1
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
2
|
Wang X, Liu C, Wang J, Tian Z. Resveratrol suppresses NSCLC cell growth, invasion and migration by mediating Wnt/β-catenin pathway via downregulating SIX4 and SPHK2. J Chemother 2024; 36:411-421. [PMID: 37968995 DOI: 10.1080/1120009x.2023.2281759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Resveratrol (RSV) has been found to have a cancer-suppressing effect in a variety of cancers, including non-small cell lung cancer (NSCLC). Studies have shown that sine oculis homeobox 4 (SIX4) and sphingosine kinase 2 (SPHK2) are tumour promoters of NSCLC. However, whether RSV regulates SIX4 and SPHK2 to mediate NSCLC cell functions remains unclear. NSCLC cell functions were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, transwell assay and wound healing assay. Protein expression levels were detected by western blot. SIX4 and SPHK2 mRNA levels in NSCLC tumour tissues were examined using quantitative real-time PCR. In addition, mice xenograft models were built to explore the impact of RSV on NSCLC tumour growth. RSV inhibited NSCLC cell proliferation, invasion and migration, while facilitated apoptosis. SIX4 and SPHK2 were up-regulated in NSCLC tissues and cells, and their expression was reduced by RSV. Knockdown of SIX4 and SPHK2 suppressed NSCLC cell growth, invasion and migration, and the regulation of RSV on NSCLC cell functions could be reversed by SIX4 and SPHK2 overexpression. RSV inactivated Wnt/β-catenin pathway via decreasing SIX4 and SPHK2 levels. In animal experiments, RSV reduced NSCLC tumour growth in vivo. RSV repressed NSCLC malignant process by decreasing SIX4 and SPHK2 levels to restrain the activity of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaolan Wang
- Department of Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Caixia Liu
- Department of Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Jian Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Zexiang Tian
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| |
Collapse
|
3
|
Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, Ali S, Uddin S, Akil AAS, Singh M, Macha MA, Bhat AA. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother 2022; 154:113610. [PMID: 36030591 DOI: 10.1016/j.biopha.2022.113610] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a devastating disease and is the second leading cause of death worldwide. Surgery, chemotherapy (CT), and/or radiation therapy (RT) are the treatment of choice for most advanced tumors. Unfortunately, treatment failure due to intrinsic and acquired resistance to the current CT and RT is a significant challenge associated with poor patient prognosis. There is an urgent need to develop and identify agents that can sensitize tumor cells to chemo-radiation therapy (CRT) with minimal cytotoxicity to the healthy tissues. While many recent studies have identified the underlying molecular mechanisms and therapeutic targets for CRT failure, using small molecule inhibitors to chemo/radio sensitize tumors is associated with high toxicity and increased morbidity. Natural products have long been used as chemopreventive agents in many cancers. Combining many of these compounds with the standard chemotherapeutic agents or with RT has shown synergistic effects on cancer cell death and overall improvement in patient survival. Based on the available data, there is strong evidence that natural products have a robust therapeutic potential along with CRT and their well-known chemopreventive effects in many solid tumors. This review article reports updated literature on different natural products used as CT or RT sensitizers in many solid tumors. This is the first review discussing CT and RT sensitizers together in cancer.
Collapse
Affiliation(s)
- Sabah Nisar
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Summaiya Khatoon
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, India.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Ajaz A Bhat
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
4
|
Rules of Chinese Herbal Intervention of Radiation Pneumonia Based on Network Pharmacology and Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7313864. [PMID: 35509624 PMCID: PMC9060976 DOI: 10.1155/2022/7313864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/11/2022] [Accepted: 04/02/2022] [Indexed: 12/30/2022]
Abstract
Objective To explore the mechanism and principles of traditional Chinese medicine (TCM) in the management of radiation pneumonia. Methods The targets of radiation pneumonia were obtained by screening the GeneCards, OMIM, TTD, DrugBank, and HERB databases, analyzing ADME parameters. In addition, compounds and Chinese herbs that can act on the targets were screened from the TCMSP database. The core target compounds for TCM were used to construct the target-compound, compound-traditional Chinese medicine, and target-compound-traditional Chinese medicine networks. These networks were further used to select the core targets, compounds, and TCM. The binding strength between the core targets and compounds was determined using AutoDock Vina. The trajectory for the molecular dynamics simulation was completed by Desmond version 2020. Results A total of 55 active targets in radiation pneumonia were identified. Subsequently, 137 candidate compounds and 469 Chinese herbs were matched. Frequency statistics showed that the Chinese herbs that could interfere with radiation pneumonia were mainly bitter, spicy, and sweet, with both cold and warm properties. Moreover, they mainly belonged to liver and lung channels. The core targets included TNF, IL-6, TGF-β1, and TP53. The most important components were quercetin, resveratrol, and (-)-epigallocatechin-3-gallate. Moreover, the most significant traditional Chinese herbs were Perilla pueraria, ephedra, Lonicerae japonicae, and sea buckthorn. Furthermore, analysis of 222 sets of receptor-ligand docking results suggested that the compounds had good docking activity to their core targets. By combining the docking binding energy, we determined that the chemical compounds had strong binding energy to the targets. Conclusion Using network pharmacology, we explored the potential mechanism of TCM in the treatment of radiation pneumonia. The general rules for application of TCM in the treatment of radiation pneumonia were summarized. This study provides baseline information for future research on the development of TCM for the management of radiation pneumonia.
Collapse
|
5
|
Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK, Kumar A, Kunnumakkara AB. The promising potential of piperlongumine as an emerging therapeutics for cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:323-354. [PMID: 36046754 PMCID: PMC9400693 DOI: 10.37349/etat.2021.00049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the immense advancement in the diagnostic and treatment modalities, cancer continues to be one of the leading causes of mortality across the globe, responsible for the death of around 10 million patients every year. The foremost challenges faced in the treatment of this disease are chemoresistance, adverse effects of the drugs, and the high cost of treatment. Though scientific studies over the past few decades have foreseen and are focusing on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action, many more of these agents are not still explored. Piperlongumine (PL), or piplartine, is one such alkaloid isolated from Piper longum Linn. which is shown to be safe and has significant potential in the prevention and therapy of cancer. Numerous shreds of evidence have established the ability of this alkaloid and its analogs and nanoformulations in modulating various complex molecular pathways such as phosphatidylinositol-3-kinase/protein kinase B /mammalian target of rapamycin, nuclear factor kappa-B, Janus kinases/signal transducer and activator of transcription 3, etc. and inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases, etc. In addition, PL was also shown to inhibit radioresistance and chemoresistance and sensitize the cancer cells to the standard chemotherapeutic agents. Therefore, this compound has high potential as a drug candidate for the prevention and treatment of different cancers. The current review briefly reiterates the anti-cancer properties of PL against different types of cancer, which permits further investigation by conducting clinical studies.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2021; 16:1083-1102. [PMID: 33603370 PMCID: PMC7886779 DOI: 10.2147/ijn.s290438] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy (RT) is a cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Although great success has been achieved on radiotherapy, there is still an intractable challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are chemicals or pharmaceutical agents that can enhance the killing effect on tumor cells by accelerating DNA damage and producing free radicals indirectly. In most cases, radiosensitizers have less effect on normal tissues. In recent years, several strategies have been exploited to develop radiosensitizers that are highly effective and have low toxicity. In this review, we first summarized the applications of radiosensitizers including small molecules, macromolecules, and nanomaterials, especially those that have been used in clinical trials. Second, the development states of radiosensitizers and the possible mechanisms to improve radiosensitizers sensibility are reviewed. Third, the challenges and prospects for clinical translation of radiosensitizers in oncotherapy are presented.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Chengcheng Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| |
Collapse
|
7
|
Cervelli T, Basta G, Del Turco S. Effects of antioxidant nutrients on ionizing radiation-induced oxidative stress. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00030-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, Cao N, Hao L, Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct 2021; 12:5204-5218. [PMID: 34018510 DOI: 10.1039/d1fo00525a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products can be used as natural radiosensitizers and radioprotectors, showing promising effects in cancer treatments in combination with radiotherapy, while reducing ionizing radiation (IR) damage to normal cells/tissues. The different effects of natural products on irradiated normal and tumor cells/tissues have attracted more and more researchers' interest. Nonetheless, the clinical applications of natural products in radiotherapy are few, which may be related to their low bioavailability in the human body. Here, we displayed the radiation protection and radiation sensitization of major natural products, highlighted the related molecular mechanisms of these bioactive substances combined with radiotherapy to treat cancer, and critically reviewed their deficiency and improved measures. Lastly, several clinical trials were presented to verify the clinical application of natural products as radiosensitizers and radioprotectors. Further clinical evaluation is still needed. This review provides a reference for the utilization of natural products as radiosensitizers and radioprotectors.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Nana Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Wu KM, Chi CW, Lai JCY, Chen YJ, Kou YR. TLC388 Induces DNA Damage and G2 Phase Cell Cycle Arrest in Human Non-Small Cell Lung Cancer Cells. Cancer Control 2020; 27:1073274819897975. [PMID: 32281394 PMCID: PMC7154561 DOI: 10.1177/1073274819897975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
TLC388, a camptothecin-derivative targeting topoisomerase I, is a potential anticancer drug. In this study, its effect on A549 and H838 human non-small cell lung cancer (NSCLC) cells was investigated. Cell viability and proliferation were determined by thiazolyl blue tetrazolium bromide and clonogenic assays, respectively, and cell cycle analysis and detection of phosphorylated histone H3 (Ser10) were performed by flow cytometry. γ-H2AX protein; G2/M phase-associated molecules ataxia-telangiectasia mutated (ATM), CHK1, CHK2, CDC25C, CDC2, and cyclin B1; and apoptosis were assessed with immunofluorescence staining, immunoblotting, and an annexin V assay, respectively. The effect of co-treatment with CHIR124 (a checkpoint kinase 1 [CHK1] inhibitor) was also studied. TLC388 decreased the viability and proliferation of cells of both NSCLC lines in a dose-dependent manner. TLC388 inhibited the viability of NSCLC cell lines with an estimated concentration of 50% inhibition (IC50), which was 4.4 and 4.1 μM for A549 and H838 cells, respectively, after 24 hours. Moreover, it resulted in the accumulation of cells at the G2/M phase and increased γ-H2AX levels in A549 cells. Levels of the G2 phase-related molecules phosphorylated ATM, CHK1, CHK2, CDC25C, and cyclin B1 were increased in TLC388-treated cells. CHIR124 enhanced the cytotoxicity of TLC388 toward A549 and H838 cells and induced apoptosis of the former. TLC388 inhibits NSCLC cell growth by inflicting DNA damage and activating G2/M checkpoint proteins that trigger G2 phase cell cycle arrest to enable DNA repair. CHIR124 enhanced the cytotoxic effect of TLC388 and induced apoptosis.
Collapse
Affiliation(s)
- Kun-Ming Wu
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei.,Chest Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei.,Mackay Junior College of Medicine, Nursing, and Management, Taipei
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, New Taipei.,Department of Nursing, MacKay Medical College, New Taipei
| | | | - Yu-Jen Chen
- Mackay Junior College of Medicine, Nursing, and Management, Taipei.,Department of Medical Research, MacKay Memorial Hospital, New Taipei.,Department of Medical Research, China Medical University Hospital, Taichung.,Department of Radiation Oncology, MacKay Memorial Hospital, Taipei
| | - Yu Ru Kou
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei
| |
Collapse
|
10
|
Martinovich GG, Martinovich IV, Vcherashniaya AV, Zenkov NK, Menshchikova EB, Cherenkevich SN. Chemosensitization of Tumor Cells by Phenolic Antioxidants: The Role of the Nrf2 Transcription Factor. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s000635092006010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Li Z, Chen QQ, Lam CWK, Guo JR, Zhang WJ, Wang CY, Wong VKW, Yao MC, Zhang W. Investigation into perturbed nucleoside metabolism and cell cycle for elucidating the cytotoxicity effect of resveratrol on human lung adenocarcinoma epithelial cells. Chin J Nat Med 2020; 17:608-615. [PMID: 31472898 DOI: 10.1016/s1875-5364(19)30063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 01/15/2023]
Abstract
In an effort to understand the molecular events contributing to the cytotoxicity activity of resveratrol (RSV), we investigated its effects on human lung adenocarcinoma epithelial cell line A549 at different concentrations. Cellular nucleoside metabolic profiling was determined by an established liquid chromatography-mass spectrometry method in A549 cells. RSV resulted in significant decreases and imbalances of deoxyribonucleoside triphosphates (dNTPs) pools suppressing subsequent DNA synthesis. Meanwhile, RSV at high concentration caused significant cell cycle arrest at S phase, in which cells required the highest dNTPs supply than other phases for DNA replication. The inhibition of DNA synthesis thus blocked subsequent progression through S phase in A549 cells, which may partly contribute to the cytotoxicity effect of RSV. However, hydroxyurea (HU), an inhibitor of RNR activity, caused similar dNTPs perturbation but no S phase arrest, finally no cytotoxicity effect. Therefore, we believed that the dual effect of high concentration RSV, including S phase arrest and DNA synthesis inhibition, was required for its cytotoxicity effect on A549 cells. In summary, our results provided important clues to the molecular basis for the anticancer effect of RSV on epithelial cells.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Qian-Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Wei-Jia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
12
|
Molecular Insights into Potential Contributions of Natural Polyphenols to Lung Cancer Treatment. Cancers (Basel) 2019; 11:cancers11101565. [PMID: 31618955 PMCID: PMC6826534 DOI: 10.3390/cancers11101565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring polyphenols are believed to have beneficial effects in the prevention and treatment of a myriad of disorders due to their anti-inflammatory, antioxidant, antineoplastic, cytotoxic, and immunomodulatory activities documented in a large body of literature. In the era of molecular medicine and targeted therapy, there is a growing interest in characterizing the molecular mechanisms by which polyphenol compounds interact with multiple protein targets and signaling pathways that regulate key cellular processes under both normal and pathological conditions. Numerous studies suggest that natural polyphenols have chemopreventive and/or chemotherapeutic properties against different types of cancer by acting through different molecular mechanisms. The present review summarizes recent preclinical studies on the applications of bioactive polyphenols in lung cancer therapy, with an emphasis on the molecular mechanisms that underlie the therapeutic effects of major polyphenols on lung cancer. We also discuss the potential of the polyphenol-based combination therapy as an attractive therapeutic strategy against lung cancer.
Collapse
|
13
|
Liu YM, Chan YL, Wu TH, Li TL, Hsia S, Chiu YH, Wu CJ. Antitumor, Inhibition of Metastasis and Radiosensitizing Effects of Total Nutrition Formula on Lewis Tumor-Bearing Mice. Nutrients 2019; 11:nu11081944. [PMID: 31426614 PMCID: PMC6723674 DOI: 10.3390/nu11081944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) causes high mortality. Radiotherapy is an induction regimen generally applied to patients with NSCLC. In view of therapeutic efficacy, the outcome is not appealing in addition to bringing about unwanted side effects. Total nutrition is a new trend in cancer therapy, which benefits cancer patients under radiotherapy. Male C57BL/6JNarl mice were experimentally divided into five groups: one control group, one T group (borne with Lewis lung carcinoma but no treatment), and three Lewis lung carcinoma-bearing groups administrated with a total nutrition formula (T + TNuF group), a local radiotherapy plus daily 3 Gy in three fractions (T + R group), or a combination TNuF and radiotherapy (T + R + TNuF group). These mice were assessed for their mean tumor volumes, cachectic symptoms and tumor metastasis. TNuF administration significantly suppressed tumor growth and activated apoptotic cell death in NSCLC-bearing mice under radiation. The body-weight gain was increased, while the radiation-induced cachexia was alleviated. Analysis of mechanisms suggests that TNuF downregulates EGFR and VEGF signaling pathways, inhibiting angiogenesis and metastasis. In light of radiation-induced tumor cell death, mitigation of radiation-induced cachexia and inhibition of tumor cell distant metastasis, the combination of TNuF and radiotherapy synergistically downregulates EGFR and VEGF signaling in NSCLC-bearing mice.
Collapse
Affiliation(s)
- Yu-Ming Liu
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- School of Medicine, National Yang Ming University, Taipei 11221, Taiwan
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan
| | - Tsung-Han Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Division of Hemato-oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33320, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Simon Hsia
- Taiwan Nutraceutical Association, Taipei 10596, Taiwan
| | - Yi-Han Chiu
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26647, Taiwan.
- Institute of Long-Term Care, Mackay Medical College, New Taipei City 25245, Taiwan.
| | - Chang-Jer Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
14
|
Aghamiri S, Jafarpour A, Zandsalimi F, Aghemiri M, Shoja M. Effect of resveratrol on the radiosensitivity of 5‐FU in human breast cancer MCF‐7 cells. J Cell Biochem 2019; 120:15671-15677. [DOI: 10.1002/jcb.28836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Jafarpour
- Students' Scientific Research Center, Virology Division, Department of Pathobiology, School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Farshid Zandsalimi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| | - Mehran Aghemiri
- Department of Medical Informatics Tarbiat Modares University Tehran Iran
| | - Mohsen Shoja
- Faculty of Paramedicine Semnan University of Medical Sciences Semnan Iran
| |
Collapse
|
15
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234:17187-17204. [DOI: 10.1002/jcp.28504] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department School of Paramedical Sciences, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology Faculty of Paramedical Sciences, Kashan University of Medical Sciences Kashan Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center Faculty of Pharmacy, Mazandaran University of Medical Sciences Sari Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology College of Medicine, University of Misan Misan Iraq
| | - Ahmed E. Musa
- Department of Medical Physics Tehran University of Medical Sciences (International Campus) Tehran Iran
| |
Collapse
|
16
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Tan Y, Wei X, Zhang W, Wang X, Wang K, Du B, Xiao J. Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1. Oncol Rep 2017; 37:1833-1841. [PMID: 28184930 DOI: 10.3892/or.2017.5413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/23/2017] [Indexed: 11/05/2022] Open
Abstract
Identification of safe, effective radiosensitizing agents is urgently needed to improve the outcome of radiotherapy in nasopharyngeal cancer (NPC). In this study, we assessed the ability of the polyphenol resveratrol to act as a radiosensitizer in vitro and in vivo. CNE-1 cells were treated with 50 µM resveratrol for 24 h, then irradiated. E2F transcription factor 1 (E2F1) was stably knocked down and overexpressed using lentiviruses. A xenograft model of NPC was established in nude mice using CNE-1 cells. Compared to control DMSO‑treated CNE-1 cells, resveratrol inhibited colony-forming ability and induced G1 phase cell cycle arrest. Radiation survival curves confirmed resveratrol significantly sensitized CNE-1 cells, and resveratrol in combination with 2 Gy irradiation synergistically increased apoptosis. Immunoblotting showed resveratrol dose- and time-dependently downregulated E2F1 and phospho-AKT (p-AKT). Knockdown of E2F1 significantly increased radiosensitivity and downregulated p-AKT; overexpression of E2F1 reversed resveratrol-induced radiosensitivity and upregulated p-AKT. In vivo, 50 mg/kg/day resveratrol and 4 Gy irradiation led to significantly lower tumor volume and tumor weight compared to resveratrol or irradiation alone. Our findings show that resveratrol increases the radiosensitivity of NPC cells by downregulating E2F1 and inhibiting p-AKT, and therefore has potential as a radiosensitizer for NPC.
Collapse
Affiliation(s)
- Yuhui Tan
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xianli Wei
- Department of Medical Instruments, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Wenyin Zhang
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaolan Wang
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Kun Wang
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Biaoyan Du
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianyong Xiao
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
18
|
Basso E, Regazzo G, Fiore M, Palma V, Traversi G, Testa A, Degrassi F, Cozzi R. Resveratrol affects DNA damage induced by ionizing radiation in human lymphocytes in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 806:40-6. [PMID: 27476334 DOI: 10.1016/j.mrgentox.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/01/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022]
Abstract
Resveratrol (3,4',5-trihydroxystilbene; RSV) acts on cancer cells in several ways, inducing cell cycle delay and apoptotic death, and enhancing ionizing radiation (IR)-mediated responses. However, fewer studies have examined RSV effects on normal cells. We have treated human lymphocytes in vitro with RSV, either alone or combined with IR, to evaluate its potential use as a radioprotector. We measured the effects of RSV on induction of DNA damage, repair kinetics, and modulation of histone deacetylase activity.
Collapse
Affiliation(s)
- Emiliano Basso
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy
| | - Giulia Regazzo
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy
| | - Mario Fiore
- Istituto di Biologia Molecolare e Patologia, CNR, Roma, Italy
| | - Valentina Palma
- Sezione di Tossicologia e Scienze Biomediche, ENEA, Casaccia Roma, Italy
| | | | - Antonella Testa
- Sezione di Tossicologia e Scienze Biomediche, ENEA, Casaccia Roma, Italy
| | | | - Renata Cozzi
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy.
| |
Collapse
|
19
|
Cancer cell growth inhibitory effect of bee venom via increase of death receptor 3 expression and inactivation of NF-kappa B in NSCLC cells. Toxins (Basel) 2014; 6:2210-28. [PMID: 25068924 PMCID: PMC4147578 DOI: 10.3390/toxins6082210] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023] Open
Abstract
Our previous findings have demonstrated that bee venom (BV) has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB) activity assay. BV (1–5 μg/mL) inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax) was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF)-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.
Collapse
|
20
|
Wu EJ, Goussetis DJ, Beauchamp E, Kosciuczuk EM, Altman JK, Eklund EA, Platanias LC. Resveratrol enhances the suppressive effects of arsenic trioxide on primitive leukemic progenitors. Cancer Biol Ther 2014; 15:473-8. [PMID: 24496081 DOI: 10.4161/cbt.27824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Efforts to enhance the antileukemic properties of arsenic trioxide are clinically relevant and may lead to the development of new therapeutic approaches for the management of certain hematological malignancies. We provide evidence that concomitant treatment of acute myeloid leukemia (AML) cells or chronic myeloid leukemia (CML) cells with resveratrol potentiates arsenic trioxide-dependent induction of apoptosis. Importantly, clonogenic assays in methylcellulose demonstrate potent suppressive effects of the combination of these agents on primitive leukemic progenitors derived from patients with AML or CML. Taken together, these findings suggest that combinations of arsenic trioxide with resveratrol may provide an approach for targeting of early leukemic precursors and, possibly, leukemia initiating stem cells.
Collapse
Affiliation(s)
- Edward J Wu
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA
| | - Dennis J Goussetis
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL USA
| | - Elspeth Beauchamp
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA
| | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL USA
| | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago, IL USA; Division of Hematology/Oncology; Department of Medicine; Feinberg School of Medicine; Northwestern University; Chicago, IL USA; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL USA
| |
Collapse
|
21
|
Gokbulut AA, Apohan E, Baran Y. Resveratrol and quercetin-induced apoptosis of human 232B4 chronic lymphocytic leukemia cells by activation of caspase-3 and cell cycle arrest. Hematology 2013; 18:144-50. [DOI: 10.1179/1607845412y.0000000042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Aysun Adan Gokbulut
- Department of Molecular Biology and Genetics İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Elif Apohan
- Department of Molecular Biology and Geneticsİzmir Institute of Technology, Urla, İzmir, Turkey; and Department of Biology, İnönü University, Malatya, Turkey
| | - Yusuf Baran
- Department of Molecular Biology and Genetics İzmir Institute of Technology, Urla, İzmir, Turkey
| |
Collapse
|
22
|
Liao HF, Su YC, Zheng ZY, Jhih Cai C, Hou MH, Chao KC, Chen YJ. Sonic hedgehog signaling regulates Bcr-Abl expression in human chronic myeloid leukemia cells. Biomed Pharmacother 2012; 66:378-83. [DOI: 10.1016/j.biopha.2011.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/23/2011] [Indexed: 11/30/2022] Open
|
23
|
Nuclear factor-kappaB as a switch in regulation of resveratrol-mediated apoptosis and erythrocytic differentiation in human leukaemia cells. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Yang YP, Chang YL, Huang PI, Chiou GY, Tseng LM, Chiou SH, Chen MH, Chen MT, Shih YH, Chang CH, Hsu CC, Ma HI, Wang CT, Tsai LL, Yu CC, Chang CJ. Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J Cell Physiol 2012; 227:976-93. [PMID: 21503893 DOI: 10.1002/jcp.22806] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Patients diagnosed with GBM have a poor prognosis, and it has been reported that tumor malignancy and GBM recurrence are promoted by STAT3 signaling. As resveratrol (RV), a polyphenol in grapes, is reported to be a potent and non-toxic cancer-preventive compound, the aim of this study was to investigate the therapeutic effect and molecular mechanisms of RV on GBM-derived radioresistant tumor initiating cells (TIC). Firstly, our results showed that primary GBM-CD133(+) TIC presented high tumorigenic and radiochemoresistant properties as well as increased protein levels of phosphorylated STAT3. We consistently observed that treatment with shRNA-STAT3 (sh-STAT3) or AG490, a STAT3 inhibitor, significantly inhibited the cancer stem-like cell properties and radioresistance of GBM-CD133(+) in vitro and in vivo. Furthermore, treatment of GBM-CD133(+) with 100 µM RV induced apoptosis and enhanced radiosensitivity by suppressing STAT3 signaling. Microarray results suggested that RV or AG490 inhibited the stemness gene signatures of GBM-CD133(+) and facilitated the differentiation of GBM-CD133(+) into GBM-CD133(-) or astrocytoma cells. Finally, xenotransplant experiments indicated that RV or sh-STAT3 therapy could significantly improve the survival rate and synergistically enhance the radiosensitivity of radiation-treated GBM-TIC. In summary, RV can reduce in vivo tumorigenicity and enhance the sensitivity of GBM-TIC to radiotherapies through the STAT3 pathway.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fabre KM, Saito K, DeGraff W, Sowers AL, Thetford A, Cook JA, Krishna MC, Mitchell JB. The effects of resveratrol and selected metabolites on the radiation and antioxidant response. Cancer Biol Ther 2011; 12:915-23. [PMID: 22024758 DOI: 10.4161/cbt.12.10.17714] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Excess reactive oxygen species (ROS) generated from ionizing radiation (IR) or endogenous sources like cellular respiration and inflammation produce cytotoxic effects that can lead to carcinogenesis. Resveratrol (RSV), a polyphenol with antioxidant and anticarcinogenic capabilities, has shown promise as a potential radiation modifier. The present study focuses on examining the effects of RSV or RSV metabolites as a radiation modifier in normal tissue. RSV or a RSV metabolite, piceatannol (PIC) did not protect human lung fibroblasts (1522) from the radiation-induced cell killing. Likewise, neither RSV nor PIC afforded protection against lethal total body IR in C3H mice. Additional research has shown protection in cells against hydrogen peroxide when treated with RSV. Therefore, clonogenic survival was measured in 1522 cells with RSV and RSV metabolites. Only the RSV derivative, piceatannol (PIC), showed protection against hydrogen peroxide mediated cytotoxicity; whereas, RSV enhanced hydrogen peroxide sensitivity at a 50 µM concentration; the remaining metabolites evaluated had little to no effect on survival. PIC also showed enhancement to peroxide exposure at a higher concentration (150 µM). A potential mechanism for RSV-induced sensitivity to peroxides could be its ability to block 1522 cells in the S-phase, which is most sensitive to hydrogen peroxide treatment. In addition, both RSV and PIC can be oxidized to phenoxyl radicals and quinones, which may exert cytotoxic effects. These cytotoxic effects were abolished when HBED, a metal chelator, was added. Taken together RSV and many of its metabolic derivatives are not effective as chemical radioprotectors and should not be considered for clinical use.
Collapse
Affiliation(s)
- Kristin M Fabre
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kartal M, Saydam G, Sahin F, Baran Y. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr Cancer 2011; 63:637-44. [PMID: 21500096 DOI: 10.1080/01635581.2011.538485] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Resveratrol, an important phytoalexin in many plants, has been reported to have cytotoxic effects on various types of cancer. Ceramide is a bioactive sphingolipid that regulates many signaling pathways, including cell growth and proliferation, senescence and quiescence, apoptosis, and cell cycle. Ceramides are generated by longevity assurance genes (LASS). Glucosylceramide synthase (GCS) and sphingosine kinase-1 (SK-1) enzymes can convert ceramides to antiapoptotic molecules, glucosylceramide, and sphingosine-1-phosphate, respectively. C8:ceramide, an important cell-permeable analogue of natural ceramides, increases intracellular ceramide levels significantly, while 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and SK-1 inhibitor increase accumulation of ceramides by inhibiting GCS and SK-1, respectively. Chronic myelogenous leukemia (CML) is a hematological disorder resulting from generation of BCR/ABL oncogene. In this study, we examined the roles of ceramide metabolizing genes in resveratrol-induced apoptosis in K562 CML cells. There were synergistic cytotoxic and apoptotic effects of resveratrol with coadministration of C8:ceramide, PDMP, and SK-1 inhibitor. Interestingly, there were also significant increases in expression levels of LASS genes and decreases in expression levels of GCS and SK-1 in K562 cells in response to resveratrol. Our data, in total, showed for the first time that resveratrol might kill CML cells through increasing intracellular generation and accumulation of apoptotic ceramides.
Collapse
Affiliation(s)
- Melis Kartal
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | | | | | | |
Collapse
|
27
|
Nambiar D, Rajamani P, Singh RP. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat Res 2011; 728:139-57. [PMID: 22030216 DOI: 10.1016/j.mrrev.2011.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 02/01/2023]
Abstract
Ionizing radiation (IR)-induced cellular damage is implicated in carcinogenesis as well as therapy of cancer. Advances in radiation therapy have led to the decrease in dosage and localizing the effects to the tumor; however, the development of radioresistance in cancer cells and radiation toxicity to normal tissues are still the major concerns. The development of radioresistance involves several mechanisms, including the activation of mitogenic and survival signaling, induction of DNA repair, and changes in redox signaling and epigenetic regulation. The current strategy of combining radiation with standard cytotoxic chemotherapeutic agents can potentially lead to unwanted side effects due to both agents. Thus agents are needed that could improve the efficacy of radiation killing of cancer cells and prevent the damage to normal cells and tissues caused by the direct and bystander effects of radiation, without have its own systemic toxicity. Chemopreventive phytochemicals, usually non-toxic agents with both cancer preventive and therapeutic activities, could rightly fit in this approach. In this regard, naturally occurring compounds, including curcumin, parthenolide, genistein, gossypol, ellagic acid, withaferin, plumbagin and resveratrol, have shown considerable potential. These agents suppress the radiation-induced activation of receptor tyrosine kinases and nuclear factor-κB signaling, can modify cell survival and DNA repair efficacy, and may potentiate ceramide signaling. These radiosensitizing and counter radioresistance mechanisms of phytochemicals in cancer cells are also associated with changes in epigenetic gene regulation. Because radioresistance involves multiple mechanisms, more studies are needed to discover novel phytochemicals having multiple mechanisms of radiosensitization and to overcome radioresistance of cancer cells. Pre-clinical studies are needed to address the appropriate dosage, timing, and duration of the application of phytochemicals with radiation to justify clinical trials. Nonetheless, some phytochemicals in combination with IR may play a significant role in enhancing the therapeutic index of cancer treatment.
Collapse
Affiliation(s)
- Dhanya Nambiar
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
28
|
Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. FRONT BIOSCI-LANDMRK 2011; 16:1172-85. [PMID: 21196225 PMCID: PMC3032584 DOI: 10.2741/3782] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer ranks as the first malignant tumor killer worldwide. Despite the knowledge that carcinogens from tobacco smoke and the environment constitute the main causes of lung cancer, the mechanisms for lung carcinogenesis are still elusive. Cancer development and progression depend on the balance between cell survival and death signals. Common cell survival signaling pathways are activated by carcinogens as well as by inflammatory cytokines, which contribute substantially to cancer development. As a major cell survival signal, nuclear factor-kappaB (NF-kappaB) is involved in multiple steps in carcinogenesis and in cancer cell's resistance to chemo- and radio-therapy. Recent studies with animal models and cell culture systems have established the links between NF-kappaB and lung carcinogenesis, highlighting the significance of targeting NF-kappa signaling pathway for lung cancer treatment and chemoprevention. In this review, we summarize progresses in understanding the NF-kappaB pathway in lung cancer development as well as in modulating NF-kappaB for lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR SE, Albuquerque, NM 87108, USA
| | | | | | | |
Collapse
|
29
|
Li NG, Shi ZH, Tang YP, Yang JP, Wang ZJ, Song SL, Lu TL, Duan JA. Targeting the development of resveratrol as a chemopreventive agent. Drug Dev Res 2010. [DOI: 10.1002/ddr.20380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Dziegielewski J, Goetz W, Baulch JE. Heavy ions, radioprotectors and genomic instability: implications for human space exploration. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:303-316. [PMID: 20035342 DOI: 10.1007/s00411-009-0261-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
The risk associated with space radiation exposure is unique from terrestrial radiation exposures due to differences in radiation quality, including linear energy transfer (LET). Both high- and low-LET radiations are capable of inducing genomic instability in mammalian cells, and this instability is thought to be a driving force underlying radiation carcinogenesis. Unfortunately, during space exploration, flight crews cannot entirely avoid radiation exposure. As a result, chemical and biological countermeasures will be an important component of successful extended missions such as the exploration of Mars. There are currently several radioprotective agents (radioprotectors) in use; however, scientists continue to search for ideal radioprotective compounds-safe to use and effective in preventing and/or reducing acute and delayed effects of irradiation. This review discusses the agents that are currently available or being evaluated for their potential as radioprotectors. Further, this review discusses some implications of radioprotection for the induction and/or propagation of genomic instability in the progeny of irradiated cells.
Collapse
|
31
|
Dennis T, Fanous M, Mousa S. Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr Cancer 2010; 61:587-97. [PMID: 19838932 DOI: 10.1080/01635580902825530] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nutritional supplements or complementary and alternative medicines (CAM) are currently being investigated for their use in preventing, inhibiting, and reversing the progression of cancer. Natural agents and their derivatives such as vitamin A, selenium, green tea, resveratrol, aspirin, and probiotics have potential benefits in chemoprevention. There is also growing evidence for the use of natural products as adjunctive therapy alongside conventional cancer treatments. Nutritional supplements expenditures demonstrated greater growth than pharmaceuticals, with approximately 80% of cancer patients using natural products. Current issues with nutritional supplements use in cancer treatment include insufficient or conflicting evidence, poor quality control, potential interactions with chemotherapy, and potential efficacy in relation to changes in certain biomarkers, but long-term implications remain largely unresolved. Continued research is needed to lend credibility to these potentially valuable naturally driven supplements in the prevention and potentially in the treatment of cancer in conjunction with standard pharmaceuticals.
Collapse
Affiliation(s)
- Tiffany Dennis
- Albany College of Pharmacy, The Pharmaceutical Research Institute, Albany, New York, USA
| | | | | |
Collapse
|
32
|
Schneider JG, Alosi JA, McDonald DE, McFadden DW. Pterostilbene inhibits lung cancer through induction of apoptosis. J Surg Res 2009; 161:18-22. [PMID: 20031166 DOI: 10.1016/j.jss.2009.06.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/14/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer mortality in the United States. Resveratrol is a potent antioxidant found in grapes that inhibits several types of cancer, including lung cancer. Herein, we investigated the effects of pterostilbene, an analog of resveratrol found in blueberries, on lung cancer, in vitro. We hypothesized that pterostilbene would inhibit lung cancer cell growth in vitro by a pro-apoptotic mechanism. METHODS Two lung cancer cell lines (NCI-H460 and SK-MES-1) were cultured using standard techniques. Cells were treated with increasing doses of pterostilbene (10-100 microM). Cell viability was measured at 24, 48, and 72h using a MTT assay. Apo-ONE Caspase-3/7 assay was used to evaluate caspase activity. T-test and two-way ANOVA were used for statistical analysis. RESULTS Pterostilbene significantly decreased cell viability in lung cancer cells in a concentration- and time-dependent manner (P<0.001). Concentrations greater than 20 microM of pterostilbene produced significant growth inhibition by 72h (P<0.001). Apoptosis and caspase-3/7 activity were significantly increased by pterostilbene treatment (P<0.05). CONCLUSIONS Pterostilbene inhibits growth via apoptosis induction in vitro. Further in vitro mechanistic studies and in vivo experiments are warranted to determine the potential role for pterostilbene in lung cancer treatment or prevention.
Collapse
Affiliation(s)
- John G Schneider
- Department of Surgery, University of Vermont, Burlington, Vermont 05401, USA
| | | | | | | |
Collapse
|
33
|
Kumar B, Kumar A, Pandey BN, Hazra B, Mishra KP. Increased cytotoxicity by the combination of radiation and diospyrin diethylether in fibrosarcoma in culture and in tumor. Int J Radiat Biol 2009; 84:429-40. [DOI: 10.1080/09553000802030736] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Lee EK, Chung SW, Kim JY, Kim JM, Heo HS, Lim HA, Kim MK, Anton S, Yokozawa T, Chung HY. Allylmethylsulfide Down-Regulates X-Ray Irradiation-Induced Nuclear Factor-kappaB Signaling in C57/BL6 Mouse Kidney. J Med Food 2009; 12:542-51. [PMID: 19627202 PMCID: PMC6469522 DOI: 10.1089/jmf.2008.1073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 02/10/2009] [Indexed: 01/18/2023] Open
Abstract
Allylmethylsulfide (AMS), a volatile organosulfur derivative from garlic, has been shown to have radioprotective effects in radiation-challenged cell and animal models, but the mechanism of radioprotection is not well understood. To determine the mechanism of radioprotection in an in vivo model, we first verified the antioxidant capacity of AMS using 2,2'-azobis(2-amidinopropane) dihydrochloride-induced human embryonic kidney 293T cells by measuring reactive oxygen species generation, reduced glutathione, protein tyrosine kinase/protein tyrosine phosphatase balance, and nuclear factor-kappaB (NF-kappaB) protein levels. We then investigated the protective effects of AMS (55 and 275 micromol/kg, intraperitoneal treatment) on 15 Gy X-ray-irradiated mouse kidney. The results showed that AMS decreased the free radical-induced lipid peroxidation in mice exposed to X-rays. Moreover, the antioxidative AMS suppressed the activation of NF-kappaB and its dependent genes such as vascular cell adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 through inhibition of IkappaBalpha phosphorylation and activation of IkappaB kinase alpha/beta and mitogen-activated protein kinases (MAPKs). Based on these results, AMS may be a useful radioprotective agent by down-regulating the MAPKs and NF-kappaB signaling pathway that can be induced via X-ray irradiation.
Collapse
Affiliation(s)
- Eun Kyeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sang Woon Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ji Young Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ji Min Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyoung-Sam Heo
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyun Ae Lim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Mi Kyung Kim
- Longevity Life Science and Technology Institutes, Pusan National University, Busan, Republic of Korea
| | - Stephen Anton
- Department of Aging and Geriatrics, Division of Biology of Aging, Genomics and Biomarkers Core of the Institute on Aging, University of Florida, Gainesville, Florida
| | - Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Longevity Life Science and Technology Institutes, Pusan National University, Busan, Republic of Korea
- Department of Aging and Geriatrics, Division of Biology of Aging, Genomics and Biomarkers Core of the Institute on Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
35
|
Kao CL, Huang PI, Tsai PH, Tsai ML, Lo JF, Lee YY, Chen YJ, Chen YW, Chiou SH. Resveratrol-Induced Apoptosis and Increased Radiosensitivity in CD133-Positive Cells Derived From Atypical Teratoid/Rhabdoid Tumor. Int J Radiat Oncol Biol Phys 2009; 74:219-28. [PMID: 19362240 DOI: 10.1016/j.ijrobp.2008.12.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 01/11/2023]
|
36
|
Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Childs Nerv Syst 2009; 25:543-50. [PMID: 19225784 DOI: 10.1007/s00381-009-0826-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Resveratrol (RV), a natural polyphenol derived from red wine, recently showed the potential of anticancer and radiosensitizing effects. A recent study has suggested that the cancer stem cells (CSCs) may reflect the clinical refractory malignancy of brain tumors, including medulloblastoma (MB). The aim of the present study is to investigate the possible role of RV in radiosensitivity of MB cells and MB-associated CSCs. MATERIALS AND METHODS MB-associated CSCs were isolated and cultured by serum-free medium with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). The parental MB cells and MB-CSCs were treated with RV in different concentrations and assessed for cell viability. The treatment includes RV alone, radiation alone, or radiation combined with RV. RESULTS MB-CSCs selected by serum-free medium with bFGF and EGF can form 3D spheroid formation and display enhanced self-renewal and highly co-expressed "stem cell" genes (Oct-4, Nanog, Nestin, and Musashi-1) as well as antiapoptotic genes (Bcl-2 and Bcl-xL). These MB-CSCs showed significant resistance to radiotherapy as compared to the parental MB cells. Importantly, 100 muM RV could effectively inhibit the proliferation of MB-CSCs and significantly enhance the radiosensitivity in RV-treated MB-CSCs. CONCLUSIONS Our data suggest that RV can effectively inhibit the proliferation and tumorigenicity of MB-CSCs and significantly synergistically enhance radiosensitivity in RV-treated MB-CSCs.
Collapse
|
37
|
Shen HM, Tergaonkar V. NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 2009; 14:348-63. [PMID: 19212815 DOI: 10.1007/s10495-009-0315-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has become increasingly clear that deregulation of the NFkappaB signaling cascade is a common underlying feature of many human ailments including cancers. The past two decades of intensive research on NFkappaB has identified the basic mechanisms that govern the functioning of this pathway but uncovering the details of why this pathway works differently in different cellular contexts or how it interacts with other signaling pathways remains a challenge. A thorough understanding of these processes is needed to design better and more efficient therapeutic approaches to treat complex diseases like cancer. In this review, we summarize the literature documenting the involvement of NFkappaB in cancer, and then focus on the approaches that are being undertaken to develop NFkappaB inhibitors towards treatment of human cancers.
Collapse
Affiliation(s)
- Han-Ming Shen
- Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Republic of Singapore.
| | | |
Collapse
|
38
|
Bonfili L, Cecarini V, Amici M, Cuccioloni M, Angeletti M, Keller JN, Eleuteri AM. Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J 2008; 275:5512-26. [DOI: 10.1111/j.1742-4658.2008.06696.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Yang H, Landis-Piwowar KR, Chen D, Milacic V, Dou QP. Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci 2008; 9:227-39. [PMID: 18537678 PMCID: PMC3303152 DOI: 10.2174/138920308784533998] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The proteasome is a multicatalytic protease complex that degrades most endogenous proteins including misfolded or damaged proteins to ensure normal cellular function. The ubiquitin-proteasome degradation pathway plays an essential role in multiple cellular processes, including cell cycle progression, proliferation, apoptosis and angiogenesis. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that a proteasome inhibitor could be used as a novel anticancer drug. Indeed, this idea has been supported by the encouraging results of the clinical trials using the proteasome inhibitor Bortezomib (Velcade, PS-341), a drug approved by the US Food and Drug Administration (FDA). Several natural compounds, including the microbial metabolite lactacystin, green tea polyphenols, and traditional medicinal triterpenes, have been shown to be potent proteasome inhibitors. These findings suggest the potential use of natural proteasome inhibitors as not only chemopreventive and chemotherapeutic agents, but also tumor sensitizers to conventional radiotherapy and chemotherapy. In this review, we will summarize the structures and biological activities of the proteasome and several natural compounds with proteasome inhibitory activity, and will discuss the potential use of these compounds for the prevention and treatment of human cancers.
Collapse
Affiliation(s)
- H Yang
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - KR. Landis-Piwowar
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - D Chen
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - V Milacic
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - QP Dou
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
40
|
Abstract
It is estimated that nearly one-third of all cancer deaths in the United States could be prevented through appropriate dietary modification. Various dietary antioxidants have shown considerable promise as effective agents for cancer prevention by reducing oxidative stress which has been implicated in the development of many diseases, including cancer. Therefore, for reducing the incidence of cancer, modifications in dietary habits, especially by increasing consumption of fruits and vegetables rich in antioxidants, are increasingly advocated. Accumulating research evidence suggests that many dietary factors may be used alone or in combination with traditional chemotherapeutic agents to prevent the occurrence of cancer, their metastatic spread, or even to treat cancer. The reduced cancer risk and lack of toxicity associated with high intake of fruits and vegetables suggest that specific concentrations of antioxidant agents from these dietary sources may produce cancer chemopreventive effects without causing significant levels of toxicity. This review presents an extensive analysis of the key findings from studies on the effects of dietary antioxidants such as tea polyphenols, curcumin, genistein, resveratrol, lycopene, pomegranate, and lupeol against cancers of the skin, prostate, breast, lung, and liver. This research is also leading to the identification of novel cancer drug targets.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
41
|
Baby J, Pickering BF, Vashisht Gopal YN, Van Dyke MW. Constitutive and inducible nuclear factor-κB in immortalized normal human bronchial epithelial and non-small cell lung cancer cell lines. Cancer Lett 2007; 255:85-94. [PMID: 17493745 DOI: 10.1016/j.canlet.2007.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/20/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022]
Abstract
Constitutive activation of the proinflammatory nuclear factor kappaB (NF-kappaB) transcription factor p65(RelA)/p50 has been implicated in many cancers, including leukemias, lymphomas, and several solid tumors, including lung cancer. In many cases, constitutive NF-kappaB activation can be recapitulated in cell lines isolated from these cancers. To test whether this is the case with non-small cell lung cancer (NSCLC) cell lines, we investigated the basal levels of NF-kappaB proteins, their subcellular distribution, their DNA-binding activities, and the expression of NF-kappaB-responsive genes in 10 NSCLC cell lines. The immortalized human bronchial epithelial cell line BEAS-2B served as a normal control. We found little evidence of substantial constitutive NF-kappaB activation in NSCLC cell lines, although most all of the normal and NSCLC cells possessed inducible NF-kappaB. Our findings provide a resource for the use of particular NSCLC cell lines for the investigation of constitutive and inducible NF-kappaB activity in vitro.
Collapse
Affiliation(s)
- Johnson Baby
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | |
Collapse
|