-edited birds, including the precise control of germline transmission, introduction of exogenous genes, and genome editing in PGCs. Therefore, establishing reliable germline-competent PGCs and applying precise genome editing systems are critical current issues in the production of avian models. Here, we introduce a historical overview of avian PGCs and their application, including improved techniques and methodologies in the production of transgenic and genome-edited birds, and we discuss the future potential applications of transgenic and genome-edited birds to provide opportunities and benefits for humans.
Collapse
Affiliation(s)
- Jae Yong Han
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea.,2Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan
| | - Young Hyun Park
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
12
|
Bednarczyk M, Kozłowska I, Łakota P, Szczerba A, Stadnicka K, Kuwana T. Generation of transgenic chickens by the non-viral, cell-based method: effectiveness of some elements of this strategy. J Appl Genet 2018; 59:81-89. [PMID: 29372515 PMCID: PMC5799318 DOI: 10.1007/s13353-018-0429-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
Abstract
Transgenic chickens have, in general, been produced by two different procedures. The first procedure is based on viral transfection systems. The second procedure, the non-viral method, is based on genetically modified embryonic cells transferred directly into the recipient embryo. In this review, we analyzed the effectiveness of important elements of the non-viral, cell-based strategy of transgenic chicken production. The main elements of this strategy are: isolation and cultivation of donor embryonic cells; transgene construction; cell transfection in vitro; and chimera production: injection of cells into recipient embryos, raising and identification of germline chimeras, mating germline chimeras, transgene inheritance, and transgene expression. In this overview, recent progress and important limitations in the development of transgenic chickens are presented.
Collapse
Affiliation(s)
- Marek Bednarczyk
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland.
| | - Izabela Kozłowska
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| | - Paweł Łakota
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| | - Agata Szczerba
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| | - Takashi Kuwana
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
13
|
Dos Santos JA, Duailibi MT, Maria DA, de Lima Will SEA, Silva PCS, Gomes LF, Duailibi SE. Chick Embryo Model for Homing and Host Interactions of Tissue Engineering-Purposed Human Dental Stem Cells. Tissue Eng Part A 2017; 24:882-888. [PMID: 29160181 DOI: 10.1089/ten.tea.2017.0387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human dental stem cells (hDSC) have a potential for regenerative therapies and could differentiate in vitro into many tissues, such as dentin, nerve, and vascular endothelium. Gallus gallus domesticus developing fertilized egg or chick embryo is an experimental model absent of xenografts rejection, largely employed in replacement of mammal species in scientific research and preclinical studies to evaluate angiogenesis and vasculogenesis, tissue differentiation, and embryonic development. This multiscale research deals with the homing and cell signaling effects of a standardized hDSC toward the receptor tissues of G. gallus domesticus in ovo. The hDSC were obtained from the explantation from third molars, characterized by cell cytometry, and employed without any further purification procedure. Four experimental groups were studied, according to the kind of cell tracing strategy, named: Control, mCherry-labeled hDSC, QTracker-labeled hDSC, and QTracker-exposed controls. The eggs were kept in an incubator temperature of 37.6°C and humidity 86%, and the embryos were euthanized after 10 days of incubation. In vivo fluorescence and histological analysis were conducted. The fluorescence of the embryos inoculated with mCherry hDSC or the QTracker hDSC was associated with the bones and the beak tooth, and labeled cell islands could be localized in part of the samples. The inoculation of the QTracker probe resulted in proliferating bone tissue labeling. The hDSC inoculated groups presented cartilage plate hypertrophy and atypical morphology, meanwhile Control eggs were negative. The results demonstrated that hDSC can migrate to the cartilaginous tissues of the chick embryos, survive in this environment, implant, and interfere with the growth of developing bone.
Collapse
Affiliation(s)
- Jennifer Adriane Dos Santos
- 1 CTCMol, Plastic Surgery Department, Center of Cellular and Molecular Therapy, UNIFESP-Universidade Federal de Sao Paulo , Sao Paulo, Brazil .,2 Translational Surgery, Surgery Department, UNIFESP-Universidade Federal de Sao Paulo , Sao Paulo, Brazil
| | - Monica Talarico Duailibi
- 1 CTCMol, Plastic Surgery Department, Center of Cellular and Molecular Therapy, UNIFESP-Universidade Federal de Sao Paulo , Sao Paulo, Brazil .,2 Translational Surgery, Surgery Department, UNIFESP-Universidade Federal de Sao Paulo , Sao Paulo, Brazil .,3 National Institute of Science and Technology, Biofabrication Institute , BIOFABRIS, Campinas, Sao Paulo, Brazil
| | | | | | - Paulo Cesar Simões Silva
- 1 CTCMol, Plastic Surgery Department, Center of Cellular and Molecular Therapy, UNIFESP-Universidade Federal de Sao Paulo , Sao Paulo, Brazil
| | - Ligia Ferreira Gomes
- 5 Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas-Universidade São Paulo , São Paulo, Brazil
| | - Silvio Eduardo Duailibi
- 1 CTCMol, Plastic Surgery Department, Center of Cellular and Molecular Therapy, UNIFESP-Universidade Federal de Sao Paulo , Sao Paulo, Brazil .,2 Translational Surgery, Surgery Department, UNIFESP-Universidade Federal de Sao Paulo , Sao Paulo, Brazil .,3 National Institute of Science and Technology, Biofabrication Institute , BIOFABRIS, Campinas, Sao Paulo, Brazil
| |
Collapse
|
14
|
Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE. The evolution of chicken stem cell culture methods. Br Poult Sci 2017; 58:681-686. [PMID: 28840744 DOI: 10.1080/00071668.2017.1365354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.
Collapse
Affiliation(s)
- M Farzaneh
- a Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR , Tehran , Iran
| | - F Attari
- b Department of Animal Biology, School of Biology, College of Science , University of Tehran , Tehran , Iran
| | - P E Mozdziak
- c Physiology Graduate Program , North Carolina State University , Raleigh , NC , USA
| | - S E Khoshnam
- d Department of Physiology, Faculty of Medicine, Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran.,e Student Research Committee , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
15
|
Abstract
Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.
Collapse
|
16
|
Tagami T, Miyahara D, Nakamura Y. Avian Primordial Germ Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:1-18. [PMID: 28980226 DOI: 10.1007/978-981-10-3975-1_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Germ cells transmit genetic information to the next generation through gametogenesis. Primordial germ cells (PGCs) are the first germ-cell population established during development, and are the common origins of both oocytes and spermatogonia. Unlike in other species, PGCs in birds undergo blood circulation to migrate toward the genital ridge, and are one of the major biological properties of avian PGCs. Germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. In chicken, gonadal sex differentiation occurs as early as embryonic day 6, but meiotic initiation of female germ cells starts from a relatively late stage (embryonic day 15.5). Retinoic acid controls meiotic entry in developing chicken gonads through the expressions of retinaldehyde dehydrogenase 2, a major retinoic acid synthesizing enzyme, and cytochrome P450 family 26, subfamily B member 1, a major retinoic acid-degrading enzyme. The other major biological property of avian PGCs is that they can be propagated in vitro for the long term, and this technique is useful for investigating proliferation mechanisms. The main factor involved in chicken PGC proliferation is fibroblast growth factor 2, which activates the signaling of MEK/ERK and thus promotes the cell cycle and anti-apoptosis. Furthermore, the activation of PI3K/Akt signaling is indispensable for the proliferation and survival of chicken PGCs.
Collapse
Affiliation(s)
- Takahiro Tagami
- Institute of Livestock Grassland Science, NARO, Ibaraki, Japan.
| | - Daichi Miyahara
- Institute of Livestock Grassland Science, NARO, Ibaraki, Japan
- Shinshu University, Ueda, Japan
| | | |
Collapse
|
17
|
Makoolati Z, Movahedin M, Forouzandeh-Moghadam M. Proliferation in culture of primordial germ cells derived from embryonic stem cell: induction by retinoic acid. Biosci Rep 2016; 36:e00428. [PMID: 27834666 PMCID: PMC5180254 DOI: 10.1042/bsr20160441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022] Open
Abstract
An in vitro system that supports primordial germ cells (PGCs) survival and proliferation is useful for enhancement of these cells and efficient transplantation in infertility disorders. One approach is cultivation of PGCs under proper conditions that allow self-renewal and proliferation of PGCs. For this purpose, we compared the effects of different concentrations of retinoic acid (RA), and the effect of PGCs co-culture (Co-C) with SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cells on the proliferation of embryonic stem cells (ESCs)-derived PGCs. One-day-old embryoid body (EB) was cultured for 4 days in simple culture system in the presence of 5 ng/ml bone morphogenetic protein-4 (BMP4) (SCB group) for PGC induction. For PGC enrichment, ESCs-derived germ cells were cultured for 7 days in the presence of different doses (0-5 μM) of RA, both in the simple and STO Co-C systems. At the end of the culture period, viability and proliferation rates were assessed and expression of mouse vasa homologue (Mvh), α6 integrin, β1 integrin, stimulated by retinoic acid 8 (Stra8) and piwi (Drosophila)-like 2 (Piwil2) was evaluated using quantitative PCR. Also, the inductive effects were investigated immunocytochemically with Mvh and cadherin1 (CDH1) on the selected groups. Immunocytochemistry/PCR results showed higher expression of Mvh, the PGC-specific marker, in 3 μM RA concentrations on the top of the STO feeder layer. Meanwhile, assessment of the Stra8 mRNA and CDH1 protein, the specific makers for spermatogonia, showed no significant differences between groups. Based on the results, it seems that in the presence of 3 μM RA on top of the STO feeder layer cells, the majority of the cells transdifferentiated into germ cells were PGCs.
Collapse
Affiliation(s)
- Zohreh Makoolati
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa 74616-86688, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Mehdi Forouzandeh-Moghadam
- Department of Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| |
Collapse
|
18
|
Abstract
The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties of avian PGCs.
Collapse
Affiliation(s)
- Yoshiaki Nakamura
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institute of Natural Sciences, Aichi 444-8787, Japan
| |
Collapse
|