1
|
Tuysuz MZ, Kayhan H, Saglam ASY, Senturk F, Bagriacik EU, Yagci M, Canseven AG. Radiofrequency Induced Time-Dependent Alterations in Gene Expression and Apoptosis in Glioblastoma Cell Line. Bioelectromagnetics 2025; 46:e22543. [PMID: 39810728 DOI: 10.1002/bem.22543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h). To achieve this, we designed and implemented an in vitro RF exposure system operating at a frequency of 2.1 GHz, specifically for cell culture studies, with an average specific absorption rate (SAR) of 1.12 ± 0.18 W/kg determined through numerical dosimetry calculations. Results reveal a significant influence of a 48 h exposure to a 2.1 GHz RF field on U118-MG cell viability, gene expression, and the induction of caspase (CASP) dependent apoptosis. Notably, increased CASP3, CASP8, and CASP9 mRNA levels were observed after 24 and 48 h of RF treatment. However, only the 48 h RF exposure resulted in apoptotic cell death and a significant elevation in the BAX/BCL-2 ratio. This observed effect may be influenced by extended exposure durations surpassing the cell's doubling time. The increased BAX/BCL-2 ratio, which acts as a key switch for apoptosis, and the heterogeneous morphology of the astrocyte-derived U118-MG cell line may also play a role in this effect.
Collapse
Affiliation(s)
- Mehmet Zahid Tuysuz
- Department of Biophysics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Handan Kayhan
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatih Senturk
- Department of Biophysics, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Emin Umit Bagriacik
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Munci Yagci
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | |
Collapse
|
2
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Cantu JC, Butterworth JW, Payne JA, Echchgadda I. Transcriptional response of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields. Bioelectromagnetics 2024; 45:348-362. [PMID: 39540619 DOI: 10.1002/bem.22517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 11/16/2024]
Abstract
Exposure to radiofrequency (RF) electromagnetic fields (EMF) has been associated with the modulation of neuronal electrophysiology and synaptic plasticity. Given the potential of these changes to coincide with alterations in gene expression, this study investigated whether a transcriptional response would occur in neurons following exposure to RF-EMF, under both thermal and nonthermal conditions. Rat primary hippocampal neurons (PHNs) underwent either a single (one-time) or a multiple (3-times, once a day) exposures to RF-EMF (3.0 GHz, CW) at two different mean specific absorption rate (SAR) values of 0.57 W/kg or 5.91 W/kg, which induced a temperature change (ΔT °C) of approximately 0.3°C or 3.6°C, respectively. Alteration in transcription in the RF-EMF-exposed PHNs versus the sham counterparts was assessed at 0, 4, and 24 h postexposure via high-throughput RNA sequencing using Illumina HiSeq. 2000. A total of 20 differentially expressed genes (DEGs) exhibited significant upregulation due to RF-EMF exposure, observed only with the high SAR dose that induced a thermal rise. However, the expression of these DEGs was not significant at 24 h postexposure. Our findings confirmed a lack of nonthermal effects on gene expression under low RF-EMF exposure conditions as evaluated. Additionally, the results indicated a slight thermal effect of exposures at the dose nearing the standards threshold of 4 W/kg; however, the effect appeared to be transient. The study suggests that RF-EMF exposures at a level close to the standards threshold, despite inducing mild temperature elevations (i.e., 3-5°C above normal), would not trigger biologically critical cellular changes.
Collapse
Affiliation(s)
- Jody C Cantu
- General Dynamics Information Technology, JBSA Fort Sam Houston, Texas, USA
| | - Joseph W Butterworth
- General Dynamics Information Technology, JBSA Fort Sam Houston, Texas, USA
- Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas, USA
| | - Jason A Payne
- Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas, USA
| | - Ibtissam Echchgadda
- Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
4
|
Shirbandi K, Khalafi M, J Bevelacqua J, Sadeghian N, Adiban S, Bahaeddini Zarandi F, Mortazavi SA, Mortazavi SH, Mortazavi SMJ, S Welsh J. Exposure to Low Levels of Radiofrequency Electromagnetic Fields Emitted from Cell-phones as a Promising Treatment of Alzheimer's Disease: A Scoping Review Study. J Biomed Phys Eng 2023; 13:3-16. [PMID: 36818013 PMCID: PMC9923247 DOI: 10.31661/jbpe.v0i0.2109-1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/01/2022] [Indexed: 06/18/2023]
Abstract
Background Alzheimer's disease (AD) is one of the most significant public health concerns and tremendous economic challenges. Studies conducted over the past decades show that exposure to radiofrequency electromagnetic fields (RF-EMFs) may relieve AD symptoms. Objective To determine if exposure to RF-EMFs emitted by cellphones affect the risk of AD. Material and Methods In this review, all relevant published articles reporting an association of cell phone use with AD were studied. We systematically searched international datasets to identify relevant studies. Finally, 33 studies were included in the review. Our review discusses the effects of RF-EMFs on the amyloid β (Aβ), oxidative stress, apoptosis, reactive oxygen species (ROS), neuronal death, and astrocyte responses. Moreover, the role of exposure parameters, including the type of exposure, its duration, and specific absorption rate (SAR), are discussed. Results Progressive factors of AD such as Aβ, myelin basic protein (MBP), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and neurofilament light polypeptide (NFL) were decreased. While tau protein showed no change, factors affecting brain activity such as glial fibrillary acidic protein (GFAP), mitogen-activated protein kinases (MAPKs), cerebral blood flow (CBF), brain temperature, and neuronal activity were increased. Conclusion Exposure to low levels of RF-EMFs can reduce the risk of AD by increasing MAPK and GFAP and decreasing MBP. Considering the role of apoptosis in AD and the effect of RF-EMF on the progression of the process, this review indicates the positive effect of these exposures.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Department of International Affairs (IAD), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Khalafi
- Allied Health Science, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Najmeh Sadeghian
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saina Adiban
- Biotechnology Student, Islamic Azad University, Tehran, Iran
| | | | | | | | | | - James S Welsh
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, USA
- Department of Radiation Oncology, Edward Hines Jr VA Hospital Hines, Illinois, USA
| |
Collapse
|
5
|
Lai H, Levitt BB. The roles of intensity, exposure duration, and modulation on the biological effects of radiofrequency radiation and exposure guidelines. Electromagn Biol Med 2022; 41:230-255. [PMID: 35438055 DOI: 10.1080/15368378.2022.2065683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the literature on three important exposure metrics that are inadequately represented in most major radiofrequency radiation (RFR) exposure guidelines today: intensity, exposure duration, and signal modulation. Exposure intensity produces unpredictable effects as demonstrated by nonlinear effects. This is most likely caused by the biological system's ability to adjust and compensate but could lead to eventual biomic breakdown after prolonged exposure. A review of 112 low-intensity studies reveals that biological effects of RFR could occur at a median specific absorption rate of 0.0165 W/kg. Intensity and exposure duration interact since the dose of energy absorbed is the product of intensity and time. The result is that RFR behaves like a biological "stressor" capable of affecting numerous living systems. In addition to intensity and duration, man-made RFR is generally modulated to allow information to be encrypted. The effects of modulation on biological functions are not well understood. Four types of modulation outcomes are discussed. In addition, it is invalid to make direct comparisons between thermal energy and radiofrequency electromagnetic energy. Research data indicate that electromagnetic energy is more biologically potent in causing effects than thermal changes. The two likely functionthrough different mechanisms. As such, any current RFR exposure guidelines based on acute continuous-wave exposure are inadequate for health protection.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
6
|
Tayebi-khorami M, Chegeni N, Birgani MT, Danyaei A, Fardid R, Zafari J. Construction a CO2 Incubator for Cell Culture with Capability of Transmitting Microwave Radiation. JOURNAL OF MEDICAL SIGNALS & SENSORS 2022; 12:127-132. [PMID: 35755974 PMCID: PMC9215836 DOI: 10.4103/jmss.jmss_113_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The objective of this study was to design and construct a CO2 incubator with nonmetallic walls and to investigate the viability of the cells and microwave irradiance inside this incubator. METHODS Because the walls of conventional incubators are made of metal, this causes scattering, reflection, and absorption of electromagnetic waves. We decided to build a nonmetallic wall incubator to examine cells under microwave radiation. Incubator walls were made using polyvinyl chloride and Plexiglas and then temperature, CO2 pressure, and humidity sensors were placed in it. Atmel® ATmega1284, a low-power CMOS 8-bit microcontroller, collects and analyzes the sensor information, and if the values are less or more than the specified limits, the command to cut off or connect the electric current to the heater or CO2 solenoid valve is sent. Using a fan inside the incubator chamber, temperature and CO2 are uniforms. The temperature of the points where the cell culture plates are placed was measured, and the temperature difference was compared. Ovarian cancer cells (A2780) were cultured in the hand-made and commercial incubators at different times, and cell viability was compared by the MTT method. Microwave radiation in the incubator was also investigated using a spectrum analyzer. The survival of cells after microwave irradiation in the incubator was measured and compared with control cells. RESULTS The data showed that there was no significant difference in temperature of different points in hand-made incubator and also there was no significant difference between the viability of cells cultured in the hand-made and commercial incubators. The survival of irradiated cells in the incubator was reduced compared to control cells, but this reduction was not significant. CONCLUSION This incubator has the ability to maintain cells and study the effects of electromagnetic radiations on the desired cells, which becomes possible by using this device.
Collapse
Affiliation(s)
- Mansour Tayebi-khorami
- Department of Medical Physics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nahid Chegeni
- Department of Medical Physics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Danyaei
- Department of Medical Physics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Fardid
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jaber Zafari
- Laser Application in Medical Science Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Analyzing the impact of 900 MHz EMF short-term exposure to the expression of 667 miRNAs in human peripheral blood cells. Sci Rep 2021; 11:4444. [PMID: 33627699 PMCID: PMC7904780 DOI: 10.1038/s41598-021-82278-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
More than ever before, people around the world are frequently exposed to different sections of the electromagnetic spectrum, mainly emitted from wireless modern communication technologies. Especially, the level of knowledge on non-thermal biological EMF effects remains controversial. New technologies allow for a more detailed detection of non-coding RNAs which affect the post-transcriptional control. Such method shall be applied in this work to investigate the response of human blood cells to electromagnetic irradiation. In this ex vivo in vitro study, we exposed peripheral blood cells from 5 male donors to a continuous wave of 900 MHz EMF for 0, 30, 60 and 90 min. Significant micro RNA (miRNA) expression changes (p ≤ 0.05) above or below the SHAM exposed samples were evaluated using a quantitative real time PCR platform for simultaneous detection of 667 miRNAs called low density array. Only significant miRNA expression changes which were detectable in at least 60% of the samples per exposure group were analyzed. The results were compared with data from room temperature + 2 °C (RT + 2 °C) samples (here referred to as hyperthermia) to exclude miRNA expression altered by hyperthermia. The validation study by using the same donors and study design was performed after an interval of 2 years. When analyzing a total of 667 miRNAs during the screening study, 2 promising candidate miRNAs were identified, which were down regulated almost twice and showed a complete separation from the unexposed control group (miR-194 at 30 min and miR-939 at 60 min). The p-values even survived the Bonferroni correction for multiple comparisons (p = 0.0007 and p = 0.004, respectively). None of these miRNAs were expressed at a second time point after EMF exposure. Following an alternative analysis approach, we examined for miRNAs revealing an expected significant association of differential miRNA expression with the dose-time EMF exposure product, separately for each donor. Donors 2 and 3 revealed 11 and 10 miRNA species being significantly associated with EMF exposure which differed significantly from the other donors showing a minor number of differentially expressed miRNAs and could identify donors 2 and 3 as particularly EMF-responsive. The measurements were repeated after 2 years. The number of expressed/non-expressed miRNAs was almost similar (97.4%), but neither the number nor the previously differentially expressed miRNAs could be reproduced. Our data neither support evidence of early changes at miRNA expression level in human whole blood cells after 900 MHz EMF exposure nor the identification of EMF-responsive individuals.
Collapse
|
8
|
Darvishi M, Mashati P, Kandala S, Paridar M, Takhviji V, Ebrahimi H, Zibara K, Khosravi A. Electromagnetic radiation: a new charming actor in hematopoiesis? Expert Rev Hematol 2021; 14:47-58. [PMID: 32951483 DOI: 10.1080/17474086.2020.1826301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Electromagnetic waves play indispensable roles in life. Many studies addressed the outcomes of Electromagnetic field (EMF) on various biological functions such as cell proliferation, gene expression, epigenetic alterations, genotoxic, and carcinogenic effects, and its therapeutic applications in medicine. The impact of EMF on bone marrow (BM) is of high importance; however, EMF effects on BM hematopoiesis are not well understood. AREAS COVERED Publications in English were searched in ISI Web of Knowledge and Google Scholar with no restriction on publication date. A literature review has been conducted on the consequences of EMF exposure on BM non-hematopoietic stem cells, mesenchymal stem cells, and the application of these waves in regenerative medicine. Human blood cells such as lymphocytes, red blood cells and their precursors are altered qualitatively and quantitatively following electromagnetic radiation. Therefore, studying the impact of EMF on related signaling pathways in hematopoiesis and hematopoietic stem cell (HSC) differentiation could give a better insight into its efficacy on hematopoiesis and its potential therapeutic usage. EXPERT OPINION In this review, authors evaluated the possible biologic consequences of EMF on the hematopoiesis process in addition to its probable application in the treatment of hematologic disorders.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pargol Mashati
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sahithi Kandala
- University of Colorado, Boulder Department: Electrical, Computer and Energy Engineering , Colarada, USA
| | - Mostafa Paridar
- Deputy of Management and Resources Development, Ministry of Health and Medical Education , Tehran, Iran
| | - Vahideh Takhviji
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Hossein Ebrahimi
- School of Nursing, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Kazem Zibara
- PRASE & Biology Department, Faculty of Sciences I, Lebanese University , Beirut, Lebanon
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
9
|
Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Bei R, Masuelli L, D’Inzeo G, Paffi A, Trodella E, Sgura A. Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int J Mol Sci 2020; 21:E7069. [PMID: 32992895 PMCID: PMC7584027 DOI: 10.3390/ijms21197069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing exposure to radiofrequency electromagnetic fields (RF-EMF), especially from wireless communication devices, raises questions about their possible adverse health effects. So far, several in vitro studies evaluating RF-EMF genotoxic and cytotoxic non-thermal effects have reported contradictory results that could be mainly due to inadequate experimental design and lack of well-characterized exposure systems and conditions. Moreover, a topic poorly investigated is related to signal modulation induced by electromagnetic fields. The aim of this study was to perform an analysis of the potential non-thermal biological effects induced by 2.45 GHz exposures through a characterized exposure system and a multimethodological approach. Human fibroblasts were exposed to continuous (CW) and pulsed (PW) signals for 2 h in a wire patch cell-based exposure system at the specific absorption rate (SAR) of 0.7 W/kg. The evaluation of the potential biological effects was carried out through a multimethodological approach, including classical biological markers (genotoxic, cell cycle, and ultrastructural) and the evaluation of gene expression profile through the powerful high-throughput next generation sequencing (NGS) RNA sequencing (RNA-seq) approach. Our results suggest that 2.45 GHz radiofrequency fields did not induce significant biological effects at a cellular or molecular level for the evaluated exposure parameters and conditions.
Collapse
Affiliation(s)
- Elisa Regalbuto
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| | - Anna Anselmo
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Stefania De Sanctis
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Valeria Franchini
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Florigio Lista
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Guglielmo D’Inzeo
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Eugenio Trodella
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| |
Collapse
|
10
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
11
|
Del Re B, Bersani F, Giorgi G. Effect of electromagnetic field exposure on the transcription of repetitive DNA elements in human cells. Electromagn Biol Med 2019; 38:262-270. [DOI: 10.1080/15368378.2019.1669634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Ferdinando Bersani
- Department of Physics and Astronomy, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Gene expression of certain heat shock proteins and antioxidant enzymes in microwave exposed rats. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Ohtani S, Ushiyama A, Maeda M, Wada K, Suzuki Y, Hattori K, Kunugita N, Ishii K. Global Analysis of Transcriptional Expression in Mice Exposed to Intermediate Frequency Magnetic Fields Utilized for Wireless Power Transfer Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101851. [PMID: 31130593 PMCID: PMC6572459 DOI: 10.3390/ijerph16101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intermediate frequency magnetic fields (IF-MFs) at around 85 kHz are a component of wireless power transfer systems used for charging electrical vehicles. However, limited data exist on the potential health effects of IF-MFs. We performed a comprehensive analysis of transcriptional expression in mice after IF-MF exposure. MATERIALS AND METHODS We developed an IF-MF exposure system to generate a high magnetic flux density (25.3 mT). The system can expose the IF-MF for a mouse whole-body without considering thermal effects. After 10 days (1 h/day) of exposure, a comprehensive expression analysis was performed using microarray data from both the brain and liver. RESULTS No significant differences in transcriptional expression were detected in the 35,240 probe-sets when controlling the false discovery rate (FDR) under a fold change cutoff >1.5. However, several differential expressions were detected without FDR-adjustment, but these were not confirmed by RT-PCR analysis. CONCLUSIONS To our knowledge, this is the first in vivo study to evaluate the biological effects of IF-MF exposure with an intense magnetic flux density 253 times higher than the occupational restriction level defined by the International Commission on Non-Ionizing Radiation Protection guidelines. However, our findings indicate that transcriptional responses in the living body are not affected under these conditions.
Collapse
Affiliation(s)
- Shin Ohtani
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.
| | - Machiko Maeda
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Keiji Wada
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan.
| | - Yukihisa Suzuki
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan.
| | - Kenji Hattori
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.
| | - Kazuyuki Ishii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
14
|
Miyakoshi J, Tonomura H, Koyama S, Narita E, Shinohara N. Effects of Exposure to 5.8 GHz Electromagnetic Field on Micronucleus Formation, DNA Strand Breaks, and Heat Shock Protein Expressions in Cells Derived From Human Eye. IEEE Trans Nanobioscience 2019; 18:257-260. [DOI: 10.1109/tnb.2019.2905491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Lamkowski A, Kreitlow M, Radunz J, Willenbockel M, Sabath F, Schuhn W, Stiemer M, Fichte LO, Dudzinski M, Böhmelt S, Ullmann R, Majewski M, Franchini V, Eder S, Rump A, Port M, Abend M. Gene Expression Analysis in Human Peripheral Blood Cells after 900 MHz RF-EMF Short-Term Exposure. Radiat Res 2018; 189:529-540. [DOI: 10.1667/rr14909.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andreas Lamkowski
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, AllergieZENTRUM, Klinikum der Universität München, Munich, Germany
| | - Matthias Kreitlow
- NBC-Protection, Bundeswehr Research Institute for Protective Technology, Munster, Germany
| | - Jörg Radunz
- NBC-Protection, Bundeswehr Research Institute for Protective Technology, Munster, Germany
| | - Martin Willenbockel
- NBC-Protection, Bundeswehr Research Institute for Protective Technology, Munster, Germany
| | - Frank Sabath
- NBC-Protection, Bundeswehr Research Institute for Protective Technology, Munster, Germany
| | - Winfried Schuhn
- NBC-Protection, Bundeswehr Research Institute for Protective Technology, Munster, Germany
| | - Marcus Stiemer
- Theory of Electrical Engineering, Helmut Schmidt University of the Federal Armed Forces, Hamburg, Germany
| | - Lars Ole Fichte
- Theory of Electrical Engineering, Helmut Schmidt University of the Federal Armed Forces, Hamburg, Germany
| | - Michael Dudzinski
- Theory of Electrical Engineering, Helmut Schmidt University of the Federal Armed Forces, Hamburg, Germany
| | - Sebastian Böhmelt
- Theory of Electrical Engineering, Helmut Schmidt University of the Federal Armed Forces, Hamburg, Germany
| | | | | | | | - Stefan Eder
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Alexis Rump
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
16
|
Miyakoshi J, Matsubara E, Narita E, Koyama S, Shimizu Y, Kawai S. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein]. YAKUGAKU ZASSHI 2018; 138:97-106. [PMID: 28931786 DOI: 10.1248/yakushi.17-00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.
Collapse
Affiliation(s)
- Junji Miyakoshi
- Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Eri Matsubara
- Department of Wood-Based Materials, Forestry and Forest Products Research Institute
| | - Eijiro Narita
- Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Shin Koyama
- Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Yoko Shimizu
- Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Shuichi Kawai
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University
| |
Collapse
|
17
|
Kayhan H, Esmekaya MA, Saglam ASY, Tuysuz MZ, Canseven AG, Yagci AM, Seyhan N. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells? Cell Biochem Biophys 2016; 74:99-107. [PMID: 27260669 DOI: 10.1007/s12013-016-0734-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Abstract
Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p < 0.05). The percentage of MW-exposed cells in G1 phase was significantly higher than the percentage of control cells in G1 phase. MW radiation caused cell cycle arrest in G1 phase. These results showed that 2.1 GHz W-CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression.
Collapse
Affiliation(s)
- Handan Kayhan
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey.
| | - Meric Arda Esmekaya
- Department of Biophysics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Mehmed Zahid Tuysuz
- Department of Biophysics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Ayşe Gulnihal Canseven
- Department of Biophysics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Abdullah Munci Yagci
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Nesrin Seyhan
- Department of Biophysics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
18
|
Manna D, Ghosh R. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol Med 2016; 35:265-301. [PMID: 27053138 DOI: 10.3109/15368378.2015.1092158] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.
Collapse
Affiliation(s)
- Debashri Manna
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| | - Rita Ghosh
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| |
Collapse
|
19
|
Makale M, Kesari S. Cell Phones and Glioma Risk: An Update. Neurooncol Pract 2015. [DOI: 10.1093/nop/npv045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Ye W, Wang F, Zhang W, Fang N, Zhao W, Wang J. Effect of Mobile Phone Radiation on Cardiovascular Development of Chick Embryo. Anat Histol Embryol 2015; 45:197-208. [PMID: 26171674 DOI: 10.1111/ahe.12188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/10/2015] [Indexed: 01/16/2023]
Abstract
The biological effects on cardiovascular development of chicken embryos were examined after radiation exposure using mobile phone (900 MHz; specific absorption rate˜1.07 W/kg) intermittently 3 h per day during incubation. Samples were selected by morphological and histological methods. The results showed the rate of embryonic mortality and cardiac deformity increased significantly in exposed group (P < 0.05). No any histological pathological changes were observed on Day 5-7 (D5-D7) of incubation. A higher distribution of lipid droplets was unexpectedly present in myocardial tissue from the exposure groups on D10-D13. Soon afterwards, myofilament disruption, atrioventricular valve focal necrosis, mitochondria vacuolization and atrial natriuretic peptide (ANP) decrease appeared on D15-D21 of incubation. Comet assay data showed the haemocyte mean tail in the exposed group was significantly larger than that of the control (P < 0.01). The arterial vascular wall of exposed group was thicker (P < 0.05) than that of the control on D13, which was reversed to normal in later stages. Our findings suggest that long-term exposure of MPR may induce myocardium pathological changes, DNA damage and increased mortality; however, there was little effect on vascular development.
Collapse
Affiliation(s)
- W Ye
- Medical College of Henan University, Kaifeng, 475000, China.,Institute of Zoology, School of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - F Wang
- Medical College of Henan University, Kaifeng, 475000, China
| | - W Zhang
- Medical College of Henan University, Kaifeng, 475000, China
| | - N Fang
- Medical College of Henan University, Kaifeng, 475000, China
| | - W Zhao
- Medical College of Henan University, Kaifeng, 475000, China
| | - J Wang
- Institute of Zoology, School of Life Science, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
21
|
Koyama S, Narita E, Suzuki Y, Taki M, Shinohara N, Miyakoshi J. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. JOURNAL OF RADIATION RESEARCH 2015; 56:30-6. [PMID: 25194051 PMCID: PMC4572595 DOI: 10.1093/jrr/rru075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/11/2014] [Accepted: 08/05/2014] [Indexed: 05/30/2023]
Abstract
The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells.
Collapse
Affiliation(s)
- Shin Koyama
- Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Eijiro Narita
- Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshihisa Suzuki
- Department of Electrical Engineering, Graduate School of Engineering, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Masao Taki
- Department of Electrical Engineering, Graduate School of Engineering, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Naoki Shinohara
- Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Junji Miyakoshi
- Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
22
|
Habauzit D, Le Quément C, Zhadobov M, Martin C, Aubry M, Sauleau R, Le Dréan Y. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure. PLoS One 2014; 9:e109435. [PMID: 25302706 PMCID: PMC4193780 DOI: 10.1371/journal.pone.0109435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/13/2014] [Indexed: 12/23/2022] Open
Abstract
Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW) will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2), led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed). Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed). By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.
Collapse
Affiliation(s)
- Denis Habauzit
- Transcription, Environment and Cancer group, IRSET - Institute of Research in Environmental and Occupational Health, INSERM U1085, University of Rennes 1, Rennes, France
| | - Catherine Le Quément
- Transcription, Environment and Cancer group, IRSET - Institute of Research in Environmental and Occupational Health, INSERM U1085, University of Rennes 1, Rennes, France
| | - Maxim Zhadobov
- Institute of Electronics and Telecommunications of Rennes - IETR, University of Rennes 1, UMR CNRS 6164, Rennes, France
| | - Catherine Martin
- Transcription, Environment and Cancer group, IRSET - Institute of Research in Environmental and Occupational Health, INSERM U1085, University of Rennes 1, Rennes, France
| | - Marc Aubry
- Plate-forme Génomique Santé, Biosit, Université de Rennes 1, Rennes, France
| | - Ronan Sauleau
- Institute of Electronics and Telecommunications of Rennes - IETR, University of Rennes 1, UMR CNRS 6164, Rennes, France
| | - Yves Le Dréan
- Transcription, Environment and Cancer group, IRSET - Institute of Research in Environmental and Occupational Health, INSERM U1085, University of Rennes 1, Rennes, France
- * E-mail:
| |
Collapse
|
23
|
Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci 2014; 15:5366-87. [PMID: 24681584 PMCID: PMC4013569 DOI: 10.3390/ijms15045366] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/17/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Selene Tognarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| |
Collapse
|
24
|
Zhang Y, She F, Li L, Chen C, Xu S, Luo X, Li M, He M, Yu Z. p25/CDK5 is partially involved in neuronal injury induced by radiofrequency electromagnetic field exposure. Int J Radiat Biol 2013; 89:976-84. [DOI: 10.3109/09553002.2013.817699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Carpenter DO. Human disease resulting from exposure to electromagnetic fields. REVIEWS ON ENVIRONMENTAL HEALTH 2013; 28:159-172. [PMID: 24280284 DOI: 10.1515/reveh-2013-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Abstract
Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.
Collapse
|
26
|
Bourthoumieu S, Magnaudeix A, Terro F, Leveque P, Collin A, Yardin C. Study of p53 expression and post-transcriptional modifications after GSM-900 radiofrequency exposure of human amniotic cells. Bioelectromagnetics 2012; 34:52-60. [DOI: 10.1002/bem.21744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/09/2012] [Indexed: 11/07/2022]
|
27
|
Le Quément C, Nicolas Nicolaz C, Zhadobov M, Desmots F, Sauleau R, Aubry M, Michel D, Le Dréan Y. Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics 2011; 33:147-58. [DOI: 10.1002/bem.20693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/30/2011] [Indexed: 12/26/2022]
|