1
|
Singh SR, Bhaskar R, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Mladenov M, Hadzi-Petrushev N, Stojchevski R, Sinha JK, Avtanski D. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers (Basel) 2025; 17:1082. [PMID: 40227591 PMCID: PMC11988167 DOI: 10.3390/cancers17071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer is complex because of the critical imbalance in genetic regulation as characterized by both the overexpression of oncogenes (OGs), mainly through mutations, amplifications, and translocations, and the inactivation of tumor-suppressor genes (TSGs), which entail the preservation of genomic integrity by inducing apoptosis to counter the malignant growth. Reviewing the intricate molecular interplay between OGs and TSGs draws attention to their cell cycle, apoptosis, and cancer metabolism regulation. In the present review, we discuss seminal discoveries, such as Knudson's two-hit hypothesis, which framed the field's understanding of cancer genetics, leading to the next breakthroughs with next-generation sequencing and epigenetic profiling, revealing novel insights into OG and TSG dysregulation with opportunities for targeted therapy. The key pathways, such as MAPK/ERK, PI3K/AKT/mTOR, and Wnt/β-catenin, are presented in the context of tumor progression. Importantly, we further highlighted the advances in therapeutic strategies, including inhibitors of KRAS and MYC and restoration of TSG function, despite which mechanisms of resistance and tumor heterogeneity pose daunting challenges. A high-level understanding of interactions between OG-TSGs forms the basis for effective, personalized cancer treatment-something to strive for in better clinical outcomes. This synthesis should integrate foundational biology with translation and, in this case, contribute to the ongoing effort against cancer.
Collapse
Affiliation(s)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, India
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
2
|
Li M, Li J, He C, Jiang G, Ma D, Guan H, Lin Y, Li M, Jia J, Duan X, Wang Y, Ren F, Li H, Wang X, Cao C, Chang Z. An oncoprotein CREPT functions as a co-factor in MYC-driven transformation and tumor growth. J Biol Chem 2025; 301:108030. [PMID: 39615685 PMCID: PMC11730240 DOI: 10.1016/j.jbc.2024.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024] Open
Abstract
Understanding the mechanisms behind MYC-driven oncogenic transformation could pave the way for identifying novel drug targets. This study explored the role of CREPT in MYC-induced malignancy by generating MYC-transformed mouse embryonic fibroblasts (MEFs) with conditional CREPT deletion. Our results demonstrated that the loss of CREPT significantly impaired MYC-induced colony formation and cell proliferation, indicating that CREPT is essential for the malignant transformation of MEFs. Reintroducing CREPT in CREPT-deficient cells restored malignant properties. Furthermore, CREPT overexpression alone enhanced colony formation upon MYC induction but was insufficient to induce transformation without MYC, suggesting a cooperative interaction between CREPT and MYC in malignant transformation. CREPT deletion resulted in delayed cell cycle progression during the G2/M and S phases. CREPT enhanced the expression of MYC target genes by directly interacting with MYC through the CID domain of CREPT and the PEST domain of MYC. Arginine 34 of CREPT was identified as a critical residue for the interaction with MYC, and its mutation lost the ability of CREPT to promote MYC-driven colony formation and tumor growth in colorectal cancer models. Additionally, CREPT facilitated the recruitment of RNA Polymerase II to MYC-binding promoters, promoting transcriptional initiation of MYC-targeted genes. Our study also revealed a strong correlation between CREPT and MYC expression in various human cancers, particularly in colorectal cancer, where their interaction appears to play a significant role in tumorigenesis. These findings suggest that the CREPT-MYC interaction is crucial for the progression of MYC-driven cancers and presents a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jingya Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Chunhua He
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Guancheng Jiang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Danhui Ma
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Haipeng Guan
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, China
| | - Yuting Lin
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Meng Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Jia
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaolin Duan
- Department of Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
| | - Chenxi Cao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Turner JA, Van Gulick RJ, Robinson WA, Mughal T, Tobin RP, MacBeth ML, Holman B, Classon A, Bagby SM, Yacob BW, Hartman SJ, Silverman I, Vorwald VM, Gorden N, Gonzalez R, Gay LM, Ali SM, Benson A, Miller VA, Ross JS, Pitts TM, Rioth MJ, Lewis KD, Medina T, McCarter MD, Gonzalez R, Couts KL. Expanding the landscape of oncogenic drivers and treatment options in acral and mucosal melanomas by targeted genomic profiling. Int J Cancer 2024; 155:1792-1807. [PMID: 39001563 PMCID: PMC11570350 DOI: 10.1002/ijc.35087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2024]
Abstract
Despite advancements in treating cutaneous melanoma, patients with acral and mucosal (A/M) melanomas still have limited therapeutic options and poor prognoses. We analyzed 156 melanomas (101 cutaneous, 28 acral, and 27 mucosal) using the Foundation One cancer-gene specific clinical testing platform and identified new, potentially targetable genomic alterations (GAs) in specific anatomic sites of A/M melanomas. Using novel pre-clinical models of A/M melanoma, we demonstrate that several GAs and corresponding oncogenic pathways associated with cutaneous melanomas are similarly targetable in A/M melanomas. Other alterations, including MYC and CRKL amplifications, were unique to A/M melanomas and susceptible to indirect targeting using the BRD4 inhibitor JQ1 or Src/ABL inhibitor dasatinib, respectively. We further identified new, actionable A/M-specific alterations, including an inactivating NF2 fusion in a mucosal melanoma responsive to dasatinib in vivo. Our study highlights new molecular differences between cutaneous and A/M melanomas, and across different anatomic sites within A/M, which may change clinical testing and treatment paradigms for these rare melanomas.
Collapse
Affiliation(s)
- Jacqueline A. Turner
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert J. Van Gulick
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William A. Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tariq Mughal
- Division of Hematology-Oncology, Tufts University Cancer Center, Boston, MA, USA
| | - Richard P. Tobin
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Morgan L. MacBeth
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Blair Holman
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Stacey M. Bagby
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Betelehem W. Yacob
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J. Hartman
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ian Silverman
- Ignyta, Inc., San Diego, CA, USA
- Present address, Incyte Research Institute, Wilmington, DE, USA
| | - Victoria M. Vorwald
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas Gorden
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rita Gonzalez
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Adam Benson
- Foundation Medicine Inc., Cambridge, MA, USA
| | | | - Jeffrey S. Ross
- Foundation Medicine Inc., Cambridge, MA, USA
- Upstate Medical University, Syracuse, NY, USA
| | - Todd M. Pitts
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J. Rioth
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karl D. Lewis
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa Medina
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Martin D. McCarter
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rene Gonzalez
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kasey L. Couts
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Rare Melanomas, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Senapedis W, Gallagher KM, Figueroa E, Farelli JD, Lyng R, Hodgson JG, O'Donnell CW, Newman JV, Pacaro M, Siecinski SK, Chen J, McCauley TG. Targeted transcriptional downregulation of MYC using epigenomic controllers demonstrates antitumor activity in hepatocellular carcinoma models. Nat Commun 2024; 15:7875. [PMID: 39285180 PMCID: PMC11405918 DOI: 10.1038/s41467-024-52202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Dysregulation of master regulator c-MYC (MYC) plays a central role in hepatocellular carcinoma (HCC) and other cancers but remains an elusive target for therapeutic intervention. MYC expression is epigenetically modulated within naturally occurring DNA loop structures, Insulated Genomic Domains (IGDs). We present a therapeutic approach using an epigenomic controller (EC), a programmable epigenomic mRNA medicine, to precisely modify MYC IGD sub-elements, leading to methylation of MYC regulatory elements and durable downregulation of MYC mRNA transcription. Significant antitumor activity is observed in preclinical models of HCC treated with the MYC-targeted EC, as monotherapy or in combination with tyrosine kinase or immune checkpoint inhibitors. These findings pave the way for clinical development of MYC-targeting epigenomic controllers in HCC patients and provide a framework for programmable epigenomic mRNA therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
| | | | - Elmer Figueroa
- Omega Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | | | - Robert Lyng
- Omega Therapeutics, Cambridge, MA, USA
- SalioGen Therapeutics, Lexington, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Arthur NBJ, Christensen KA, Mannino K, Ruzinova MB, Kumar A, Gruszczynska A, Day RB, Erdmann-Gilmore P, Mi Y, Sprung R, York CR, Townsend RR, Spencer DH, Sykes SM, Ferraro F. Missense Mutations in Myc Box I Influence Nucleocytoplasmic Transport to Promote Leukemogenesis. Clin Cancer Res 2024; 30:3622-3639. [PMID: 38848040 PMCID: PMC11326984 DOI: 10.1158/1078-0432.ccr-24-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Somatic missense mutations in the phosphodegron domain of the MYC gene (MYC Box I or MBI) are detected in the dominant clones of a subset of patients with acute myeloid leukemia (AML), but the mechanisms by which they contribute to AML are unknown. EXPERIMENTAL DESIGN To investigate the effects of MBI MYC mutations on hematopoietic cells, we employed a multi-omic approach to systematically compare the cellular and molecular consequences of expressing oncogenic doses of wild type, threonine-58 and proline-59 mutant MYC proteins in hematopoietic cells, and we developed a knockin mouse harboring the germline MBI mutation p.T58N in the Myc gene. RESULTS Both wild-type and MBI mutant MYC proteins promote self-renewal programs and expand highly selected subpopulations of progenitor cells in the bone marrow. Compared with their wild-type counterparts, mutant cells display decreased cell death and accelerated leukemogenesis in vivo, changes that are recapitulated in the transcriptomes of human AML-bearing MYC mutations. The mutant phenotypes feature decreased stability and translation of mRNAs encoding proapoptotic and immune-regulatory genes, increased translation of RNA binding proteins and nuclear export machinery, and distinct nucleocytoplasmic RNA profiles. MBI MYC mutant proteins also show a higher propensity to aggregate in perinuclear regions and cytoplasm. Like the overexpression model, heterozygous p.T58N knockin mice displayed similar changes in subcellular MYC localization, progenitor expansion, transcriptional signatures, and develop hematopoietic tumors. CONCLUSIONS This study uncovers that MBI MYC mutations alter RNA nucleocytoplasmic transport mechanisms to contribute to the development of hematopoietic malignancies.
Collapse
Affiliation(s)
- Nancy BJ Arthur
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Keegan A Christensen
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Kathleen Mannino
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Marianna B. Ruzinova
- Department of Pathology and Immunology, at Washington University School of Medicine, St. Louis, MO
| | - Ashutosh Kumar
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Agata Gruszczynska
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Ryan B. Day
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Lipid Research, at Washington University School of Medicine, St. Louis, MO
| | - Yiling Mi
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Lipid Research, at Washington University School of Medicine, St. Louis, MO
| | - Robert Sprung
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Lipid Research, at Washington University School of Medicine, St. Louis, MO
| | - Conner R. York
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - R Reid Townsend
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Lipid Research, at Washington University School of Medicine, St. Louis, MO
| | - David H. Spencer
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, at Washington University School of Medicine, St. Louis, MO
| | - Stephen M. Sykes
- Department of Pediatrics, Division of Hematology-Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Francesca Ferraro
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Panja S, Truica MI, Yu CY, Saggurthi V, Craige MW, Whitehead K, Tuiche MV, Al-Saadi A, Vyas R, Ganesan S, Gohel S, Coffman F, Parrott JS, Quan S, Jha S, Kim I, Schaeffer E, Kothari V, Abdulkadir SA, Mitrofanova A. Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC. Nat Commun 2024; 15:352. [PMID: 38191557 PMCID: PMC10774320 DOI: 10.1038/s41467-024-44686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Heterogeneous response to Enzalutamide, a second-generation androgen receptor signaling inhibitor, is a central problem in castration-resistant prostate cancer (CRPC) management. Genome-wide systems investigation of mechanisms that govern Enzalutamide resistance promise to elucidate markers of heterogeneous treatment response and salvage therapies for CRPC patients. Focusing on the de novo role of MYC as a marker of Enzalutamide resistance, here we reconstruct a CRPC-specific mechanism-centric regulatory network, connecting molecular pathways with their upstream transcriptional regulatory programs. Mining this network with signatures of Enzalutamide response identifies NME2 as an upstream regulatory partner of MYC in CRPC and demonstrates that NME2-MYC increased activities can predict patients at risk of resistance to Enzalutamide, independent of co-variates. Furthermore, our experimental investigations demonstrate that targeting MYC and its partner NME2 is beneficial in Enzalutamide-resistant conditions and could provide an effective strategy for patients at risk of Enzalutamide resistance and/or for patients who failed Enzalutamide treatment.
Collapse
Affiliation(s)
- Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mihai Ioan Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christina Y Yu
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Vamshi Saggurthi
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Michael W Craige
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Katie Whitehead
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mayra V Tuiche
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, 07039, USA
| | - Aymen Al-Saadi
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Riddhi Vyas
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Frederick Coffman
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - James S Parrott
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Songhua Quan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shantenu Jha
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Isaac Kim
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Urology, Yale School of Medicine, New Heaven, CT, 06510, USA
| | - Edward Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vishal Kothari
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
7
|
Arthur NB, Christensen KA, Mannino K, Ruzinova MB, Kumar A, Gruszczynska A, Day RB, Erdmann-Gilmore P, Mi Y, Sprung R, York CR, Reid Townsend R, Spencer DH, Sykes SM, Ferraro F. Missense mutations in Myc Box I influence MYC cellular localization, mRNA partitioning and turnover to promote leukemogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563493. [PMID: 37961226 PMCID: PMC10634725 DOI: 10.1101/2023.10.22.563493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Somatic missense mutations in the phosphodegron domain of the MYC gene ( M YC Box I) are detected in the dominant clones of a subset of acute myeloid leukemia (AML) patients, but the mechanisms by which they contribute to AML are unknown. To unveil unique proprieties of MBI MYC mutant proteins, we systematically compared the cellular and molecular consequences of expressing similar oncogenic levels of wild type and MBI mutant MYC. We found that MBI MYC mutants can accelerate leukemia by driving unique transcriptional signatures in highly selected, myeloid progenitor subpopulations. Although these mutations increase MYC stability, they overall dampen MYC chromatin localization and lead to a cytoplasmic accumulation of the mutant proteins. This phenotype is coupled with increased translation of RNA binding proteins and nuclear export machinery, which results in altered RNA partitioning and accelerated decay of select transcripts encoding proapoptotic and proinflammatory genes. Heterozygous knockin mice harboring the germline MBI mutation Myc p.T73N exhibit cytoplasmic MYC localization, myeloid progenitors' expansion with similar transcriptional signatures to the overexpression model, and eventually develop hematological malignancies. This study uncovers that MBI MYC mutations alter MYC localization and disrupt mRNA subcellular distribution and turnover of select transcripts to accelerate tumor initiation and growth.
Collapse
|
8
|
Li Z, Liu P, Chen W, Liu X, Tong F, Sun J, Zhou Y, Lei T, Yang W, Ma D, Gao H, Qin Y. Hypoxia-cleavable and specific targeted nanomedicine delivers epigenetic drugs for enhanced treatment of breast cancer and bone metastasis. J Nanobiotechnology 2023; 21:221. [PMID: 37438800 DOI: 10.1186/s12951-023-01939-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Breast cancer bone metastasis has become a common cancer type that still lacks an effective treatment method. Although epigenetic drugs have demonstrated promise in cancer therapy, their nontargeted accumulation and drug resistance remain nonnegligible limiting factors. Herein, we first found that icaritin had a strong synergistic effect with an epigenetic drug (JQ1) in the suppression of breast cancer, which could help to relieve drug resistance to JQ1. To improve tumor-targeted efficacy, we developed a hypoxia-cleavable, RGD peptide-modified poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle (termed ARNP) for the targeted delivery of JQ1 and icaritin. The decoration of long cleavable PEG chains can shield RGD peptides during blood circulation and reduce cellular uptake at nonspecific sites. ARNP actively targets breast cancer cells via an RGD-αvβ3 integrin interaction after PEG chain cleavage by responding to hypoxic tumor microenvironment. In vitro and in vivo assays revealed that ARNP exhibited good biodistribution and effectively suppressed primary tumor and bone metastasis. Meanwhile, ARNP could alleviate bone erosion to a certain extent. Furthermore, ARNP significantly inhibited pulmonary metastasis secondary to bone metastasis. The present study suggests that ARNP has great promise in the treatment of breast cancer and bone metastasis due to its simple and practical potential.
Collapse
Affiliation(s)
- Zhaofeng Li
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Peixin Liu
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueying Liu
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Junhui Sun
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dong Ma
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yi Qin
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
9
|
Firouzjaei AA, Sharifi K, Khazaei M, Mohammadi-Yeganeh S, Aghaee-Bakhtiari SH. Screening and introduction of key cell cycle microRNAs deregulated in colorectal cancer by integrated bioinformatics analysis. Chem Biol Drug Des 2023; 102:137-152. [PMID: 37081586 DOI: 10.1111/cbdd.14242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men worldwide. Impaired cell cycle regulation leads to many cancers and is also approved in CRC. Therefore, cell cycle regulation is a critical therapeutic target for CRC. Furthermore, miRNAs have been discovered as regulators in a variety of cancer-related pathways. This study is designed to investigate how miRNAs and mRNAs interact to regulate the cell cycle in CRC patients. Utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Expression Omnibus (GEO), and Therapeutic Target Database (TTD), cell cycle-associated genes were identified and evaluated. Seven of the 22 differentially expressed genes (DEGs) implicated in the cell cycle in three GSEs (GSE24514, GSE10950, and GSE74604) were identified as potential therapeutic targets. Then, using PyRx software, we performed docking proteins with selected drugs. The results demonstrated that these drugs are appropriate molecules for targeting cell cycle DEGs. Tarbase, miRTarbase, miRDIP, and miRCancer databases were used to find miRNAs that target the indicated genes. The ability of these six miRNAs to impact the cell cycle in colorectal cancer may be concluded. These miRNAs were found to be downregulated in SW480 cells when compared to the normal tissue. Our data imply that a precise selection of bioinformatics tools can facilitate the identification of miRNAs that impact mRNA translation at different stages of the cell cycle. The candidates can be investigated more as targets for cell cycle arrest in cancers.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Gao E, Sun X, Thorne RF, Zhang XD, Li J, Shao F, Ma J, Wu M. NIPSNAP1 directs dual mechanisms to restrain senescence in cancer cells. J Transl Med 2023; 21:401. [PMID: 37340421 DOI: 10.1186/s12967-023-04232-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/27/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Although the executive pathways of senescence are known, the underlying control mechanisms are diverse and not fully understood, particularly how cancer cells avoid triggering senescence despite experiencing exacerbated stress conditions within the tumor microenvironment. METHODS Mass spectrometry (MS)-based proteomic screening was used to identify differentially regulated genes in serum-starved hepatocellular carcinoma cells and RNAi employed to determine knockdown phenotypes of prioritized genes. Thereafter, gene function was investigated using cell proliferation assays (colony-formation, CCK-8, Edu incorporation and cell cycle) together with cellular senescence assays (SA-β-gal, SAHF and SASP). Gene overexpression and knockdown techniques were applied to examine mRNA and protein regulation in combination with luciferase reporter and proteasome degradation assays, respectively. Flow cytometry was applied to detect changes in cellular reactive oxygen species (ROS) and in vivo gene function examined using a xenograft model. RESULTS Among the genes induced by serum deprivation, NIPSNAP1 was selected for investigation. Subsequent experiments revealed that NIPSNAP1 promotes cancer cell proliferation and inhibits P27-dependent induction of senescence via dual mechanisms. Firstly, NIPSNAP1 maintains the levels of c-Myc by sequestering the E3 ubiquitin ligase FBXL14 to prevent the proteasome-mediated turnover of c-Myc. Intriguingly, NIPSNAP1 levels are restrained by transcriptional repression mediated by c-Myc-Miz1, with repression lifted in response to serum withdrawal, thus identifying feedback regulation between NIPSNAP1 and c-Myc. Secondly, NIPSNAP1 was shown to modulate ROS levels by promoting interactions between the deacetylase SIRT3 and superoxide dismutase 2 (SOD2). Consequent activation of SOD2 serves to maintain cellular ROS levels below the critical levels required to induce cell cycle arrest and senescence. Importantly, the actions of NIPSNAP1 in promoting cancer cell proliferation and preventing senescence were recapitulated in vivo using xenograft models. CONCLUSIONS Together, these findings reveal NIPSNAP1 as an important mediator of c-Myc function and a negative regulator of cellular senescence. These findings also provide a theoretical basis for cancer therapy where targeting NIPSNAP1 invokes cellular senescence.
Collapse
Affiliation(s)
- Enyi Gao
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450046, China
- School of Basic Medical Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiaoya Sun
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Rick Francis Thorne
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Xu Dong Zhang
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Jinming Li
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Fengmin Shao
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China.
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450046, China.
- School of Basic Medical Sciences, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
11
|
Spain L, Coulton A, Lobon I, Rowan A, Schnidrig D, Shepherd ST, Shum B, Byrne F, Goicoechea M, Piperni E, Au L, Edmonds K, Carlyle E, Hunter N, Renn A, Messiou C, Hughes P, Nobbs J, Foijer F, van den Bos H, Wardenaar R, Spierings DC, Spencer C, Schmitt AM, Tippu Z, Lingard K, Grostate L, Peat K, Kelly K, Sarker S, Vaughan S, Mangwende M, Terry L, Kelly D, Biano J, Murra A, Korteweg J, Lewis C, O'Flaherty M, Cattin AL, Emmerich M, Gerard CL, Pallikonda HA, Lynch J, Mason R, Rogiers A, Xu H, Huebner A, McGranahan N, Al Bakir M, Murai J, Naceur-Lombardelli C, Borg E, Mitchison M, Moore DA, Falzon M, Proctor I, Stamp GW, Nye EL, Young K, Furness AJ, Pickering L, Stewart R, Mahadeva U, Green A, Larkin J, Litchfield K, Swanton C, Jamal-Hanjani M, for the PEACE Consortium, Turajlic S. Late-Stage Metastatic Melanoma Emerges through a Diversity of Evolutionary Pathways. Cancer Discov 2023; 13:1364-1385. [PMID: 36977461 PMCID: PMC10236155 DOI: 10.1158/2159-8290.cd-22-1427] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma. SIGNIFICANCE Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA. See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Lavinia Spain
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander Coulton
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
| | - Irene Lobon
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Desiree Schnidrig
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Scott T.C. Shepherd
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Benjamin Shum
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fiona Byrne
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maria Goicoechea
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Elisa Piperni
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lewis Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Kim Edmonds
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Nikki Hunter
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Christina Messiou
- The Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, Kensington and Chelsea, United Kingdom
| | - Peta Hughes
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jaime Nobbs
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Charlotte Spencer
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Zayd Tippu
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Kema Peat
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Sarah Sarker
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | - Lauren Terry
- The Royal Marsden Hospital, London, United Kingdom
| | - Denise Kelly
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Aida Murra
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | | | - Anne-Laure Cattin
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Max Emmerich
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- St. John's Institute of Dermatology, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - Camille L. Gerard
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Precision Oncology Center, Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Joanna Lynch
- The Royal Marsden Hospital, London, United Kingdom
| | - Robert Mason
- Gold Coast University Hospital, Queensland, Australia
| | - Aljosja Rogiers
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Hang Xu
- The Francis Crick Institute, London, United Kingdom
| | - Ariana Huebner
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Jun Murai
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
- Drug Discovery Technology Laboratories, Ono Pharmaceutical Co., Ltd. Osaka, Japan
| | | | - Elaine Borg
- University College London Hospital, London, United Kingdom
| | | | - David A. Moore
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mary Falzon
- University College London Hospital, London, United Kingdom
| | - Ian Proctor
- University College London Hospital, London, United Kingdom
| | | | - Emma L. Nye
- The Francis Crick Institute, London, United Kingdom
| | - Kate Young
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrew J.S. Furness
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, Kensington and Chelsea, United Kingdom
| | | | - Ruby Stewart
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ula Mahadeva
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Anna Green
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - James Larkin
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Kevin Litchfield
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals, London, United Kingdom
| | | | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Zhu H, Yu H, Zhou H, Zhu W, Wang X. Elevated Nuclear PHGDH Synergistically Functions with cMyc to Reshape the Immune Microenvironment of Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205818. [PMID: 37078828 PMCID: PMC10265107 DOI: 10.1002/advs.202205818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Herein, we observed that nuclear localization of phosphoglycerate dehydrogenase (PHGDH) is associated with poor prognosis in liver cancer, and Phgdh is required for liver cancer progression in a mouse model. Unexpectedly, impairment of Phgdh enzyme activity exerts a slight effect in a liver cancer model. In liver cancer cells, the aspartate kinase-chorismate mutase-tyrA prephenate dehydrogenase (ACT) domain of PHGDH binds nuclear cMyc to form a transactivation axis, PHGDH/p300/cMyc/AF9, which drives chemokine CXCL1 and IL8 gene expression. Then, CXCL1 and IL8 promote neutrophil recruitment and enhance tumor-associated macrophage (TAM) filtration in the liver, thereby advancing liver cancer. Forced cytosolic localization of PHGDH or destruction of the PHGDH/cMyc interaction abolishes the oncogenic function of nuclear PHGDH. Depletion of neutrophils by neutralizing antibodies greatly hampers TAM filtration. These findings reveal a nonmetabolic role of PHGDH with altered cellular localization and suggest a promising drug target for liver cancer therapy by targeting the nonmetabolic region of PHGDH.
Collapse
Affiliation(s)
- Hongwen Zhu
- CAS Key Laboratory of Receptor ResearchState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Hua Yu
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhou510006China
| | - Hu Zhou
- CAS Key Laboratory of Receptor ResearchState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Wencheng Zhu
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
| | - Xiongjun Wang
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhou510006China
| |
Collapse
|
13
|
Zhao LN, Guccione E, Kaldis P. Proof-of-Concept Method to Study Uncharacterized Methyltransferases Using PRDM15. Int J Mol Sci 2023; 24:ijms24021327. [PMID: 36674842 PMCID: PMC9861158 DOI: 10.3390/ijms24021327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The PRDM family of methyltransferases has been implicated in cellular proliferation and differentiation and is deregulated in human diseases, most notably in cancer. PRDMs are related to the SET domain family of methyltransferases; however, from the 19 PRDMs only a few PRDMs with defined enzymatic activities are known. PRDM15 is an uncharacterized transcriptional regulator, with significant structural disorder and lack of defined small-molecule binding pockets. Many aspects of PRDM15 are yet unknown, including its structure, substrates, reaction mechanism, and its methylation profile. Here, we employ a series of computational approaches for an exploratory investigation of its potential substrates and reaction mechanism. Using the knowledge of PRDM9 and current knowledge of PRDM15 as basis, we tried to identify genuine substrates of PRDM15. We start from histone-based peptides and learn that the native substrates of PRDM15 may be non-histone proteins. In the future, a combination of sequence-based approaches and signature motif analysis may provide new leads. In summary, our results provide new information about the uncharacterized methyltransferase, PRDM15.
Collapse
Affiliation(s)
- Li-Na Zhao
- Department of Clinical Sciences, Lund University, P.O. Box 50332, SE-202 13 Malmö, Sweden
- Correspondence:
| | - Ernesto Guccione
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, P.O. Box 50332, SE-202 13 Malmö, Sweden
- Lund University Diabetes Center (LUDC), Lund University, Jan Waldenströms Gata 35, SE-214 28 Malmö, Sweden
| |
Collapse
|
14
|
Chen B, Hu H, Chen X. From Basic Science to Clinical Practice: The Role of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A)/p90 in Cancer. Front Genet 2023; 14:1110656. [PMID: 36911405 PMCID: PMC9998691 DOI: 10.3389/fgene.2023.1110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A), initially reported as a tumor-associated antigen (known as p90), is highly expressed in most solid and hematological tumors. The interaction of CIP2A/p90, protein phosphatase 2A (PP2A), and c-Myc can hinder the function of PP2A toward c-Myc S62 induction, thus stabilizing c-Myc protein, which represents a potential role of CIP2A/p90 in tumorigeneses such as cell proliferation, invasion, and migration, as well as cancer drug resistance. The signaling pathways and regulation networks of CIP2A/p90 are complex and not yet fully understood. Many previous studies have also demonstrated that CIP2A/p90 can be used as a potential therapeutic cancer target. In addition, the autoantibody against CIP2A/p90 in sera may be used as a promising biomarker in the diagnosis of certain types of cancer. In this Review, we focus on recent advances relating to CIP2A/p90 and their implications for future research.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol 2023; 13:1142111. [PMID: 36969025 PMCID: PMC10032378 DOI: 10.3389/fonc.2023.1142111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
The MYC oncoprotein functions as a master regulator of cellular transcription and executes non-transcriptional tasks relevant to DNA replication and cell cycle regulation, thereby interacting with multiple proteins. MYC is required for fundamental cellular processes triggering proliferation, growth, differentiation, or apoptosis and also represents a major cancer driver being aberrantly activated in most human tumors. Due to its non-enzymatic biochemical functions and largely unstructured surface, MYC has remained difficult for specific inhibitor compounds to directly address, and consequently, alternative approaches leading to indirect MYC inhibition have evolved. Nowadays, multiple organic compounds, nucleic acids, or peptides specifically interfering with MYC activities are in preclinical or early-stage clinical studies, but none of them have been approved so far for the pharmacological treatment of cancer patients. In addition, specific and efficient delivery technologies to deliver MYC-inhibiting agents into MYC-dependent tumor cells are just beginning to emerge. In this review, an overview of direct and indirect MYC-inhibiting agents and their modes of MYC inhibition is given. Furthermore, we summarize current possibilities to deliver appropriate drugs into cancer cells containing derailed MYC using viral vectors or appropriate nanoparticles. Finding the right formulation to target MYC-dependent cancers and to achieve a high intracellular concentration of compounds blocking or attenuating oncogenic MYC activities could be as important as the development of novel MYC-inhibiting principles.
Collapse
|
16
|
Frontzek F, Hailfinger S, Lenz G. Plasmablastic lymphoma: from genetics to treatment. Leuk Lymphoma 2022; 64:799-807. [PMID: 36577021 DOI: 10.1080/10428194.2022.2162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmablastic lymphoma (PBL) represents a rare distinct lymphoma entity with plasmablastic morphology and plasmacytic immunophenotype that is characterized by an aggressive clinical course. Standard chemotherapeutic regimens often remain insufficient to cure affected patients. Recently, comprehensive molecular analyses of large cohorts of primary PBL samples have revealed the mutational landscape as well as the pattern of copy number alterations of this rare lymphoma subtype. Identification of recurrent aberrations affecting the JAK-STAT, RAS-RAF, NOTCH, IRF4, and MYC signaling pathways drive the molecular pathogenesis of PBL and hold great potential for novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fabian Frontzek
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Hailfinger
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
17
|
WSB1 regulates c-Myc expression through β-catenin signaling and forms a feedforward circuit. Acta Pharm Sin B 2022; 12:1225-1239. [PMID: 35530152 PMCID: PMC9072231 DOI: 10.1016/j.apsb.2021.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
The dysregulation of transcription factors is widely associated with tumorigenesis. As the most well-defined transcription factor in multiple types of cancer, c-Myc can transform cells by transactivating various downstream genes. Given that there is no effective way to directly inhibit c-Myc, c-Myc targeting strategies hold great potential for cancer therapy. In this study, we found that WSB1, which has a highly positive correlation with c-Myc in 10 cancer cell lines and clinical samples, is a direct target gene of c-Myc, and can positively regulate c-Myc expression, which forms a feedforward circuit promoting cancer development. RNA sequencing results from Bel-7402 cells confirmed that WSB1 promoted c-Myc expression through the β-catenin pathway. Mechanistically, WSB1 affected β-catenin destruction complex-PPP2CA assembly and E3 ubiquitin ligase adaptor β-TRCP recruitment, which inhibited the ubiquitination of β-catenin and transactivated c-Myc. Of interest, the effect of WSB1 on c-Myc was independent of its E3 ligase activity. Moreover, overexpressing WSB1 in the Bel-7402 xenograft model could further strengthen the tumor-driven effect of c-Myc overexpression. Thus, our findings revealed a novel mechanism involved in tumorigenesis in which the WSB1/c-Myc feedforward circuit played an essential role, highlighting a potential c-Myc intervention strategy in cancer treatment.
Collapse
Key Words
- ATM, serine-protein kinase ATM
- CHIP, chromatin immunoprecipitation
- CK1, casein kinase 1
- Cancer treatment
- EBP2, probable rRNA-processing protein EBP2
- ESC complex, elongin B/C-cullin 2/5-SOCS box containing ubiquitin ligase protein complex
- Feedback loop
- GSK3β, glycogen synthase kinase 3β
- HCC, hepatocellular carcinoma
- HIF1-α, hypoxia induced factor 1-alpha
- IHC, immunohistochemistry
- PLK1, serine/threonine-protein kinase PLK1
- PP2A, serine/threonine protein phosphatase 2A
- PROTAC, proteolysis targeting chimaera
- RhoGDI2, Rho GDP dissociation inhibitor 2
- TFs, transcription factors
- Transcription factors
- Tumorigenesis
- Ubiquitination-proteasome pathway
- WSB1
- WSB1, WD repeat and SOCS box containing 1
- c-Myc
- c-Myc, proto-oncogene c-Myc
- eIF4F, eukaryotic translation initiation factor 4F
- β-Catenin destruction complex
Collapse
|
18
|
Luminescence complementation technology for the identification of MYC:TRRAP inhibitors. Oncotarget 2021; 12:2147-2157. [PMID: 34676047 PMCID: PMC8522838 DOI: 10.18632/oncotarget.28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/04/2021] [Indexed: 11/25/2022] Open
Abstract
Mechanism-based targeted therapies have exhibited remarkable success in treating otherwise untreatable or unresectable cancers. Novel targeted therapies that correct dysregulated transcriptional programs in cancer are an unmet medical need. The transcription factor MYC is the most frequently amplified gene in human cancer and is overexpressed because of mutations in an array of oncogenic signaling pathways. The fact that many cancer cells cannot survive without MYC – a phenomenon termed “MYC addiction” – provides a compelling case for the development of MYC-specific targeted therapies. We propose a new strategy to inhibit MYC function by disrupting its essential interaction with TRRAP using small molecules. To achieve our goal, we developed a platform using luminescence complementation for identifying small molecules as inhibitors of the MYC:TRRAP interaction. Here we present validation of this assay by measuring the disruption of TRRAP binding caused by substitutions to the invariant and essential MYC homology 2 region of MYC.
Collapse
|
19
|
Yang X, Fan D, Troha AH, Ahn HM, Qian K, Liang B, Du Y, Fu H, Ivanov AA. Discovery of the first chemical tools to regulate MKK3-mediated MYC activation in cancer. Bioorg Med Chem 2021; 45:116324. [PMID: 34333394 DOI: 10.1016/j.bmc.2021.116324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
The transcription master regulator MYC plays an essential role in regulating major cellular programs and is a well-established therapeutic target in cancer. However, MYC targeting for drug discovery is challenging. New therapeutic approaches to control MYC-dependent malignancy are urgently needed. The mitogen-activated protein kinase kinase 3 (MKK3) binds and activates MYC in different cell types, and disruption of MKK3-MYC protein-protein interaction may provide a new strategy to target MYC-driven programs. However, there is no perturbagen available to interrogate and control this signaling arm. In this study, we assessed the drugability of the MKK3-MYC complex and discovered the first chemical tool to regulate MKK3-mediated MYC activation. We have designed a short 44-residue inhibitory peptide and developed a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay to discover the first small molecule MKK3-MYC PPI inhibitor. We have optimized and miniaturized the assay into an ultra-high-throughput screening (uHTS) 1536-well plate format. The pilot screen of ~6,000 compounds of a bioactive chemical library followed by multiple secondary and orthogonal assays revealed a quinoline derivative SGI-1027 as a potent inhibitor of MKK3-MYC PPI. We have shown that SGI-1027 disrupts the MKK3-MYC complex in cells and in vitro and inhibits MYC transcriptional activity in colon and breast cancer cells. In contrast, SGI-1027 does not inhibit MKK3 kinase activity and does not interfere with well-known MKK3-p38 and MYC-MAX complexes. Together, our studies demonstrate the drugability of MKK3-MYC PPI, provide the first chemical tool to interrogate its biological functions, and establish a new uHTS assay to enable future discovery of potent and selective inhibitors to regulate this oncogenic complex.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Dacheng Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Aidan Henry Troha
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology Emory University, Atlanta, GA, USA.
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Wu MJ, Chen CJ, Lin TY, Liu YY, Tseng LL, Cheng ML, Chuu CP, Tsai HK, Kuo WL, Kung HJ, Wang WC. Targeting KDM4B that coactivates c-Myc-regulated metabolism to suppress tumor growth in castration-resistant prostate cancer. Theranostics 2021; 11:7779-7796. [PMID: 34335964 PMCID: PMC8315051 DOI: 10.7150/thno.58729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: The progression of prostate cancer (PCa) to castration-resistant PCa (CRPC) despite continuous androgen deprivation therapy is a major clinical challenge. Over 90% of patients with CRPC exhibit sustained androgen receptor (AR) signaling. KDM4B that removes the repressive mark H3K9me3/2 is a transcriptional activator of AR and has been implicated in the development of CRPC. However, the mechanisms of KDM4B involvement in CRPC remain largely unknown. Here, we sought to demonstrate the molecular pathway mediated by KDM4B in CRPC and to provide proof-of-concept evidence that KDM4B is a potential CRPC target. Methods: CRPC cells (C4-2B or CWR22Rv1) depleted with KDM4B followed by cell proliferation (in vitro and xenograft), microarray, qRT-PCR, Seahorse Flux, and metabolomic analyses were employed to identify the expression and metabolic profiles mediated by KDM4B. Immunoprecipitation was used to determine the KDM4B-c-Myc interaction region. Reporter activity assay and ChIP analysis were used to characterize the KDM4B-c-Myc complex-mediated mechanistic actions. The clinical relevance between KDM4B and c-Myc was determined using UCSC Xena analysis and immunohistochemistry. Results: We showed that KDM4B knockdown impaired CRPC proliferation, switched Warburg to OXPHOS metabolism, and suppressed gene expressions including those targeted by c-Myc. We further demonstrated that KDM4B physically interacted with c-Myc and they were co-recruited to the c-Myc-binding sequence on the promoters of metabolic genes (LDHA, ENO1, and PFK). Importantly, KDM4B and c-Myc synergistically promoted the transactivation of the LDHA promoter in a demethylase-dependent manner. We also provided evidence that KDM4B and c-Myc are co-expressed in PCa tissue and that high expression of both is associated with worse clinical outcome. Conclusions: KDM4B partners with c-Myc and serves as a coactivator of c-Myc to directly enhance c-Myc-mediated metabolism, hence promoting CRPC progression. Targeting KDM4B is thus an alternative therapeutic strategy for advanced prostate cancers driven by c-Myc and AR.
Collapse
Affiliation(s)
- Meng-Jen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ting-Yu Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Ying-Yuan Liu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Lin-Lu Tseng
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Ling Kuo
- Division of Breast Surgery, General Surgery, Department of Surgery, Chang Gung Memorial Hospital Linko Medical Center, Taoyuan 333, Taiwan
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, CA 95817, USA
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
21
|
Kant R, Yang MH, Tseng CH, Yen CH, Li WY, Tyan YC, Chen M, Tzeng CC, Chen WC, You K, Wang WC, Chen YL, Chen YMA. Discovery of an Orally Efficacious MYC Inhibitor for Liver Cancer Using a GNMT-Based High-Throughput Screening System and Structure-Activity Relationship Analysis. J Med Chem 2021; 64:8992-9009. [PMID: 34132534 DOI: 10.1021/acs.jmedchem.1c00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycine-N-methyl transferase (GNMT) downregulation results in spontaneous hepatocellular carcinoma (HCC). Overexpression of GNMT inhibits the proliferation of liver cancer cell lines and prevents carcinogen-induced HCC, suggesting that GNMT induction is a potential approach for anti-HCC therapy. Herein, we used Huh7 GNMT promoter-driven screening to identify a GNMT inducer. Compound K78 was identified and validated for its induction of GNMT and inhibition of Huh7 cell growth. Subsequently, we employed structure-activity relationship analysis and found a potent GNMT inducer, K117. K117 inhibited Huh7 cell growth in vitro and xenograft in vivo. Oral administration of a dosage of K117 at 10 mpk (milligrams per kilogram) can inhibit Huh7 xenograft in a manner equivalent to the effect of sorafenib at a dosage of 25 mpk. A mechanistic study revealed that K117 is an MYC inhibitor. Ectopic expression of MYC using CMV promoter blocked K117-mediated MYC inhibition and GNMT induction. Overall, K117 is a potential lead compound for HCC- and MYC-dependent cancers.
Collapse
Affiliation(s)
- Rajni Kant
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-You Li
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Cheng Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kaiting You
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Wen-Chieh Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Yeh-Long Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ming Arthur Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
22
|
Wu X, Nelson M, Basu M, Srinivasan P, Lazarski C, Zhang P, Zheng P, Sandler AD. MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination. J Immunother Cancer 2021; 9:jitc-2020-001388. [PMID: 33757986 PMCID: PMC7993333 DOI: 10.1136/jitc-2020-001388] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Background MYC oncogene is deregulated in 70% of all human cancers and is associated with multiple oncogenic functions including immunosuppression in the tumor microenvironment. The role of MYC in the immune microenvironment of neuroblastoma and melanoma is investigated and the effect of targeting Myc on immunogenicity of cancer cells is evaluated. Methods Immune cell infiltrates and immunogenic pathway signatures in the context of MYCN amplification were analyzed in human neuroblastoma tumors and in metastatic melanoma. Dose response and cell susceptibility to MYC inhibitors (I-BET726 and JQ1) were determined in mouse cell lines. The influence of downregulating Myc in tumor cells was characterized by immunogenic pathway signatures and functional assays. Myc-suppressed tumor cells were used as whole cell vaccines in preclinical neuroblastoma and melanoma models. Results Analysis of immune phenotype in human neuroblastoma and melanoma tumors revealed that MYCN or c-MYC amplified tumors respectively are associated with suppressed immune cell infiltrates and functional pathways. Targeting Myc in cancer cells with I-BET726 and JQ1 results in cell cycle arrest and induces cell immunogenicity. Combining vaccination of Myc-inhibited tumor cells with checkpoint inhibition induced robust antitumor immunity and resulted in therapeutic cancer vaccine therapy in mouse neuroblastoma tumors. Despite vigorous antitumor immunity in the mouse melanoma model, upregulation of immunosuppressive pathways enabled tumor escape. Conclusions This study demonstrates that the Myc oncogene is an appropriate target for inducing tumor cell immunogenicity and suggests that Myc-suppressed whole tumor cells combined with checkpoint therapy could be used for formulating a personalized therapeutic tumor vaccine.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Marie Nelson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Mousumi Basu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Priya Srinivasan
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony David Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA .,Joseph E. Robert Jr. Center for Surgical Care, Childrens National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
23
|
Bauer K, Berghoff AS, Preusser M, Heller G, Zielinski CC, Valent P, Grunt TW. Degradation of BRD4 - a promising treatment approach not only for hematologic but also for solid cancer. Am J Cancer Res 2021; 11:530-545. [PMID: 33575085 PMCID: PMC7868748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023] Open
Abstract
Bromodomain (BRD) and extra-terminal (BET) proteins are epigenetic readers that regulate gene expression and promote cancer evolution. Pharmacological inactivation of BRD4 has recently been introduced as a promising anti-neoplastic approach that targets MYC oncogene expression. However, resistance against BRD4-targeting drugs has been described. We compared the efficacy of the small-molecule-type BET BRD inhibitor JQ1 with the recently developed BET protein degraders dBET1 and dBET6 in colon, breast, melanoma, ovarian, lung and prostate cancer cell lines. As determined by qPCR, all BRD4 targeting drugs dose-dependently decreased MYC expression, with dBET6 introducing the strongest downregulation of MYC. This correlated with the anti-proliferative activity of these drugs, which was at least one order of magnitude higher for dBET6 (IC50 0.001-0.5 µM) than for dBET1 or JQ1 (IC50 0.5-5 µM). Interestingly, when combined with commonly used cytotoxic therapeutics, dBET6 was found to promote anti-neoplastic effects and to counteract chemoresistance in most cancer cell lines. Moreover, JQ1 and both BET degraders strongly downregulated baseline and interferon-gamma induced expression of the immune checkpoint molecule PD-L1 in all cancer cell lines. Together, our data suggest that dBET6 outperforms first-generation BRD4 targeting drugs like dBET1 and JQ1, and decreases chemoresistance and immune resistance of cancer.
Collapse
Affiliation(s)
- Karin Bauer
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaAustria
| | - Anna S Berghoff
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| | - Matthias Preusser
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| | - Gerwin Heller
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| | - Christoph C Zielinski
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaAustria
| | - Thomas W Grunt
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| |
Collapse
|
24
|
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 2021; 20:3. [PMID: 33397405 PMCID: PMC7780693 DOI: 10.1186/s12943-020-01291-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023] Open
Abstract
c-Myc is a transcription factor that is constitutively and aberrantly expressed in over 70% of human cancers. Its direct inhibition has been shown to trigger rapid tumor regression in mice with only mild and fully reversible side effects, suggesting this to be a viable therapeutic strategy. Here we reassess the challenges of directly targeting c-Myc, evaluate lessons learned from current inhibitors, and explore how future strategies such as miniaturisation of Omomyc and targeting E-box binding could facilitate translation of c-Myc inhibitors into the clinic.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mara Gerhardt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
25
|
The Molecular 'Myc-anisms' Behind Myc-Driven Tumorigenesis and the Relevant Myc-Directed Therapeutics. Int J Mol Sci 2020; 21:ijms21249486. [PMID: 33322239 PMCID: PMC7764474 DOI: 10.3390/ijms21249486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
MYC, a well-studied proto-oncogene that is overexpressed in >20% of tumors across all cancers, is classically known as “undruggable” due to its crucial roles in cell processes and its lack of a drug binding pocket. Four decades of research and creativity led to the discovery of a myriad of indirect (and now some direct!) therapeutic strategies targeting Myc. This review explores the various mechanisms in which Myc promotes cancer and highlights five key therapeutic approaches to disrupt Myc, including transcription, Myc-Max dimerization, protein stability, cell cycle regulation, and metabolism, in order to develop more specific Myc-directed therapies.
Collapse
|
26
|
Utz B, Turpin R, Lampe J, Pouwels J, Klefström J. Assessment of the WAP-Myc mouse mammary tumor model for spontaneous metastasis. Sci Rep 2020; 10:18733. [PMID: 33127915 PMCID: PMC7599250 DOI: 10.1038/s41598-020-75411-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common form of cancer in women. Despite significant therapeutic advances in recent years, breast cancer also still causes the greatest number of cancer-related deaths in women, the vast majority of which (> 90%) are caused by metastases. However, very few mouse mammary cancer models exist that faithfully recapitulate the multistep metastatic process in human patients. Here we assessed the suitability of a syngrafting protocol for a Myc-driven mammary tumor model (WAP-Myc) to study autochthonous metastasis. A moderate but robust spontaneous lung metastasis rate of around 25% was attained. In addition, increased T cell infiltration was observed in metastatic tumors compared to donor and syngrafted primary tumors. Thus, the WAP-Myc syngrafting protocol is a suitable tool to study the mechanisms of metastasis in MYC-driven breast cancer.
Collapse
Affiliation(s)
- Begüm Utz
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rita Turpin
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Lampe
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
27
|
Liu X, Feng S, Zhang XD, Li J, Zhang K, Wu M, Thorne RF. Non-coding RNAs, metabolic stress and adaptive mechanisms in cancer. Cancer Lett 2020; 491:60-69. [PMID: 32726612 DOI: 10.1016/j.canlet.2020.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Metabolic reprogramming in cancer describes the multifaceted alterations in metabolism that contribute to tumorigenesis. Major determinants of metabolic phenotypes are the changes in signalling pathways associated with oncogenic activation together with cues from the tumor microenvironment. Therein, depleted oxygen and nutrient levels elicit metabolic stress, requiring cancer cells to engage adaptive mechanisms. Non-coding RNAs (ncRNAs) act as regulatory elements within metabolic pathways and their widespread dysregulation in cancer contributes to altered metabolic phenotypes. Indeed, ncRNAs are the regulatory accomplices of many prominent effectors of metabolic reprogramming including c-MYC and HIFs that are activated by metabolic stress. By example, this review illustrates the range of ncRNAs mechanisms impacting these effectors throughout their DNA-RNA-protein lifecycle along with presenting the mechanistic roles of ncRNAs in adaptive responses to glucose, glutamine and lipid deprivation. We also discuss the facultative activation of metabolic enzymes by ncRNAs, a phenomenon which may reflect a broad but currently invisible level of metabolic regulation. Finally, the translational challenges associated with ncRNA discoveries are discussed, emphasizing the gaps in knowledge together with importance of understanding the molecular basis of ncRNA regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoying Liu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Jinming Li
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China.
| | - Mian Wu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou, China.
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Environmental & Life Sciences, University of Newcastle, NSW, Australia.
| |
Collapse
|
28
|
Zhang L, Yao Y, Zhang S, Liu Y, Guo H, Ahmed M, Bell T, Zhang H, Han G, Lorence E, Badillo M, Zhou S, Sun Y, Di Francesco ME, Feng N, Haun R, Lan R, Mackintosh SG, Mao X, Song X, Zhang J, Pham LV, Lorenzi PL, Marszalek J, Heffernan T, Draetta G, Jones P, Futreal A, Nomie K, Wang L, Wang M. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci Transl Med 2020; 11:11/491/eaau1167. [PMID: 31068440 DOI: 10.1126/scitranslmed.aau1167] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/02/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022]
Abstract
Metabolic reprogramming is linked to cancer cell growth and proliferation, metastasis, and therapeutic resistance in a multitude of cancers. Targeting dysregulated metabolic pathways to overcome resistance, an urgent clinical need in all relapsed/refractory cancers, remains difficult. Through genomic analyses of clinical specimens, we show that metabolic reprogramming toward oxidative phosphorylation (OXPHOS) and glutaminolysis is associated with therapeutic resistance to the Bruton's tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma (MCL), a B cell lymphoma subtype with poor clinical outcomes. Inhibition of OXPHOS with a clinically applicable small molecule, IACS-010759, which targets complex I of the mitochondrial electron transport chain, results in marked growth inhibition in vitro and in vivo in ibrutinib-resistant patient-derived cancer models. This work suggests that targeting metabolic pathways to subvert therapeutic resistance is a clinically viable approach to treat highly refractory malignancies.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaojun Zhang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Guo
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Makhdum Ahmed
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taylor Bell
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Zhang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Lorence
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Badillo
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shouhao Zhou
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuting Sun
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ningping Feng
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Randy Haun
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Renny Lan
- Department of Biochemistry and Molecular Biology and Proteomics Core Facility, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology and Proteomics Core Facility, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xizeng Mao
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan V Pham
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Proteomics and Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Marszalek
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tim Heffernan
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio Draetta
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip Jones
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krystle Nomie
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
29
|
Liu Q, Zhou Q, Zhong P. circ_0067934 increases bladder cancer cell proliferation, migration and invasion through suppressing miR-1304 expression and increasing Myc expression levels. Exp Ther Med 2020; 19:3751-3759. [PMID: 32346439 PMCID: PMC7185149 DOI: 10.3892/etm.2020.8648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
circRNAs have been demonstrated to be key regulators of bladder cancer progression. The present study aimed to investigate the effects of circular RNA (circ)_0067934 in bladder cancer progression. A total of 54 patients with primary bladder cancer were enrolled, and their tumor tissues and adjacent normal bladder tissues were collected. For in vitro functional assays, T24 cells were transfected with sicirc_0067934, and Cell Counting Kit-8 was used to analyze the proliferative capacity of T24 cells. In addition, Transwell and Matrigel assays were used to assess the cell migration and invasion abilities, and a dual-luciferase reporter assay was used to investigate the relationship between miR-1304 and circ_0067934. Finally, reverse transcription-quantitative PCR and western blotting were performed to analyze gene and protein expression levels, respectively. circ_0067934 expression levels were significantly increased in bladder cancer tissues (P<0.001), which was associated with metastasis and a significantly decreased 5-year overall (P<0.05) and disease-free survival (P<0.05). In vitro, T24 cells in the small interfering RNA (si)circ_0067934 group demonstrated significantly reduced proliferation, migration and invasion abilities compared with the si negative control (siNC) group (P<0.01). In addition, the knockdown of circ_0067934 directly increased microRNA (miR)-1304 expression levels in T24 cells. Myc was subsequently discovered to be directly inhibited by miR-1304 and circ_0067934 was observed to increase Myc expression levels in T24 cells through inhibiting miR-1304 expression levels (P<0.01). Compared with the siNC group and sicirc_0067934 + Myc overexpression group, T24 cells in the sicirc_0067934 group exhibited significantly decreased proliferative, migratory and invasive abilities (P<0.01). In conclusion, circ_0067934 was demonstrated to increase bladder cancer cell proliferation, migration and invasion through promoting Myc expression levels via the suppression of miR-1304 expression.
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, Puren Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Qi Zhou
- Department of Urology, Hanchuan People's Hospital, Hanchuan, Hubei 431600, P.R. China
| | - Peng Zhong
- Department of Urology, Hanchuan People's Hospital, Hanchuan, Hubei 431600, P.R. China
| |
Collapse
|
30
|
Trifonova EA, Swarovskaja MG, Serebrova VN, Kutsenko IG, Agarkova LA, Stepanov IA, Zhilyakova OV, Gabidulina TV, Ijoykina EV, Stepanov VA. Genomic and Postgenomic Technologies in Preeclampsia Genetics. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Diab S, Yu M, Wang S. CDK7 Inhibitors in Cancer Therapy: The Sweet Smell of Success? J Med Chem 2020; 63:7458-7474. [DOI: 10.1021/acs.jmedchem.9b01985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah Diab
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Mingfeng Yu
- Drug Discovery and Development, University of South Australia Cancer Research Institute, Adelaide, SA 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, University of South Australia Cancer Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
32
|
Lan Y, Lou J, Hu J, Yu Z, Lyu W, Zhang B. Downregulation of SNRPG induces cell cycle arrest and sensitizes human glioblastoma cells to temozolomide by targeting Myc through a p53-dependent signaling pathway. Cancer Biol Med 2020; 17:112-131. [PMID: 32296580 PMCID: PMC7142844 DOI: 10.20892/j.issn.2095-3941.2019.0164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: Temozolomide (TMZ) is commonly used for glioblastoma multiforme (GBM) chemotherapy. However, drug resistance limits its therapeutic effect in GBM treatment. RNA-binding proteins (RBPs) have vital roles in posttranscriptional events. While disturbance of RBP-RNA network activity is potentially associated with cancer development, the precise mechanisms are not fully known. The SNRPG gene, encoding small nuclear ribonucleoprotein polypeptide G, was recently found to be related to cancer incidence, but its exact function has yet to be elucidated. Methods:SNRPG knockdown was achieved via short hairpin RNAs. Gene expression profiling and Western blot analyses were used to identify potential glioma cell growth signaling pathways affected by SNRPG. Xenograft tumors were examined to determine the carcinogenic effects of SNRPG on glioma tissues. Results: The SNRPG-mediated inhibitory effect on glioma cells might be due to the targeted prevention of Myc and p53. In addition, the effects of SNRPG loss on p53 levels and cell cycle progression were found to be Myc-dependent. Furthermore, SNRPG was increased in TMZ-resistant GBM cells, and downregulation of SNRPG potentially sensitized resistant cells to TMZ, suggesting that SNRPG deficiency decreases the chemoresistance of GBM cells to TMZ via the p53 signaling pathway. Our data confirmed that SNRPG suppression sensitizes GBM cells to TMZ by targeting Myc via the p53 signaling cascade. Conclusions: These results indicated that SNRPG is a probable molecular target of GBM and suggested that suppressing SNRPG in resistant GBM cells might be a substantially beneficial method for overcoming essential drug resistance.
Collapse
Affiliation(s)
- Yulong Lan
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jiliang Hu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Zhikuan Yu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Wen Lyu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Bo Zhang
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
33
|
Bisso A, Sabò A, Amati B. MYC in Germinal Center-derived lymphomas: Mechanisms and therapeutic opportunities. Immunol Rev 2019; 288:178-197. [PMID: 30874346 DOI: 10.1111/imr.12734] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The rearrangement of immunoglobulin loci during the germinal center reaction is associated with an increased risk of chromosomal translocations that activate oncogenes such as MYC, BCL2 or BCL6, thus contributing to the development of B-cell lymphomas. MYC and BCL2 activation are initiating events in Burkitt's (BL) and Follicular Lymphoma (FL), respectively, but can occur at later stages in other subtypes such as Diffuse Large-B Cell Lymphoma (DLBCL). MYC can also be activated during the progression of FL to the transformed stage. Thus, either DLBCL or FL can give rise to aggressive double-hit lymphomas (DHL) with concurrent activation of MYC and BCL2. Research over the last three decades has improved our understanding of the functions of these oncogenes and the basis for their cooperative action in lymphomagenesis. MYC, in particular, is a transcription factor that contributes to cell activation, growth and proliferation, while concomitantly sensitizing cells to apoptosis, the latter being blocked by BCL2. Here, we review our current knowledge about the role of MYC in germinal center B-cells and lymphomas, discuss MYC-induced dependencies that can sensitize cancer cells to select pharmacological inhibitors, and illustrate their therapeutic potential in aggressive lymphomas-and in particular in DHL, in combination with BCL2 inhibitors.
Collapse
Affiliation(s)
- Andrea Bisso
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Sabò
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
34
|
Feris EJ, Hinds JW, Cole MD. Formation of a structurally-stable conformation by the intrinsically disordered MYC:TRRAP complex. PLoS One 2019; 14:e0225784. [PMID: 31790487 PMCID: PMC6886782 DOI: 10.1371/journal.pone.0225784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023] Open
Abstract
Our primary goal is to therapeutically target the oncogenic transcription factor MYC to stop tumor growth and cancer progression. Here, we report aspects of the biophysical states of the MYC protein and its interaction with one of the best-characterized MYC cofactors, TRansactivation/tRansformation-domain Associated Protein (TRRAP). The MYC:TRRAP interaction is critical for MYC function in promoting cancer. The interaction between MYC and TRRAP occurs at a precise region in the MYC protein, called MYC Homology Box 2 (MB2), which is central to the MYC transactivation domain (TAD). Although the MYC TAD is inherently disordered, this report suggests that MB2 may acquire a defined structure when complexed with TRRAP which could be exploited for the investigation of inhibitors of MYC function by preventing this protein-protein interaction (PPI). The MYC TAD, and in particular the MB2 motif, is unique and invariant in evolution, suggesting that MB2 is an ideal site for inhibiting MYC function.
Collapse
Affiliation(s)
- Edmond J. Feris
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - John W. Hinds
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Michael D. Cole
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
- * E-mail:
| |
Collapse
|
35
|
Han H, Jain AD, Truica MI, Izquierdo-Ferrer J, Anker JF, Lysy B, Sagar V, Luan Y, Chalmers ZR, Unno K, Mok H, Vatapalli R, Yoo YA, Rodriguez Y, Kandela I, Parker JB, Chakravarti D, Mishra RK, Schiltz GE, Abdulkadir SA. Small-Molecule MYC Inhibitors Suppress Tumor Growth and Enhance Immunotherapy. Cancer Cell 2019; 36:483-497.e15. [PMID: 31679823 PMCID: PMC6939458 DOI: 10.1016/j.ccell.2019.10.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/19/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023]
Abstract
Small molecules that directly target MYC and are also well tolerated in vivo will provide invaluable chemical probes and potential anti-cancer therapeutic agents. We developed a series of small-molecule MYC inhibitors that engage MYC inside cells, disrupt MYC/MAX dimers, and impair MYC-driven gene expression. The compounds enhance MYC phosphorylation on threonine-58, consequently increasing proteasome-mediated MYC degradation. The initial lead, MYC inhibitor 361 (MYCi361), suppressed in vivo tumor growth in mice, increased tumor immune cell infiltration, upregulated PD-L1 on tumors, and sensitized tumors to anti-PD1 immunotherapy. However, 361 demonstrated a narrow therapeutic index. An improved analog, MYCi975 showed better tolerability. These findings suggest the potential of small-molecule MYC inhibitors as chemical probes and possible anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Huiying Han
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Atul D Jain
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Mihai I Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Javier Izquierdo-Ferrer
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Jonathan F Anker
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Barbara Lysy
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vinay Sagar
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Luan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zachary R Chalmers
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kenji Unno
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hanlin Mok
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rajita Vatapalli
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Young A Yoo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yara Rodriguez
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - J Brandon Parker
- Division of Reproductive Science in Medicine, Department of OB/GYN, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine, Department of OB/GYN, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
36
|
Zhang Y, Zhou L, Bandyopadhyay D, Sharma K, Allen AJ, Kmieciak M, Grant S. The Covalent CDK7 Inhibitor THZ1 Potently Induces Apoptosis in Multiple Myeloma Cells In Vitro and In Vivo. Clin Cancer Res 2019; 25:6195-6205. [PMID: 31358538 DOI: 10.1158/1078-0432.ccr-18-3788] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/17/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to characterize the activity of the covalent CDK7 inhibitor THZ1 in multiple myeloma models. EXPERIMENTAL DESIGN Multiple myeloma lines were exposed to varying THZ1 concentrations alone or with carfilzomib or ABT-199, after which apoptosis was monitored by flow cytometry, protein expression by Western blot analysis, mRNA by RT-PCR. Analogous studies were performed in cells ectopically expressing c-MYC, MCL-1, or BCL-XL, or CRISPER-Cas CDK7 sgRNA knockout. Primary multiple myeloma cells were exposed to THZ1 ± carfilzomib or ABT-199. In vivo effects of THZ1 were examined in a systemic U266 xenograft model. RESULTS THZ1 markedly diminished multiple myeloma cell proliferation and survival despite bortezomib or stromal cell resistance in association with G2-M arrest, inactivation of CTD RNA Pol II, dephosphorylation of CDKs 7 as well as 1, 2, and 9, and MCL-1, BCL-xL, and c-MYC mRNA or protein downregulation. Ectopic MCL-1, c-MYC, or BCL-XL expression significantly protected cells from THZ1 lethality. Both THZ1 and CRISPR-Cas CDK7 knockout sharply diminished multiple myeloma cell proliferation and significantly increased carfilzomib and ABT-199 lethality. Parallel effects and interactions were observed in primary CD138+ (N = 22) or primitive multiple myeloma cells (CD138-/CD19+/CD20+/CD27+; N = 16). THZ1 administration [10 mg/kg i.p. twice daily (BID), 5 days/week] significantly improved survival in a systemic multiple myeloma xenograft model with minimal toxicity and induced similar events observed in vitro, for example, MCL-1 and c-MYC downregulation. CONCLUSIONS THZ1 potently reduces multiple myeloma cell proliferation through transcriptional downregulation of MCL-1, BCL-XL, and c-MYC in vitro and in vivo. It warrants further attention as a therapeutic agent in multiple myeloma.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hematology/Oncology and Palliative Care, Virginia Commonwealth University, Richmond, Virginia
| | - Liang Zhou
- Division of Hematology/Oncology and Palliative Care, Virginia Commonwealth University, Richmond, Virginia
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Kanika Sharma
- Division of Hematology/Oncology and Palliative Care, Virginia Commonwealth University, Richmond, Virginia
| | - Alexander Joseph Allen
- Division of Hematology/Oncology and Palliative Care, Virginia Commonwealth University, Richmond, Virginia
| | | | - Steven Grant
- Division of Hematology/Oncology and Palliative Care, Virginia Commonwealth University, Richmond, Virginia. .,Massey Cancer Center, Richmond, Virginia
| |
Collapse
|
37
|
Sammak S, Hamdani N, Gorrec F, Allen MD, Freund SMV, Bycroft M, Zinzalla G. Crystal Structures and Nuclear Magnetic Resonance Studies of the Apo Form of the c-MYC:MAX bHLHZip Complex Reveal a Helical Basic Region in the Absence of DNA. Biochemistry 2019; 58:3144-3154. [PMID: 31260268 PMCID: PMC6791285 DOI: 10.1021/acs.biochem.9b00296] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The c-MYC transcription
factor is a master regulator of cell growth
and proliferation and is an established target for cancer therapy.
This basic helix–loop–helix Zip protein forms a heterodimer
with its obligatory partner MAX, which binds to DNA via the basic
region. Considerable research efforts are focused on targeting the
heterodimerization interface and the interaction of the complex with
DNA. The only available crystal structure is that of a c-MYC:MAX complex
artificially tethered by an engineered disulfide linker and prebound
to DNA. We have carried out a detailed structural analysis of the
apo form of the c-MYC:MAX complex, with no artificial linker, both
in solution using nuclear magnetic resonance (NMR) spectroscopy and
by X-ray crystallography. We have obtained crystal structures in three
different crystal forms, with resolutions between 1.35 and 2.2 Å,
that show extensive helical structure in the basic region. Determination
of the α-helical propensity using NMR chemical shift analysis
shows that the basic region of c-MYC and, to a lesser extent, that
of MAX populate helical conformations. We have also assigned the NMR
spectra of the c-MYC basic helix–loop–helix Zip motif
in the absence of MAX and showed that the basic region has an intrinsic
helical propensity even in the absence of its dimerization partner.
The presence of helical structure in the basic regions in the absence
of DNA suggests that the molecular recognition occurs via a conformational
selection rather than an induced fit. Our work provides both insight
into the mechanism of DNA binding and structural information to aid
in the development of MYC inhibitors.
Collapse
Affiliation(s)
- Susan Sammak
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| | - Najoua Hamdani
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| | - Fabrice Gorrec
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Mark D Allen
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Mark Bycroft
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Giovanna Zinzalla
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| |
Collapse
|
38
|
Long noncoding RNA EMS connects c-Myc to cell cycle control and tumorigenesis. Proc Natl Acad Sci U S A 2019; 116:14620-14629. [PMID: 31262817 DOI: 10.1073/pnas.1903432116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulated expression of c-Myc is an important molecular hallmark of cancer. The oncogenic function of c-Myc has been largely attributed to its intrinsic nature as a master transcription factor. Here, we report the long noncoding RNA (lncRNA) E2F1 messenger RNA (mRNA) stabilizing factor (EMS) as a direct c-Myc transcriptional target. EMS functions as an oncogenic molecule by promoting G1/S cell cycle progression. Mechanistically, EMS cooperates with the RNA binding protein RALY to stabilize E2F1 mRNA, and thereby increases E2F1 expression. Furthermore, EMS is able to connect c-Myc to cell cycle control and tumorigenesis via modulating E2F1 mRNA stability. Together, these findings reveal a previously unappreciated mechanism through which c-Myc induces E2F1 expression and also implicate EMS as an important player in the regulation of c-Myc function.
Collapse
|
39
|
Fu XH, Zhang X, Yang H, Xu XW, Hu ZL, Yan J, Zheng XL, Wei RR, Zhang ZQ, Tang SR, Geng MY, Huang X. CUDC-907 displays potent antitumor activity against human pancreatic adenocarcinoma in vitro and in vivo through inhibition of HDAC6 to downregulate c-Myc expression. Acta Pharmacol Sin 2019; 40:677-688. [PMID: 30224636 PMCID: PMC6786396 DOI: 10.1038/s41401-018-0108-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic adenocarcinoma is a highly malignant cancer that often involves a deregulation of c-Myc. It has been shown that c-Myc plays a pivotal role in the regulation of a variety of physiological processes and is involved in early neoplastic development, resulting in poor progression. Hence, suppression of c-Myc overexpression is a potential strategy for pancreatic cancer therapy. CUDC-907 is a novel dual-acting inhibitor of phosphoinositide 3-kinase (PI3K) and histone deacetylase (HDAC). It has shown potential efficiency in patients with lymphoma, multiple myeloma, or thyroid cancer, as well as in solid tumors with c-Myc alterations, but the evidence is lacking for how CUDC-907 regulates c-Myc. In this study, we investigated the effect of CUDC-907 on human pancreatic cancer cells in vitro and in vivo. Our results showed that CUDC-907 potently inhibited the proliferation of 9 pancreatic cancer cell lines in vitro with IC50 values ranging from 6.7 to 54.5 nM. Furthermore, we revealed the antitumor mechanism of CUDC-907 in Aspc-1, PANC-1, and Capan-1 pancreatic cancer cells: it suppressed the HDAC6 subunit, thus downregulating c-Myc protein levels, which was a mode of action distinct from the existing mechanisms. Consistently, the extraordinary antitumor activity of CUDC-907 accompanied by downregulation of c-Myc and Ki67 expression in tumor tissue was observed in a human pancreatic cancer Aspc-1 xenograft nude mouse model in vivo. Our results suggest that CUDC-907 can be a valuable therapeutic option for treating pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Xu-Hong Fu
- College of Pharmacy, Nanchang University, Nanchang, 330006, China
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiong Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong Yang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Wei Xu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zong-Long Hu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Juan Yan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing-Ling Zheng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rong-Rui Wei
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhu-Qing Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | | - Mei-Yu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
40
|
Hickmann AK, Frick M, Hadaschik D, Battke F, Bittl M, Ganslandt O, Biskup S, Döcker D. Molecular tumor analysis and liquid biopsy: a feasibility investigation analyzing circulating tumor DNA in patients with central nervous system lymphomas. BMC Cancer 2019; 19:192. [PMID: 30823914 PMCID: PMC6397454 DOI: 10.1186/s12885-019-5394-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background Central nervous system lymphomas (CNSL) is a devastating disease. Currently, a confirmatory biopsy is required prior to treatment. Objective Our investigation aims to prove the feasibility of a minimally-invasive diagnostic approach for the molecular characterization of CNSL. Methods Tissue biopsies from 6 patients with suspected CNSL were analyzed using a 649gene next-generation sequencing (NGS) tumor panel (tumor vs. reference tissue (EDTA-blood)). The individual somatic mutation pattern was used as a basis for the digital PCR analyzing circulating tumor DNA (ctDNA) from plasma and cerebrospinal fluid (CSF) samples, identifying one selected tumor mutation during this first step of the feasibility investigation. Results NGS-analysis of biopsy tissue revealed a specific somatic mutation pattern in all confirmed lymphoma samples (n = 5, NGS-sensitivity 100%) and none in the sample identified as normal brain tissue (NGS-specificity 100%). cfDNA-extraction was dependent on the extraction-kit used and feasible in 3 samples, in all of which somatic mutations were detectable (100%). Analysis of CSF-derived cfDNA was superior to plasma-derived cfDNA and routine microscopic analysis (lymphoma cells: n = 2, 40%). One patient showed a divergent molecular pattern, typical of Burkitt-Lymphoma (HIV+, serologic evidence of EBV-infection). Lumbar puncture was tolerated without complications, whereas biopsy caused 3 hemorrhages. Conclusions Our investigation provides evidence that analysis of cfDNA in central nervous system tumors is feasible using the described protocol. Molecular characterization of CNSL could be achieved by analysis of CSF-derived cfDNA. Knowledge of a tumor’s specific mutation pattern may allow initiation of targeted therapies, treatment surveillance and could lead to minimally-invasive diagnostics in the future. Electronic supplementary material The online version of this article (10.1186/s12885-019-5394-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Katrin Hickmann
- Department of Neurosurgery, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9600, St. Gallen, Switzerland. .,Neurosurgical Department, Klinikum Stuttgart, Stuttgart, Germany.
| | - Maximilian Frick
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany
| | - Dirk Hadaschik
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany
| | - Florian Battke
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany
| | - Markus Bittl
- Neurosurgical Department, Klinikum Stuttgart, Stuttgart, Germany
| | - Oliver Ganslandt
- Neurosurgical Department, Klinikum Stuttgart, Stuttgart, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Outpatient Clinic for Human Genetics, Tübingen, Germany
| | - Dennis Döcker
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany.,Outpatient Clinic for Human Genetics, Tübingen, Germany
| |
Collapse
|
41
|
Kant R, Yen CH, Hung JH, Lu CK, Tung CY, Chang PC, Chen YH, Tyan YC, Chen YMA. Induction of GNMT by 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside through proteasome-independent MYC downregulation in hepatocellular carcinoma. Sci Rep 2019; 9:1968. [PMID: 30760754 PMCID: PMC6374375 DOI: 10.1038/s41598-018-37292-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/02/2018] [Indexed: 01/26/2023] Open
Abstract
Glycine-N-methyl transferase (GNMT) a tumor suppressor for hepatocellular carcinoma (HCC) plays a crucial role in liver homeostasis. Its expression is downregulated in almost all the tumor tissues of HCC while the mechanism of this downregulation is not yet fully understood. Recently, we identified 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside (PGG) as a GNMT promoter enhancer compound in HCC. In this study, we aimed to delineate the mechanism by which PGG enhances GNMT expression and to investigate its effect on GNMT suppression in HCC. Microarray and pathway enrichment analysis revealed that MYC was a major target of PGG. PGG suppressed MYC mRNA and protein expression in Huh7 and Hep G2 cells in a dose- and time-dependent fashion. Furthermore, MYC expression was also reduced in xenograft tumors in PGG treated mice. Moreover, shRNA-mediated knocked-down or pharmacological inhibition of MYC resulted in a significant induction of GNMT promoter activity and endogenous GNMT mRNA expression in Huh7 cells. In contrast, overexpression of MYC significantly inhibited GNMT promoter activity and endogenous GNMT protein expression. In addition, antibodies against MYC effectively precipitated the human GNMT promoter in a chromatin immunoprecipitation assay. Lastly, GNMT expression was negatively correlated with MYC expression in human HCC samples. Interestingly, PGG not only inhibited MYC gene expression but also promoted MYC protein degradation through proteasome-independent pathways. This work reveals a novel anticancer mechanism of PGG via downregulation of MYC expression and establishes a therapeutic rationale for treatment of MYC overexpressing cancers using PGG. Our data also provide a novel mechanistic understanding of GNMT regulation through MYC in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Rajni Kant
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural products and Drug Development (CHY), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Hsien Hung
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, College of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Yi Tung
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Chang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Hao Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chang Tyan
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
42
|
Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun 2019; 10:620. [PMID: 30728358 PMCID: PMC6365524 DOI: 10.1038/s41467-019-08541-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 01/17/2019] [Indexed: 01/14/2023] Open
Abstract
Elevated MYC expression sensitizes tumor cells to apoptosis but the therapeutic potential of this mechanism remains unclear. We find, in a model of MYC-driven breast cancer, that pharmacological activation of AMPK strongly synergizes with BCL-2/BCL-XL inhibitors to activate apoptosis. We demonstrate the translational potential of an AMPK and BCL-2/BCL-XL co-targeting strategy in ex vivo and in vivo models of MYC-high breast cancer. Metformin combined with navitoclax or venetoclax efficiently inhibited tumor growth, conferred survival benefits and induced tumor infiltration by immune cells. However, withdrawal of the drugs allowed tumor re-growth with presentation of PD-1+/CD8+ T cell infiltrates, suggesting immune escape. A two-step treatment regimen, beginning with neoadjuvant metformin+venetoclax to induce apoptosis and followed by adjuvant metformin+venetoclax+anti-PD-1 treatment to overcome immune escape, led to durable antitumor responses even after drug withdrawal. We demonstrate that pharmacological reactivation of MYC-dependent apoptosis is a powerful antitumor strategy involving both tumor cell depletion and immunosurveillance. Elevated MYC levels can sensitize tumor cells to apoptosis. In this study, the authors demonstrate that AMPK activation and BCL-2/BCL-XL inhibition have a synergistic effect on apoptosis, and that together with anti PD-1 therapy they can suppress Myc-driven mammary tumor growth.
Collapse
|
43
|
Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 2019; 337:48-53. [PMID: 30832981 DOI: 10.1016/j.cellimm.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
The Bromodomain and Extra-terminal (BET) family of proteins were first recognized as important epigenetic regulators in inflammatory processes; however, there is increasing evidence to support the notion that BET proteins also play a critical role in 'reading' chromatin and recruiting chromatin-regulating enzymes to control gene expression in a number of pathologic processes, including cancer. To this end, the mechanisms by which BET proteins regulate chromatin remodeling and promote tumor-associated inflammation have been heavily studied over the past decade. This article to review the biology of BET protein dysfunction in promoting tumor-associated inflammation and cancer progression and the application of small molecule inhibitors that target specific BET proteins, alone or in combination with immunomodulatory agents as a novel therapeutic strategy for cancer patients.
Collapse
|
44
|
Wang J, Liu Z, Wang Z, Wang S, Chen Z, Li Z, Zhang M, Zou J, Dong B, Gao J, Shen L. Targeting c-Myc: JQ1 as a promising option for c-Myc-amplified esophageal squamous cell carcinoma. Cancer Lett 2019; 419:64-74. [PMID: 29366803 DOI: 10.1016/j.canlet.2018.01.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
c-Myc amplification-induced cell cycle dysregulation is a common cause for esophageal squamous cell carcinoma (ESCC), but no approved targeted drug is available so far. The bromodomain inhibitor JQ1, which targets c-Myc, exerts anti-tumor activity in multiple cancers. However, the role of JQ1 in ESCC remains unknown. In this study, we reported that JQ1 had potent anti-proliferative effects on ESCC cells in both time- and dose-dependent manners by inducing cell cycle arrest at G1 phase, cell apoptosis, and the mesenchymal-epithelial transition. Follow-up studies revealed that both c-Myc/cyclin/Rb and PI3K/AKT signaling pathways were inactivated by JQ1, as indicated by the downregulation of c-Myc, cyclin A/E, and phosphorylated Rb, AKT and S6. Tumor suppression induced by JQ1 in c-Myc amplified or highly expressed xenografts was higher than that in xenografts with low expression, suggesting its potential role in prediction. In conclusion, targeting c-Myc by JQ1 could cause significant tumor suppression in ESCC both in vitro and in vivo. Also, c-Myc amplification or high expression might serve as a potential biomarker and provide a promising therapeutic option for ESCC.
Collapse
Affiliation(s)
- Jingyuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Zhentao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Ziqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong, 518036, China
| | - Zuhua Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Mengqi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Jianling Zou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Jing Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China; Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong, 518036, China.
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China; Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
45
|
Homoharringtonine deregulates MYC transcriptional expression by directly binding NF-κB repressing factor. Proc Natl Acad Sci U S A 2019; 116:2220-2225. [PMID: 30659143 DOI: 10.1073/pnas.1818539116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homoharringtonine (HHT), a known protein synthesis inhibitor, has an anti-myeloid leukemia effect and potentiates the therapeutic efficacy of anthracycline/cytarabine induction regimens for acute myelogenous leukemia (AML) with favorable and intermediate prognoses, especially in the t(8;21) subtype. Here we provide evidence showing that HHT inhibits the activity of leukemia-initiating cells (Lin-/Sca-1-/c-kit+; LICs) in a t(8;21) murine leukemia model and exerts a down-regulating effect on MYC pathway genes in human t(8;21) leukemia cells (Kasumi-1). We discovered that NF-κB repressing factor (NKRF) is bound directly by HHT via the second double-strand RNA-binding motif (DSRM2) domain, which is the nuclear localization signal of NKRF. A series of deletion and mutagenesis experiments mapped HHT direct binding sites to K479 and C480 amino acids in the DSRM2 domain. HHT treatment shifts NKRF from the nucleus (including nucleoli) to the cytoplasm by occupying the DSRM2 domain, strengthens the p65-NKRF interaction, and interferes with p65-p50 complex formation, thereby attenuating the transactivation activity of p65 on the MYC gene. Moreover, HHT significantly decreases the expression of KIT, a frequently mutated and/or highly expressed gene in t(8;21) AML, in concert with MYC down-regulation. Our work thus identifies a mechanism of action of HHT that is different from, but acts in concert with, the known mode of action of this compound. These results justify further clinical testing of HHT in AML.
Collapse
|
46
|
Ren Y, Bi C, Zhao X, Lwin T, Wang C, Yuan J, Silva AS, Shah BD, Fang B, Li T, Koomen JM, Jiang H, Chavez JC, Pham LV, Sudalagunta PR, Wan L, Wang X, Dalton WS, Moscinski LC, Shain KH, Vose J, Cleveland JL, Sotomayor EM, Fu K, Tao J. PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas. J Clin Invest 2018; 128:5517-5530. [PMID: 30260324 PMCID: PMC6264635 DOI: 10.1172/jci122533] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Concordant activation of MYC and BCL-2 oncoproteins in double-hit lymphoma (DHL) results in aggressive disease that is refractory to treatment. By integrating activity-based proteomic profiling and drug screens, polo-like kinase-1 (PLK1) was identified as an essential regulator of the MYC-dependent kinome in DHL. Notably, PLK1 was expressed at high levels in DHL, correlated with MYC expression, and connoted poor outcome. Further, PLK1 signaling augmented MYC protein stability, and in turn, MYC directly induced PLK1 transcription, establishing a feed-forward MYC-PLK1 circuit in DHL. Finally, inhibition of PLK1 triggered degradation of MYC and of the antiapoptotic protein MCL-1, and PLK1 inhibitors showed synergy with BCL-2 antagonists in blocking DHL cell growth, survival, and tumorigenicity, supporting clinical targeting of PLK1 in DHL.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Chengfeng Bi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Xiaohong Zhao
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tint Lwin
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Cheng Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ji Yuan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | - Bin Fang
- Proteomics Core Facility, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tao Li
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - John M. Koomen
- Proteomics Core Facility, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Huijuan Jiang
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
- Tianjin Medical School, Tianjin, China
| | | | - Lan V. Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Lixin Wan
- Department of Molecular Oncology and
| | - Xuefeng Wang
- Department of Biostatics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | | | - Lynn C. Moscinski
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | | | - Julie Vose
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John L. Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Eduardo M. Sotomayor
- Department of Hematology & Oncology, George Washington University, Washington, DC, USA
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jianguo Tao
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
- Department of Malignant Hematology, and
| |
Collapse
|
47
|
Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. Proc Natl Acad Sci U S A 2018; 115:E11661-E11670. [PMID: 30478051 PMCID: PMC6294934 DOI: 10.1073/pnas.1805950115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here, we report that the long noncoding RNA (lncRNA) ovarian adenocarcinoma-amplified lncRNA (OVAAL) is a mediator of cancer cell resistance, counteracting the effects of apoptosis-inducing agents acting through both the extrinsic and intrinsic pathways. Building upon previous reports associating OVAAL amplification with ovarian and endometrial cancers, we now show that OVAAL overexpression occurs during the pathogenesis of colorectal cancer and melanoma. Mechanistically, our findings also establish that OVAAL expression more generally contributes a prosurvival role to cancer cells under steady-state conditions. OVAAL accomplishes these actions utilizing distinct functional modalities: one promoting activation of RAF/MEK/ERK signaling and the other blocking cell entry into senescence. Our study demonstrates that expression of a single OVAAL in cancer cells drives two distinct but coordinated actions contributing to cancer pathology. Long noncoding RNAs (lncRNAs) function through a diverse array of mechanisms that are not presently fully understood. Here, we sought to find lncRNAs differentially regulated in cancer cells resistant to either TNF-related apoptosis-inducing ligand (TRAIL) or the Mcl-1 inhibitor UMI-77, agents that act through the extrinsic and intrinsic apoptotic pathways, respectively. This work identified a commonly up-regulated lncRNA, ovarian adenocarcinoma-amplified lncRNA (OVAAL), that conferred apoptotic resistance in multiple cancer types. Analysis of clinical samples revealed OVAAL expression was significantly increased in colorectal cancers and melanoma in comparison to the corresponding normal tissues. Functional investigations showed that OVAAL depletion significantly inhibited cancer cell proliferation and retarded tumor xenograft growth. Mechanically, OVAAL physically interacted with serine/threonine-protein kinase 3 (STK3), which, in turn, enhanced the binding between STK3 and Raf-1. The ternary complex OVAAL/STK3/Raf-1 enhanced the activation of the RAF protooncogene serine/threonine-protein kinase (RAF)/mitogen-activated protein kinase kinase 1 (MEK)/ERK signaling cascade, thus promoting c-Myc–mediated cell proliferation and Mcl-1–mediated cell survival. On the other hand, depletion of OVAAL triggered cellular senescence through polypyrimidine tract-binding protein 1 (PTBP1)–mediated p27 expression, which was regulated by competitive binding between OVAAL and p27 mRNA to PTBP1. Additionally, c-Myc was demonstrated to drive OVAAL transcription, indicating a positive feedback loop between c-Myc and OVAAL in controlling tumor growth. Taken together, these results reveal that OVAAL contributes to the survival of cancer cells through dual mechanisms controlling RAF/MEK/ERK signaling and p27-mediated cell senescence.
Collapse
|
48
|
Targeting the MYC Oncogene in Burkitt Lymphoma through HSP90 Inhibition. Cancers (Basel) 2018; 10:cancers10110448. [PMID: 30453475 PMCID: PMC6266960 DOI: 10.3390/cancers10110448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Overexpression of the MYC oncogene is a key feature of many human malignancies including Burkitt lymphoma. While MYC is widely regarded to be a promising therapeutic target, a clinically effective MYC inhibitor is still elusive. Here, we report an alternative strategy, targeting MYC indirectly through inhibition of the HSP90 machinery. We found that inhibition of HSP90 function reduces MYC expression in human Burkitt lymphoma through suppression of MYC transcription and destabilization of MYC protein, thereby diminishing the proliferation of tumor cells. Consistently, treatment of Burkitt lymphoma cell lines with HSP90 inhibitors (17-AAG or 17-DMAG) was accompanied by downregulation of canonical MYC target genes. Combination treatment with 17-DMAG and the proteasome inhibitor, MG-132, led to accumulation of MYC protein, indicating that upon HSP90 inhibition, MYC is degraded by the proteasome. Using co-immunoprecipitation, we furthermore demonstrated a direct interaction between MYC and HSP90, indicating that MYC is an HSP90 client protein in Burkitt lymphoma. Together, we report here the use of HSP90 inhibitors as an alternative approach to target the MYC oncogene and its network in Burkitt lymphoma.
Collapse
|
49
|
Gastric Cancer Cell Lines Have Different MYC-Regulated Expression Patterns but Share a Common Core of Altered Genes. Can J Gastroenterol Hepatol 2018; 2018:5804376. [PMID: 30410872 PMCID: PMC6206580 DOI: 10.1155/2018/5804376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022] Open
Abstract
MYC is an oncogene responsible for excessive cell growth in cancer, enabling transcriptional activation of genes involved in cell cycle regulation, metabolism, and apoptosis, and is usually overexpressed in gastric cancer (GC). By using siRNA and Next-Generation Sequencing (NGS), we identified MYC-regulated differentially expressed Genes (DEGs) in three Brazilian gastric cancer cell lines representing the histological subtypes of GC (diffuse, intestinal, and metastasis). The DEGs were picked using Sailfish software, followed by Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using KEGG. We found 11 significantly enriched gene sets by using enrichment score (ES), False Discovery Rate (FDR), and nominal P-values. We identified a total of 5.471 DEGs with correlation over (80%). In diffuse-type and in metastatic GC cell lines, MYC-silencing caused DEGs downregulation, while the intestinal-type GC cells presented overall DEGs upregulation after MYC siRNA depletion. We were able to detect 11 significant gene sets when comparing our samples to the hallmark collection of gene expression, enriched mostly for the following hallmarks: proliferation, pathway, signaling, metabolic, and DNA damage response. When we analyzed our DEGs considering KEGG metabolic pathways, we found 12 common branches covering a wide range of biological functions, and three of them were common to all three cell lines: ubiquitin-mediated proteolysis, ribosomes, and system and epithelial cell signaling in Helicobacter pylori infection. The GC cell lines used in this study share 14 MYC-regulated genes, but their gene expression profile is different for each histological subtype of GC. Our results present a computational analysis of MYC-related signatures in GC, and we present evidence that GC cell lines representing distinct histological subtypes of this disease have different MYC-regulated expression profiles but share a common core of altered genes. This is an important step towards the understanding of MYC's role in gastric carcinogenesis and an indication of probable new drug targets in stomach cancer.
Collapse
|
50
|
Tsoli M, Wadham C, Pinese M, Failes T, Joshi S, Mould E, Yin JX, Gayevskiy V, Kumar A, Kaplan W, Ekert PG, Saletta F, Franshaw L, Liu J, Gifford A, Weber MA, Rodriguez M, Cohn RJ, Arndt G, Tyrrell V, Haber M, Trahair T, Marshall GM, McDonald K, Cowley MJ, Ziegler DS. Integration of genomics, high throughput drug screening, and personalized xenograft models as a novel precision medicine paradigm for high risk pediatric cancer. Cancer Biol Ther 2018; 19:1078-1087. [PMID: 30299205 PMCID: PMC6301829 DOI: 10.1080/15384047.2018.1491498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pediatric high grade gliomas (HGG) are primary brain malignancies that result in significant morbidity and mortality. One of the challenges in their treatment is inter- and intra-tumoral heterogeneity. Precision medicine approaches have the potential to enhance diagnostic, prognostic and/or therapeutic information. In this case study we describe the molecular characterization of a pediatric HGG and the use of an integrated approach based on genomic, in vitro and in vivo testing to identify actionable targets and treatment options. Molecular analysis based on WGS performed on initial and recurrent tumor biopsies revealed mutations in TP53, TSC1 and CIC genes, focal amplification of MYCN, and copy number gains in SMO and c-MET. Transcriptomic analysis identified increased expression of MYCN, and genes involved in sonic hedgehog signaling proteins (SHH, SMO, GLI1, GLI2) and receptor tyrosine kinase pathways (PLK, AURKA, c-MET). HTS revealed no cytotoxic efficacy of SHH pathway inhibitors while sensitivity was observed to the mTOR inhibitor temsirolimus, the ALK inhibitor ceritinib, and the PLK1 inhibitor BI2536. Based on the integrated approach, temsirolimus, ceritinib, BI2536 and standard therapy temozolomide were selected for further in vivo evaluation. Using the PDX animal model (median survival 28 days) we showed significant in vivo activity for mTOR inhibition by temsirolimus and BI2536 (median survival 109 and 115.5 days respectively) while ceritinib and temozolomide had only a moderate effect (43 and 75.5 days median survival respectively). This case study demonstrates that an integrated approach based on genomic, in vitro and in vivo drug efficacy testing in a PDX model may be useful to guide the management of high risk pediatric brain tumor in a clinically meaningful timeframe.
Collapse
Affiliation(s)
- Maria Tsoli
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Carol Wadham
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Mark Pinese
- b Prince of Wales Clinical School , University of New South Wales , Randwick , New South Wales , Australia
| | - Tim Failes
- c ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Swapna Joshi
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Emily Mould
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Julia X Yin
- d Kinghorn Centre for Clinical Genomics , Garvan Institute of Medical Research, University of New South Wales , Randwick, New South Wales , Australia.,e Cure Brain Cancer Neuro-Oncology Group , Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales , Randwick, New South Wales , Australia
| | - Velimir Gayevskiy
- f Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, The Sir Peter MacCallum Department of Oncology , The University of Melbourne, Melbourne , Victoria , Australia
| | - Amit Kumar
- f Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, The Sir Peter MacCallum Department of Oncology , The University of Melbourne, Melbourne , Victoria , Australia.,g Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research , Parkville, Melbourne , Victoria , Australia
| | - Warren Kaplan
- d Kinghorn Centre for Clinical Genomics , Garvan Institute of Medical Research, University of New South Wales , Randwick, New South Wales , Australia
| | - Paul G Ekert
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia.,h Cell Biology, Murdoch Children's Research Institute, Royal Children's Hospital , Parkville, Melbourne , Victoria , Australia
| | - Federica Saletta
- i Children's Cancer Research Unit, The Children's Hospital at Westmead , Westmead , NSW , Australia
| | - Laura Franshaw
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Jie Liu
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Andrew Gifford
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia.,j Anatomical Pathology, Prince of Wales Hospital , Randwick , New South Wales , Australia
| | - Martin A Weber
- j Anatomical Pathology, Prince of Wales Hospital , Randwick , New South Wales , Australia
| | - Michael Rodriguez
- j Anatomical Pathology, Prince of Wales Hospital , Randwick , New South Wales , Australia
| | - Richard J Cohn
- k Kids Cancer Centre, Sydney Children's Hospital , Randwick , New South Wales , Australia
| | - Greg Arndt
- c ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Vanessa Tyrrell
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Michelle Haber
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia
| | - Toby Trahair
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia.,k Kids Cancer Centre, Sydney Children's Hospital , Randwick , New South Wales , Australia
| | - Glenn M Marshall
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia.,k Kids Cancer Centre, Sydney Children's Hospital , Randwick , New South Wales , Australia
| | - Kerrie McDonald
- b Prince of Wales Clinical School , University of New South Wales , Randwick , New South Wales , Australia.,e Cure Brain Cancer Neuro-Oncology Group , Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales , Randwick, New South Wales , Australia
| | - Mark J Cowley
- d Kinghorn Centre for Clinical Genomics , Garvan Institute of Medical Research, University of New South Wales , Randwick, New South Wales , Australia.,l St Vincent's Clinical School , University of New South Wales , Randwick , New South Wales , Australia
| | - David S Ziegler
- a Children's Cancer Institute, Lowy Cancer Research Centre , University of New South Wales , Randwick , New South Wales , Australia.,k Kids Cancer Centre, Sydney Children's Hospital , Randwick , New South Wales , Australia
| |
Collapse
|