1
|
Li S, Chen M, Wang Z, Abudourexiti W, Zhang L, Ding C, Ding L, Gong J. Ant may well destroy a whole dam: glycans of colonic mucus barrier disintegrated by gut bacteria. Microbiol Res 2024; 281:127599. [PMID: 38219635 DOI: 10.1016/j.micres.2023.127599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
The colonic mucus layer plays a critical role in maintaining the integrity of the colonic mucosal barrier, serving as the primary defense against colonic microorganisms. Predominantly composed of mucin 2 (MUC2), a glycosylation-rich protein, the mucus layer forms a gel-like coating that covers the colonic epithelium surface. This layer provides a habitat for intestinal microorganisms, which can utilize mucin glycans present in the mucus layer as a sustainable source of nutrients. Additionally, metabolites produced by the microbiota during the metabolism of mucus glycans have a profound impact on host health. Under normal conditions, the production and consumption of mucus maintain a dynamic balance. However, several studies have demonstrated that certain factors, such as dietary fiber deficiency, can enhance the metabolism of mucus glycans by gut bacteria, thereby disturbing this balance and weakening the mucus barrier function of the mucus layer. To better understand the occurrence and development of colon-related diseases, it is crucial to investigate the complex metabolic patterns of mucus glycosylation by intestinal microorganisms. Our objective was to comprehensively review these patterns in order to clarify the effects of mucus layer glycan metabolism by intestinal microorganisms on the host.
Collapse
Affiliation(s)
- Song Li
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Mingfei Chen
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zhongyuan Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Waresi Abudourexiti
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jianfeng Gong
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Yamaguchi M, Yamamoto K. Mucin glycans and their degradation by gut microbiota. Glycoconj J 2023; 40:493-512. [PMID: 37318672 DOI: 10.1007/s10719-023-10124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Organic Bio Chemistry, Faculty of Education, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan.
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
3
|
Tinta T, Zhao Z, Bayer B, Herndl GJ. Jellyfish detritus supports niche partitioning and metabolic interactions among pelagic marine bacteria. MICROBIOME 2023; 11:156. [PMID: 37480075 PMCID: PMC10360251 DOI: 10.1186/s40168-023-01598-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Jellyfish blooms represent a significant but largely overlooked source of labile organic matter (jelly-OM) in the ocean, characterized by a high protein content. Decaying jellyfish are important carriers for carbon export to the ocean's interior. To accurately incorporate them into biogeochemical models, the interactions between microbes and jelly-OM have yet to be fully characterized. We conducted jelly-OM enrichment experiments in microcosms to simulate the scenario experienced by the coastal pelagic microbiome after the decay of a jellyfish bloom. We combined metagenomics, endo- and exo-metaproteomic approaches to obtain a mechanistic understanding on the metabolic network operated by the jelly-OM degrading bacterial consortium. RESULTS Our analysis revealed that OM released during the decay of jellyfish blooms triggers a rapid shuffling of the taxonomic and functional profile of the pelagic bacterial community, resulting in a significant enrichment of protein/amino acid catabolism-related enzymes in the jelly-OM degrading community dominated by Pseudoalteromonadaceae, Alteromonadaceae and Vibrionaceae, compared to unamended control treatments. In accordance with the proteinaceous character of jelly-OM, Pseudoalteromonadaceae synthesized and excreted enzymes associated with proteolysis, while Alteromonadaceae contributed to extracellular hydrolysis of complex carbohydrates and organophosphorus compounds. In contrast, Vibrionaceae synthesized transporter proteins for peptides, amino acids and carbohydrates, exhibiting a cheater-type lifestyle, i.e. benefiting from public goods released by others. In the late stage of jelly-OM degradation, Rhodobacteraceae and Alteromonadaceae became dominant, growing on jelly-OM left-overs or bacterial debris, potentially contributing to the accumulation of dissolved organic nitrogen compounds and inorganic nutrients, following the decay of jellyfish blooms. CONCLUSIONS Our findings indicate that specific chemical and metabolic fingerprints associated with decaying jellyfish blooms are substantially different to those previously associated with decaying phytoplankton blooms, potentially altering the functioning and biogeochemistry of marine systems. We show that decaying jellyfish blooms are associated with the enrichment in extracellular collagenolytic bacterial proteases, which could act as virulence factors in human and marine organisms' disease, with possible implications for marine ecosystem services. Our study also provides novel insights into niche partitioning and metabolic interactions among key jelly-OM degraders operating a complex metabolic network in a temporal cascade of biochemical reactions to degrade pulses of jellyfish-bloom-specific compounds in the water column. Video Abstract.
Collapse
Affiliation(s)
- Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Barbara Bayer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Vienna Metabolomics & Proteomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Anso I, Naegeli A, Cifuente JO, Orrantia A, Andersson E, Zenarruzabeitia O, Moraleda-Montoya A, García-Alija M, Corzana F, Del Orbe RA, Borrego F, Trastoy B, Sjögren J, Guerin ME. Turning universal O into rare Bombay type blood. Nat Commun 2023; 14:1765. [PMID: 36997505 PMCID: PMC10063614 DOI: 10.1038/s41467-023-37324-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
AbstractRed blood cell antigens play critical roles in blood transfusion since donor incompatibilities can be lethal. Recipients with the rare total deficiency in H antigen, the Oh Bombay phenotype, can only be transfused with group Oh blood to avoid serious transfusion reactions. We discover FucOB from the mucin-degrading bacteria Akkermansia muciniphila as an α-1,2-fucosidase able to hydrolyze Type I, Type II, Type III and Type V H antigens to obtain the afucosylated Bombay phenotype in vitro. X-ray crystal structures of FucOB show a three-domain architecture, including a GH95 glycoside hydrolase. The structural data together with site-directed mutagenesis, enzymatic activity and computational methods provide molecular insights into substrate specificity and catalysis. Furthermore, using agglutination tests and flow cytometry-based techniques, we demonstrate the ability of FucOB to convert universal O type into rare Bombay type blood, providing exciting possibilities to facilitate transfusion in recipients/patients with Bombay phenotype.
Collapse
|
5
|
O-Mucin-degrading carbohydrate-active enzymes and their possible implication in inflammatory bowel diseases. Essays Biochem 2023; 67:331-344. [PMID: 36912232 PMCID: PMC10154620 DOI: 10.1042/ebc20220153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/14/2023]
Abstract
Inflammatory bowel diseases (IBD) are modern diseases, with incidence rising around the world. They are associated with perturbation of the intestinal microbiota, and with alteration and crossing of the mucus barrier by the commensal bacteria that feed on it. In the process of mucus catabolism and invasion by gut bacteria, carbohydrate-active enzymes (CAZymes) play a critical role since mucus is mainly made up by O- and N-glycans. Moreover, the occurrence of IBD seems to be associated with low-fiber diets. Conversely, supplementation with oligosaccharides, such as human milk oligosaccharides (HMOs), which are structurally similar to intestinal mucins and could thus compete with them towards bacterial mucus-degrading CAZymes, has been suggested to prevent inflammation. In this mini-review, we will establish the current state of knowledge regarding the identification and characterization of mucus-degrading enzymes from both cultured and uncultured species of gut commensals and enteropathogens, with a particular focus on the present technological opportunities available to further the discovery of mucus-degrading CAZymes within the entire gut microbiome, by coupling microfluidics with metagenomics and culturomics. Finally, we will discuss the challenges to overcome to better assess how CAZymes targeting specific functional oligosaccharides could be involved in the modulation of the mucus-driven cross-talk between gut bacteria and their host in the context of IBD.
Collapse
|
6
|
Structure and function of microbial α-l-fucosidases: a mini review. Essays Biochem 2023; 67:399-414. [PMID: 36805644 PMCID: PMC10154630 DOI: 10.1042/ebc20220158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/23/2023]
Abstract
Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (β/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel β-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.
Collapse
|
7
|
Ishikawa E, Yamada T, Yamaji K, Serata M, Fujii D, Umesaki Y, Tsuji H, Nomoto K, Ito M, Okada N, Nagaoka M, Gomi A. Critical roles of a housekeeping sortase of probiotic Bifidobacterium bifidum in bacterium-host cell crosstalk. iScience 2021; 24:103363. [PMID: 34825137 PMCID: PMC8603203 DOI: 10.1016/j.isci.2021.103363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/09/2021] [Accepted: 10/25/2021] [Indexed: 10/30/2022] Open
Abstract
Bifidobacterium bifidum YIT 10347 (BF-1) is adhesive in vitro. Here we studied the molecular aspects of the BF-1 adhesion process. We identified and characterized non-adhesive mutants and found that a class E housekeeping sortase was critical for the adhesion to mucin. These mutants were significantly less adhesive to GCIY cells than was the wild type (WT), which protected GCIY cells against acid treatment more than did a non-adhesive mutant. The non-adhesive mutants aberrantly accumulated precursors of putative sortase-dependent proteins (SDPs). Recombinant SDPs bound to mucin. Disruption of the housekeeping sortase influenced expression of SDPs and pilus components. Mutants defective in a pilin or in an SDP showed the same adhesion properties as WT. Therefore, multiple SDPs and pili seem to work cooperatively to achieve adhesion, and the housekeeping sortase is responsible for cell wall anchoring of its substrates to ensure their proper biological function.
Collapse
Affiliation(s)
- Eiji Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Tetsuya Yamada
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Kazuaki Yamaji
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Masaki Serata
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Daichi Fujii
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Yoshinori Umesaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Koji Nomoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan.,Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Nagaoka
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Atsushi Gomi
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
8
|
Chen Z, Luo J, Li J, Kim G, Chen ES, Xiao S, Snapper SB, Bao B, An D, Blumberg RS, Lin CH, Wang S, Zhong J, Liu K, Li Q, Wu C, Kuchroo VK. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J Exp Med 2021; 218:e20210324. [PMID: 34287641 PMCID: PMC8424467 DOI: 10.1084/jem.20210324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Mucus produced by goblet cells in the gastrointestinal tract forms a biological barrier that protects the intestine from invasion by commensals and pathogens. However, the host-derived regulatory network that controls mucus secretion and thereby changes gut microbiota has not been well studied. Here, we identify that Forkhead box protein O1 (Foxo1) regulates mucus secretion by goblet cells and determines intestinal homeostasis. Loss of Foxo1 in intestinal epithelial cells (IECs) results in defects in goblet cell autophagy and mucus secretion, leading to an impaired gut microenvironment and dysbiosis. Subsequently, due to changes in microbiota and disruption in microbiome metabolites of short-chain fatty acids, Foxo1 deficiency results in altered organization of tight junction proteins and enhanced susceptibility to intestinal inflammation. Our study demonstrates that Foxo1 is crucial for IECs to establish commensalism and maintain intestinal barrier integrity by regulating goblet cell function.
Collapse
Affiliation(s)
- Zuojia Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Eric S. Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Sheng Xiao
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA
| | - Bin Bao
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Dingding An
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cheng-hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Jiaxin Zhong
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Kuai Liu
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Qiyuan Li
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Chuan Wu
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vijay K. Kuchroo
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
9
|
Costantini PE, Firrincieli A, Fedi S, Parolin C, Viti C, Cappelletti M, Vitali B. Insight into phenotypic and genotypic differences between vaginal Lactobacillus crispatus BC5 and Lactobacillus gasseri BC12 to unravel nutritional and stress factors influencing their metabolic activity. Microb Genom 2021; 7. [PMID: 34096840 PMCID: PMC8461478 DOI: 10.1099/mgen.0.000575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The vaginal microbiota, normally characterized by lactobacilli presence, is crucial for vaginal health. Members belonging to L. crispatus and L. gasseri species exert crucial protective functions against pathogens, although a total comprehension of factors that influence their dominance in healthy women is still lacking. Here we investigated the complete genome sequence and comprehensive phenotypic profile of L. crispatus strain BC5 and L. gasseri strain BC12, two vaginal strains featured by anti-bacterial and anti-viral activities. Phenotype microarray (PM) results revealed an improved capacity of BC5 to utilize different carbon sources as compared to BC12, although some specific carbon sources that can be associated to the human diet were only metabolized by BC12, i.e. uridine, amygdalin, tagatose. Additionally, the two strains were mostly distinct in the capacity to utilize the nitrogen sources under analysis. On the other hand, BC12 showed tolerance/resistance towards twice the number of stressors (i.e. antibiotics, toxic metals etc.) with respect to BC5. The divergent phenotypes observed in PM were supported by the identification in either BC5 or BC12 of specific genetic determinants that were found to be part of the core genome of each species. The PM results in combination with comparative genome data provide insights into the possible environmental factors and genetic traits supporting the predominance of either L. crispatus BC5 or L. gasseri BC12 in the vaginal niche, giving also indications for metabolic predictions at the species level.
Collapse
Affiliation(s)
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Liu X, Zhao F, Liu H, Xie Y, Zhao D, Li C. Transcriptomics and metabolomics reveal the adaption of Akkermansia muciniphila to high mucin by regulating energy homeostasis. Sci Rep 2021; 11:9073. [PMID: 33907216 PMCID: PMC8079684 DOI: 10.1038/s41598-021-88397-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
In gut, Akkermansia muciniphila (A. muciniphila) probably exerts its probiotic activities by the positive modulation of mucus thickness and gut barrier integrity. However, the potential mechanisms between A. muciniphila and mucin balance have not been fully elucidated. In this study, we cultured the bacterium in a BHI medium containing 0% to 0.5% mucin, and transcriptome and gas chromatography mass spectrometry (GC-MS) analyses were performed. We found that 0.5% (m/v) mucin in a BHI medium induced 1191 microbial genes to be differentially expressed, and 49 metabolites to be changed. The metabolites of sorbose, mannose, 2,7-anhydro-β-sedoheptulose, fructose, phenylalanine, threonine, lysine, ornithine, asparagine, alanine and glutamic acid were decreased by 0.5% mucin, while the metabolites of leucine, valine and N-acetylneuraminic acid were increased. The association analysis between transcriptome and metabolome revealed that A. muciniphila gave strong responses to energy metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways to adapt to high mucin in the medium. This finding showed that only when mucin reached a certain concentration in a BHI medium, A. muciniphila could respond to the culture environment significantly at the level of genes and metabolites, and changed its metabolic characteristics by altering the effect on carbohydrates and amino acids.
Collapse
Affiliation(s)
- Xinyue Liu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Fan Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
11
|
Tauzin AS, Pereira MR, Van Vliet LD, Colin PY, Laville E, Esque J, Laguerre S, Henrissat B, Terrapon N, Lombard V, Leclerc M, Doré J, Hollfelder F, Potocki-Veronese G. Investigating host-microbiome interactions by droplet based microfluidics. MICROBIOME 2020; 8:141. [PMID: 33004077 PMCID: PMC7531118 DOI: 10.1186/s40168-020-00911-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Despite the importance of the mucosal interface between microbiota and the host in gut homeostasis, little is known about the mechanisms of bacterial gut colonization, involving foraging for glycans produced by epithelial cells. The slow pace of progress toward understanding the underlying molecular mechanisms is largely due to the lack of efficient discovery tools, especially those targeting the uncultured fraction of the microbiota. RESULTS Here, we introduce an ultra-high-throughput metagenomic approach based on droplet microfluidics, to screen fosmid libraries. Thousands of bacterial genomes can be covered in 1 h of work, with less than ten micrograms of substrate. Applied to the screening of the mucosal microbiota for β-N-acetylgalactosaminidase activity, this approach allowed the identification of pathways involved in the degradation of human gangliosides and milk oligosaccharides, the structural homologs of intestinal mucin glycans. These pathways, whose prevalence is associated with inflammatory bowel diseases, could be the result of horizontal gene transfers with Bacteroides species. Such pathways represent novel targets to study the microbiota-host interactions in the context of inflammatory bowel diseases, in which the integrity of the mucosal barrier is impaired. CONCLUSION By compartmentalizing experiments inside microfluidic droplets, this method speeds up and miniaturizes by several orders of magnitude the screening process compared to conventional approaches, to capture entire metabolic pathways from metagenomic libraries. The method is compatible with all types of (meta)genomic libraries, and employs a commercially available flow cytometer instead of a custom-made sorting system to detect intracellular or extracellular enzyme activities. This versatile and generic workflow will accelerate experimental exploration campaigns in functional metagenomics and holobiomics studies, to further decipher host-microbiota relationships. Video Abstract.
Collapse
Affiliation(s)
- Alexandra S Tauzin
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Mariana Rangel Pereira
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- CAPES Foundation, Ministry of Education of Brazil, BrasÍlia, DF, 70040-020, Brazil
| | - Liisa D Van Vliet
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Drop-Tech, Canterbury Court, Cambridge, CB4 3QU, UK
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Elisabeth Laville
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Jeremy Esque
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Sandrine Laguerre
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicolas Terrapon
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Vincent Lombard
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Marion Leclerc
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
- Metagenopolis, INRAE, F-78350, Jouy-en-Josas, France
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
12
|
BILAL RM, HASSAN F, SAEED M, AYASAN TUGAY, RASHED N, AKHTAR MU, SEIDAVI ALIREZA. Prospects of yeast based feed additives in poultry nutrition: Potential effects and applications. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i4.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Yeast and its derivatives are extensively utilized as feed additives in poultry industry owing to their desirable health and growth promoting effects. Exhaustive number of studies had reported positive effects of yeast based additives on growth, meat quality, immunity, antioxidant status, and gastrointestinal functions in poultry birds. Owing to their prebiotic/probiotic properties, they also play significant role in gut development and modulation of gut microbiome by favouring beneficial microbes while reducing colonization of pathogenic microbes by competitive exclusion. They also possess effective potential for binding of dietary toxins in addition to improving digestion and utilization of nutrients. Moreover, yeast based additives have exhibited desirable effects on humoral immunity by increasing serum immunoglobulin (Ig) A levels. These additives have been also used as immune adjuvants to boost innate immune response under any pathogenic challenges in birds. Due to their diverse biological activities, yeast products are potentially capable for immune hemostasis by mediating balance between pro- and anti-inflammatory activities. These unique properties of yeast based products make them promising feed additive to promote health and productivity leading to efficient poultry production. Yeast can be supplemented in poultry diets @ 5.0–10.0 g/kg of feed. Numerous studies had reported significant improvement in body weight gain (3 to 8%) and FCR (1.6 to 12%) in broilers in response to supplementation of yeast based additives. Moreover, yeast supplementation also improved hemoglobin (Hb g/dl) levels up to 2.59 to 6.62%, total protein (>0.69%) while reducing serum cholesterol (mg/dl) up to 3.68 to 13.38%. Despite the potential properties and beneficial effects, use of yeast and its derivatives as feed additives in poultry industry is not matching its inherent potential due to many reasons. This review aims to highlight the importance and potential role of yeast and its products as natural growth promoter to replace in feed antibiotics to address the issues of antibiotic residues and microbial resistance. This article provides insights on functional role of yeast based additives in poultry diets and their importance as commercially viable alternatives of antibiotic growth promoters in poultry feed industry.
Collapse
|
13
|
The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality. Microorganisms 2020; 8:microorganisms8091313. [PMID: 32872165 PMCID: PMC7565306 DOI: 10.3390/microorganisms8091313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bifidobacteria are among the first colonisers of the gastrointestinal tract of breast-fed newborns due to, among other things, their ability to metabolise oligosaccharides naturally occurring in human milk. The presence of bifidobacteria in the infant gut has been shown to promote intestinal health and homeostasis as well as to preserve a functional gut barrier, thus positively influencing host health and well-being. Among human-associated gut commensals, Bifidobacterium bifidum has been described as the only species capable of the extracellular degradation of both mucin-type glycans and HMOs, thereby giving this species a special role as a commensal gut forager of both host and diet-derived glycans. In the present study, we assess the possible beneficial properties and probiotic potential of B. bifidum strain CNCM I-4319. In silico genome analysis and growth experiments confirmed the expected ability of this strain to consume HMOs and mucin. By employing various animal models, we were also able to assess the ability of B. bifidum CNCM I-4319 to preserve gut integrity and functionality from stress-induced and inflammatory damage, thereby enforcing its potential as an effective probiotic strain.
Collapse
|
14
|
Lin B, Qing X, Liao J, Zhuo K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells 2020; 9:E1022. [PMID: 32326128 PMCID: PMC7226260 DOI: 10.3390/cells9041022] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Host-pathogen interactions are fundamental to our understanding of infectious diseases. Protein glycosylation is one kind of common post-translational modification, forming glycoproteins and modulating numerous important biological processes. It also occurs in host-pathogen interaction, affecting host resistance or pathogen virulence often because glycans regulate protein conformation, activity, and stability, etc. This review summarizes various roles of different glycoproteins during the interaction, which include: host glycoproteins prevent pathogens as barriers; pathogen glycoproteins promote pathogens to attack host proteins as weapons; pathogens glycosylate proteins of the host to enhance virulence; and hosts sense pathogen glycoproteins to induce resistance. In addition, this review also intends to summarize the roles of lectin (a class of protein entangled with glycoprotein) in host-pathogen interactions, including bacterial adhesins, viral lectins or host lectins. Although these studies show the importance of protein glycosylation in host-pathogen interaction, much remains to be discovered about the interaction mechanism.
Collapse
Affiliation(s)
- Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Xue Qing
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Josenhans C, Müthing J, Elling L, Bartfeld S, Schmidt H. How bacterial pathogens of the gastrointestinal tract use the mucosal glyco-code to harness mucus and microbiota: New ways to study an ancient bag of tricks. Int J Med Microbiol 2020; 310:151392. [DOI: 10.1016/j.ijmm.2020.151392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
|
16
|
Use of mannan oligosaccharide in broiler diets: an overview of underlying mechanisms. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933917000757] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Dai J, Zhang W, Geng X. Effect of ferulic acid sugar ester with high molecular mass from corn bran on proliferation of intestinal bifidobacteria in aged mice induced by D-galactose: The role of HFASE in the intestine. J Food Biochem 2019; 43:e13000. [PMID: 31389039 DOI: 10.1111/jfbc.13000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/16/2023]
Abstract
Our experiment was to study the effect of high molecular mass ferulic acid sugar ester (HFASE) from corn bran on proliferation of intestinal bifidobacteria in aged mice induced by D-galactose. The number of bifidobacteria in the intestine of D-galactose-induced aging mice was lower than that of normal mice. After the intragastric administration of different doses of HFASE (100, 200, and 300 mg kg-1 day-1 body weight) in experimental groups, the number of bifidobacteria was also higher than the aging group. The proliferation rate of bifidobacteria in the intestine of the experimental groups was fast in the first 24 days of feeding and then tended to be gentle. The H-l experimental group (100 mg/kg body weight) had the most obvious effect of the proliferation of bifidobacteria. PRACTICAL APPLICATIONS: As the by-product of corn starch processing, corn bran was usually processed into animal feed and sold at a low price. The results of this study indicated that high molecular mass corn bran ferulic acid sugar ester had the effect of promoting the proliferation of bifidobacteria in aging mice, which provided ideas for the development and application of corn bran in the food industries. It could be added as a raw material for functional foods to common foods such as yogurt, baked bread, cereals, and porridge.
Collapse
Affiliation(s)
- Junling Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Wei Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xin Geng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Steady state kinetic analysis of O-linked GalNAc glycan release catalyzed by endo-α-N-acetylgalactosaminidase. Carbohydr Res 2019; 480:54-60. [DOI: 10.1016/j.carres.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022]
|
19
|
Laville E, Perrier J, Bejar N, Maresca M, Esque J, Tauzin AS, Bouhajja E, Leclerc M, Drula E, Henrissat B, Berdah S, Di Pasquale E, Robe P, Potocki-Veronese G. Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol 2019; 10:1286. [PMID: 31275257 PMCID: PMC6593285 DOI: 10.3389/fmicb.2019.01286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
The human Intestinal mucus is formed by glycoproteins, the O- and N-linked glycans which constitute a crucial source of carbon for commensal gut bacteria, especially when deprived of dietary glycans of plant origin. In recent years, a dozen carbohydrate-active enzymes from cultivated mucin degraders have been characterized. But yet, considering the fact that uncultured species predominate in the human gut microbiota, these biochemical data are far from exhaustive. In this study, we used functional metagenomics to identify new metabolic pathways in uncultured bacteria involved in harvesting mucin glycans. First, we performed a high-throughput screening of a fosmid metagenomic library constructed from the ileum mucosa microbiota using chromogenic substrates. The screening resulted in the isolation of 124 clones producing activities crucial in the degradation of human O- and N-glycans, namely sialidases, β-D-N-acetyl-glucosaminidase, β-D-N-acetyl-galactosaminidase, and/or β-D-mannosidase. Thirteen of these clones were selected based on their diversified functional profiles and were further analyzed on a secondary screening. This step consisted of lectin binding assays to demonstrate the ability of the clones to degrade human intestinal mucus. In total, the structural modification of several mucin motifs, sialylated mucin ones in particular, was evidenced for nine clones. Sequencing their metagenomic loci highlighted complex catabolic pathways involving the complementary functions of glycan sensing, transport, hydrolysis, deacetylation, and deamination, which were sometimes associated with amino acid metabolism machinery. These loci are assigned to several Bacteroides and Feacalibacterium species highly prevalent and abundant in the gut microbiome and explain the metabolic flexibility of gut bacteria feeding both on dietary and human glycans.
Collapse
Affiliation(s)
| | - Josette Perrier
- iSm2, Centrale Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Nada Bejar
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | - Marc Maresca
- iSm2, Centrale Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Jeremy Esque
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | | | - Emna Bouhajja
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | - Marion Leclerc
- UMR1319, Micalis, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Elodie Drula
- CNRS, Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- USC 1408 AFMB, INRA, Marseille, France
| | - Bernard Henrissat
- CNRS, Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- USC 1408 AFMB, INRA, Marseille, France
| | - Stephane Berdah
- UMRT24 IFSTTAR, Laboratoire de Biomécanique Appliquée, Faculté de Médecine Secteur Nord, Aix-Marseille University, Marseille, France
- Inst Neurophysiopathol, INP, CNRS, Aix-Marseille Université, Marseille, France
| | - Eric Di Pasquale
- UMRT24 IFSTTAR, Laboratoire de Biomécanique Appliquée, Faculté de Médecine Secteur Nord, Aix-Marseille University, Marseille, France
- Inst Neurophysiopathol, INP, CNRS, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
20
|
An in silico pan-genomic probe for the molecular traits behind Lactobacillus ruminis gut autochthony. PLoS One 2017; 12:e0175541. [PMID: 28414739 PMCID: PMC5393609 DOI: 10.1371/journal.pone.0175541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
As an ecological niche, the mammalian intestine provides the ideal habitat for a variety of bacterial microorganisms. Purportedly, some commensal genera and species offer a beneficial mix of metabolic, protective, and structural processes that help sustain the natural digestive health of the host. Among these sort of gut inhabitants is the Gram-positive lactic acid bacterium Lactobacillus ruminis, a strict anaerobe with both pili and flagella on its cell surface, but also known for being autochthonous (indigenous) to the intestinal environment. Given that the molecular basis of gut autochthony for this species is largely unexplored and unknown, we undertook a study at the genome level to pinpoint some of the adaptive traits behind its colonization behavior. In our pan-genomic probe of L. ruminis, the genomes of nine different strains isolated from human, bovine, porcine, and equine host guts were compiled and compared for in silico analysis. For this, we conducted a geno-phenotypic assessment of protein-coding genes, with an emphasis on those products involved with cell-surface morphology and anaerobic fermentation and respiration. We also categorized and examined the core and accessory genes that define the L. ruminis species and its strains. Here, we made an attempt to identify those genes having ecologically relevant phenotypes that might support or bring about intestinal indigenousness.
Collapse
|
21
|
Katayama T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria†. Biosci Biotechnol Biochem 2016; 80:621-32. [DOI: 10.1080/09168451.2015.1132153] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Lactation is a common feeding strategy of eutherian mammals, but its functions go beyond feeding the neonates. Ever since Tissier isolated bifidobacteria from the stool of breast-fed infants, human milk has been postulated to contain compounds that selectively stimulate the growth of bifidobacteria in intestines. However, until relatively recently, there have been no reports to link human milk compound(s) with bifidobacterial physiology. Over the past decade, successive studies have demonstrated that infant-gut-associated bifidobacteria are equipped with genetic and enzymatic toolsets dedicated to assimilation of host-derived glycans, especially human milk oligosaccharides (HMOs). Among gut microbes, the presence of enzymes required for degrading HMOs with type-1 chains is essentially limited to infant-gut-associated bifidobacteria, suggesting HMOs serve as selected nutrients for the bacteria. In this study, I shortly discuss the research on bifidobacteria and HMOs from a historical perspective and summarize the roles of bifidobacterial enzymes in the assimilation of HMOs with type-1 chains. Based on this overview, I suggest the co-evolution between bifidobacteria and human beings mediated by HMOs.
Collapse
Affiliation(s)
- Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
| |
Collapse
|
22
|
Gibold L, Garenaux E, Dalmasso G, Gallucci C, Cia D, Mottet-Auselo B, Faïs T, Darfeuille-Michaud A, Nguyen HTT, Barnich N, Bonnet R, Delmas J. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn's disease-associated Escherichia coli. Cell Microbiol 2015; 18:617-31. [PMID: 26499863 DOI: 10.1111/cmi.12539] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
The aetiology of Crohn's disease (CD) involves disorders in host genetic factors and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are receiving increased attention because in studies of mucosa-associated microbiota, they are more prevalent in CD patients than in healthy subjects. AIEC are associated both with ileal and colonic disease phenotypes. In this study, we reported a protease called Vat-AIEC from AIEC that favours the mucosa colonization. The deletion of the Vat-AIEC-encoding gene resulted in an adhesion-impaired phenotype in vitro and affected the colonization of bacteria in contact with intestinal epithelial cells in a murine intestinal loop model, and also their gut colonization in vivo. Furthermore, unlike LF82Δvat-AIEC, wild-type AIEC reference strain LF82 was able to penetrate a mucus column extensively and promoted the degradation of mucins and a decrease in mucus viscosity. Vat-AIEC transcription was stimulated by several chemical conditions found in the ileum environment. Finally, the screening of E. coli strains isolated from CD patients revealed a preferential vat-AIEC association with AIEC strains belonging to the B2 phylogroup. Overall, this study revealed a new component of AIEC virulence that might favour their implantation in the gut of CD patients.
Collapse
Affiliation(s)
- Lucie Gibold
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Estelle Garenaux
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Camille Gallucci
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France
| | - David Cia
- Equipe Biophysique Neurosensorielle, Faculté de Pharmacie, Université d'Auvergne, UMR INSERM 1107, Clermont-Ferrand, France
| | - Benoit Mottet-Auselo
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Tiphanie Faïs
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Arlette Darfeuille-Michaud
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Richard Bonnet
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Julien Delmas
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| |
Collapse
|
23
|
Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2015; 5:377-88. [PMID: 24889892 DOI: 10.3920/bm2013.0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At present, the genus Bifidobacterium includes 48 species and subspecies, and this number is expected to increase. Bifidobacteria are found in different ecological niches. However, most were originally isolated from animals, mainly mammals, especially during the milk feeding period of life. Their presence in high numbers is associated with good health of the host. Moreover, bifidobacteria are often found in poultry and insects that exhibit a social mode of life (honeybees and bumblebees). This review is designed as a summary of currently known species of the genus Bifidobacterium, especially focused on their difference and similarities. The primary focus is on their occurrence in the digestive tract of animals, as well as the specificities of animal strains, with regard to their potential use as probiotics.
Collapse
Affiliation(s)
- V Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - J Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200 Prague 4-Krč, Czech Republic
| | - S Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
24
|
Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet 2015; 6:81. [PMID: 25852737 PMCID: PMC4365749 DOI: 10.3389/fgene.2015.00081] [Citation(s) in RCA: 566] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022] Open
Abstract
The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health.
Collapse
Affiliation(s)
| | | | | | - Nathalie Juge
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food ResearchNorwich, UK
| |
Collapse
|
25
|
Novel substrate specificities of two lacto-N-biosidases towards β-linked galacto-N-biose-containing oligosaccharides of globo H, Gb5, and GA1. Carbohydr Res 2015; 408:18-24. [PMID: 25839135 DOI: 10.1016/j.carres.2015.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/20/2022]
Abstract
We describe the novel substrate specificities of two independently evolved lacto-N-biosidases (LnbX and LnbB) towards the sugar chains of globo- and ganglio-series glycosphingolipids. LnbX, a non-classified member of the glycoside hydrolase family, isolated from Bifidobacterium longum subsp. longum, was shown to liberate galacto-N-biose (GNB: Galβ1-3GalNAc) and 2'-fucosyl GNB (a type-4 trisaccharide) from Gb5 pentasaccharide and globo H hexasaccharide, respectively. LnbB, a member of the glycoside hydrolase family 20 isolated from Bifidobacterium bifidum, was shown to release GNB from Gb5 and GA1 oligosaccharides. This is the first report describing enzymatic release of β-linked GNB from natural substrates. These unique activities may play a role in modulating the microbial composition in the gut ecosystem, and may serve as new tools for elucidating the functions of sugar chains of glycosphingolipids.
Collapse
|
26
|
Hattie M, Ito T, Debowski AW, Arakawa T, Katayama T, Yamamoto K, Fushinobu S, Stubbs KA. Gaining insight into the catalysis by GH20 lacto-N-biosidase using small molecule inhibitors and structural analysis. Chem Commun (Camb) 2015; 51:15008-11. [DOI: 10.1039/c5cc05494j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthesis and structural analysis of rationally developed inhibitors.
Collapse
Affiliation(s)
- Mitchell Hattie
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
| | - Tasuku Ito
- National Food Research Institute
- National Agriculture and Food Research Organization
- Tsukuba
- Japan
| | - Aleksandra W. Debowski
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
- School of Pathology and Laboratory Medicine
| | - Takatoshi Arakawa
- Department of Biotechnology
- The University of Tokyo
- Tokyo 113-8657
- Japan
| | - Takane Katayama
- Graduate School of Biostudies
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology
- Ishikawa Prefectural University
- Nonoichi
- Japan
| | - Shinya Fushinobu
- Department of Biotechnology
- The University of Tokyo
- Tokyo 113-8657
- Japan
| | - Keith A. Stubbs
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
| |
Collapse
|
27
|
|
28
|
Egan M, Motherway MO, Kilcoyne M, Kane M, Joshi L, Ventura M, van Sinderen D. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol 2014; 14:282. [PMID: 25420416 PMCID: PMC4252021 DOI: 10.1186/s12866-014-0282-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bifidobacteria constitute a specific group of commensal bacteria that commonly inhabit the mammalian gastrointestinal tract. Bifidobacterium breve UCC2003 was previously shown to utilize a variety of plant/diet/host-derived carbohydrates, including cellodextrin, starch and galactan, as well as the mucin and HMO-derived monosaccharide, sialic acid. In the current study, we investigated the ability of this strain to utilize parts of a host-derived source of carbohydrate, namely the mucin glycoprotein, when grown in co-culture with the mucin-degrading Bifidobacterium bifidum PRL2010. RESULTS B. breve UCC2003 was shown to exhibit growth properties in a mucin-based medium, but only when grown in the presence of B. bifidum PRL2010, which is known to metabolize mucin. A combination of HPAEC-PAD and transcriptome analyses identified some of the possible monosaccharides and oligosaccharides which support this enhanced co-cultivation growth/viability phenotype. CONCLUSION This study describes the potential existence of a gut commensal relationship between two bifidobacterial species. We demonstrate the in vitro ability of B. breve UCC2003 to cross-feed on sugars released by the mucin-degrading activity of B. bifidum PRL2010, thus advancing our knowledge on the metabolic adaptability which allows the former strain to colonize the (infant) gut by its extensive metabolic abilities to (co-)utilize available carbohydrate sources.
Collapse
Affiliation(s)
- Muireann Egan
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - Mary O'Connell Motherway
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - Michelle Kilcoyne
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Marian Kane
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy.
| | - Douwe van Sinderen
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Turroni F, Ventura M, Buttó LF, Duranti S, O’Toole PW, Motherway MO, van Sinderen D. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 2014; 71:183-203. [PMID: 23516017 PMCID: PMC11113728 DOI: 10.1007/s00018-013-1318-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/13/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023]
Abstract
The human gut represents a highly complex ecosystem, which is densely colonized by a myriad of microorganisms that influence the physiology, immune function and health status of the host. Among the many members of the human gut microbiota, there are microorganisms that have co-evolved with their host and that are believed to exert health-promoting or probiotic effects. Probiotic bacteria isolated from the gut and other environments are commercially exploited, and although there is a growing list of health benefits provided by the consumption of such probiotics, their precise mechanisms of action have essentially remained elusive. Genomics approaches have provided exciting new opportunities for the identification of probiotic effector molecules that elicit specific responses to influence the physiology and immune function of their human host. In this review, we describe the current understanding of the intriguing relationships that exist between the human gut and key members of the gut microbiota such as bifidobacteria and lactobacilli, discussed here as prototypical groups of probiotic microorganisms.
Collapse
Affiliation(s)
- Francesca Turroni
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | - Ludovica F. Buttó
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | - Paul W. O’Toole
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Mary O’Connell Motherway
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| |
Collapse
|
30
|
A natural carbohydrate fraction Actigen™ fromSaccharomyces cerevisiaecell wall: effects on goblet cells, gut morphology and performance of broiler chickens. JOURNAL OF APPLIED ANIMAL NUTRITION 2013. [DOI: 10.1017/jan.2013.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SummaryA study was conducted to evaluate a natural carbohydrate fraction Actigen™ (NCF), derived from mannanoligosaccharide, in feed on growth performance, intestinal morphology and goblet cell number and area of male broilers'. Dietary treatments included: 1) control diet (antibiotic and NCF free), 2) NCF at 200 g/t, 3) NCF at 400 g/t, and 4) NCF 800 g/t. Two hundred and forty birds were placed into 12 replicate pens per treatment (5 birds/pen), sixty birds per treatment. Body weight and feed intake were recorded weekly up to day 42. At this time a 2.5cm section of jejunum and duodenum were excised post mortem for morphological analysis. Birds fed 200 g/t and 800 g/t NCF were significantly (P < 0.01) heavier from day 14 onwards than the control birds. Feed intake was significantly higher in birds fed 200 g/t NCF compared to those fed the control at 21 and 35 days (P < 0.05). Diets containing 200 g/t and 800 g/t of NCF significantly decreased broiler feed conversion ratio (FCR) compared to the control in the first phase (1–14 days) (P < 0.01) and levels of NCF decreased FCR (P < 0.05) in the second phase (15–28 days). NCF had no significant effect on villus height, villus width, crypt depth or villus to crypt ratio in either duodenum or jejunum. NCF did not significantly affect goblet cell area or goblet cell number in the duodenum, however, in the jejunum, 800 g/t NCF significantly (P < 0.05) increased goblet cell area over the control. In conclusion, NCF showed a positive effect on broiler performance in the starter and grower phases, and increased goblet cell area in the jejunum, suggesting higher levels of mucin production. This indicated that the performance benefit of NCF could be age-dependent, with younger birds responding more than the older ones. There were no additional benefits to performance when feeding NCF for a longer period (after 28 d of age), however it is postulated that birds fed NCF would have greater defence to pathogenic challenge through increased storage capacity of mucin.
Collapse
|
31
|
Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 2013; 37:793-829. [PMID: 23662775 DOI: 10.1111/1574-6976.12024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity.
Collapse
Affiliation(s)
- Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | |
Collapse
|
32
|
Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 2013; 5:1869-912. [PMID: 23760057 PMCID: PMC3725482 DOI: 10.3390/nu5061869] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022] Open
Abstract
Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in "topping up your good bacteria" or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision-tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity.
Collapse
|
33
|
In vitro comparative evaluation of the impact of lacto-N-biose I, a major building block of human milk oligosaccharides, on the fecal microbiota of infants. Anaerobe 2013; 19:50-7. [DOI: 10.1016/j.anaerobe.2012.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/05/2012] [Accepted: 12/18/2012] [Indexed: 01/06/2023]
|
34
|
González-Rodríguez I, Ruiz L, Gueimonde M, Margolles A, Sánchez B. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol Lett 2012. [DOI: 10.1111/1574-6968.12056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Irene González-Rodríguez
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| |
Collapse
|
35
|
Abstract
Members of the genus Bifidobacterium are considered to be important constituents of the microbiota of animals, from insects to mammals. They are gut commensals extensively used by the food industry as probiotic microorganisms, since some strains have been shown to have specific beneficial effects. However, the molecular processes underlying their functional capacities to promote a healthy status in the host, as well as those involved in survival, colonization and persistence of bifidobacteria in the gut, are far from being completely understood. This review summarizes the current knowledge on the mechanisms used by bifidobacteria to cope with gastrointestinal factors and to adapt to them, and discusses the advantages of the adaptive traits acquired by these microorganisms as a consequence of their interactions with the gastrointestinal tract environment, as well as the impact of such adaptations in the functional characteristics of bifidobacteria.
Collapse
|
36
|
Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 2012; 13:6026-6039. [PMID: 22754347 PMCID: PMC3382753 DOI: 10.3390/ijms13056026] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 02/07/2023] Open
Abstract
Probiotics, prebiotics and synbiotics are frequently-used components for the elaboration of functional food. Currently, most of the commercialized probiotics are limited to a few strains of the genera Bifidobacteria, Lactobacillus and Streptococcus, most of which produce exopolysaccharides (EPS). This suggests that the beneficial properties of these microorganisms may be related to the biological activities of these biopolymers. In this work we report that a 2-substituted-(1,3)-β-d-glucan of non-dairy bacterial origin has a prebiotic effect on three probiotic strains. Moreover, the presence of this β-d-glucan potentiates in vitro adhesion of the probiotic Lactobacillus plantarum WCFS1 to human intestinal epithelial cells.
Collapse
|
37
|
Suzuki K, Asano S, Iijima K, Kitamoto K. Sake and Beer Spoilage Lactic Acid Bacteria - A Review. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2008.tb00331.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Abstract
Intestinal colonization of bifidobacteria is important for the health of infants. Human milk oligosaccharides (HMO) have been identified as growth factors for bifidobacteria. Recently, a bifidobacterial enzymatic system to metabolize HMO was identified. 1,3-β-Galactosyl-N-acetylhexosamine phosphorylase (GLNBP, EC 2.4.1.211), which catalyzes the reversible phosphorolysis of galacto-N-biose (GNB) (Galβ1→3GalNAc)] and lacto-N-biose I (LNB) (Galβ1→3GlcNAc), is a key enzyme to explain the metabolism of HMO. Infant-type bifidobacteria possess the intracellular pathway to specifically metabolize GNB and LNB (GNB/LNB pathway). Bifidobacterium bifidum possesses extracellular enzymes to liberate LNB from HMO. However, Bifidobacterium longum subsp. infantis imports intact HMO to be hydrolyzed by intracellular enzymes. Bifidobacterial enzymes related to the metabolism of HMO are useful tools for preparing compounds related to HMO. For instance, LNB and GNB were produced from sucrose and GlcNAc/GalNAc in 1 pot using 4 bifidobacterial enzymes, including GLNBP. LNB is expected to be a selective bifidus factor for infant-type strains.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
39
|
Fukiya S, Hirayama Y, Sakanaka M, Kano Y, Yokota A. Technological advances in bifidobacterial molecular genetics: application to functional genomics and medical treatments. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2012; 31:15-25. [PMID: 24936345 PMCID: PMC4034290 DOI: 10.12938/bmfh.31.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
Abstract
Bifidobacteria are well known as beneficial intestinal bacteria that exert
health-promoting effects in humans. In addition to physiological and immunological
investigations, molecular genetic technologies have been developed and have recently
started to be applied to clarify the molecular bases of
host-Bifidobacterium interactions. These technologies include
transformation technologies and Escherichia coli-Bifidobacterium shuttle
vectors that enable heterologous gene expression. In this context, a plasmid artificial
modification method that protects the introduced plasmid from the restriction system in
host bifidobacteria has recently been developed to increase transformation efficiency. On
the other hand, targeted gene inactivation systems, which are vital for functional
genomics, seemed far from being practically applicable in bifidobacteria. However,
remarkable progress in this technology has recently been achieved, enabling functional
genomics in bifidobacteria. Integrated use of these molecular genetic technologies with
omics-based analyses will surely boost characterization of the molecular basis underlying
beneficial effects of bifidobacteria. Applications of recombinant bifidobacteria to
medical treatments have also progressed.
Collapse
Affiliation(s)
- Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yosuke Hirayama
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Mikiyasu Sakanaka
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yasunobu Kano
- Department of Molecular Genetics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
40
|
Barnett AM, Roy NC, McNabb WC, Cookson AL. The interactions between endogenous bacteria, dietary components and the mucus layer of the large bowel. Food Funct 2012; 3:690-9. [DOI: 10.1039/c2fo30017f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Dallas DC, Sela D, Underwood MA, German JB, Lebrilla C. Protein-Linked Glycan Degradation in Infants Fed Human Milk. ACTA ACUST UNITED AC 2012; Suppl 1:002. [PMID: 24533224 DOI: 10.4172/2153-0637.s1-002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many human milk proteins are glycosylated. Glycosylation is important in protecting bioactive proteins and peptide fragments from digestion. Protein-linked glycans have a variety of functions; however, there is a paucity of information on protein-linked glycan degradation in either the infant or the adult digestive system. Human digestive enzymes can break down dietary disaccharides and starches, but most of the digestive enzymes required for complex protein-linked glycan degradation are absent from both human digestive secretions and the external brush border membrane of the intestinal lining. Indeed, complex carbohydrates remain intact throughout their transit through the stomach and small intestine, and are undegraded by in vitro incubation with either adult pancreatic secretions or intact intestinal brush border membranes. Human gastrointestinal bacteria, however, produce a wide variety of glycosidases with regio- and anomeric specificities matching those of protein-linked glycan structures. These bacteria degrade a wide array of complex carbohydrates including various protein-linked glycans. That bacteria possess glycan degradation capabilities, whereas the human digestive system, perse, does not, suggests that most dietary protein-linked glycan breakdown will be of bacterial origin. In addition to providing a food source for specific bacteria in the colon, protein-linked glycans from human milk may act as decoys for pathogenic bacteria to prevent invasion and infection of the host. The composition of the intestinal microbiome may be particularly important in the most vulnerable humans-the elderly, the immunocompromised, and infants (particularly premature infants).
Collapse
Affiliation(s)
- David C Dallas
- Department of Food Science and Technology, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA ; Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - David Sela
- Department of Viticulture and Enology, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Mark A Underwood
- Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA ; Department of Pediatrics, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - J Bruce German
- Department of Food Science and Technology, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA ; Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Carlito Lebrilla
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
42
|
Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol 2011; 78:795-803. [PMID: 22138995 DOI: 10.1128/aem.06762-11] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium longum subsp. infantis ATCC 15697 utilizes several small-mass neutral human milk oligosaccharides (HMOs), several of which are fucosylated. Whereas previous studies focused on endpoint consumption, a temporal glycan consumption profile revealed a time-dependent effect. Specifically, among preferred HMOs, tetraose was favored early in fermentation, with other oligosaccharides consumed slightly later. In order to utilize fucosylated oligosaccharides, ATCC 15697 possesses several fucosidases, implicating GH29 and GH95 α-L-fucosidases in a gene cluster dedicated to HMO metabolism. Evaluation of the biochemical kinetics demonstrated that ATCC 15697 expresses three fucosidases with a high turnover rate. Moreover, several ATCC 15697 fucosidases are active on the linkages inherent to the HMO molecule. Finally, the HMO cluster GH29 α-L-fucosidase possesses a crystal structure that is similar to previously characterized fucosidases.
Collapse
|
43
|
Lactobacillus adhesion to mucus. Nutrients 2011; 3:613-36. [PMID: 22254114 PMCID: PMC3257693 DOI: 10.3390/nu3050613] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 05/05/2011] [Accepted: 05/11/2011] [Indexed: 12/12/2022] Open
Abstract
Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.
Collapse
|
44
|
Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiol (Praha) 2011; 56:85-9. [PMID: 21468760 DOI: 10.1007/s12223-011-0022-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/29/2010] [Indexed: 10/18/2022]
Abstract
Bifidobacteria (246 strains in total) were isolated from rectal samples of infants and adult humans and animals, and from intestinal samples of calves. Twenty-five strains grew well on mucin: 20 from infants, two from adults, and three from goatlings. Poor or no growth on mucin was observed in 156 bifidobacterial strains of animal origin. The difference between human and animal isolates in ability to grow on mucin was significant at p < 0.001. Nine human strains with the best growth on mucin were identified as Bifidobacterium bifidum. These strains produced extracellular, membrane-bound, and intracellular mucinases with activities of 0.11, 0.53, and 0.09 μmol/min of reducing sugars per milligram of protein, respectively. Membrane-bound mucinases were active between pH 5 and 10. The optimum pH of extracellular mucinases was 6-7. Fermentation patterns in cultures grown on mucin and glucose differed. On mucin, the acetate-to-lactate ratio was higher than in cultures grown on glucose (p = 0.012). We showed that the bifidobacteria belong to the mucin-fermenting bacteria in humans, but their significance in mucin degradation in animals seems to be limited.
Collapse
|
45
|
Ruiz L, Gueimonde M, Couté Y, Salminen S, Sanchez JC, de los Reyes-Gavilán CG, Margolles A. Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus. FEMS Microbiol Lett 2010; 314:125-30. [DOI: 10.1111/j.1574-6968.2010.02159.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
46
|
Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 2010; 107:19514-9. [PMID: 20974960 DOI: 10.1073/pnas.1011100107] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human intestine is densely populated by a microbial consortium whose metabolic activities are influenced by, among others, bifidobacteria. However, the genetic basis of adaptation of bifidobacteria to the human gut is poorly understood. Analysis of the 2,214,650-bp genome of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a nutrient-acquisition strategy that targets host-derived glycans, such as those present in mucin. Proteome and transcriptome profiling revealed a set of chromosomal loci responsible for mucin metabolism that appear to be under common transcriptional control and with predicted functions that allow degradation of various O-linked glycans in mucin. Conservation of the latter gene clusters in various B. bifidum strains supports the notion that host-derived glycan catabolism is an important colonization factor for B. bifidum with concomitant impact on intestinal microbiota ecology.
Collapse
|
47
|
Naumoff DG. GH101 family of glycoside hydrolases: subfamily structure and evolutionary connections with other families. J Bioinform Comput Biol 2010; 8:437-51. [PMID: 20556855 DOI: 10.1142/s0219720010004628] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/18/2009] [Accepted: 01/14/2010] [Indexed: 11/18/2022]
Abstract
The GH101 family is composed of endo-alpha-N-acetylgalactosaminidases and their homologues. Pairwise sequence comparison and phylogenetic analysis allowed us to distinguish five to six subfamilies in this family. Diverse domain structures were found among the family members. Usually they have five irreplaceable and some optional domains. Iterative screening of the protein database revealed an evolutionary relationship of the GH101 catalytic domain with glycoside hydrolase domains from GH13, GH31, and GH70 families. Among other homologous proteins we have found representatives of COG1649, as well as members of four new families of predicted glycoside hydrolases (GHL1-GHL4).
Collapse
Affiliation(s)
- Daniil G Naumoff
- Laboratory of Bioinformatics, State Institute for Genetics and Selection of Industrial Microorganisms, I-Dorozhny Proezd 1, Moscow 117545, Russia.
| |
Collapse
|
48
|
Miwa M, Horimoto T, Kiyohara M, Katayama T, Kitaoka M, Ashida H, Yamamoto K. Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology 2010; 20:1402-9. [PMID: 20581010 DOI: 10.1093/glycob/cwq101] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bifidobacteria are predominant in the intestines of breast-fed infants and offer health benefits to the host. Human milk oligosaccharides (HMOs) are considered to be one of the most important growth factors for intestinal bifidobacteria. HMOs contain two major structures of core tetrasaccharide: lacto-N-tetraose (Galβ1-3GlcNAcβ1-3Galβ1-4Glc; type 1 chain) and lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc; type 2 chain). We previously identified the unique metabolic pathway for lacto-N-tetraose in Bifidobacterium bifidum. Here, we clarified the degradation pathway for lacto-N-neotetraose in the same bifidobacteria. We cloned one β-galactosidase (BbgIII) and two β-N-acetylhexosaminidases (BbhI and BbhII), all of which are extracellular membrane-bound enzymes. The recombinant BbgIII hydrolyzed lacto-N-neotetraose into Gal and lacto-N-triose II, and furthermore the recombinant BbhI, but not BbhII, catalyzed the hydrolysis of lacto-N-triose II to GlcNAc and lactose. Since BbgIII and BbhI were highly specific for lacto-N-neotetraose and lacto-N-triose II, respectively, they may play essential roles in degrading the type 2 oligosaccharides in HMOs.
Collapse
Affiliation(s)
- Mika Miwa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Parker RB, Kohler JJ. Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem Biol 2010; 5:35-46. [PMID: 19968325 DOI: 10.1021/cb9002514] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plasma membrane of eukaryotic cells is coated with carbohydrates. By virtue of their extracellular position and recognizable chemical features, cell surface glycans mediate many receptor-ligand interactions. Recently, mammalian extracellular hydrolytic enzymes have been shown to modify the structure of cell surface glycans and consequently alter their binding properties. These cell surface glycan remodeling events can cause rapid changes in critical signal transduction phenomena. This Review highlights recent studies on the roles of eukaryotic extracellular sialidases, sulfatases, and a deacetylase in regulation of intracellular signaling. We also describe possible therapies that target extracellular glycan remodeling processes and discuss the potential for new discoveries in this area.
Collapse
Affiliation(s)
- Randy B. Parker
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185
| | - Jennifer J. Kohler
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185
| |
Collapse
|
50
|
Derrien M, van Passel MWJ, van de Bovenkamp JHB, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010; 1:254-268. [PMID: 21327032 PMCID: PMC3023607 DOI: 10.4161/gmic.1.4.12778] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 02/03/2023] Open
Abstract
Mucins are a family of heavily glycosylated proteins that are the major organic components of the mucus layer, the protective layer covering the epithelial cells in many human and animal organs, including the entire gastro-intestinal tract. Microbes that can associate with mucins benefit from this interaction since they can get available nutrients, experience physico-chemical protection and adhere, resulting in increased residence time. Mucin-degrading microorganisms, which often are found in consortia, have not been extensively characterized as mucins are high molecular weight glycoproteins that are hard to study because of their size, complexity and heterogeneity. The purpose of this review is to discuss how advances in mucus and mucin research, and insight in the microbial ecology promoted our understanding of mucin degradation. Recent insight is presented in mucin structure and organization, the microorganisms known to use mucin as growth substrate, with a specific attention on Akkermansia muciniphila, and the molecular basis of microbial mucin degradation owing to availability of genome sequences.
Collapse
Affiliation(s)
- Muriel Derrien
- TI Food and Nutrition; Wageningen University and Research Centre; Wageningen, The Netherlands,Laboratory of Microbiology; Wageningen University and Research Centre; Wageningen, The Netherlands
| | - Mark WJ van Passel
- Laboratory of Microbiology; Wageningen University and Research Centre; Wageningen, The Netherlands
| | - Jeroen HB van de Bovenkamp
- TI Food and Nutrition; Wageningen University and Research Centre; Wageningen, The Netherlands,Laboratory of Food Chemistry; Wageningen University and Research Centre; Wageningen, The Netherlands
| | - Raymond G Schipper
- TI Food and Nutrition; Wageningen University and Research Centre; Wageningen, The Netherlands,Laboratory of Food Chemistry; Wageningen University and Research Centre; Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology; Wageningen University and Research Centre; Wageningen, The Netherlands,Department of Basic Veterinary Sciences; University of Helsinki; Helsinki, Finland
| | - Jan Dekker
- TI Food and Nutrition; Wageningen University and Research Centre; Wageningen, The Netherlands
| |
Collapse
|