1
|
Koujalagi T, Ruhal R. Mitigating Health Risks Through Environmental Tracking of Pseudomonas aeruginosa. Curr Microbiol 2024; 82:57. [PMID: 39718600 DOI: 10.1007/s00284-024-04036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Pseudomonas aeruginosa is a prevalent nosocomial pathogen and a significant reservoir of antimicrobial resistance genes in residential and built environments. It is also widespread in various indoor and outdoor settings, including sewage, surface waters, soil, recreational waters (both treated and untreated), and industrial effluents. Surveillance efforts for P. aeruginosa are primarily focused on hospitals rather than built environments. However, evidence links multidrug-resistant P. aeruginosa of human origin with activity in built environments and hospital settings. Consequently, tracking this pathogen across all environments is crucial for understanding the mechanisms of reverse transmission from built environments to humans. This review explores public health hygiene by examining the prevalence of P. aeruginosa in various environments, its sequence types, the factors contributing to multidrug resistance, and the identification methods through global surveillance. Whole-genome sequencing with sequence typing and real-time quantitative PCR are widely used to identify and study antimicrobial-resistant strains worldwide. Additionally, advanced techniques such as functional metagenomics, next-generation sequencing, MALDI-TOF, and biosensors are being extensively employed to detect antimicrobial-resistant strains and mitigate the ongoing evolution of bacterial resistance to antibiotics. Our review strongly underscores the importance of environmental monitoring of P. aeruginosa in preventing human infections. Furthermore, strategic planning in built environments is essential for effective epidemiological surveillance of P. aeruginosa and the development of comprehensive risk assessment models.
Collapse
Affiliation(s)
- Tushar Koujalagi
- School of Bio Science and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Rohit Ruhal
- School of Bio Science and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Abdel-Fatah SS, Mohammad NH, Elshimy R, Mosallam FM. Impeding microbial biofilm formation and Pseudomonas aeruginosa virulence genes using biologically synthesized silver Carthamus nanoparticles. Microb Cell Fact 2024; 23:240. [PMID: 39238019 PMCID: PMC11378559 DOI: 10.1186/s12934-024-02508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Long-term antibiotic treatment results in the increasing resistance of bacteria to antimicrobials drugs, so it is necessary to search for effective alternatives to prevent and treat pathogens that cause diseases. This study is aimed for biological synthesis of silver Carthamus nanoparticles (Ag-Carth-NPs) to combat microbial biofilm formation and Pseudomonas aeruginosa virulence genes. Ag-Carth-NPs are synthesized using Carthamus tenuis aqueous extract as environmentally friendly method has no harmful effect on environment. General factorial design is used to optimize Ag-Carth-NPs synthesis using three variables in three levels are Carthamus extract concentration, silver nitrate concentration and gamma radiation doses. Analysis of response data indicates gamma radiation has a significant effect on Ag-Carth-NPs production. Ag-Carth-NPs have sharp peak at λ max 425 nm, small and spherical particles with size 20.0 ± 1.22 nm, high stability up to 240 day with zeta potential around - 43 ± 0.12 mV, face centered cubic crystalline structure and FT-IR spectroscopy shows peak around 620 cm-1 that corresponding to AgNPs that stabilized by C. tenuis extract functional moiety. The antibacterial activity of Ag-Carth-NPs against pathogenic bacteria and fungi was determined using well diffusion method. The MIC values of Ag-Carth-NPs were (6.25, 6.25, 3.126, 25, 12.5, 12.5, 25 and 12.5 µg/ml), MBC values were (12.5, 12.5, 6.25, 50, 25, 25, 50 and 25 µg/ml) and biofilm inhibition% were (62.12, 68.25, 90.12, 69.51, 70.61, 71.12, 75.51 and 77.71%) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Candida tropicalis and Candida albicans respectively. Ag-Carth-NPs has bactericidal efficacy and significantly reduced the swarming, swimming motility, pyocyanin and protease production of P. aeruginosa. Furthermore, P. aeruginosa ToxA gene expression was significantly down regulated by 81.5%, while exoU reduced by 78.1%, where lasR gene expression reduction was 68%, while the reduction in exoU was 66% and 60.1% decrease in lasB gene expression after treatment with Ag-Carth-NPs. This activity is attributed to effect of Ag-Carth-NPs on cell membrane integrity, down regulation of virulence gene expression, and induction of general and oxidative stress in P. aeruginosa. Ag-Carth-NPs have no significant cytotoxic effects on normal human cell (Hfb4) but have IC50 at 5.6µg/mL against of HepG-2 cells. Limitations of the study include studies with low risks of silver nanoparticles for in vitro antimicrobial effects and its toxicity.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nasser H Mohammad
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rana Elshimy
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
- Microbiology and immunology, Faculty of Pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
3
|
Wheeler JHR, Foster KR, Durham WM. Individual bacterial cells can use spatial sensing of chemical gradients to direct chemotaxis on surfaces. Nat Microbiol 2024; 9:2308-2322. [PMID: 39227714 PMCID: PMC11371657 DOI: 10.1038/s41564-024-01729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/10/2024] [Indexed: 09/05/2024]
Abstract
Swimming bacteria navigate chemical gradients using temporal sensing to detect changes in concentration over time. Here we show that surface-attached bacteria use a fundamentally different mode of sensing during chemotaxis. We combined microfluidic experiments, massively parallel cell tracking and fluorescent reporters to study how Pseudomonas aeruginosa senses chemical gradients during pili-based 'twitching' chemotaxis on surfaces. Unlike swimming cells, we found that temporal changes in concentration did not induce motility changes in twitching cells. We then quantified the chemotactic behaviour of stationary cells by following changes in the sub-cellular localization of fluorescent proteins as cells are exposed to a gradient that alternates direction. These experiments revealed that P. aeruginosa cells can directly sense differences in concentration across the lengths of their bodies, even in the presence of strong temporal fluctuations. Our work thus overturns the widely held notion that bacterial cells are too small to directly sense chemical gradients in space.
Collapse
Affiliation(s)
- James H R Wheeler
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - William M Durham
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Zhao Y, Ding WJ, Xu L, Sun JQ. A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Front Microbiol 2024; 15:1395477. [PMID: 38817968 PMCID: PMC11138164 DOI: 10.3389/fmicb.2024.1395477] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wen-Jing Ding
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
5
|
Clerc EE, Raina JB, Keegstra JM, Landry Z, Pontrelli S, Alcolombri U, Lambert BS, Anelli V, Vincent F, Masdeu-Navarro M, Sichert A, De Schaetzen F, Sauer U, Simó R, Hehemann JH, Vardi A, Seymour JR, Stocker R. Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP. Nat Commun 2023; 14:8080. [PMID: 38057294 PMCID: PMC10700628 DOI: 10.1038/s41467-023-43143-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.
Collapse
Affiliation(s)
- Estelle E Clerc
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Johannes M Keegstra
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Zachary Landry
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Uria Alcolombri
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Life Sciences, Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bennett S Lambert
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Valerio Anelli
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Developmental Biology Unit, European Molecular Biological Laboratory, Heidelberg, 69117, Germany
| | | | - Andreas Sichert
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frédéric De Schaetzen
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rafel Simó
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | | | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Xue C, Li L, Guo C, Gao Y, Yang C, Deng X, Li X, Tai P, Sun L. Understanding the role of graphene oxide in affecting PAHs biodegradation by microorganisms: An integrated analysis using 16SrRNA, metatranscriptomic, and metabolomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131811. [PMID: 37307733 DOI: 10.1016/j.jhazmat.2023.131811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO)-promoted microbial degradation technology is considered an important strategy to eliminate polycyclic aromatic hydrocarbons (PAHs) in the environment; however, the mechanism by which GO affects microbial degradation of PAHs has not been fully studied. Thus, this study aimed to analyze the effect of GO-microbial interaction on PAHs degradation at the microbial community structure, community gene expression, and metabolic levels using multi-omics combined technology. We treated PAHs-contaminated soil samples with different concentrations of GO and analyzed the soil samples for microbial diversity after 14 and 28 days. After a short exposure, GO reduced the diversity of soil microbial community but increased potential degrading microbial abundance, promoting PAHs biodegradation. This promotion effect was further influenced by the GO concentration. In a short period of time, GO upregulated the expression of genes involved in microbial movement (flagellar assembly), bacterial chemotaxis, two-component system, and phosphotransferase system in the soil microbial community and increased the probability of microbial contact with PAHs. Biosynthesis of amino acids and carbon metabolism of microorganisms were accelerated, thereby increasing the degradation of PAHs. With the extension of time, the degradation of PAHs stagnated, which may be due to the weakened stimulation of GO on microorganisms. The results showed that screening specific degrading microorganisms, increasing the contact area between microorganisms and PAHs, and prolonging the stimulation of GO on microorganisms were important means to improve the biodegradation efficiency of PAHs in soil. This study elucidates how GO affects microbial PAHs degradation and provides important insights for the application of GO-assisted microbial degradation technology.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingmei Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yingmei Gao
- Shenyang Agricultural University, Shenyang 110016, China
| | - Caixia Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Deng
- Yunnan Institute of Eco-environmental Science, Kunming, Yunnan 650034, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China.
| |
Collapse
|
7
|
Shekhawat K, Fröhlich K, García-Ramírez GX, Trapp MA, Hirt H. Ethylene: A Master Regulator of Plant-Microbe Interactions under Abiotic Stresses. Cells 2022; 12:cells12010031. [PMID: 36611825 PMCID: PMC9818225 DOI: 10.3390/cells12010031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The plant phytohormone ethylene regulates numerous physiological processes and contributes to plant-microbe interactions. Plants induce ethylene production to ward off pathogens after recognition of conserved microbe-associated molecular patterns (MAMPs). However, plant immune responses against pathogens are essentially not different from those triggered by neutral and beneficial microbes. Recent studies indicate that ethylene is an important factor for beneficial plant-microbial association under abiotic stress such as salt and heat stress. The association of beneficial microbes with plants under abiotic stresses modulates ethylene levels which control the expression of ethylene-responsive genes (ERF), and ERFs further regulate the plant transcriptome, epi-transcriptome, Na+/K+ homeostasis and antioxidant defense mechanisms against reactive oxygen species (ROS). Understanding ethylene-dependent plant-microbe interactions is crucial for the development of new strategies aimed at enhancing plant tolerance to harsh environmental conditions. In this review, we underline the importance of ethylene in beneficial plant-microbe interaction under abiotic stresses.
Collapse
|
8
|
Pombo JP, Ebenberger SP, Müller AM, Wolinski H, Schild S. Impact of Gene Repression on Biofilm Formation of Vibrio cholerae. Front Microbiol 2022; 13:912297. [PMID: 35722322 PMCID: PMC9201469 DOI: 10.3389/fmicb.2022.912297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio cholerae, the etiological agent of cholera, is a facultative intestinal pathogen which can also survive in aquatic ecosystems in the form of biofilms, surface-associated microbial aggregates embedded in an extracellular matrix, which protects them from predators and hostile environmental factors. Biofilm-derived bacteria and biofilm aggregates are considered a likely source for cholera infections, underscoring the importance of V. cholerae biofilm research not just to better understand bacterial ecology, but also cholera pathogenesis in the human host. While several studies focused on factors induced during biofilm formation, genes repressed during this persistence stage have been fairly neglected. In order to complement these previous studies, we used a single cell-based transcriptional reporter system named TetR-controlled recombination-based in-biofilm expression technology (TRIBET) and identified 192 genes to be specifically repressed by V. cholerae during biofilm formation. Predicted functions of in-biofilm repressed (ibr) genes range from metabolism, regulation, surface association, transmembrane transport as well as motility and chemotaxis. Constitutive (over)-expression of these genes affected static and dynamic biofilm formation of V. cholerae at different stages. Notably, timed expression of one candidate in mature biofilms induced their rapid dispersal. Thus, genes repressed during biofilm formation are not only dispensable for this persistence stage, but their presence can interfere with ordered biofilm development. This work thus contributes new insights into gene silencing during biofilm formation of V. cholerae.
Collapse
Affiliation(s)
- Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Anna M. Müller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
9
|
Panstruga R, Donnelly SC, Bernhagen J. A Cross-Kingdom View on the Immunomodulatory Role of MIF/D-DT Proteins in Mammalian and Plant Pseudomonas Infections. Immunology 2022; 166:287-298. [PMID: 35416298 DOI: 10.1111/imm.13480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gram-negative Pseudomonas bacteria are largely harmless saprotrophs, but some species can be potent pathogens of both plants and mammals. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT, also referred to as MIF-2) are multifunctional proteins that in addition to their intracellular functions also serve as extracellular signaling molecules (cytokines) in orchestrating mammalian immune responses. It recently emerged that plants also possess MIF-like proteins, termed MIF/D-DT-like (MDL) proteins. We here provide a comparative cross-kingdom view on the immunomodulatory role of MIF and MDL proteins during Pseudomonas infections in mammals and plants. Although in both kingdoms the lack of MIF/MDL proteins is associated with a reduction in bacterial load and disease symptoms, the underlying molecular principles seem to be different. We provide a perspective for future research activities to unravel additional commonalities and differences in the MIF/MDL-mediated adjustment of antibacterial immune activities.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilian-University (LMU) Munich, Munich, Germany
| |
Collapse
|
10
|
Zhuang S, Bao Y, Zhang Y, Zhang H, Liu J, Liu H. Antibacterial mechanism of the Asp-Asp-Asp-Tyr peptide. Food Chem X 2022; 13:100229. [PMID: 35499031 PMCID: PMC9039886 DOI: 10.1016/j.fochx.2022.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/06/2022] Open
Abstract
DDDY affects P. aeruginosa membrane transport and amino acid metabolism. DDDY has a stronger effect on POPE than on POPC or POPG membranes. DDDY creates a membrane gap by binding the phospholipid head and hydrophobic tail. DDDY inhibits the growth of food microorganisms inoculated onto chestnut kernels. DDDY is a promising antibacterial for multidrug-resistant gram-negative bacteria.
Previously, we found that ASP-ASP-ASP-TYR (DDDY) from Dendrobium aphyllum has a minimum inhibitory concentration of 36.15 mg/mL against Pseudomonas aeruginosa. Here, we explored the antibacterial mechanism of DDDY and its potential preservation applications. Metabolomic and transcriptomic analyses revealed that DDDY mainly affects genes involved in P. aeruginosa membrane transport and amino acid metabolism pathways. Molecular dynamics simulation revealed that DDDY had a stronger effect on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine phospholipid membranes than on 1-palmitoyl-2-oleoyl-lecithin or 1-palmitoyl-2-oleoyl phosphatidylglycerol membranes, with high DDDY concentrations displaying stronger efficacy on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine. Mechanistically, the N-terminal of DDDY first bound to the phospholipid head group, while its C-terminal amino acid residue bound the hydrophobic tail, thereby creating a gap in the membrane when the phospholipids were clustered by hydrogen bonding. Finally, DDDY inhibited the growth of food microorganisms inoculated onto chestnut kernels, suggesting that DDDY is a promising antibacterial agent against multidrug-resistant gram-negative bacteria.
Collapse
|
11
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Phylogenetic Analysis with Prediction of Cofactor or Ligand Binding for Pseudomonas aeruginosa PAS and Cache Domains. Microbiol Spectr 2021; 9:e0102621. [PMID: 34937179 PMCID: PMC8694187 DOI: 10.1128/spectrum.01026-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PAS domains are omnipresent building blocks of multidomain proteins in all domains of life. Bacteria possess a variety of PAS domains in intracellular proteins and the related Cache domains in periplasmic or extracellular proteins. PAS and Cache domains are predominant in sensory systems, often carry cofactors or bind ligands, and serve as dimerization domains in protein association. To aid our understanding of the wide distribution of these domains, we analyzed the proteome of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 in silico. The ability of this bacterium to survive under different environmental conditions, to switch between planktonic and sessile/biofilm lifestyle, or to evade stresses, notably involves c-di-GMP regulatory proteins or depends on sensory pathways involving multidomain proteins that possess PAS or Cache domains. Maximum likelihood phylogeny was used to group PAS and Cache domains on the basis of amino acid sequence. Conservation of cofactor- or ligand-coordinating amino acids aided by structure-based comparison was used to inform function. The resulting classification presented here includes PAS domains that are candidate binders of carboxylic acids, amino acids, fatty acids, flavin adenine dinucleotide (FAD), 4-hydroxycinnamic acid, and heme. These predictions are put in context to previously described phenotypic data, often generated from deletion mutants. The analysis predicts novel functions for sensory proteins and sheds light on functional diversification in a large set of proteins with similar architecture. IMPORTANCE To adjust to a variety of life conditions, bacteria typically use multidomain proteins, where the modular structure allows functional differentiation. Proteins responding to environmental cues and regulating physiological responses are found in chemotaxis pathways that respond to a wide range of stimuli to affect movement. Environmental cues also regulate intracellular levels of cyclic-di-GMP, a universal bacterial secondary messenger that is a key determinant of bacterial lifestyle and virulence. We study Pseudomonas aeruginosa, an organism known to colonize a broad range of environments that can switch lifestyle between the sessile biofilm and the planktonic swimming form. We have investigated the PAS and Cache domains, of which we identified 101 in 70 Pseudomonas aeruginosa PAO1 proteins, and have grouped these by phylogeny with domains of known structure. The resulting data set integrates sequence analysis and structure prediction to infer ligand or cofactor binding. With this data set, functional predictions for PAS and Cache domain-containing proteins are made.
Collapse
|
13
|
Milojevic T, Treiman AH, Limaye SS. Phosphorus in the Clouds of Venus: Potential for Bioavailability. ASTROBIOLOGY 2021; 21:1250-1263. [PMID: 34342520 DOI: 10.1089/ast.2020.2267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aerosol phase elements such as phosphorus (P), sulfur (S), and metals including iron (Fe) are essential nutrients that could help sustain potential biodiversity in the cloud deck of Venus. While the presence of S and Fe in the venusian cloud deck has been broadly discussed (Zasova et al., 1981; Krasnopolsky, 2012, 2013, 2016, 2017; Markiewicz et al., 2014), less attention has been given to the presence of P in the aerosols and its involvement in the multiphase chemistry of venusian clouds and potential sources of P deposition in the venusian atmosphere. A detailed characterization of phosphorus atmospheric chemistry in the cloud deck of Venus is crucial for understanding its solubility and bioavailability for potential venusian cloud microbiota (Schulze-Makuch et al., 2004; Grinspoon and Bullock, 2007; Limaye et al., 2018). We summarize our current understanding of the presence of P in the clouds of Venus and its role in a hypothetical atmospheric (bio)chemical cycle. The results of the VeGa lander measurements are put into perspective with regard to nutrient limitation for a potential biosphere in venusian clouds. Our work combines the results of the VeGa measurements and focuses on P as an inorganic nutrient component and its potential sources and chemical behavior as part of multiple transformations of atmospheric chemistry. The VeGa data indicate that a plentiful phosphorus layer exists within a layer that reaches into the lower venusian clouds and exceeds minimum P abundances for terrestrial microbial life. Extreme acidification of airborne phases in the atmosphere of Venus may facilitate P solubilization and its bioavailability for a potential ecosystem in venusian clouds. Further sampling and P abundance measurements in the atmosphere of Venus would improve our knowledge of P speciation and facilitate determination of a bioavailable fraction of P detected in venusian clouds. The previous results deserve further experimental and modeling analyses to diminish uncertainties and understand the rates of atmospheric deposition of P and its role in a potential venusian cloud ecosystem.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | | | - Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Feng H, Fu R, Hou X, Lv Y, Zhang N, Liu Y, Xu Z, Miao Y, Krell T, Shen Q, Zhang R. Chemotaxis of Beneficial Rhizobacteria to Root Exudates: The First Step towards Root-Microbe Rhizosphere Interactions. Int J Mol Sci 2021; 22:ijms22136655. [PMID: 34206311 PMCID: PMC8269324 DOI: 10.3390/ijms22136655] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/28/2022] Open
Abstract
Chemotaxis, the ability of motile bacteria to direct their movement in gradients of attractants and repellents, plays an important role during the rhizosphere colonization by rhizobacteria. The rhizosphere is a unique niche for plant-microbe interactions. Root exudates are highly complex mixtures of chemoeffectors composed of hundreds of different compounds. Chemotaxis towards root exudates initiates rhizobacteria recruitment and the establishment of bacteria-root interactions. Over the last years, important progress has been made in the identification of root exudate components that play key roles in the colonization process, as well as in the identification of the cognate chemoreceptors. In the first part of this review, we summarized the roles of representative chemoeffectors that induce chemotaxis in typical rhizobacteria and discussed the structure and function of rhizobacterial chemoreceptors. In the second part we reviewed findings on how rhizobacterial chemotaxis and other root-microbe interactions promote the establishment of beneficial rhizobacteria-plant interactions leading to plant growth promotion and protection of plant health. In the last part we identified the existing gaps in the knowledge and discussed future research efforts that are necessary to close them.
Collapse
Affiliation(s)
- Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Ruixin Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Xueqin Hou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Yu Lv
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: ; Tel.: +86-025-84396477
| |
Collapse
|
15
|
Sinha RK, Krishnan KP. Genomic insights into the molecular mechanisms of a Pseudomonas strain significant in its survival in Kongsfjorden, an Arctic fjord. Mol Genet Genomics 2021; 296:893-903. [PMID: 33909166 DOI: 10.1007/s00438-021-01788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Whole-genome sequence of Pseudomonas sp. Kongs-67 retrieved from Kongsfjorden, an Arctic fjord, has been investigated to understand the molecular machinery required for microbial association and survival in a polar fjord. The genome size of Kongs-67 was 4.5 Mb and was found to be closely related to the Antarctic P. pelagia strain CL-AP6. This genome encodes for chemotaxis response regulator proteins (CheABB1RR2VWYZ), chemoreceptors (methyl-accepting chemotaxis proteins), and flagellar system proteins (FliCDEFGOPMN, FlhABF, FlgBCDEFGHIJKL, and MotAB proteins) vital in cellular interactions in the dynamic fjord environment. A high proportion of genes were assigned to biofilm formation (pgaABCD operon) and signal transduction protein categories (EnvZ/OmpR, CpxA/CpxR, PhoR/PhoB, PhoQ) indicating that the biofilm formation in Kongs-67 could be tightly regulated in response to the availability of signalling-metabolites. The genome of Kongs-67 encoded for HemBCD, CbiA, CobABNSTOQCDP, and BtuBFR proteins involved in cobalamin biosynthesis and transport along with proteins for siderophore-mediated iron channelling (PchR, Fur protein, FpvA); crucial in a microbial association. The genomes of Arctic strain Kongs-67 and Antarctic strain CL-AP6 were similar which is indicative of retainment of the core genes in the polar Pseudomonas strains that could be vital in conferring evolutionary adaptation for its survival in a polar fjord. Thus, our study contributes to the knowledge on the genetics of a polar Pseudomonas member exhibiting biosynthetic potentials and suggest Pseudomonas sp. Kongs-67 as a suitable candidate for the investigation of functional aspects of molecular adaptations in the polar marine environment.
Collapse
Affiliation(s)
- Rupesh Kumar Sinha
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, 403804, Goa, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, 403804, Goa, India.
| |
Collapse
|
16
|
Acres JM, Youngapelian MJ, Nadeau J. The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. NPJ Microgravity 2021; 7:7. [PMID: 33619250 PMCID: PMC7900230 DOI: 10.1038/s41526-021-00135-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
As interest in space exploration rises, there is a growing need to quantify the impact of microgravity on the growth, survival, and adaptation of microorganisms, including those responsible for astronaut illness. Motility is a key microbial behavior that plays important roles in nutrient assimilation, tissue localization and invasion, pathogenicity, biofilm formation, and ultimately survival. Very few studies have specifically looked at the effects of microgravity on the phenotypes of microbial motility. However, genomic and transcriptomic studies give a broad general picture of overall gene expression that can be used to predict motility phenotypes based upon selected genes, such as those responsible for flagellar synthesis and function and/or taxis. In this review, we focus on specific strains of Gram-negative bacteria that have been the most studied in this context. We begin with a discussion of Earth-based microgravity simulation systems and how they may affect the genes and phenotypes of interest. We then summarize results from both Earth- and space-based systems showing effects of microgravity on motility-related genes and phenotypes.
Collapse
Affiliation(s)
| | | | - Jay Nadeau
- grid.262075.40000 0001 1087 1481Portland State University, Portland, OR USA
| |
Collapse
|
17
|
Orillard E, Watts KJ. Deciphering the Che2 chemosensory pathway and the roles of individual Che2 proteins from Pseudomonas aeruginosa. Mol Microbiol 2020; 115:222-237. [PMID: 32979856 DOI: 10.1111/mmi.14612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that senses and responds to its environment via four chemosensory systems. Oxygen activates the Che2 chemosensory system by binding to the PAS-heme domain of the Aer2 receptor. Ostensibly, the output of Che2 occurs via its response regulator CheY2, but controversy persists over CheY2's exact role. In this study, we show that CheY2 does not interact with the flagellar motor and that the Che2 system does not transfer phosphoryl groups to the chemotaxis (Che) system. We show that CheY2 instead provides feedback control of Aer2 adaptation. In the presence of O2 , Aer2 signaling increases the autophosphorylation of the histidine kinase CheA2, followed by CheY2-mediated dephosphorylation. CheY2 does not stably retain phosphate and may not signal the output of the Che2 system. Rather, CheY2 activity enhances the direct interaction of CheY2 with the adaptation protein CheD (a role often facilitated by CheC, which P. aeruginosa lacks). In the absence of O2 , Aer2 does not signal, and CheY2/CheD interactions attenuate. This frees CheD to augment CheR2-mediated methylation of Aer2, which enhances Aer2 signaling. CheD does not interact with CheR2, but most likely interacts with Aer2 via conserved CheD-binding motifs to make Aer2 a better methylation substrate.
Collapse
Affiliation(s)
- Emilie Orillard
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
18
|
Arrebola E, Cazorla FM. Aer Receptors Influence the Pseudomonas chlororaphis PCL1606 Lifestyle. Front Microbiol 2020; 11:1560. [PMID: 32754135 PMCID: PMC7367214 DOI: 10.3389/fmicb.2020.01560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a rhizobacterium isolated from avocado roots, which is a favorable niche for its development. This strain extensively interacts with plant roots and surrounding microbes and is considered a biocontrol rhizobacterium. Genome sequencing has shown the presence of thirty-one potential methyl-accepting chemotaxis proteins (MCPs). Among these MCPs, two candidates are putative functional aerotaxis receptors, encoded at locus PCL1606_41090 (aer1-1) and locus PLC1606_20530 (aer1-2), that are homologous to the Aer receptor of Pseudomonas aeruginosa strain PaO1. Single- and double-deletion mutants in one or both genes have led to motility deficiencies in oxygen-rich areas, particularly reduced swimming motility compared with that of wildtype PcPCL1606. No differences in swarming tests were detected, and less adhesion by the aer double mutant was observed. However, the single and double mutants on avocado plant roots showed delayed biocontrol ability. During the first days of the biocontrol experiment, the aer-defective mutants also showed delayed root colonization. The current research characterizes the presence of aer transductors on P. chlororaphis. Thus, the functions of the PCL1606_41090 and PCL1606_20530 loci, corresponding to genes aer1-1 and aer1-2, respectively, are elucidated.
Collapse
Affiliation(s)
- Eva Arrebola
- Departamento de Microbiología, Faculta de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Faculta de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| |
Collapse
|
19
|
Nolan LM, McCaughey LC, Merjane J, Turnbull L, Whitchurch CB. ChpC controls twitching motility-mediated expansion of Pseudomonas aeruginosa biofilms in response to serum albumin, mucin and oligopeptides. MICROBIOLOGY (READING, ENGLAND) 2020; 166:669-678. [PMID: 32478653 PMCID: PMC7657506 DOI: 10.1099/mic.0.000911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Abstract
Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P. In other well characterised chemosensory systems, methyl-accepting chemotaxis proteins (MCPs) feed environmental signals through a CheW adapter protein to the histidine kinase CheA to modulate motility. The Pseudomonas aeruginosa Chp system has an MCP PilJ and two CheW adapter proteins, PilI and ChpC, that likely interact with the histidine kinase ChpA to feed environmental signals into the system. In the current study we show that ChpC is involved in the response to host-derived signals serum albumin, mucin and oligopeptides. We demonstrate that these signals stimulate an increase in twitching motility, as well as in levels of 3'-5'-cyclic adenosine monophosphate (cAMP) and surface-assembled T4P. Interestingly, our data shows that changes in cAMP and surface piliation levels are independent of ChpC but that the twitching motility response to these environmental signals requires ChpC. Furthermore, we show that protease activity is required for the twitching motility response of P. aeruginosa to environmental signals. Based upon our data we propose a model whereby ChpC feeds these environmental signals into the Chp system, potentially via PilJ or another MCP, to control twitching motility. PilJ and PilI then modulate T4P surface levels to allow the cell to continue to undergo twitching motility. Our study is the first to link environmental signals to the Chp chemosensory system and refines our understanding of how this system controls twitching motility-mediated biofilm expansion in P. aeruginosa.
Collapse
Affiliation(s)
- Laura M. Nolan
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Laura C. McCaughey
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jessica Merjane
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Cynthia B. Whitchurch
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- Microbes in the Food Chain Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ and School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| |
Collapse
|
20
|
Yang P, Li FJ, Huang SW, Luo M, Lin W, Yuan GQ, Li QQ. Physiological and Transcriptional Response of Xanthomonas oryzae pv. oryzae to Berberine, an Emerging Chemical Control. PHYTOPATHOLOGY 2020; 110:1027-1038. [PMID: 31961254 DOI: 10.1094/phyto-09-19-0327-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Berberine, a botanical drug, has great ability to inhibit the growth of Xanthomonas oryzae pv. oryzae. However, the antibacterial mechanism of berberine against X. oryzae pv. oryzae remains poorly understood. In this study, we investigated the physiological and transcriptional response of X. oryzae pv. oryzae to berberine. When strain X. oryzae pv. oryzae GX13 was treated with berberine (10 µg/ml), the hypersensitive response in tobacco, virulence to rice, pathogen population in the rice xylem, production of extracellular polysaccharide (EPS), and activity of extracellular hydrolases decreased, but the levels of pyruvate and ATP increased. Moreover, biofilm formation was inhibited, and the cell membrane was damaged. Transcriptome sequencing analysis showed downregulated expression of gspD, gspE, and gspF, involved in the type II secretion system (T2SS); hrcC, hrcJ, hrcN, and others, involved in the type III secretion system (T3SS); gumB and gumC, associated with EPS; zapE, ftsQ, and zapA, associated with cell division; lpxH, lpxK, kdtA, and others, associated with the membrane; and pyk, pgk, and mdh, encoding pyruvate kinase, phosphoglycerate kinase, and malate dehydrogenase, respectively. Upregulated expression was observed for nuoA, nuoB, and nuoH, encoding the NADH dehydrogenase complex, and atpF, atpC, and atpB, encoding ATP synthase. An adenylate cyclase (CyaA) fusion assay showed that berberine affects type three effector protein secretion via the T3SS and reduces effector translocation in X. oryzae pv. oryzae. It is speculated that the negative growth and virulence phenotypes of berberine-treated X. oryzae pv. oryzae GX13 may involve differentially expressed genes associated with cytoarchitecture and energy metabolism, and these effects on primary cell function may further dampen virulence and result in differential expression of T3SS- and T2SS-related genes.
Collapse
Affiliation(s)
- Ping Yang
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Fang-Jing Li
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Shi-Wen Huang
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
- Rice Technology R&D Center, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Man Luo
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Wei Lin
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Gao-Qing Yuan
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Qi-Qin Li
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
21
|
Tumewu SA, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. Requirement of γ-Aminobutyric Acid Chemotaxis for Virulence of Pseudomonas syringae pv. tabaci 6605. Microbes Environ 2020; 35:ME20114. [PMID: 33162464 PMCID: PMC7734410 DOI: 10.1264/jsme2.me20114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 12/04/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is a widely distributed non-proteinogenic amino acid that accumulates in plants under biotic and abiotic stress conditions. Recent studies suggested that GABA also functions as an intracellular signaling molecule in plants and in signals mediating interactions between plants and phytopathogenic bacteria. However, the molecular mechanisms underlying GABA responses to bacterial pathogens remain unknown. In the present study, a GABA receptor, named McpG, was conserved in the highly motile plant-pathogenic bacteria Pseudomonas syringae pv. tabaci 6605 (Pta6605). We generated a deletion mutant of McpG to further investigate its involvement in GABA chemotaxis using quantitative capillary and qualitative plate assays. The wild-type strain of Pta6605 was attracted to GABA, while the ΔmcpG mutant abolished chemotaxis to 10 mM GABA. However, ΔmcpG retained chemotaxis to proteinogenic amino acids and succinic semialdehyde, a structural analog of GABA. Furthermore, ΔmcpG was unable to effectively induce disease on host tobacco plants in three plant inoculation assays: flood, dip, and infiltration inoculations. These results revealed that the GABA sensing of Pta6605 is important for the interaction of Pta6605 with its host tobacco plant.
Collapse
Affiliation(s)
- Stephany Angelia Tumewu
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| |
Collapse
|
22
|
Özcan SS, Dieser M, Parker AE, Balasubramanian N, Foreman CM. Quorum sensing inhibition as a promising method to control biofilm growth in metalworking fluids. J Ind Microbiol Biotechnol 2019; 46:1103-1111. [PMID: 31020467 DOI: 10.1007/s10295-019-02181-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/10/2019] [Indexed: 11/24/2022]
Abstract
Microbial contamination in metalworking systems is a critical problem. This study determined the microbial communities in metalworking fluids (MWFs) from two machining shops and investigated the effect of quorum sensing inhibition (QSI) on biofilm growth. In both operations, biofilm-associated and planktonic microbial communities were dominated by Pseudomonadales (60.2-99.7%). Rapid recolonization was observed even after dumping spent MWFs and meticulous cleaning. Using Pseudomonas aeruginosa PAO1 as a model biofilm organism, patulin (40 µM) and furanone C-30 (75 µM) were identified as effective QSI agents. Both agents had a substantially higher efficacy compared to α-amylase (extracellular polymeric substance degrading enzyme) and reduced biofilm formation by 63% and 76%, respectively, in MWF when compared to untreated controls. Reduced production of putatively identified homoserine lactones and quinoline in MWF treated with QS inhibitors support the effect of QSI on biofilm formation. The results highlight the effectiveness of QSI as a potential strategy to eradicate biofilms in MWFs.
Collapse
Affiliation(s)
- Safiye Selen Özcan
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59715, USA.,Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, 59717, USA
| | - Markus Dieser
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59715, USA.,Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, 59717, USA
| | - Albert E Parker
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, 59717, USA.,Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA
| | | | - Christine M Foreman
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59715, USA. .,Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, 59717, USA.
| |
Collapse
|
23
|
Martín-Mora D, Ortega Á, Matilla MA, Martínez-Rodríguez S, Gavira JA, Krell T. The Molecular Mechanism of Nitrate Chemotaxis via Direct Ligand Binding to the PilJ Domain of McpN. mBio 2019; 10:e02334-18. [PMID: 30782655 PMCID: PMC6381276 DOI: 10.1128/mbio.02334-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Chemotaxis and energy taxis permit directed bacterial movements in gradients of environmental cues. Nitrate is a final electron acceptor for anaerobic respiration and can also serve as a nitrogen source for aerobic growth. Previous studies indicated that bacterial nitrate taxis is mediated by energy taxis mechanisms, which are based on the cytosolic detection of consequences of nitrate metabolism. Here we show that Pseudomonas aeruginosa PAO1 mediates nitrate chemotaxis on the basis of specific nitrate sensing by the periplasmic PilJ domain of the PA2788/McpN chemoreceptor. The presence of nitrate reduced mcpN transcript levels, and McpN-mediated taxis occurred only under nitrate starvation conditions. In contrast to the NarX and NarQ sensor kinases, McpN bound nitrate specifically and showed no affinity for other ligands such as nitrite. We report the three-dimensional structure of the McpN ligand binding domain (LBD) at 1.3-Å resolution in complex with nitrate. Although structurally similar to 4-helix bundle domains, the ligand binding mode differs since a single nitrate molecule is bound to a site on the dimer symmetry axis. As for 4-helix bundle domains, ligand binding stabilized the McpN-LBD dimer. McpN homologues showed a wide phylogenetic distribution, indicating that nitrate chemotaxis is a widespread phenotype. These homologues were particularly abundant in bacteria that couple sulfide/sulfur oxidation with nitrate reduction. This work expands the range of known chemotaxis effectors and forms the basis for the exploration of nitrate chemotaxis in other bacteria and for the study of its physiological role.IMPORTANCE Nitrate is of central importance in bacterial physiology. Previous studies indicated that movements toward nitrate are due to energy taxis, which is based on the cytosolic sensing of consequences of nitrate metabolism. Here we present the first report on nitrate chemotaxis. This process is initiated by specific nitrate binding to the periplasmic ligand binding domain (LBD) of McpN. Nitrate chemotaxis is highly regulated and occurred only under nitrate starvation conditions, which is helpful information to explore nitrate chemotaxis in other bacteria. We present the three-dimensional structure of the McpN-LBD in complex with nitrate, which is the first structure of a chemoreceptor PilJ-type domain. This structure reveals striking similarities to that of the abundant 4-helix bundle domain but employs a different sensing mechanism. Since McpN homologues show a wide phylogenetic distribution, nitrate chemotaxis is likely a widespread phenomenon with importance for the life cycle of ecologically diverse bacteria.
Collapse
Affiliation(s)
- David Martín-Mora
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sergio Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Melilla, Spain
- Laboratorio de Estudios Cristalográficos, IACT, Superior de Investigaciones Científicas (CSIC) y la Universidad de Granada (UGR), Armilla, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, Superior de Investigaciones Científicas (CSIC) y la Universidad de Granada (UGR), Armilla, Spain
| | - Tino Krell
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
24
|
Genomic and Phenotypic Diversity among Ten Laboratory Isolates of Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:JB.00595-18. [PMID: 30530517 DOI: 10.1128/jb.00595-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen found ubiquitously in the environment and commonly associated with airway infection in patients with cystic fibrosis. P. aeruginosa strain PAO1 is one of the most commonly used laboratory-adapted research strains and is a standard laboratory-adapted strain in multiple laboratories and strain banks worldwide. Due to potential isolate-to-isolate variability, we investigated the genomic and phenotypic diversity among 10 PAO1 strains (henceforth called sublines) obtained from multiple research laboratories and commercial sources. Genomic analysis predicted a total of 5,682 genes, with 5,434 (95.63%) being identical across all 10 strains. Phenotypic analyses revealed comparable growth phenotypes in rich media and biofilm formation profiles. Limited differences were observed in antibiotic susceptibility profiles and immunostimulatory potential, measured using heat-killed whole-cell preparations in four immortalized cell lines followed by quantification of interleukin-6 (IL-6) and IL-1β secretion. However, variability was observed in the profiles of secreted molecular products, most notably, in rhamnolipid, pyoverdine, pyocyanin, Pseudomonas quinolone signal (PQS), extracellular DNA, exopolysaccharide, and outer membrane vesicle production. Many of the observed phenotypic differences did not correlate with subline-specific genetic changes, suggesting alterations in transcriptional and translational regulation. Taken together, these results suggest that individually maintained sublines of PAO1, even when acquired from the same parent subline, are continuously undergoing microevolution during culture and storage that results in alterations in phenotype, potentially affecting the outcomes of in vitro phenotypic analyses and in vivo pathogenesis studies.IMPORTANCE Laboratory-adapted strains of bacteria are used throughout the world for microbiology research. These prototype strains help keep research data consistent and comparable between laboratories. However, we have observed phenotypic variability when using different strains of Pseudomonas aeruginosa PAO1, one of the major laboratory-adopted research strains. Here, we describe the genomic and phenotypic differences among 10 PAO1 strains acquired from independent sources over 15 years to understand how individual maintenance affects strain characteristics. We observed limited genomic changes but variable phenotypic changes, which may have consequences for cross-comparison of data generated using different PAO1 strains. Our research highlights the importance of limiting practices that may promote the microevolution of model strains and calls for researchers to specify the strain origin to ensure reproducibility.
Collapse
|
25
|
High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. mBio 2018; 9:mBio.01894-18. [PMID: 30425146 PMCID: PMC6234866 DOI: 10.1128/mbio.01894-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome analyses indicate that many bacteria possess an elevated number of chemoreceptors, suggesting that these species are able to perform chemotaxis to a wide variety of compounds. The scientific community is now only beginning to explore this diversity and to elucidate the corresponding physiological relevance. The discovery of histamine chemotaxis in the human pathogen Pseudomonas aeruginosa provides insight into tactic movements that occur within the host. Since histamine is released in response to bacterial pathogens, histamine chemotaxis may permit bacterial migration and accumulation at infection sites, potentially modulating, in turn, quorum-sensing-mediated processes and the expression of virulence genes. As a consequence, the modulation of histamine chemotaxis by signal analogues may result in alterations of the bacterial virulence. As the first report of bacterial histamine chemotaxis, this study lays the foundation for the exploration of the physiological relevance of histamine chemotaxis and its role in pathogenicity. Histamine is a key biological signaling molecule. It acts as a neurotransmitter in the central and peripheral nervous systems and coordinates local inflammatory responses by modulating the activity of different immune cells. During inflammatory processes, including bacterial infections, neutrophils stimulate the production and release of histamine. Here, we report that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward histamine. This chemotactic response is mediated by the concerted action of the TlpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to histamine. Low concentrations of histamine were sufficient to activate TlpQ, which binds histamine with an affinity of 639 nM. To explore this binding, we resolved the high-resolution structure of the TlpQ ligand binding domain in complex with histamine. It has an unusually large dCACHE domain and binds histamine through a highly negatively charged pocket at its membrane distal module. Chemotaxis to histamine may play a role in the virulence of P. aeruginosa by recruiting cells at the infection site and consequently modulating the expression of quorum-sensing-dependent virulence genes. TlpQ is the first bacterial histamine receptor to be described and greatly differs from human histamine receptors, indicating that eukaryotes and bacteria have pursued different strategies for histamine recognition.
Collapse
|
26
|
Erdmann J, Preusse M, Khaledi A, Pich A, Häussler S. Environment-driven changes of mRNA and protein levels in Pseudomonas aeruginosa. Environ Microbiol 2018; 20:3952-3963. [DOI: 10.1111/1462-2920.14419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Jelena Erdmann
- Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research; Institute for Molecular Bacteriology, TWINCORE GmbH; Hannover Germany
- Centre for Pharmacology and Toxicology; Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School; Hannover Germany
| | - Matthias Preusse
- Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research; Institute for Molecular Bacteriology, TWINCORE GmbH; Hannover Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research; Braunschweig Germany
| | - Ariane Khaledi
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research; Braunschweig Germany
| | - Andreas Pich
- Centre for Pharmacology and Toxicology; Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School; Hannover Germany
| | - Susanne Häussler
- Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research; Institute for Molecular Bacteriology, TWINCORE GmbH; Hannover Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research; Braunschweig Germany
| |
Collapse
|
27
|
Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, Shao J, Zhang G, Shen Q, Zhang R. Identification of Chemotaxis Compounds in Root Exudates and Their Sensing Chemoreceptors in Plant-Growth-Promoting Rhizobacteria Bacillus amyloliquefaciens SQR9. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:995-1005. [PMID: 29714096 DOI: 10.1094/mpmi-01-18-0003-r] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemotaxis-mediated response to root exudates, initiated by sensing-specific ligands through methyl-accepting chemotaxis proteins (MCP), is very important for root colonization and beneficial functions of plant-growth-promoting rhizobacteria (PGPR). Systematic identification of chemoattractants in complex root exudates and their sensing chemoreceptors in PGPR is helpful for enhancing their recruitment and colonization. In this study, 39 chemoattractants and 5 chemorepellents, including amino acids, organic acids, and sugars, were identified from 98 tested components of root exudates for the well-studied PGPR strain Bacillus amyloliquefaciens SQR9. Interestingly, mutant stain SQR9Δ8mcp, with all eight putative chemoreceptors completely deleted, lost the chemotactic responses to those 44 compounds. Gene complementation, chemotaxis assay, and isothermal titration calorimetry analysis revealed that McpA was mainly responsible for sensing organic acids and amino acids, while McpC was mostly for amino acids. These two chemoreceptors may play important roles in the rhizosphere chemotaxis of SQR9. In contrast, the B. amyloliquefaciens-unique chemoreceptor McpR was specifically responsible for arginine, and residues Tyr-78, Thr-131, and Asp-162 were critical for arginine binding. This study not only deepened our insights into PGPR-root interaction but also provided useful information to enhance the rhizosphere chemotaxis mobility and colonization of PGPR, which will promote their application in agricultural production.
Collapse
Affiliation(s)
- Haichao Feng
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China
- 2 Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; and
| | - Nan Zhang
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Wenbin Du
- 3 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huihui Zhang
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Yunpeng Liu
- 2 Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; and
| | - Ruixin Fu
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Jiahui Shao
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Guishan Zhang
- 2 Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; and
| | - Qirong Shen
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ruifu Zhang
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China
- 2 Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; and
| |
Collapse
|
28
|
Baker LY, Hobby CR, Siv AW, Bible WC, Glennon MS, Anderson DM, Symes SJ, Giles DK. Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence. BMC Microbiol 2018; 18:117. [PMID: 30217149 PMCID: PMC6137939 DOI: 10.1186/s12866-018-1259-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022] Open
Abstract
Background Pseudomonas aeruginosa, a common opportunistic pathogen, is known to cause infections in a variety of compromised human tissues. An emerging mechanism for microbial survival is the incorporation of exogenous fatty acids to alter the cell’s membrane phospholipid profile. With these findings, we show that exogenous fatty acid exposure leads to changes in bacterial membrane phospholipid structure, membrane permeability, virulence phenotypes and consequent stress responses that may influence survival and persistence of Pseudomonas aeruginosa. Results Thin-layer chromatography and ultra performance liquid chromatography / ESI-mass spectrometry indicated alteration of bacterial phospholipid profiles following growth in the presence of polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation). The exogenously supplied fatty acids were incorporated into the major bacterial phospholipids phosphatidylethanolamine and phosphatidylglycerol. The incorporation of fatty acids increased membrane permeability as judged by both accumulation and exclusion of ethidium bromide. Individual fatty acids were identified as modifying resistance to the cyclic peptide antibiotics polymyxin B and colistin, but not the beta-lactam imipenem. Biofilm formation was increased by several PUFAs and significant fluctuations in swimming motility were observed. Conclusions Our results emphasize the relevance and complexity of exogenous fatty acids in the membrane physiology and pathobiology of a medically important pathogen. P. aeruginosa exhibits versatility with regard to utilization of and response to exogenous fatty acids, perhaps revealing potential strategies for prevention and control of infection. Electronic supplementary material The online version of this article (10.1186/s12866-018-1259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lyssa Y Baker
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Chelsea R Hobby
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Andrew W Siv
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - William C Bible
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Michael S Glennon
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Derek M Anderson
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Steven J Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - David K Giles
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA.
| |
Collapse
|
29
|
Nascimento FX, Rossi MJ, Glick BR. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant-Bacterial Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:114. [PMID: 29520283 PMCID: PMC5827301 DOI: 10.3389/fpls.2018.00114] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 05/18/2023]
Abstract
Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection.
Collapse
Affiliation(s)
- Francisco X. Nascimento
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Márcio J. Rossi
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
30
|
Jeffries TC, Rayu S, Nielsen UN, Lai K, Ijaz A, Nazaries L, Singh BK. Metagenomic Functional Potential Predicts Degradation Rates of a Model Organophosphorus Xenobiotic in Pesticide Contaminated Soils. Front Microbiol 2018. [PMID: 29515526 PMCID: PMC5826299 DOI: 10.3389/fmicb.2018.00147] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP) compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation in situ and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination. Here we address this knowledge gap by performing shotgun sequencing of community DNA from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Our results showed two distinct groups of soils defined by differing functional and taxonomic profiles. Degradation assays suggested that these groups corresponded to the organophosphorus degradation potential of soils, with the fastest degrading community being defined by increases in transport and nutrient cycling pathways and enzymes potentially involved in phosphorus metabolism. This was against a backdrop of taxonomic community shifts potentially related to contamination adaptation and reflecting the legacy of exposure. Overall our results highlight the value of using holistic system-wide metagenomic approaches as a tool to predict microbial degradation in the context of the ecology of contaminated habitats.
Collapse
Affiliation(s)
- Thomas C Jeffries
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Smriti Rayu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Kaitao Lai
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, North Ryde, NSW, Australia
| | - Ali Ijaz
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Loic Nazaries
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land Based Innovation, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
31
|
The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci Rep 2018; 8:2102. [PMID: 29391435 PMCID: PMC5795001 DOI: 10.1038/s41598-018-20283-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
Chemotaxis toward organic acids has been associated with colonization fitness and virulence and the opportunistic pathogen Pseudomonas aeruginosa exhibits taxis toward several tricarboxylic acid intermediates. In this study, we used high-throughput ligand screening and isothermal titration calorimetry to demonstrate that the ligand binding domain (LBD) of the chemoreceptor PA2652 directly recognizes five C4-dicarboxylic acids with KD values ranging from 23 µM to 1.24 mM. In vivo experimentation showed that three of the identified ligands act as chemoattractants whereas two of them behave as antagonists by inhibiting the downstream chemotaxis signalling cascade. In vitro and in vivo competition assays showed that antagonists compete with chemoattractants for binding to PA2652-LBD, thereby decreasing the affinity for chemoattractants and the subsequent chemotactic response. Two chemosensory pathways encoded in the genome of P. aeruginosa, che and che2, have been associated to chemotaxis but we found that only the che pathway is involved in PA2652-mediated taxis. The receptor PA2652 is predicted to contain a sCACHE LBD and analytical ultracentrifugation analyses showed that PA2652-LBD is dimeric in the presence and the absence of ligands. Our results indicate the feasibility of using antagonists to interfere specifically with chemotaxis, which may be an alternative strategy to fight bacterial pathogens.
Collapse
|
32
|
Showalter GM, Deming JW. Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:92-101. [PMID: 29235725 DOI: 10.1111/1758-2229.12610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
A variety of ecologically important processes are driven by bacterial motility and taxis, yet these basic bacterial behaviours remain understudied in cold habitats. Here, we present a series of experiments designed to test the chemotactic ability of the model marine psychrophilic bacterium Colwellia psychrerythraea 34H, when grown at optimal temperature and salinity (8°C, 35 ppt) or its original isolation conditions (-1°C, 35 ppt), towards serine and mannose at temperatures from -8°C to 27°C (above its upper growth temperature of 18°C), and at salinities of 15, 35 and 55 ppt (at 8°C and -1°C). Results indicate that C. psychrerythraea 34H is capable of chemotaxis at all temperatures tested, with strongest chemotaxis at the temperature at which it was first grown, whether 8°C or -1°C. This model marine psychrophile also showed significant halotaxis towards 15 and 55 ppt solutions, as well as strong substrate-specific chemohalotaxis. We suggest that such patterns of taxis may enable bacteria to colonize sea ice, position themselves optimally within its extremely cold, hypersaline and temporally fluctuating microenvironments, and respond to various chemical signals therein.
Collapse
Affiliation(s)
- G M Showalter
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - J W Deming
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Negative chemotaxis of Ralstonia pseudosolanacearum to maleate and identification of the maleate chemosensory protein. J Biosci Bioeng 2017; 124:647-652. [DOI: 10.1016/j.jbiosc.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022]
|
34
|
Jashnsaz H, Anderson GG, Pressé S. Statistical signatures of a targeted search by bacteria. Phys Biol 2017; 14:065002. [PMID: 28809162 DOI: 10.1088/1478-3975/aa84ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemoattractant gradients are rarely well-controlled in nature and recent attention has turned to bacterial chemotaxis toward typical bacterial food sources such as food patches or even bacterial prey. In environments with localized food sources reminiscent of a bacterium's natural habitat, striking phenomena-such as the volcano effect or banding-have been predicted or expected to emerge from chemotactic models. However, in practice, from limited bacterial trajectory data it is difficult to distinguish targeted searches from an untargeted search strategy for food sources. Here we use a theoretical model to identify statistical signatures of a targeted search toward point food sources, such as prey. Our model is constructed on the basis that bacteria use temporal comparisons to bias their random walk, exhibit finite memory and are subject to random (Brownian) motion as well as signaling noise. The advantage with using a stochastic model-based approach is that a stochastic model may be parametrized from individual stochastic bacterial trajectories but may then be used to generate a very large number of simulated trajectories to explore average behaviors obtained from stochastic search strategies. For example, our model predicts that a bacterium's diffusion coefficient increases as it approaches the point source and that, in the presence of multiple sources, bacteria may take substantially longer to locate their first source giving the impression of an untargeted search strategy.
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Physics, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, United States of America
| | | | | |
Collapse
|
35
|
Hayashi N, Yokotani A, Yamamoto M, Kososhi M, Morita M, Fukunishi C, Nishizawa N, Gotoh N. Extracellular Signals of a Human Epithelial Colorectal Adenocarcinoma (Caco-2) Cell Line Facilitate the Penetration of Pseudomonas aeruginosa PAO1 Strain through the Mucin Layer. Front Cell Infect Microbiol 2017; 7:415. [PMID: 28983473 PMCID: PMC5613098 DOI: 10.3389/fcimb.2017.00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa can penetrate the layer of mucus formed by host intestinal epithelial cells, often resulting in sepsis in immunocompromised patients. We have previously demonstrated that P. aeruginosa can penetrate the mucin layer by flagellar motility and the degradation of the mucin layer. However, it remains unclear how P. aeruginosa initially recognizes epithelial cells. Using the human epithelial colorectal adenocarcinoma (Caco-2) cell line, we investigated extracellular signaling that could facilitate the penetration of P. aeruginosa through the mucin layer. The supernatant from Caco-2 cell cultures increased penetration of P. aeruginosa through an artificial mucin layer. The Caco-2 cell supernatant increased bacterial flagella-dependent swarming motility, but it did not influence P. aeruginosa growth or protease activity. Filtering of the Caco-2 cell supernatant indicated that proteins weighing <10 kDa increased mucin penetration, swarming motility, and, based on a tethered cell assay, induced acceleration of the flagellar filament rotational rate. Furthermore, a capillary assay showed that <10 kDa proteins in the Caco-2 cell supernatant attracted P. aeruginosa cells. Finally, we identified that growth-regulated oncogene-α (GRO-α) secreted by Caco-2 cells was a factor facilitating flagellar filament rotation and swarming motility, although it did not attract the bacteria. We conclude that penetration of the mucin layer by P. aeruginosa is facilitated by small proteins (<10 kDa) secreted by Caco-2 cells, both by inducing acceleration of flagellar motility and increasing chemotaxis.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Atsushi Yokotani
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Masami Yamamoto
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Mariko Kososhi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Mayu Morita
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Chiaki Fukunishi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Nagisa Nishizawa
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Naomasa Gotoh
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| |
Collapse
|
36
|
Rossello J, Lima A, Gil M, Rodríguez Duarte J, Correa A, Carvalho PC, Kierbel A, Durán R. The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism. Sci Rep 2017; 7:10281. [PMID: 28860517 PMCID: PMC5579053 DOI: 10.1038/s41598-017-09926-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
The second messenger c-di-GMP regulates the switch between motile and sessile bacterial lifestyles. A general feature of c-di-GMP metabolism is the presence of a surprisingly large number of genes coding for diguanylate cyclases and phosphodiesterases, the enzymes responsible for its synthesis and degradation respectively. However, the physiological relevance of this apparent redundancy is not clear, emphasizing the need for investigating the functions of each of these enzymes. Here we focused on the phosphodiesterase PA2133 from Pseudomonas aeruginosa, an important opportunistic pathogen. We phenotypically characterized P. aeruginosa strain K overexpressing PA2133 or its inactive mutant. We showed that biofilm formation and motility are severely impaired by overexpression of PA2133. Our quantitative proteomic approach applied to the membrane and exoprotein fractions revealed that proteins involved in three processes were mostly affected: flagellar motility, type III secretion system and chemotaxis. While inhibition of biofilm formation can be ascribed to the phosphodiesterase activity of PA2133, down-regulation of flagellar, chemotaxis, and type III secretion system proteins is independent of this enzymatic activity. Based on these unexpected effects of PA2133, we propose to rename this gene product FcsR, for Flagellar, chemotaxis and type III secretion system Regulator.
Collapse
Affiliation(s)
- Jessica Rossello
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Analía Lima
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Magdalena Gil
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Jorge Rodríguez Duarte
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Agustín Correa
- Unidad de Proteínas Recombinantes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paulo C Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
37
|
Gas Sensing and Signaling in the PAS-Heme Domain of the Pseudomonas aeruginosa Aer2 Receptor. J Bacteriol 2017; 199:JB.00003-17. [PMID: 28167524 DOI: 10.1128/jb.00003-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
The Aer2 chemoreceptor from Pseudomonas aeruginosa contains a PAS sensing domain that coordinates b-type heme and signals in response to the binding of O2, CO, or NO. PAS-heme structures suggest that Aer2 uniquely coordinates heme via a His residue on a 310 helix (H234 on Eη), stabilizes O2 binding via a Trp residue (W283), and signals via both W283 and an adjacent Leu residue (L264). Ligand binding may displace L264 and reorient W283 for hydrogen bonding to the ligand. Here, we clarified the mechanisms by which Aer2-PAS binds heme, regulates ligand binding, and initiates conformational signaling. H234 coordinated heme, but additional hydrophobic residues in the heme cleft were also critical for stable heme binding. O2 appeared to be the native Aer2 ligand (dissociation constant [Kd ] of 16 μM). With one exception, mutants that bound O2 could signal, whereas many mutants that bound CO could not. W283 stabilized O2 binding but not CO binding, and it was required for signal initiation; W283 mutants that could not stabilize O2 were rapidly oxidized to Fe(III). W283F was the only Trp mutant that bound O2 with wild-type affinity. The size and nature of residue 264 was important for gas binding and signaling: L264W blocked O2 binding, L264A and L264G caused O2-mediated oxidation, and L264K formed a hexacoordinate heme. Our data suggest that when O2 binds to Aer2, L264 moves concomitantly with W283 to initiate the conformational signal. The signal then propagates from the PAS domain to regulate the C-terminal HAMP and kinase control domains, ultimately modulating a cellular response.IMPORTANCEPseudomonas aeruginosa is a ubiquitous environmental bacterium and opportunistic pathogen that infects multiple body sites, including the lungs of cystic fibrosis patients. P. aeruginosa senses and responds to its environment via four chemosensory systems. Three of these systems regulate biofilm formation, twitching motility, and chemotaxis. The role of the fourth system, Che2, is unclear but has been implicated in virulence. The Che2 system contains a chemoreceptor called Aer2, which contains a PAS sensing domain that binds heme and senses oxygen. Here, we show that Aer2 uses unprecedented mechanisms to bind O2 and initiate signaling. These studies provide both the first functional corroboration of the Aer2-PAS signaling mechanism previously proposed from structure as well as a signaling model for Aer2-PAS receptors.
Collapse
|
38
|
Zhu Y, Yuan Z, Gu L. Structural basis for the regulation of chemotaxis by MapZ in the presence of c-di-GMP. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:683-691. [PMID: 28777083 DOI: 10.1107/s2059798317009998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/05/2017] [Indexed: 11/10/2022]
Abstract
The bacterial second messenger cyclic diguanylate monophosphate (c-di-GMP) mediates multiple aspects of bacterial physiology through binding to various effectors. In some cases, these effectors are single-domain proteins which only contain a PilZ domain. It remains largely unknown how single-domain PilZ proteins function and regulate their downstream targets. Recently, a single-domain PilZ protein, MapZ (PA4608), was identified to inhibit the activity of the methyltransferase CheR1. Here, crystal structures of the C-terminal domain of CheR1 containing SAH and of CheR1 in complex with c-di-GMP-bound MapZ are reported. It was observed that the binding site of MapZ in CheR1 partially overlaps with the SAH/SAM-binding pocket. Consequently, binding of MapZ blocks SAH/SAM binding. This provides direct structural evidence on the mechanism of inhibition of CheR1 by MapZ in the presence of c-di-GMP.
Collapse
Affiliation(s)
- Yingxiao Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
39
|
Roh C, Lee J, Kinger M, Kang C. In Vitro Studies on a Microfluidic Sensor with Embedded Obstacles Using New Antibacterial Synthetic Compounds (1-TDPPO) Mixed Prop-2-en-1-one with Difluoro Phenyl. SENSORS 2017; 17:s17040803. [PMID: 28397751 PMCID: PMC5422164 DOI: 10.3390/s17040803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/20/2017] [Accepted: 04/05/2017] [Indexed: 11/16/2022]
Abstract
This paper describes the use of an analytical microfluidic sensor for accelerating chemo-repellent response and strong anti-bacterial 1-(Thien-2-yl)-3-(2, 6-difluoro phenyl) prop-2-en-1-one (1-TDPPO). The chemically-synthesized antimicrobial agent, which included prop-2-en-1-one and difluoro phenyl groups, was moving through an optically transparent polydimethylsiloxane (PDMS) microfluidic sensor with circular obstacles arranged evenly. The response, growth and distribution of fluorescent labeling Pseudomonas aeruginosa PAO1 against the antimicrobial agent were monitored by confocal laser scanning microscope (CLSM). The microfluidic sensor along with 1-TDPPOin this study exhibits the following advantages: (i) Real-time chemo-repellent responses of cell dynamics; (ii) Rapid eradication of biofilm by embedded obstacles and powerful antibacterial agents, which significantly reduce the response time compared to classical methods; (iii) Minimal consumption of cells and antimicrobial agents; and (iv) Simplifying the process of the normalization of the fluorescence intensity and monitoring of biofilm by captured images and datasets.
Collapse
Affiliation(s)
- Changhyun Roh
- Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266, Sinjeong-Dong, Jeongeup, Jeonbuk 580-185, Korea.
| | - Jaewoong Lee
- Department of Textile Engineering and Technology, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Mayank Kinger
- Department of Chemistry, Maharishi Markandeshwar University, Mullana, (Ambala) Haryana 133207, India.
| | - Chankyu Kang
- Ministry of Employment and Labor, Major Industrial Accident Prevention Center, 34 Yeosusandallo, Yeosu-Si, Jeonnam 59631, Korea.
| |
Collapse
|
40
|
Salah Ud-Din AIM, Roujeinikova A. The periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type B (CtaB): Cloning, refolding, purification, crystallization, and X-ray crystallographic analysis. Biosci Trends 2017; 11:229-234. [PMID: 28250336 DOI: 10.5582/bst.2016.01218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pseudomonas fluorescens is a plant growth promoting rhizobacterium that provides nutrients for growth and induces systemic resistance against plant diseases. It has been linked with a number of human diseases including nosocomial infections and bacterial cystitis. Chemotactic motility of P. fluorescens towards root exudates plays a crucial role in establishing a symbiotic relationship with host plants. The P. fluorescens chemotactic transducer of amino acids type B (CtaB) mediates chemotaxis towards amino acids. As a step towards elucidation of the structural basis of ligand recognition by CtaB, we have produced crystals of its recombinant sensory domain and performed their X-ray diffraction analysis. The periplasmic sensory domain of CtaB has been expressed, purified, and crystallized by the hanging-drop vapor diffusion method using ammonium sulfate as a precipitating agent. A complete data set was collected to 2.2 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group P212121, with unit-cell parameters a = 34.5, b = 108.9, c = 134.6 Å. Calculation of the Matthews coefficient and the self-rotation function using this data set suggested that the asymmetric unit contains a protein dimer. Detailed structural analysis of CtaB would be an important step towards understanding the molecular mechanism underpinning the recognition of environmental signals and transmission of the signals to the inside of the cell.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University.,Department of Biochemistry and Molecular Biology, Monash University
| |
Collapse
|
41
|
Matilla MA, Krell T. Chemoreceptor-based signal sensing. Curr Opin Biotechnol 2017; 45:8-14. [PMID: 28088095 DOI: 10.1016/j.copbio.2016.11.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 01/02/2023]
Abstract
Chemoreceptors are at the beginning of chemosensory signaling cascades that correspond to a major signal transduction mechanism. Chemoreceptors show a significant structural diversity of their ligand binding domains which present either a mono-modular or bi-modular arrangement. Although the majority of chemoreceptors are of unknown function, significant progress has been made in recent years in their functional annotation, which is reviewed here. In vitro ligand binding studies to recombinant ligand binding domains proved to be an efficient strategy to identify chemoreceptor functions. Obtained information is consistent with the view that a major driving force for the evolution of chemotaxis is to access carbon and nitrogen sources. The use of the newly generated information for the construction of biosensors is discussed.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
42
|
Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front Microbiol 2016; 7:1937. [PMID: 27965656 PMCID: PMC5126104 DOI: 10.3389/fmicb.2016.01937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous pathogen able to infect humans, animals, and plants. Chemotaxis was found to be associated with the virulence of this and other pathogens. Although established as a model for chemotaxis research, the majority of the 26 P. aeruginosa chemoreceptors remain functionally un-annotated. We report here the identification of PA5072 (named McpK) as chemoreceptor for α-ketoglutarate (αKG). High-throughput thermal shift assays and isothermal titration calorimetry studies (ITC) of the recombinant McpK ligand binding domain (LBD) showed that it recognizes exclusively α-ketoglutarate. The ITC analysis indicated that the ligand bound with positive cooperativity (Kd1 = 301 μM, Kd2 = 81 μM). McpK is predicted to possess a helical bimodular (HBM) type of LBD and this and other studies suggest that this domain type may be associated with the recognition of organic acids. Analytical ultracentrifugation (AUC) studies revealed that McpK-LBD is present in monomer-dimer equilibrium. Alpha-KG binding stabilized the dimer and dimer self-dissociation constants of 55 μM and 5.9 μM were derived for ligand-free and αKG-bound forms of McpK-LBD, respectively. Ligand-induced LBD dimer stabilization has been observed for other HBM domain containing receptors and may correspond to a general mechanism of this protein family. Quantitative capillary chemotaxis assays demonstrated that P. aeruginosa showed chemotaxis to a broad range of αKG concentrations with maximal responses at 500 μM. Deletion of the mcpK gene reduced chemotaxis over the entire concentration range to close to background levels and wild type like chemotaxis was recovered following complementation. Real-time PCR studies indicated that the presence of αKG does not modulate mcpK expression. Since αKG is present in plant root exudates it was investigated whether the deletion of mcpK altered maize root colonization. However, no significant changes with respect to the wild type strain were observed. The existence of a chemoreceptor specific for αKG may be due to its central metabolic role as well as to its function as signaling molecule. This work expands the range of known chemoreceptor types and underlines the important physiological role of chemotaxis toward tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - José A Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Vanina García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Diana López-Farfán
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
43
|
Clarke CR, Hayes BW, Runde BJ, Markel E, Swingle BM, Vinatzer BA. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity. PeerJ 2016; 4:e2570. [PMID: 27812402 PMCID: PMC5088630 DOI: 10.7717/peerj.2570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 11/20/2022] Open
Abstract
The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto) implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction.
Collapse
Affiliation(s)
| | - Byron W. Hayes
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Brendan J. Runde
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Eric Markel
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Ithaca, NY, USA
| | - Bryan M. Swingle
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Ithaca, NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell, Ithaca, NY, USA
| | - Boris A. Vinatzer
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
44
|
Ud-Din AIMS, Roujeinikova A. Cloning, purification, crystallization and X-ray crystallographic analysis of the periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type A (CtaA). Biosci Trends 2016; 10:320-4. [PMID: 27251445 DOI: 10.5582/bst.2016.01059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotaxis towards nutrients plays a crucial role in root colonization by Pseudomonas fluorescens. The P. fluorescens chemotactic transducer of amino acids type A (CtaA) mediates movement towards amino acids present in root exudates. In this study, the periplasmic sensory domain of CtaA has been crystallized by the hanging-drop vapor diffusion method using ammonium sulfate as a precipitating agent. A complete data set was collected to 1.9 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group I222 or I212121, with unit-cell parameters a = 67.2, b = 76.0, c = 113.3 Å. This is an important step towards elucidation of the structural basis of how CtaA recognizes its signal molecules and transduces the signal across the membrane.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Australia; Department of Microbiology, Monash University
| | | |
Collapse
|
45
|
Abstract
Bacteria form surface-attached communities, known as biofilms, which are central to bacterial biology and how they affect us. Although surface-attached bacteria often experience strong chemical gradients, it remains unclear whether single cells can effectively perform chemotaxis on surfaces. Here we use microfluidic chemical gradients and massively parallel automated tracking to study the behavior of the pathogen Pseudomonas aeruginosa during early biofilm development. We show that individual cells can efficiently move toward chemoattractants using pili-based "twitching" motility and the Chp chemosensory system. Moreover, we discovered the behavioral mechanism underlying this surface chemotaxis: Cells reverse direction more frequently when moving away from chemoattractant sources. These corrective maneuvers are triggered rapidly, typically before a wayward cell has ventured a fraction of a micron. Our work shows that single bacteria can direct their motion with submicron precision and reveals the hidden potential for chemotaxis within bacterial biofilms.
Collapse
|
46
|
Fedi S, Barberi TT, Nappi MR, Sandri F, Booth S, Turner RJ, Attimonelli M, Cappelletti M, Zannoni D. The Role of cheA Genes in Swarming and Swimming Motility of Pseudomonas pseudoalcaligenes KF707. Microbes Environ 2016; 31:169-72. [PMID: 27151656 PMCID: PMC4912153 DOI: 10.1264/jsme2.me15164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A genome analysis of Pseudomonas pseudoalcaligenes KF707, a PCBs degrader and metal-resistant soil microorganism, revealed the presence of two novel gene clusters named che2 and che3, which were predicted to be involved in chemotaxis-like pathways, in addition to a che1 gene cluster. We herein report that the histidine kinase coding genes, cheA2 and cheA3, have no role in swimming or chemotaxis in P. pseudoalcaligenes KF707, in contrast to cheA1. However, the cheA1 and cheA2 genes were both necessary for cell swarming, whereas the cheA3 gene product had a negative effect on the optimal swarming phenotype of KF707 cells.
Collapse
Affiliation(s)
- Stefano Fedi
- Department of Pharmacy and Biotechnology, University of Bologna
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schwarzer C, Fischer H, Machen TE. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells. PLoS One 2016; 11:e0150109. [PMID: 27031335 PMCID: PMC4816407 DOI: 10.1371/journal.pone.0150109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11) with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses) in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI) were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells). PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins) and massively (10–80 fold increase, termed “swarming”), but transiently (random swimming after 15 mins), to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW) and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC) and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i) PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii) PA use pili to bind to epithelial cells near wounds.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Kazmierczak BI, Schniederberend M, Jain R. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. Curr Opin Microbiol 2015; 28:78-82. [PMID: 26476804 DOI: 10.1016/j.mib.2015.07.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa navigates using two distinct forms of motility, swimming and twitching. A polar flagellum and Type 4 pili power these movements, respectively, allowing P. aeruginosa to attach to and colonize surfaces. Single cell imaging and particle tracking algorithms have revealed a wide range of bacterial surface behaviors which are regulated by second messengers cyclic-di-GMP and cAMP; the production of these signals is, in turn, responsive to the engagement of motility organelles with a surface. Innate immune defense systems, long known to recognize structural components of flagella, appear to respond to motility itself. The association of motility with both upregulation of virulence and induction of host defense mechanisms underlies the complex contributions of flagella and pili to P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Barbara I Kazmierczak
- Department of Microbial Pathogenesis, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8022, USA; Department of Medicine (Infectious Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8022, USA.
| | - Maren Schniederberend
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8022, USA
| | - Ruchi Jain
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8022, USA
| |
Collapse
|
49
|
Río-Álvarez I, Muñoz-Gómez C, Navas-Vásquez M, Martínez-García PM, Antúnez-Lamas M, Rodríguez-Palenzuela P, López-Solanilla E. Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. MOLECULAR PLANT PATHOLOGY 2015; 16:685-98. [PMID: 25487519 PMCID: PMC6638404 DOI: 10.1111/mpp.12227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemotaxis enables bacteria to move towards an optimal environment in response to chemical signals. In the case of plant-pathogenic bacteria, chemotaxis allows pathogens to explore the plant surface for potential entry sites with the ultimate aim to prosper inside plant tissues and to cause disease. Chemoreceptors, which constitute the sensory core of the chemotaxis system, are usually transmembrane proteins which change their conformation when sensing chemicals in the periplasm and transduce the signal through a kinase pathway to the flagellar motor. In the particular case of the soft-rot pathogen Dickeya dadantii 3937, jasmonic acid released in a plant wound has been found to be a strong chemoattractant which drives pathogen entry into the plant apoplast. In order to identify candidate chemoreceptors sensing wound-derived plant compounds, we carried out a bioinformatics search of candidate chemoreceptors in the genome of Dickeya dadantii 3937. The study of the chemotactic response to several compounds and the analysis of the entry process to Arabidopsis leaves of 10 selected mutants in chemoreceptors allowed us to determine the implications of at least two of them (ABF-0020167 and ABF-0046680) in the chemotaxis-driven entry process through plant wounds. Our data suggest that ABF-0020167 and ABF-0046680 may be candidate receptors of jasmonic acid and xylose, respectively.
Collapse
Affiliation(s)
- Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Cristina Muñoz-Gómez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Mariela Navas-Vásquez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Pedro M Martínez-García
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, E-29071, Málaga, Spain
| | - María Antúnez-Lamas
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| |
Collapse
|
50
|
Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids. Appl Environ Microbiol 2015; 81:5449-57. [PMID: 26048936 DOI: 10.1128/aem.01529-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/13/2022] Open
Abstract
Chemoreceptors are at the beginnings of chemosensory signaling cascades that mediate chemotaxis. Most bacterial chemoreceptors are functionally unannotated and are characterized by a diversity in the structure of their ligand binding domains (LBDs). The data available indicate that there are two major chemoreceptor families at the functional level, namely, those that respond to amino acids or to Krebs cycle intermediates. Since pseudomonads show chemotaxis to many different compounds and possess different types of chemoreceptors, they are model organisms to establish relationships between chemoreceptor structure and function. Here, we identify PP2861 (termed McpP) of Pseudomonas putida KT2440 as a chemoreceptor with a novel ligand profile. We show that the recombinant McpP LBD recognizes acetate, pyruvate, propionate, and l-lactate, with KD (equilibrium dissociation constant) values ranging from 34 to 107 μM. Deletion of the mcpP gene resulted in a dramatic reduction in chemotaxis toward these ligands, and complementation restored a native-like phenotype, indicating that McpP is the major chemoreceptor for these compounds. McpP has a CACHE-type LBD, and we present data indicating that CACHE-containing chemoreceptors of other species also mediate taxis to C2 and C3 carboxylic acids. In addition, the LBD of NbaY of Pseudomonas fluorescens, an McpP homologue mediating chemotaxis to 2-nitrobenzoate, bound neither nitrobenzoates nor the McpP ligands. This work provides further insight into receptor structure-function relationships and will be helpful to annotate chemoreceptors of other bacteria.
Collapse
|