1
|
Vázquez-Carrillo LI, Puente-Rivera J, Torres-Romero JC, Quintas-Granados LI, Alvarez-Sánchez ME. The Fimbrin TvFim1, an immunogenic protein involved in male trichomoniasis. Exp Parasitol 2024; 268:108867. [PMID: 39643261 DOI: 10.1016/j.exppara.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
An active immunoproteome of Trichomonas vaginalis was obtained by 2D-Western blotting (2D-WB). Subsequent proteoform identification by mass spectrometry (MS) showed differential expression and specific immunoreactions of multiple proteins mediated by the presence of Zn2+. A total of 25 proteoforms were immunologically reactive, generally under Zn2+ conditions, and MS analysis revealed that the fimbrin (plastin) of T. vaginalis (TvFim1) was recognized by the sera of male patients with trichomoniasis but not by the sera of infected female patients. These findings suggest that the protein is immunogenic during active male trichomoniasis and that cytoskeletal proteins, including fimbrins, may also act as virulence factors in addition to their role in parasite morphogenesis.
Collapse
Affiliation(s)
- Laura Isabel Vázquez-Carrillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, México D.F, Mexico
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, México D.F, Mexico; División de Investigación, Hospital Juárez de México, Ciudad de México, 07760, Mexico
| | - Julio Cesar Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, 97069, Mérida, Yucatán, Mexico
| | - Laura Itzel Quintas-Granados
- Academia de Biología Humana. Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México (UACM), Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, México D.F, Mexico.
| |
Collapse
|
2
|
El-kareem NMA, Dyab AK, Albalawi NO, El Samea AA, Taha MAA, AlQadeeb H, Gareh A, Hiekal EA, Alzaylaee H, Elmahallawy EK. Microscopic and molecular detection of Trichomonas vaginalis in outpatients seeking medical care in Upper Egypt. Front Microbiol 2024; 15:1499270. [PMID: 39633806 PMCID: PMC11615069 DOI: 10.3389/fmicb.2024.1499270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Trichomoniasis remains one of the most significant sexually transmitted disease (STDs) for public health. The disease is caused by parasitic protozoa, Trichomonas vaginalis (T. vaginalis), which is often underestimated in tropical medicine. Despite its public health importance, the epidemiology and molecular characteristics of trichomoniasis in Egypt remains poorly understood, particularly in the southern part of the country (Upper Egypt). This study targeted exploring the genetic variability of T. vaginalis infections in Egyptian women living in Upper Egypt using restriction fragment length polymorphism (RFLP). Patient and techniques This cross-sectional study included 150 female patients, who visited the gynaecology and obstetrics outpatient clinics at Sohag General Hospital between 2019 and 2022, exhibiting symptoms of trichomoniasis. Vaginal washout samples were collected from each patient and analyzed using three diagnostic techniques: direct wet mount microscopy, culture on TYM Diamond's medium, and PCR amplification and Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) targeting the actin gene, which was applied to all 16 samples that tested positive in culture. The PCR-RFLP results were then visualized through agarose gels electrophoresis to detect DNA fragments. Results Out of 150 vaginal washout samples, 12 cases (8%) tested positive for T. vaginalis trophozoites via direct wet mount microscopy, while 16 samples (10.6%) were positive in culture. Additionally, PCR-RFLP analysis of the 16 culture-positive samples revealed that 13 samples were confirmed positive using this molecular method. The amplified products were digested with the restriction enzyme Hind II, yielding three DNA fragments of 60, 213, and 827 bp, which were then detected by agarose gel electrophoresis. Digestion with RsaI produced five fragments measuring 87, 103/106, 236, and 568 bp, while MseI digestion resulted in three distinct fragments of 204, 315, and 581 bp. Conclusion This study provides robust baseline data on the prevalence and microscopic characteristics of T. vaginalis in Upper Egypt, while also presenting, for the first time, molecular detection and genotyping and revealed that genotype E is the only prevalent genotype in the region.
Collapse
Affiliation(s)
| | - Ahmed Kamal Dyab
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Parasitology, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Nada Oudah Albalawi
- Department of Biology, Faculty of Science, Taibah University, Alula, Saudi Arabia
| | - Abdalla Abd El Samea
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Ahmed Ali Taha
- Department of Medical Parasitology, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Hajar AlQadeeb
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Elham Adel Hiekal
- Department of Medical Parasitology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hind Alzaylaee
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
3
|
Fonseca BDR, das Neves RN, Strothmann AL, Sena-Lopes Â, da Silva CC, Birmann PT, Savegnago L, de Pereira CMP, Borsuk S. Antiparasitic activity of chalcones analogue against Trichomonas vaginalis: biochemical, molecular and in silico aspects. Exp Parasitol 2024; 265:108809. [PMID: 39094997 DOI: 10.1016/j.exppara.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Trichomonas vaginalis is the etiologic agent of trichomoniasis, a worldwide distributed sexually transmitted infection (STI) that affects the genitourinary tract. Even though this disease already has a treatment in the prescription of drugs of the 5-nitroimidazole class, described low treatments adhesion, adverse side effects and cases of resistant isolates demonstrate the need for new formulations. With this in mind, chalcones emerge as a potential alternative to be tested, being compounds widely distributed in nature, easy to chemically synthesize and presenting several biological activities already reported. In this experiment, we evaluated the antiparasitic activity of 10 chalcone at a concentration of 100 μM against ATCC 30236 T. vaginalis isolates, considering negative (live trophozoites), positive (Metronidazole 100 μM) and vehicle (DMSO 0.6%) controls. Compounds 3a, 3c, 3 g and 3i showed promising results, with MICs set at 70 μM, 80 μM, 90 μM and 90 μM, respectively (p < 0,05). Cytotoxicity assays were performed on VERO and HMVII cell lines and revealed low inhibition rates at concentrations bellow 20 μM. To elucidate a possible mechanism of action for these molecules, the DPPH, ABTS and FRAP assays were performed, in which none of the four compounds presented antioxidant activity. Assays to verify ROS and lipid peroxidation in the parasite membrane were performed. None of the tested compounds identified ROS accumulation after incubation with trophozoites. 3 g molecule promoted an increase in MDA production after incubation. Results presented in this paper demonstrate the promising trichomonicidal profile, although further tests are still needed to optimize their performance and better elucidate the mechanisms of action involved.
Collapse
Affiliation(s)
- Bárbara da Rocha Fonseca
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil.
| | - Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Adriane Leites Strothmann
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Caroline Carapina da Silva
- Laboratório de Lipidômica e Bio-orgânica, Grupo de Ciências Químicas Farmacêuticas e de Alimentos, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Paloma Taborda Birmann
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, Brazil
| | - Claudio Martin Pereira de Pereira
- Laboratório de Lipidômica e Bio-orgânica, Grupo de Ciências Químicas Farmacêuticas e de Alimentos, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
4
|
Martínez-Rosas V, Navarrete-Vázquez G, Ortega-Cuellar D, Arreguin-Espinosa R, Pérez de la Cruz V, Calderón-Jaimes E, Enríquez-Flores S, Wong-Baeza C, Baeza-Ramírez I, Morales-Luna L, Vázquez-Bautista M, Rojas-Alarcón MA, Hernández-Ochoa B, Gómez-Manzo S. Imidazole Carbamates as a Promising Alternative for Treating Trichomoniasis: In Vitro Effects on the Growth and Gene Expression of Trichomonas vaginalis. Molecules 2024; 29:2585. [PMID: 38893461 PMCID: PMC11173628 DOI: 10.3390/molecules29112585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.
Collapse
Affiliation(s)
- Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.V.-B.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Ernesto Calderón-Jaimes
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Carlos Wong-Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (C.W.-B.); (I.B.-R.)
| | - Isabel Baeza-Ramírez
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (C.W.-B.); (I.B.-R.)
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.V.-B.); (M.A.R.-A.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Montserrat Vázquez-Bautista
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.V.-B.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Miriam Abigail Rojas-Alarcón
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.V.-B.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.V.-B.); (M.A.R.-A.)
| |
Collapse
|
5
|
Mayr AL, Hummel K, Leitsch D, Razzazi-Fazeli E. A Comparison of Bottom-Up Proteomic Sample Preparation Methods for the Human Parasite Trichomonas vaginalis. ACS OMEGA 2024; 9:9782-9791. [PMID: 38434803 PMCID: PMC10905575 DOI: 10.1021/acsomega.3c10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Bottom-up proteomic approaches depend on the efficient digestion of proteins into peptides for mass spectrometric analysis. Sample preparation strategies, based on magnetic beads, filter-aided systems, or in-solution digests, are commonly used for proteomic analysis. Time-intensive methods like filter-aided sample preparation (FASP) have led to the development of new, more time-efficient filter-based strategies like suspension trappings (S-Traps) or magnetic bead-based strategies like SP3. S-Traps have been reported as an alternative proteomic sample preparation method as they allow for high sodium dodecyl sulfate (SDS) concentrations to be present in the sample. In this study, we compare the efficiency of different protocols for FASP, SP3, and S-Trap-based digestion of proteins after extraction from Trichomonas vaginalis. Overall, we found a high number of protein IDs for all tested methods and a high degree of reproducibility within each method type. However, FASP with a 3 kDa cutoff filter unit outperformed the other methods analyzed, referring to the number of protein IDs. This is the first work providing the direct comparison of four different bottom-up proteomic approaches regarding the most efficient proteomic sample preparation protocol for the human parasite T. vaginalis.
Collapse
Affiliation(s)
- Anna-Lena Mayr
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Karin Hummel
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - David Leitsch
- ISPTM, Medical
University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
6
|
Trujillo EN, Flores BA, Romero IV, Moran JA, Leka A, Ramirez AD, Ear J, Mercer F. Complement receptor 3 is required for maximum in vitro trogocytic killing of the parasite Trichomonas vaginalis by human neutrophil-like cells. Parasite Immunol 2024; 46:e13025. [PMID: 38372623 PMCID: PMC11090219 DOI: 10.1111/pim.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
Trichomonas vaginalis (Tv) is a parasite that causes trichomoniasis, a prevalent sexually-transmitted infection. Neutrophils are found at the site of infection, and can rapidly kill the parasite in vitro, using trogocytosis. However, the specific molecular players in neutrophil killing of Tv are unknown. Here, we show that complement proteins play a role in Tv killing by human neutrophil-like cells (NLCs). Using CRISPR/Cas9, we generated NLCs deficient in each of three complement receptors (CRs) known to be expressed on human neutrophils: CR1, CR3, and CR4. Using in vitro trogocytosis assays, we found that CR3, but not CR1 or CR4 is required for maximum trogocytosis of the parasite by NLCs, with NLCs lacking CR3 demonstrating ~40% reduction in trogocytosis, on average. We also observed a reduction in NLC killing of Tv in CR3 knockout, but not CR1 or CR4 knockout NLCs. On average, NLCs lacking CR3 had ~50% reduction in killing activity. We also used a parallel approach of pre-incubating NLCs with blocking antibodies against CR3, which similarly reduced NLC killing of parasites. These data support a model in which Tv is opsonized by the complement protein iC3b, and bound by neutrophil CR3 receptor, to facilitate trogocytic killing of the parasite.
Collapse
Affiliation(s)
- Emma N. Trujillo
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Barbara A. Flores
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Isabel V. Romero
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Jose A. Moran
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Aljona Leka
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Ashley D. Ramirez
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Jason Ear
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| |
Collapse
|
7
|
Zhang Z, Song X, Deng Y, Li Y, Li F, Sheng W, Tian X, Yang Z, Mei X, Wang S. Trichomonas vaginalis adhesion protein 65 (TvAP65) modulates parasite pathogenicity by interacting with host cell proteins. Acta Trop 2023; 246:106996. [PMID: 37536435 DOI: 10.1016/j.actatropica.2023.106996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Trichomonas vaginalis (T. vaginalis) is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition forthis parasite's parasitism and pathogenicity. Adhesion protein 65 (TvAP65) plays a key role in the process of adhesion. However, how TvAP65 mediates the adhesion and pathogenicity of T. vaginalis to host cellsis unclear. In this study, we knocked down the expression of TvAP65 in trophozoites by small RNA interference. The number of T. vaginalis trophozoites adhering to VK2/E6E7 cells was decreased significantly, and the inhibition of VK2/E6E7 cells proliferation and VK2/E6E7 cells apoptosis and death induced by T. vaginalis were reduced, after the expression of TvAP65 was knocked down. Animal challenge experiments showed that the pathogenicity of trophozoites was decreased by passive immunization with anti-rTvAP65 PcAbs or blocking the TvAP65 protein. Immunofluorescence analysis showed that TvAP65 could bind to VK2/E6E7 cells. In order to screen the molecules interacting with TvAP65 on the host cells, we successfully constructed the cDNA library of VK2/E6E7 cells, and thirteen protein molecules interacting with TvAP65 were screened by yeast two-hybrid system. The interaction between TvAP65 and BNIP3 was further confirmed by coimmunoprecipitation and colocalization. When both TvAP65 and BNIP3 were knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cells proliferation were significantly lower than those of the group with knockdown of TvAP65 or BNIP3 alone. Therefore, the interaction of TvAP65 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. Our study elucidated that the interaction between TvAP65 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, provided a basis for searching for the drug targets of anti-T. vaginalis, and afforded new ideas for the prevention and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaoxiao Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yangyang Deng
- The Third Affiliated Hospital Of Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
8
|
Zhang Z, Deng Y, Sheng W, Song X, Li Y, Li F, Pan Y, Tian X, Yang Z, Wang S, Wang M, Mei X. The interaction between adhesion protein 33 (TvAP33) and BNIP3 mediates the adhesion and pathogenicity of Trichomonas vaginalis to host cells. Parasit Vectors 2023; 16:210. [PMID: 37344876 PMCID: PMC10286359 DOI: 10.1186/s13071-023-05798-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Trichomonas vaginalis is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition for the parasitism and pathogenicity of this parasite. Trichomonas vaginalis adhesion protein 33 (TvAP33) plays a key role in the process of adhesion, but how this protein mediates the adhesion and pathogenicity of T. vaginalis to host cells is unclear. METHODS The expression of TvAP33 in trophozoites was knocked down by small interfering RNA. VK2/E6E7 cells and mice infected with T. vaginalis were used to evaluate the pathogenicity of T. vaginalis. We constructed a complementary DNA library of VK2/E6E7 cells and screened the protein molecules interacting with TvAP33 by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 (Bcl-2 interacting protein 3) was analyzed by co-immunoprecipitation and colocalization. RESULTS Following knockdown of TvAP33 expression, the number of T. vaginalis trophozoites adhering to VK2/E6E7 cells decreased significantly, and the inhibition of VK2/E6E7 cell proliferation and VK2/E6E7 cell apoptosis and death induced by T. vaginalis were reduced. Animal challenge experiments showed that the pathogenicity of trophozoites decreased following passive immunization with TvAP33 antiserum or blocking of the TvAP33 protein. Immunofluorescence analysis revealed that TvAP33 could bind to VK2/E6E7 cells. Eighteen protein molecules interacting with TvAP33 were identified by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 was further confirmed by co-immunoprecipitation and colocalization. When the expression of both TvAP33 and BNIP3 in trophozoites was knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cell proliferation were significantly lower compared to trophozoites with only knockdown of TvAP33 or only BNIP3. Therefore, the interaction of TvAP33 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. CONCLUSIONS Our study showed that the interaction between TvAP33 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, providing a basis for searching for drug targets for T. vaginalis as well as new ideas for the prevention and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Yangyang Deng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Xiaoxiao Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 China
- School of Medical Technology, Shangqiu Medical College, Shangqiu, 476100 China
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| |
Collapse
|
9
|
Stockman BJ, Ventura CA, Deykina VS, Khayan Lontscharitsch N, Saljanin E, Gil A, Canestrari M, Mahmood M. Direct Measurement of Nucleoside Ribohydrolase Enzyme Activities in Trichomonas vaginalis Cells Using 19F and 13C-Edited 1H NMR Spectroscopy. Anal Chem 2023; 95:5300-5306. [PMID: 36917470 PMCID: PMC10825731 DOI: 10.1021/acs.analchem.2c05330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Trichomoniasis is the most common nonviral sexually transmitted infection, affecting an estimated 275 million people worldwide. The causative agent is the parasitic protozoan Trichomonas vaginalis. Although the disease itself is typically mild, individuals with trichomonal infections have a higher susceptibility to more serious conditions. The emergence of parasite strains resistant to current therapies necessitates the need for novel treatment strategies. Since T. vaginalis is an obligate parasite that requires nucleoside salvage pathways, essential nucleoside ribohydrolase enzymes are promising new drug targets. Fragment screening and X-ray crystallography have enabled structure-guided design of inhibitors for two of these enyzmes. Linkage of enzymatic and antiprotozoal activity would be a transformative step toward designing novel, mechanism-based therapeutic agents. While a correlation with inhibition of purified enzyme would be mechanistically suggestive, a correlation with inhibition of in-cell enzyme activity would definitively establish this linkage. To demonstrate this linkage, we have translated our NMR-based activity assays that measure the activity of purified enzymes for use in T. vaginalis cells. The 19F NMR-based activity assay for the pyrimidine-specific enzyme translated directly to in-cell assays. However, the 1H NMR-based activity assay for the purine-specific enzyme required a switch from adenosine to guanosine substrate and the use of 13C-editing to resolve the substrate 1H signals from cell and growth media background signals. The in-cell NMR assays are robust and have been demonstrated to provide inhibition data on test compounds. The results described here represent the first direct measurement of enzyme activity in protozoan parasite cells.
Collapse
Affiliation(s)
- Brian J Stockman
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Carlos A Ventura
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Valerie S Deykina
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | | | - Edina Saljanin
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Ari Gil
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Madison Canestrari
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Maham Mahmood
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| |
Collapse
|
10
|
Muellers SN, Nyitray MM, Reynarowych N, Saljanin E, Benzie AL, Schoenfeld AR, Stockman BJ, Allen KN. Structure-Guided Insight into the Specificity and Mechanism of a Parasitic Nucleoside Hydrolase. Biochemistry 2022; 61:1853-1861. [PMID: 35994320 PMCID: PMC10845162 DOI: 10.1021/acs.biochem.2c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is the causative parasitic protozoan of the disease trichomoniasis, the most prevalent, nonviral sexually transmitted disease in the world. T. vaginalis is a parasite that scavenges nucleosides from the host organism via catalysis by nucleoside hydrolase (NH) enzymes to yield purine and pyrimidine bases. One of the four NH enzymes identified within the genome of T. vaginalis displays unique specificity toward purine nucleosides, adenosine and guanosine, but not inosine, and atypically shares greater sequence similarity to the pyrimidine hydrolases. Bioinformatic analysis of this enzyme, adenosine/guanosine-preferring nucleoside ribohydrolase (AGNH), was incapable of identifying the residues responsible for this uncommon specificity, highlighting the need for structural information. Here, we report the X-ray crystal structures of holo, unliganded AGNH and three additional structures of the enzyme bound to fragment and small-molecule inhibitors. Taken together, these structures facilitated the identification of residue Asp231, which engages in substrate interactions in the absence of those residues that typically support the canonical purine-specific tryptophan-stacking specificity motif. An altered substrate-binding pose is mirrored by repositioning within the protein scaffold of the His80 general acid/base catalyst. The newly defined structure-determined sequence markers allowed the assignment of additional NH orthologs, which are proposed to exhibit the same specificity for adenosine and guanosine alone and further delineate specificity classes for these enzymes.
Collapse
Affiliation(s)
- Samantha N Muellers
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mattias M Nyitray
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Nicholas Reynarowych
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Edina Saljanin
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Annie Laurie Benzie
- Department of Biology, Adelphi University, Garden City, New York 11530, United States
| | - Alan R Schoenfeld
- Department of Biology, Adelphi University, Garden City, New York 11530, United States
| | - Brian J Stockman
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
Santos HLC, Rebello KM. An Overview of Mucosa-Associated Protozoa: Challenges in Chemotherapy and Future Perspectives. Front Cell Infect Microbiol 2022; 12:860442. [PMID: 35548465 PMCID: PMC9084232 DOI: 10.3389/fcimb.2022.860442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections caused by protozoans that infect the mucosal surfaces are widely neglected worldwide. Collectively, Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Trichomonas vaginalis infect more than a billion people in the world, being a public health problem mainly in developing countries. However, the exact incidence and prevalence data depend on the population examined. These parasites ultimately cause pathologies that culminate in liver abscesses, malabsorption syndrome, vaginitis, and urethritis, respectively. Despite this, the antimicrobial agents currently used to treat these diseases are limited and often associated with adverse side effects and refractory cases due to the development of resistant parasites. The paucity of drug treatments, absence of vaccines and increasing problems of drug resistance are major concerns for their control and eradication. Herein, potential candidates are reviewed with the overall aim of determining the knowledge gaps and suggest future perspectives for research. This review focuses on this public health problem and focuses on the progress of drug repositioning as a potential strategy for the treatment of mucosal parasites.
Collapse
Affiliation(s)
- Helena Lucia Carneiro Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Manny AR, Hetzel CA, Mizani A, Nibert ML. Discovery of a Novel Species of Trichomonasvirus in the Human Parasite Trichomonas vaginalis Using Transcriptome Mining. Viruses 2022; 14:548. [PMID: 35336955 PMCID: PMC8953718 DOI: 10.3390/v14030548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Trichomonas vaginalis is the most common non-viral cause of sexually transmitted infections globally. Infection by this protozoan parasite results in the clinical syndrome trichomoniasis, which manifests as an inflammatory disease with acute and chronic consequences. Half or more isolates of this parasite are themselves infected with one or more dsRNA viruses that can exacerbate the inflammatory syndrome. At least four distinct viruses have been identified in T. vaginalis to date, constituting species Trichomonas vaginalis virus 1 through Trichomonas vaginalis virus 4 in genus Trichomonasvirus. Despite the global prevalence of these viruses, few complete coding sequences have been reported. We conducted viral sequence mining in publicly available transcriptomes across 60 RNA-Seq accessions representing at least 13 distinct T. vaginalis isolates. The results led to sequence assemblies for 27 novel trichomonasvirus strains across all four recognized species. Using a strategy of de novo sequence assembly followed by taxonomic classification, we additionally discovered six strains of a newly identified fifth species, for which we propose the name Trichomonas vaginalis virus 5, also in genus Trichomonasvirus. These additional strains exhibit high sequence identity to each other, but low sequence identity to strains of the other four species. Phylogenetic analyses corroborate the species-level designations. These results substantially increase the number of trichomonasvirus genome sequences and demonstrate the utility of mining publicly available transcriptomes for virus discovery in a critical human pathogen.
Collapse
Affiliation(s)
- Austin R. Manny
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (A.R.M.); (C.A.H.); (A.M.)
- Program in Virology, Division of Medical Sciences, Graduate School of Arts & Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Carrie A. Hetzel
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (A.R.M.); (C.A.H.); (A.M.)
- Program in Virology, Division of Medical Sciences, Graduate School of Arts & Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Arshan Mizani
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (A.R.M.); (C.A.H.); (A.M.)
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Max L. Nibert
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (A.R.M.); (C.A.H.); (A.M.)
- Program in Virology, Division of Medical Sciences, Graduate School of Arts & Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Esters of quinoxaline-7-carboxylate-1,4-di- N-oxide as Trichomonas vaginalis triosephosphate isomerase inhibitors. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:485-495. [PMID: 36654088 DOI: 10.2478/acph-2021-0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 01/20/2023]
Abstract
Trichomoniasis is a public health problem worldwide. Trichomoniasis treatment consists of the use of nitroimidazole derivatives; however, therapeutic ineffectiveness occurs in 5 to 20 % of the cases. Therefore, it is essential to propose new pharmacological agents against this disease. In this work, esters of quinoxaline-7-carboxylate-1,4-di-N-oxide (EQX-NO) were evaluated in in vitro assays as novel trichomonicidal agents. Additionally, an in vitro enzyme assay and molecular docking analysis against triosephosphate isomerase of Trichomonas vaginalis to confirm their mechanism of action were performed. Ethyl (compound 12) and n-propyl (compound 37) esters of quinoxaline-7-carboxy-late-1,4-di-N-oxide derivatives showed trichomonicidal activity comparable to nitazoxanide, whereas five methyl (compounds 5, 15, 19, 20 and 22), four isopropyl (compounds 28, 29, 30 and 34), three ethyl (compounds 4, 13 and 23) and one npropyl (compound 35) ester derivatives displayed activity comparable to albendazole. Compounds 6 and 20 decreased 100 % of the enzyme activity of recombinant protein triosephosphate isomerase.
Collapse
|
14
|
Mirzadeh M, Olfatifar M, Eslahi AV, Abdoli A, Houshmand E, Majidiani H, Johkool MG, Askari S, Hashemipour S, Badri M. Global prevalence of Trichomonas vaginalis among female sex workers: a systematic review and meta-analysis. Parasitol Res 2021; 120:2311-2322. [PMID: 34170387 DOI: 10.1007/s00436-021-07216-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Trichomoniasis is a sexually transmitted infection (STI), caused by the protozoan parasite, Trichomonas vaginalis. Female sex workers are intensely affected by the infection, since they have frequent direct physical contact. The current systematic review and meta-analysis represents the global prevalence of T. vaginalis in female sex workers. Five databases (Science Direct, Scopus, PubMed, Web of Science, and Google Scholar) were explored for literatures that published from July 1985 to June 2020. Totally, 85 studies (54,515 participants) from 46 countries met the inclusion criteria. The global pooled prevalence of T. vaginalis was 16% (95% CI 13-19%). The estimated pooled prevalence based on methods including wet mount, culture, and molecular techniques was 15% (95% CI 12-19%), 16% (95% CI 10-24%), and 22% (95% CI 13-32%), respectively. Moreover, the infection was most prevalent at the mean age of 30-36 (20%, 95% CI 11-30%). Regarding the World Health Organization (WHO) regions, the highest pooled prevalence was estimated to be in the African region (23%, 95% CI 7-46%). In addition, we indicated that countries with low-income level have the highest pooled prevalence (23%, 95% CI 14-34%). Our results revealed that the worldwide prevalence of T. vaginalis was significant in female sex workers. Therefore, considering a precise strategy such as a health education program with regard to safe intercourse is needed to increase knowledge and prevent T. vaginalis infection in sex workers.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Diseases Research Center, Research Institute For Prevention Of Non-Communicable Diseases, Qazvin University Of Medical Sciences, Qazvin, Iran
| | - Meysam Olfatifar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Vafae Eslahi
- Clinical Research Development Unit, Velayat Hospital, Qazvin University Of Medical Sciences, Qazvin, Iran
| | - Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Elham Houshmand
- Department of Parasitology, Faculty of veterinary medicine, Rasht Branch, Islamic Azad University, Rasht, Gilan, Iran
| | - Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Morteza Ghanbari Johkool
- Metabolic Diseases Research Center, Research Institute For Prevention Of Non-Communicable Diseases, Qazvin University Of Medical Sciences, Qazvin, Iran
| | - Setareh Askari
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Sima Hashemipour
- Metabolic Diseases Research Center, Research Institute For Prevention Of Non-Communicable Diseases, Qazvin University Of Medical Sciences, Qazvin, Iran.
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
15
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Molgora BM, Rai AK, Sweredoski MJ, Moradian A, Hess S, Johnson PJ. A Novel Trichomonas vaginalis Surface Protein Modulates Parasite Attachment via Protein:Host Cell Proteoglycan Interaction. mBio 2021; 12:e03374-20. [PMID: 33563826 PMCID: PMC7885099 DOI: 10.1128/mbio.03374-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Trichomonas vaginalis is a highly prevalent, sexually transmitted parasite which adheres to mucosal epithelial cells to colonize the human urogenital tract. Despite adherence being crucial for this extracellular parasite to thrive within the host, relatively little is known about the mechanisms or key molecules involved in this process. Here, we have identified and characterized a T. vaginalis hypothetical protein, TVAG_157210 (TvAD1), as a surface protein that plays an integral role in parasite adherence to the host. Quantitative proteomics revealed TvAD1 to be ∼4-fold more abundant in parasites selected for increased adherence (MA parasites) than the isogenic parental (P) parasite line. De novo modeling suggested that TvAD1 binds N-acetylglucosamine (GlcNAc), a sugar comprising host glycosaminoglycans (GAGs). Adherence assays utilizing GAG-deficient cell lines determined that host GAGs, primarily heparan sulfate (HS), mediate adherence of MA parasites to host cells. TvAD1 knockout (KO) parasites, generated using CRISPR-Cas9, were found to be significantly reduced in host cell adherence, a phenotype that is rescued by overexpression of TvAD1 in KO parasites. In contrast, there was no significant difference in parasite adherence to GAG-deficient lines by KO parasites compared with wild-type, which is contrary to that observed for KO parasites overexpressing TvAD1. Isothermal titration calorimetric (ITC) analysis showed that TvAD1 binds to HS, indicating that TvAD1 mediates host cell adherence via HS interaction. In addition to characterizing the role of TvAD1 in parasite adherence, these studies reveal a role for host GAG molecules in T. vaginalis adherence.IMPORTANCE The ability of the sexually transmitted parasite Trichomonas vaginalis to adhere to its human host is critical for establishing and maintaining an infection. Yet how parasites adhere to host cells is poorly understood. In this study, we employed a novel adherence selection method to identify proteins involved in parasite adherence to the host. This method led to the identification of a protein, with no previously known function, that is more abundant in parasites with increased capacity to bind host cells. Bioinformatic modeling and biochemical analyses revealed that this protein binds a common component on the host cell surface proteoglycans. Subsequent creation of parasites that lack this protein directly demonstrated that the protein mediates parasite adherence via an interaction with host cell proteoglycans. These findings both demonstrate a role for this protein in T. vaginalis adherence to the host and shed light on host cell molecules that participate in parasite colonization.
Collapse
Affiliation(s)
- Brenda M Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Anand Kumar Rai
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Patricia J Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
17
|
Saleh NE, Alhusseiny SM, El-Zayady WM, Aboelnaga EM, El-Beshbishi WN, Saleh YM, Abou-ElWafa HS, El-Beshbishi SN. Trichomonas vaginalis serostatus and prostate cancer risk in Egypt: a case-control study. Parasitol Res 2020; 120:1379-1388. [PMID: 33159459 DOI: 10.1007/s00436-020-06942-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Trichomonas vaginalis is one of the most common non-viral sexually transmitted infections (STIs) that has been associated with prostate cancer in some countries. This study aims to investigate if T. vaginalis infection can be a risk factor for prostate cancer in Egypt and its possible relationship with cancer prognostic factors and overall survival. Serum samples were collected from a total of 445 age-matched males; 126 with prostate cancer, 108 with bladder cancer, 91 with different types of cancers, and 120 healthy controls, and then analyzed by ELISA for detection of anti-Trichomonas IgG and prostate-specific antigen (PSA). The results revealed that only 8.3% of controls were seropositive for trichomoniasis, compared with 19% of prostate cancer patients (P = 0.015). There were positive associations between the levels of PSA and tumor stage with T. vaginalis IgG optical density scores among the seropositive cases (P < 0.001 and < 0.05, respectively). However, no significant correlations were detected between seropositivity of T. vaginalis and other prognostic factors or overall survival in those patients. In conclusion, chronic T. vaginalis infection may be associated with prostate cancer, but it does not seem that this STI aggravates the cancer status.
Collapse
Affiliation(s)
- Nora E Saleh
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516, Egypt
| | - Samar M Alhusseiny
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516, Egypt
| | - Wafaa M El-Zayady
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516, Egypt
| | - Engy M Aboelnaga
- Department of Clinical Oncology and Nuclear Medicine, Mansoura University Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Wafaa N El-Beshbishi
- Department of Clinical Oncology and Nuclear Medicine, Mansoura University Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Yasser M Saleh
- Department of Clinical Oncology and Nuclear Medicine, Mansoura University Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hala S Abou-ElWafa
- Department of Public Health and Community Medicine, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samar N El-Beshbishi
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516, Egypt.
| |
Collapse
|
18
|
Okereafor K, Ekong I, Okon Markson I, Enwere K. Fingerprint Biometric System Hygiene and the Risk of COVID-19 Transmission. JMIR BIOMEDICAL ENGINEERING 2020. [DOI: 10.2196/19623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biometric systems use scanners to verify the identity of human beings by measuring the patterns of their behavioral or physiological characteristics. Some biometric systems are contactless and do not require direct touch to perform these measurements; others, such as fingerprint verification systems, require the user to make direct physical contact with the scanner for a specified duration for the biometric pattern of the user to be properly read and measured. This may increase the possibility of contamination with harmful microbial pathogens or of cross-contamination of food and water by subsequent users. Physical contact also increases the likelihood of inoculation of harmful microbial pathogens into the respiratory tract, thereby triggering infectious diseases. In this viewpoint, we establish the likelihood of infectious disease transmission through touch-based fingerprint biometric devices and discuss control measures to curb the spread of infectious diseases, including COVID-19.
Collapse
|
19
|
Bhakta SB, Moran JA, Mercer F. Neutrophil interactions with the sexually transmitted parasite Trichomonas vaginalis: implications for immunity and pathogenesis. Open Biol 2020; 10:200192. [PMID: 32873151 PMCID: PMC7536067 DOI: 10.1098/rsob.200192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Trichomoniasis is the third most common sexually transmitted infection in humans and is caused by the protozoan parasite, Trichomonas vaginalis (Tv). Pathogenic outcomes are more common in women and generally include mild vaginitis or cervicitis. However, more serious effects associated with trichomoniasis include adverse reproductive outcomes. Like other infectious agents, pathogenesis from Tv infection is predicted to be the result of both parasite and host factors. At the site of infection, neutrophils are the most abundant immune cells present and probably play key roles in both parasite clearance and inflammatory pathology. Here, we discuss the evidence that neutrophils home to the site of Tv infection, kill the parasite, and that in some circumstances, parasites possibly evade neutrophil-directed killing. In vitro, the parasite is killed by neutrophils using a novel antimicrobial mechanism called trogocytosis, which probably involves both innate and adaptive immunity. While mechanisms of evasion are mostly conjecture at present, the persistence of Tv infections in patients argues strongly for their existence. Additionally, many strains of Tv harbour microbial symbionts Mycoplasma hominis or Trichomonasvirus, which are both predicted to impact neutrophil responses against the parasite. Novel research tools, especially animal models, will help to reveal the true outcomes of many factors involved in neutrophil-Tv interactions during trichomoniasis.
Collapse
Affiliation(s)
| | | | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
20
|
Morales-Luna L, Hernández-Ochoa B, Ramírez-Nava EJ, Martínez-Rosas V, Ortiz-Ramírez P, Fernández-Rosario F, González-Valdez A, Cárdenas-Rodríguez N, Serrano-Posada H, Centeno-Leija S, Arreguin-Espinosa R, Cuevas-Cruz M, Ortega-Cuellar D, Pérez de la Cruz V, Rocha-Ramírez LM, Sierra-Palacios E, Castillo-Rodríguez RA, Vega-García V, Rufino-González Y, Marcial-Quino J, Gómez-Manzo S. Characterizing the Fused TvG6PD::6PGL Protein from the Protozoan Trichomonas vaginalis, and Effects of the NADP + Molecule on Enzyme Stability. Int J Mol Sci 2020; 21:E4831. [PMID: 32650494 PMCID: PMC7402283 DOI: 10.3390/ijms21144831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/30/2022] Open
Abstract
This report describes a functional and structural analysis of fused glucose-6-phosphate dehydrogenase dehydrogenase-phosphogluconolactonase protein from the protozoan Trichomonas vaginalis (T. vaginalis). The glucose-6-phosphate dehydrogenase (g6pd) gene from T. vaginalis was isolated by PCR and the sequence of the product showed that is fused with 6pgl gene. The fused Tvg6pd::6pgl gene was cloned and overexpressed in a heterologous system. The recombinant protein was purified by affinity chromatography, and the oligomeric state of the TvG6PD::6PGL protein was found as tetramer, with an optimal pH of 8.0. The kinetic parameters for the G6PD domain were determined using glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP+) as substrates. Biochemical assays as the effects of temperature, susceptibility to trypsin digestion, and analysis of hydrochloride of guanidine on protein stability in the presence or absence of NADP+ were performed. These results revealed that the protein becomes more stable in the presence of the NADP+. In addition, we determined the dissociation constant for the binding (Kd) of NADP+ in the protein and suggests the possible structural site in the fused TvG6PD::6PGL protein. Finally, computational modeling studies were performed to obtain an approximation of the structure of TvG6PD::6PGL. The generated model showed differences with the GlG6PD::6PGL protein (even more so with human G6PD) despite both being fused.
Collapse
Affiliation(s)
- Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, 06720 Ciudad de México, Mexico;
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Edson Jiovany Ramírez-Nava
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Paulina Ortiz-Ramírez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| | - Fabiola Fernández-Rosario
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, 28629 Colima, Mexico; (H.S.-P.); (S.C.-L.)
| | - Sara Centeno-Leija
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, 28629 Colima, Mexico; (H.S.-P.); (S.C.-L.)
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.A.-E.); (M.C.-C.)
| | - Miguel Cuevas-Cruz
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.A.-E.); (M.C.-C.)
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, 04530 Secretaría de Salud, Mexico;
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Secretaria de Salud, 14269 Ciudad de México, Mexico;
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, 06720 Delegación Cuauhtémoc, Mexico;
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, 09620 Ciudad de México, Mexico;
| | - Rosa Angélica Castillo-Rodríguez
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Vanesa Vega-García
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico;
| | - Yadira Rufino-González
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| |
Collapse
|
21
|
Lin HC, Chu LJ, Huang PJ, Cheng WH, Zheng YH, Huang CY, Hong SW, Chen LC, Lin HA, Wang JY, Chen RM, Lin WN, Tang P, Huang KY. Proteomic signatures of metronidazole-resistant Trichomonas vaginalis reveal novel proteins associated with drug resistance. Parasit Vectors 2020; 13:274. [PMID: 32487244 PMCID: PMC7268490 DOI: 10.1186/s13071-020-04148-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Trichomoniasis is the most common non-viral sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. Metronidazole (MTZ) is a widely used drug for the treatment of trichomoniasis; however, increased resistance of the parasite to MTZ has emerged as a highly problematic public health issue. METHODS We conducted iTRAQ-based analysis to profile the proteomes of MTZ-sensitive (MTZ-S) and MTZ-resistant (MTZ-R) parasites. STRING and gene set enrichment analysis (GESA) were utilized to explore the protein-protein interaction networks and enriched pathways of the differentially expressed proteins, respectively. Proteins potentially related to MTZ resistance were selected for functional validation. RESULTS A total of 3123 proteins were identified from the MTZ-S and MTZ-R proteomes in response to drug treatment. Among the identified proteins, 304 proteins were differentially expressed in the MTZ-R proteome, including 228 upregulated and 76 downregulated proteins. GSEA showed that the amino acid-related metabolism, including arginine, proline, alanine, aspartate, and glutamate are the most upregulated pathways in the MTZ-R proteome, whereas oxidative phosphorylation is the most downregulated pathway. Ten proteins categorized into the gene set of oxidative phosphorylation were ATP synthase subunit-related proteins. Drug resistance was further examined in MTZ-S parasites pretreated with the ATP synthase inhibitors oligomycin and bafilomycin A1, showing enhanced MTZ resistance and potential roles of ATP synthase in drug susceptibility. CONCLUSIONS We provide novel insights into previously unidentified proteins associated with MTZ resistance, paving the way for future development of new drugs against MTZ-refractory trichomoniasis.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 333, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 333, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City, 333, Taiwan.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 333, Taiwan
| | - Wei-Hung Cheng
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Yu-Hsing Zheng
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Ching-Yun Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Shu-Wen Hong
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital SongShan Branch, Taipei City, 105, Taiwan
| | - Jui-Yang Wang
- Division of Family Medicine, Tri-Service General Hospital Songshan Branch, Taipei City, 105, Taiwan
| | - Ruei-Min Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan.
| |
Collapse
|
22
|
Mach J, Sutak R. Iron in parasitic protists – from uptake to storage and where we can interfere. Metallomics 2020; 12:1335-1347. [DOI: 10.1039/d0mt00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comprehensive review of iron metabolism in parasitic protists and its potential use as a drug target.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| | - Robert Sutak
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| |
Collapse
|
23
|
das Neves RN, Sena-Lopes Â, Alves MSD, da Rocha Fonseca B, da Silva CC, Casaril AM, Savegnago L, de Pereira CMP, Ramos DF, Borsuk S. 2'-Hydroxychalcones as an alternative treatment for trichomoniasis in association with metronidazole. Parasitol Res 2019; 119:725-736. [PMID: 31853622 DOI: 10.1007/s00436-019-06568-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 12/01/2022]
Abstract
The treatment for trichomoniasis, based on 5'-nitroimidazol agents, has been presenting failures related to allergic reactions, side effects, and the emergence of resistant isolates. There are no alternative drugs approved for the treatment of these cases; thus, the search for new active molecules is necessary. In this scenario, chalcones have been extensively studied for their promising biological activities. Here, we presented the synthesis of three hydroxychalcones (3a, b, and c), in vitro and in silico analyses against Trichomonas vaginalis. The in vitro biological evaluation showed that hydroxychalcone 3c presented anti-T. vaginalis activity, with complete death in 12 h of incubation at minimum inhibitory concentration (MIC) of 100 μM. 3c showed a dose-dependent cytotoxicity against mammalian VERO cell line, but the association of 3c at 12.5 μM and metronidazole (MTZ) at 40 μM showed 95.31% activity against T. vaginalis trophozoites after 24 h of exposure and did not affect the VERO cell growth, appearing to be a good alternative. In silico analysis by molecular docking showed that 3c could inhibit the activity of TvMGL (methionine gamma-lyase), TvLDH (lactate dehydrogenase), and TvPNP (purine nucleoside phosphorylase) affecting the T. vaginalis survival and also suggesting a different mechanism of action from MTZ. Therefore, these results propose that hydroxychalcones are promising anti-T. vaginalis agents and must be considered for further investigations regarding trichomoniasis treatment.
Collapse
Affiliation(s)
- Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil
| | - Mirna Samara Dié Alves
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil
| | - Bárbara da Rocha Fonseca
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil
| | - Caroline Carapina da Silva
- Laboratório de Lipidômica e Bio-orgânicass, Grupo de Ciências Químicas Farmacêuticas e de Alimentos, UFPel, Pelotas, RS, Brazil
| | - Angela Maria Casaril
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, Brazil
| | | | - Daniela Fernandes Ramos
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Campus Universitário s/n, Prédio 19 -, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
24
|
Rai AK, Johnson PJ. Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proc Natl Acad Sci U S A 2019; 116:21354-21360. [PMID: 31601738 PMCID: PMC6815132 DOI: 10.1073/pnas.1912356116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Trichomonas vaginalis, a human-infective parasite, causes the most prevalent nonviral sexually transmitted infection worldwide. This pathogen secretes extracellular vesicles (EVs) that mediate its interaction with host cells. Here, we have developed assays to study the interface between parasite EVs and mammalian host cells and to quantify EV internalization by mammalian cells. We show that T. vaginalis EVs interact with glycosaminoglycans on the surface of host cells and specifically bind to heparan sulfate (HS) present on host cell surface proteoglycans. Moreover, competition assays using HS or removal of HS from the host cell surface strongly inhibit EV uptake, directly demonstrating that HS proteoglycans facilitate EV internalization. We identified an abundant protein on the surface of T. vaginalis EVs, 4-α-glucanotransferase (Tv4AGT), and show using isothermal titration calorimetry that this protein binds HS. Tv4AGT also competitively inhibits EV uptake, defining it as an EV ligand critical for EV internalization. Finally, we demonstrate that T. vaginalis EV uptake is dependent on host cell cholesterol and caveolin-1 and that internalization proceeds via clathrin-independent, lipid raft-mediated endocytosis. These studies reveal mechanisms used to drive host:pathogen interactions and further our understanding of how EVs are internalized by target cells to allow cross-talk between different cell types.
Collapse
Affiliation(s)
- Anand Kumar Rai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Patricia J Johnson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095
| |
Collapse
|
25
|
Auletta S, Caravan W, Persaud JK, Thuilot SF, Brown DG, Parkin DW, Stockman BJ. Discovery of Ligand-Efficient Scaffolds for the Design of Novel Trichomonas vaginalis Uridine Nucleoside Ribohydrolase Inhibitors Using Fragment Screening. ACS OMEGA 2019; 4:16226-16232. [PMID: 31592163 PMCID: PMC6777076 DOI: 10.1021/acsomega.9b02472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Trichomoniasis is caused by the parasitic protozoan Trichomonas vaginalis. The increasing prevalence of strains resistant to the current 5-nitroimidazole treatments creates the need for novel therapies. T. vaginalis cannot synthesize purine and pyrimidine rings and requires salvage pathway enzymes to obtain them from host nucleosides. The uridine nucleoside ribohydrolase was screened using an 19F NMR-based activity assay against a 2000-compound fragment diversity library. Several series of inhibitors were identified including scaffolds based on acetamides, cyclic ureas or ureas, pyridines, and pyrrolidines. A number of potent singleton compounds were identified, as well. Eighteen compounds with IC50 values of 20 μM or lower were identified, including some with ligand efficiency values of 0.5 or greater. Detergent and jump-dilution counter screens validated all scaffold classes as target-specific, reversible inhibitors. Identified scaffolds differ substantially from 5-nitroimidazoles. Medicinal chemistry using the structure-activity relationship emerging from the fragment hits is being pursued to discover nanomolar inhibitors.
Collapse
Affiliation(s)
- Shannon Auletta
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Wagma Caravan
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Julia K. Persaud
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Samantha F. Thuilot
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Dean G. Brown
- Hit
Discovery, Discovery Sciences, IMED Biotech
Unit, AstraZeneca, 35
Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David W. Parkin
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Brian J. Stockman
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Trichomonas vaginalis is the most prevalent sexually transmitted parasite in the USA; resistant infection is emerging. New drug therapies and dosing regimens of standard therapies are being studied to treat resistant infection. RECENT FINDINGS Diagnosis of trichomoniasis has become more sensitive, specific, and widely available with the advent of nucleic acid amplification tests (NAATs). Women with resistant trichomoniasis should be treated with high-dose regimens of metronidazole or tinidazole. Alternative treatment options have been described, and there has been some success particularly with high-dose tinidazole/intravaginal paromomycin cream combination, intravaginal boric acid, and intravaginal metronidazole/miconazole. Resistant trichomoniasis is a growing public health concern with implications for long-term health consequences. More data are needed to further evaluate mechanisms by which resistance occurs as well as promising therapies for those affected.
Collapse
Affiliation(s)
- Cynthia Alessio
- Department of Obstetrics and Gynecology, Drexel University College of Medicine, 245 N. 15th St. MS 495, Philadelphia, PA, 19102, USA
| | - Paul Nyirjesy
- Department of Obstetrics and Gynecology, Drexel University College of Medicine, 245 N. 15th St. MS 495, Philadelphia, PA, 19102, USA.
| |
Collapse
|
27
|
A Novel Cadherin-like Protein Mediates Adherence to and Killing of Host Cells by the Parasite Trichomonas vaginalis. mBio 2019; 10:mBio.00720-19. [PMID: 31088924 PMCID: PMC6520450 DOI: 10.1128/mbio.00720-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trichomonas vaginalis, a prevalent sexually transmitted parasite, adheres to and induces cytolysis of human mucosal epithelial cells. We have characterized a hypothetical protein, TVAG_393390, with predicted tertiary structure similar to that of mammalian cadherin proteins involved in cell-cell adherence. TVAG_393390, renamed cadherin-like protein (CLP), contains a calcium-binding site at a position conserved in cadherins. CLP is surface localized, and its mRNA and protein levels are significantly upregulated upon parasite adherence to host cells. To test the roles of CLP and its calcium-binding dependency during host cell adherence, we first demonstrated that wild-type CLP (CLP) binds calcium with a high affinity, whereas the calcium-binding site mutant protein (CLP-mut) does not. CLP and CLP-mut constructs were then used to overexpress these proteins in T. vaginalis Parasites overexpressing CLP have ∼3.5-fold greater adherence to host cells than wild-type parasites, and this increased adherence is ablated by mutating the calcium-binding site. Additionally, competition with recombinant CLP decreased parasite binding to host cells. We also found that overexpression of CLP induced parasite aggregation which was further enhanced in the presence of calcium, whereas CLP-mut overexpression did not affect aggregation. Lastly, parasites overexpressing wild-type CLP induced killing of host cells ∼2.35-fold, whereas parasites overexpressing CLP-mut did not have this effect. These analyses describe the first parasitic CLP and demonstrate a role for this protein in mediating parasite-parasite and host-parasite interactions. T. vaginalis CLP may represent convergent evolution of a parasite protein that is functionally similar to the mammalian cell adhesion protein cadherin, which contributes to parasite pathogenesis.IMPORTANCE The adherence of pathogens to host cells is critical for colonization of the host and establishing infection. Here we identify a protein with no known function that is more abundant on the surface of parasites that are better at binding host cells. To interrogate a predicted function of this protein, we utilized bioinformatic protein prediction programs which allowed us to uncover the first cadherin-like protein (CLP) found in a parasite. Cadherin proteins are conserved metazoan proteins with central roles in cell-cell adhesion, development, and tissue structure maintenance. Functional characterization of this CLP from the unicellular parasite Trichomonas vaginalis demonstrated that the protein mediates both parasite-parasite and parasite-host adherence, which leads to an enhanced killing of host cells by T. vaginalis Our findings demonstrate the presence of CLPs in unicellular pathogens and identify a new host cell binding protein family in a human-infective parasite.
Collapse
|
28
|
Lin HC, Huang KY, Chung CH, Lin HA, Chen RM, Tsao CH, Chien WC, Chiueh TS. Infection with Trichomonas vaginalis increases the risk of psychiatric disorders in women: a nationwide population-based cohort study. Parasit Vectors 2019; 12:88. [PMID: 30867042 PMCID: PMC6417068 DOI: 10.1186/s13071-019-3350-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Background Trichomonas vaginalis is a protozoan parasite that causes trichomoniasis and annually infects approximately 276 million people worldwide. We observed an ambiguously higher probability of trichomoniasis in patients from the psychiatric department of Tri-Service General Hospital. Herein, we aimed to investigate the association between trichomoniasis and the risk of developing psychiatric disorders. Methods The nationwide population-based study utilized the database of the National Health Insurance (NHI) programme in Taiwan. A total of 46,865 subjects were enrolled in this study from 2000–2013, comprising 9373 study subjects with trichomoniasis and 37,492 subjects without trichomoniasis as the control group. Cox proportional hazards regression analysis was performed to calculate the hazard ratio (HR) of psychiatric disorders during the 14 years of follow-up. Results Of the study subjects with trichomoniasis, 875 (9.34%) developed psychiatric disorders compared with 1988 (5.30%) in the control group (P < 0.001). The adjusted hazard ratio (aHR) of overall psychiatric disorders in the study subjects was 1.644 (95% confidence interval, CI: 1.514–1.766; P < 0.001). More specifically, the study subjects had a higher risk for developing an individual psychiatric disorder, including depression, anxiety, bipolar disorder, schizophrenia and substance abuse. Although metronidazole treatment reduced the risk for developing several subgroups of psychiatric disorders, significant reduction was detected for depression only. Furthermore, refractory trichomoniasis (trichomoniasis visits ≥ 2) enhanced the risk of psychiatric disorders. Conclusions We show herein that T. vaginalis infection increases the overall risk for psychiatric disorders. The novel role of T. vaginalis in developing psychiatric disorders deserves more attention, and the control of such a neglected pathogen is of urgent public health importance. Electronic supplementary material The online version of this article (10.1186/s13071-019-3350-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital SongShan Branch, Taipei, Taiwan
| | - Rei-Min Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan. .,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Tzong-Shi Chiueh
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
29
|
Muellers SN, Gonzalez JA, Kaur A, Sapojnikov V, Benzie AL, Brown DG, Parkin DW, Stockman BJ. Ligand-Efficient Inhibitors of Trichomonas vaginalis Adenosine/Guanosine Preferring Nucleoside Ribohydrolase. ACS Infect Dis 2019; 5:345-352. [PMID: 30701958 DOI: 10.1021/acsinfecdis.8b00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomoniasis is caused by the parasitic protozoan Trichomonas vaginalis and is the most prevalent, nonviral sexually transmitted disease. The parasite has shown increasing resistance to the current 5-nitroimidazole therapies indicating the need for new therapies with different mechanisms. T. vaginalis is an obligate parasite that scavenges nucleosides from host cells and then uses salvage pathway enzymes to obtain the nucleobases. The adenosine/guanosine preferring nucleoside ribohydrolase was screened against a 2000-compound diversity fragment library using a 1H NMR-based activity assay. Three classes of inhibitors with more than five representatives were identified: bis-aryl phenols, amino bicyclic pyrimidines, and aryl acetamides. Among the active fragments were 10 compounds with ligand efficiency values greater than 0.5, including five with IC50 values <10 μM. Jump-dilution and detergent counter screens validated reversible, target-specific activity. The data reveals an emerging SAR that is guiding our medicinal chemistry efforts aimed at discovering compounds with nanomolar potency.
Collapse
Affiliation(s)
- Samantha N. Muellers
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Juliana A. Gonzalez
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Abinash Kaur
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Vital Sapojnikov
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Annie Laurie Benzie
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Dean G. Brown
- Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David W. Parkin
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Brian J. Stockman
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| |
Collapse
|
30
|
Argáez-Correa W, Alvarez-Sánchez ME, Arana-Argáez VE, Ramírez-Camacho MA, Novelo-Castilla JS, Coral-Martínez TI, Torres-Romero JC. The Role of Iron Status in the Early Progression of Metronidazole Resistance in Trichomonas vaginalis Under Microaerophilic Conditions. J Eukaryot Microbiol 2018; 66:309-315. [PMID: 30047563 DOI: 10.1111/jeu.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023]
Abstract
Trichomonas vaginalis is the etiological agent of human trichomoniasis. Metronidazole has high treatment success rate among trichomoniasis patients. However, metronidazole-resistant T. vaginalis has been reported, contributing in an increasing number of refractory cases. The mechanism of metronidazole resistance in this parasite is still unclear. In the vaginal environment, where the microaerophilic conditions prevail but the iron concentration is constantly fluctuating, the metronidazole resistance profile of T. vaginalis could be altered. In this study, we developed metronidazole-resistant strains of T. vaginalis and evaluate if iron availability is important to the action of the drug. The modulation of iron levels and iron chelation affected the actions of metronidazole both in susceptible and resistant strains. Interestingly, the early resistant strains exhibited minor iron content. The results of transcription analysis in the early resistant strains showed dysregulation in the expression of genes that codified proteins involved in iron transporter, iron-sulfur cluster assemblage, and oxidative stress response, which could not be observed in the late resistant and susceptible strains. Our results indicate that iron content plays an important role in the metronidazole action in T. vaginalis and likely to be related to iron-sulfur proteins involved in metronidazole activation and oxidative stress via Fenton reaction.
Collapse
Affiliation(s)
- Wendy Argáez-Correa
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - María E Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México City, 03100, México
| | - Victor E Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - Mario A Ramírez-Camacho
- Centro de Información de Medicamentos, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - Jazmín S Novelo-Castilla
- Laboratorio de Espectroscopía Atómica, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - Tania I Coral-Martínez
- Laboratorio de Cromatografía, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| | - Julio C Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, 97069, Yucatán, México
| |
Collapse
|
31
|
Mercer F, Johnson PJ. Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends Parasitol 2018; 34:683-693. [PMID: 30056833 PMCID: PMC11132421 DOI: 10.1016/j.pt.2018.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 01/03/2023]
Abstract
The parasite Trichomonas vaginalis (Tv) causes a highly prevalent sexually transmitted infection. As an extracellular pathogen, the parasite mediates adherence to epithelial cells to colonize the human host. In addition, the parasite interfaces with the host immune system and the vaginal microbiota. Modes of Tv pathogenesis include damage to host tissue mediated by parasite killing of host cells, disruption of steady-state vaginal microbial ecology, and eliciting inflammation by activating the host immune response. Recent Tv research has uncovered new players that contribute to multifactorial mechanisms of host-parasite adherence and killing, and has examined the relationship between Tv and vaginal bacteria. Mechanisms that may lead to parasite recognition and killing, or the evasion of host immune cells, have also been revealed.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA.
| | - Patricia J Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, 1602 Molecular Sciences Building, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA.
| |
Collapse
|
32
|
Trichomonas vaginalis Macrophage Migration Inhibitory Factor Mediates Parasite Survival during Nutrient Stress. mBio 2018; 9:mBio.00910-18. [PMID: 29946046 PMCID: PMC6020296 DOI: 10.1128/mbio.00910-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trichomonas vaginalis is responsible for the most prevalent non-viral sexually transmitted disease worldwide, and yet the mechanisms used by this parasite to establish and maintain infection are poorly understood. We previously identified a T. vaginalis homologue (TvMIF) of a human cytokine, human macrophage migration inhibitory factor (huMIF). TvMIF mimics huMIF’s role in increasing cell growth and inhibiting apoptosis in human host cells. To interrogate a role of TvMIF in parasite survival during infection, we asked whether overexpression of TvMIF (TvMIF-OE) confers an advantage to the parasite under nutrient stress conditions by comparing the survival of TvMIF-OE parasites to that of empty vector (EV) parasites. We found that under conditions of serum starvation, overexpression of TvMIF resulted in increased parasite survival. Serum-starved parasites secrete 2.5-fold more intrinsic TvMIF than unstarved parasites, stimulating autocrine and paracrine signaling. Similarly, we observed that addition of recombinant TvMIF increased the survival of the parasites in the absence of serum. Recombinant huMIF likewise increased the parasite survival in the absence of serum, indicating that the parasite may use this host survival factor to resist its own death. Moreover, TvMIF-OE parasites were found to undergo significantly less apoptosis and reactive oxygen species (ROS) generation under conditions of serum starvation, consistent with increased survival being the result of blocking ROS-induced apoptosis. These studies demonstrated that a parasitic MIF enhances survival under adverse conditions and defined TvMIF and huMIF as conserved survival factors that exhibit cross talk in host-pathogen interactions. Macrophage migration inhibitory factor (MIF) is a conserved protein found in most eukaryotes which has been well characterized in mammals but poorly studied in other eukaryotes. The limited analyses of MIF proteins found in unicellular eukaryotes have focused exclusively on the effect of parasitic MIF on the mammalian host. This was the first study to assess the function of a parasite MIF in parasite biology. We demonstrate that the Trichomonas vaginalis MIF functions to suppress cell death induced by apoptosis, thereby enhancing parasite survival under adverse conditions. Our research reveals a conserved survival mechanism, shared by a parasite and its host, and indicates a role for a conserved protein in mediating cross talk in host-pathogen interactions.
Collapse
|
33
|
Photodynamic therapy as a new approach to Trichomonas vaginalis inactivation. Photodiagnosis Photodyn Ther 2018; 22:91-95. [DOI: 10.1016/j.pdpdt.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/29/2017] [Accepted: 02/05/2018] [Indexed: 11/18/2022]
|
34
|
Jalomo-Khayrova E, Mares RE, Muñoz PLA, Meléndez-López SG, Rivero IA, Ramos MA. Soluble expression of an amebic cysteine protease in the cytoplasm of Escherichia coli SHuffle Express cells and purification of active enzyme. BMC Biotechnol 2018; 18:20. [PMID: 29615011 PMCID: PMC5883314 DOI: 10.1186/s12896-018-0429-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Recombinant production of amebic cysteine proteases using Escherichia coli cells as the bacterial system has become a challenging effort, with protein insolubility being the most common issue. Since many of these enzymes need a native conformation stabilized by disulfide bonds, an elaborate process of oxidative folding is usually demanded to get a functional protein. The cytoplasm of E. coli SHuffle Express cells owns an enhanced ability to properly fold proteins with disulfide bonds. Because of this cellular feature, it was possible to assume that this strain represents a reliable expression system and worthwhile been considered as an efficient bacterial host for the recombinant production of amebic cysteine proteases. Results Using E. coli SHuffle Express cells as the bacterial system, we efficiently produce soluble recombinant EhCP1protein. Enzymatic and inhibition analyses revealed that it exhibits proper catalytic abilities, proceeds effectively over the substrate (following an apparent Michaelis-Menten kinetics), and displays a typical inhibition profile. Conclusions We report the first feasibility study of the recombinant production of amebic cysteine proteases using E. coli SHuffle Express as the bacterial host. We present a simple protocol for the recombinant expression and purification of fully soluble and active EhCP1 enzyme. We confirm the suitability of recombinant EhCP1 as a therapeutic target. We propose an approachable bacterial system for the recombinant production of amebic proteins, particularly for those with a need for proper oxidative folding. Electronic supplementary material The online version of this article (10.1186/s12896-018-0429-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ekaterina Jalomo-Khayrova
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México
| | - Rosa E Mares
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México
| | - Patricia L A Muñoz
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México
| | - Samuel G Meléndez-López
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México
| | - Ignacio A Rivero
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Boulevard Industrial S/N, Mesa de Otay, 22510, Tijuana, BCN, México
| | - Marco A Ramos
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México.
| |
Collapse
|
35
|
Mercer F, Ng SH, Brown TM, Boatman G, Johnson PJ. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis. PLoS Biol 2018; 16:e2003885. [PMID: 29408891 PMCID: PMC5815619 DOI: 10.1371/journal.pbio.2003885] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/16/2018] [Accepted: 01/17/2018] [Indexed: 11/24/2022] Open
Abstract
T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis-host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking "bites" of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shek Hang Ng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Taylor M. Brown
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Grace Boatman
- Pomona College, Claremont, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
36
|
Chu CH, Huang YH, Liu HW, Hsu HM, Tai JH. Membrane localization of a Myb3 transcription factor regulated by a TvCyP1 cyclophilin in the parasitic protozoan Trichomonas vaginalis. FEBS J 2018; 285:929-946. [PMID: 29282865 DOI: 10.1111/febs.14374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/24/2017] [Accepted: 12/21/2017] [Indexed: 11/28/2022]
Abstract
In Trichomonas vaginalis, a TvCyP1 cyclophilin was previously demonstrated to regulate the nuclear translocation of Myb1 and Myb3, which respectively repress and activate transcription of an adhesion protein ap65-1 gene. In the present study, TvCyP1 was found to bind to Myb3 at sites spanning 54 Gly-Pro55 and 72 Gly-Pro73 with differential affinities. When Gly54 and Gly72 in Myb3 were both mutated, the mutant protein was restrained on outer membranes of hydrogenosomes and some cytoplasmic vesicles. In the purified Myb3 protein complex, a high molecular weight Myb3-interacting protein (Myb3IPhmw ) and a 72-kDa heat shock protein (TvHSP72) were identified and characterized, with direct binding of Myb3 to Myb3IPhmw and TvHSP72 confirmed in vitro. When cell lysates were fractionated by the differential and gradient centrifugations, TvCyP1 and Myb3 were always associated with membrane fractions enriched with Myb3IPhmw and Myb1, as well as hydrogenosomes and VMyb organelle fractions. Mutations of Gly54 and/or Gly72 resulted in membrane redistribution of Myb3 and the aberrant assembly of the Myb3 protein complex. Consistent with these findings, the involvement of TvCyP1 in membrane distribution of Myb3, and dissociation of Myb3 from TvCyP1 protein complex were demonstrated, with direct interactions between TvCyP1 and Myb3IPhmw and that between TvCyP1 and TvHSP72, confirmed in vitro. These observations suggest that TvCyP1 directly binds to Myb3 and some of its interacting proteins to mediate serial conformational switches of Myb3 for its transition from the membrane compartments toward the nucleus.
Collapse
Affiliation(s)
- Chien-Hsin Chu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsin Huang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsing-Wei Liu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jung-Hsiang Tai
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Westrop GD, Wang L, Blackburn GJ, Zhang T, Zheng L, Watson DG, Coombs GH. Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine. PLoS One 2017; 12:e0189072. [PMID: 29267346 PMCID: PMC5739422 DOI: 10.1371/journal.pone.0189072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 11/19/2022] Open
Abstract
Trichomonas vaginalis and Tritrichomonas foetus are pathogens that parasitise, respectively, human and bovine urogenital tracts causing disease. Using LC-MS, reference metabolomic profiles were obtained for both species and stable isotope labelling with D-[U-13C6] glucose was used to analyse central carbon metabolism. This facilitated a comparison of the metabolic pathways of T. vaginalis and T. foetus, extending earlier targeted biochemical studies. 43 metabolites, whose identities were confirmed by comparison of their retention times with authentic standards, occurred at more than 3-fold difference in peak intensity between T. vaginalis and T. foetus. 18 metabolites that were removed from or released into the medium during growth also showed more than 3-fold difference between the species. Major differences were observed in cysteine and methionine metabolism in which homocysteine, produced as a bi-product of trans-methylation, is catabolised by methionine γ-lyase in T. vaginalis but converted to cystathionine in T. foetus. Both species synthesise methylthioadenosine by an unusual mechanism, but it is not used as a substrate for methionine recycling. T. vaginalis also produces and exports high levels of S-methylcysteine, whereas only negligible levels were found in T. foetus which maintains significantly higher intracellular levels of cysteine. 13C-labeling confirmed that both cysteine and S-methylcysteine are synthesised by T. vaginalis; S-methylcysteine can be generated by recombinant T. vaginalis cysteine synthase using phosphoserine and methanethiol. T. foetus contained higher levels of ornithine and citrulline than T. vaginalis and exported increased levels of putrescine, suggesting greater flux through the arginine dihydrolase pathway. T. vaginalis produced and exported hydroxy acid derivatives of certain amino acids, particularly 2-hydroxyisocaproic acid derived from leucine, whereas negligible levels of these metabolites occurred in T. foetus.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
- * E-mail:
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| | | | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai, China
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| |
Collapse
|
38
|
Leitsch D. Drug susceptibility testing in microaerophilic parasites: Cysteine strongly affects the effectivities of metronidazole and auranofin, a novel and promising antimicrobial. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:321-327. [PMID: 28910741 PMCID: PMC5595233 DOI: 10.1016/j.ijpddr.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia annually cause hundreds of millions of human infections which are treated with antiparasitic drugs. Metronidazole is the most often prescribed drug but also other drugs are in use, and novel drugs with improved characteristics are constantly being developed. One of these novel drugs is auranofin, originally an antirheumatic which has been relabelled for the treatment of parasitic infections. Drug effectivity is arguably the most important criterion for its applicability and is commonly assessed in susceptibility assays using in vitro cultures of a given pathogen. However, drug susceptibility assays can be strongly affected by certain compounds in the growth media. In the case of microaerophilic parasites, cysteine which is added in large amounts as an antioxidant is an obvious candidate because it is highly reactive and known to modulate the toxicity of metronidazole in several microaerophilic parasites. In this study, it was attempted to reduce cysteine concentrations as far as possible without affecting parasite viability by performing drug susceptibility assays under strictly anaerobic conditions in an anaerobic cabinet. Indeed, T. vaginalis and E. histolytica could be grown without any cysteine added and the cysteine concentration necessary to maintain G. lamblia could be reduced to 20%. Susceptibilities to metronidazole were found to be clearly reduced in the presence of cysteine. With auranofin the protective effect of cysteine was extreme, providing protection to concentrations up to 100-fold higher as observed in the absence of cysteine. With three other drugs tested, albendazole, furazolidone and nitazoxanide, all in use against G. lamblia, the effect of cysteine was less pronounced. Oxygen was found to have a less marked impact on metronidazole and auranofin than cysteine but bovine bile which is standardly used in growth media for G. lamblia, displayed a marked synergistic effect with metronidazole. T. vaginalis and E. histolytica can grow anaerobically without cysteine. T. vaginalis and G. lamblia are more susceptible to metronidazole without cysteine. T. vaginalis is 100-fold more susceptible to auranofin without cysteine. G. lamblia is 12-fold more susceptible to auranofin with low cysteine. Bovine bile renders G. lamblia more susceptible to metronidazole.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
| |
Collapse
|
39
|
[Nonviral sexually transmitted infections-epidemiology, clinical manifestations, diagnostic workup, therapy : Part 3: Treponemes, Gardnerella and trichomonads]. Hautarzt 2017; 68:136-148. [PMID: 28058468 DOI: 10.1007/s00105-016-3917-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In Germany, the reported syphilis prevalence has increased continuously since 2010, with a total of 6834 syphilis cases being reported in 2015. The largest increase of reported syphilis occurred in men who have sex with men (MSM). The antibiotic agent of choice for treatment of syphilis is still penicillin. There are no penicillin-resistant Treponema pallidum strains. Alternatives are ceftriaxone and doxycycline. In Germany, azithromycin is not approved for treatment of syphilis; however, therapy failures are increasingly reported. Bacterial vaginosis is accompanied by vaginal discharge. The vaginal secretion exhibits an increased pH value higher than 4.5. Clinical symptoms are pruritus, burning, and the characteristic amine odor. The probability for bacterial vaginosis is highest in women with higher numbers of sexual partners, unmarried women, early first sexual intercourse, in commercial female sex workers, and those women who regularly apply vaginal douches. The main pathogen of bacterial vaginosis is Gardnerella vaginalis. For oral therapy metronidazole is given, alternatively clindamycin; the latter should be applied additionally as topical agent. Trichomoniasis is considered as the nonviral sexually transmitted infection with the highest prevalence worldwide. Other than direct microscopic detection of the protozoa (trophozoites) in vaginal secretion or urine, PCR has been approved as the diagnostic method with the highest sensitivity. Oral metronidazole represents the therapy of choice in trichomoniasis.
Collapse
|
40
|
Li Z, Guo Q, Zheng L, Ji Y, Xie YT, Lai DH, Lun ZR, Suo X, Gao N. Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii. Cell Res 2017; 27:1275-1288. [PMID: 28809395 DOI: 10.1038/cr.2017.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/27/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
As an indispensable molecular machine universal in all living organisms, the ribosome has been selected by evolution to be the natural target of many antibiotics and small-molecule inhibitors. High-resolution structures of pathogen ribosomes are crucial for understanding the general and unique aspects of translation control in disease-causing microbes. With cryo-electron microscopy technique, we have determined structures of the cytosolic ribosomes from two human parasites, Trichomonas vaginalis and Toxoplasma gondii, at resolution of 3.2-3.4 Å. Although the ribosomal proteins from both pathogens are typical members of eukaryotic families, with a co-evolution pattern between certain species-specific insertions/extensions and neighboring ribosomal RNA (rRNA) expansion segments, the sizes of their rRNAs are sharply different. Very interestingly, rRNAs of T. vaginalis are in size comparable to prokaryotic counterparts, with nearly all the eukaryote-specific rRNA expansion segments missing. These structures facilitate the dissection of evolution path for ribosomal proteins and RNAs, and may aid in design of novel translation inhibitors.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Guo
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lvqin Zheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongsheng Ji
- Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui 230022, China
| | - Yi-Ting Xie
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Mathias F, Kabri Y, Okdah L, Di Giorgio C, Rolain JM, Spitz C, Crozet MD, Vanelle P. An Efficient One-Pot Catalyzed Synthesis of 2,4-Disubstituted 5-Nitroimidazoles Displaying Antiparasitic and Antibacterial Activities. Molecules 2017; 22:molecules22081278. [PMID: 28771219 PMCID: PMC6152245 DOI: 10.3390/molecules22081278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/29/2017] [Indexed: 11/16/2022] Open
Abstract
A one-pot regioselective bis-Suzuki-Miyaura or Suzuki-Miyaura/Sonogashira reaction on 2,4-dibromo-1-methyl-5-nitro-1H-imidazole under microwave heating was developed. This method is applicable to a wide range of (hetero)arylboronic acids and terminal alkynes. Additionally, this approach provides a simple and efficient way to synthesize 2,4-disubstituted 5-nitroimidazole derivatives with antibacterial and antiparasitic properties.
Collapse
Affiliation(s)
- Fanny Mathias
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| | - Youssef Kabri
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| | - Liliane Okdah
- IHU Méditerranée Infection, Aix Marseille University, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine de la Timone, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.
| | - Carole Di Giorgio
- Aix Marseille University, CNRS, IRD, Avignon Université, IMBE UMR 7263, Laboratoire de Mutagénèse Environnementale, 13385 Marseille, France.
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, Aix Marseille University, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine de la Timone, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.
| | - Cédric Spitz
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| | - Maxime D Crozet
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| | - Patrice Vanelle
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| |
Collapse
|
42
|
Kim JH, Han IH, Kim SS, Park SJ, Min DY, Ahn MH, Ryu JS. Interaction between Trichomonas vaginalis and the Prostate Epithelium. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:213-218. [PMID: 28506046 PMCID: PMC5450966 DOI: 10.3347/kjp.2017.55.2.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/09/2017] [Accepted: 02/22/2017] [Indexed: 01/18/2023]
Abstract
Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis. The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis=1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-1β, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Sang-Su Kim
- Department of Environmental Biology and Medical Parasitology, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Duk-Young Min
- Department of Microbiology and Immunology, Eulji University College of Medicine, Daejeon 35233, Korea
| | - Myoung-Hee Ahn
- Department of Environmental Biology and Medical Parasitology, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University College of Medicine, Seoul 04763, Korea
| |
Collapse
|
43
|
Comparative proteomic analysis of two pathogenic Tritrichomonas foetus genotypes: there is more to the proteome than meets the eye. Int J Parasitol 2017; 47:203-213. [DOI: 10.1016/j.ijpara.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
|