1
|
Zhu H, Jiang K, Meng J, Kuang L, Zhu S, Zhang Y, Wang Y, Jiang J. Overexpression of miR393 improves anthocyanin accumulation and osmotic stress tolerance of Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112523. [PMID: 40350084 DOI: 10.1016/j.plantsci.2025.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Brassica napus L. is an important oil crop grown worldwide. Mining for genes related to abiotic stress tolerance is valuable to improve the adaptability and increase the cultivation of B. napus. miR393 is a conserved miRNA family that plays multiple roles in regulating plant growth, development, and response to biotic and abiotic stresses. In this study, we reported miR393 as a positive regulator of anthocyanin biosynthesis that improved rapeseed tolerance to oxidative and osmotic stresses. Overexpression of miR393 up-regulated the expression of anthocyanin biosynthetic genes and stress responsive genes, thus resulted more anthocyanin accumulation and improved ROS-scavenging capability. Overall, this study indicated that miR393 could be applied in genetic improvement of B. napus with osmotic stress tolerance.
Collapse
Affiliation(s)
- Haotian Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China, Yangzhou 225009, China
| | - Kaixuan Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jingjing Meng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lulu Kuang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Shuang Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yongji Zhang
- Jiangsu Institute of Agricultural Science, Lixiahe District, Yangzhou 225009, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China, Yangzhou 225009, China.
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Izadpanah F, Abbasi N, Soltani F, Baldermann S. Impact of Water Management on Growth and Pigment Composition of Cauliflower and Broccoli. PLANTS (BASEL, SWITZERLAND) 2025; 14:725. [PMID: 40094680 PMCID: PMC11901868 DOI: 10.3390/plants14050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Global climate change minimizes fresh water resources used in agriculture worldwide. It causes drought stress, which has adverse effects on plants. To ensure food security, crops and vegetables capable of tolerating shortages of water over the growth period are needed. This study aimed to elucidate the morphological and biochemical responses of three colored cauliflower (Brassica oleracea var. botrytis) cultivars (Clapton, Trevi, and Di Sicilia Violetto) and one broccoli cultivar (Brassica oleracea var. italica var. Magic) to different irrigation treatments (85-100%, 65-80%, 45-60%, and 25-40% field capacity). Assessment of growth parameters revealed no significant difference among all the treatments for root fresh weight, leaf area, and floret size. Major water shortages reduced the floret and stem fresh weight of the Clapton cultivar. Additionally, under severe drought stress, only the Di Sicilia Violetto cultivar had a decrease in plant height, but no impact on the number of leaves was observed. The measurement of pigment contents in the leaves showed no significant difference in carotenoids in all the cultivars; just the chlorophyll contents decreased with moderate stress in the Di Sicilia Violetto cultivar. This research demonstrates that cauliflower and broccoli are likely drought-tolerant vegetables and common irrigation regimes may be reviewed.
Collapse
Affiliation(s)
- Fatemeh Izadpanah
- Leibniz-Institute of Vegetable and Ornamental Crops, Food Chemistry and Human Nutrition, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany;
- Institute of Nutritional Sciences, Food Chemistry, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Navid Abbasi
- Department of Horticultural Science, University of Tehran, Daneshkade Ave, Karaj 31587-77871, Iran; (N.A.); (F.S.)
| | - Forouzande Soltani
- Department of Horticultural Science, University of Tehran, Daneshkade Ave, Karaj 31587-77871, Iran; (N.A.); (F.S.)
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops, Food Chemistry and Human Nutrition, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany;
- Institute of Nutritional Sciences, Food Chemistry, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Faculty of Life Sciences: Food, Nutrition and Health, Food Metabolome, University of Bayreuth, Fritz-Hornschuch-Straße 13, 95326 Kulmbach, Germany
| |
Collapse
|
3
|
Wang M, Liu W, Feng G, Nie G, Yang Z, Hao F, Huang L, Zhang X. Comprehensive genome-wide analysis of ARF transcription factors in orchardgrass (Dactylis glomerata): the positive regulatory role of DgARF7 in drought resistance. BMC Genomics 2025; 26:101. [PMID: 39901077 PMCID: PMC11792575 DOI: 10.1186/s12864-025-11241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
Auxin response factor (ARF), a transcription factor, is crucial in controlling growth, development, and response to environmental stress. Orchardgrass (Dactylis glomerata) is an economically significant, widely cultivated forage grass. However, information on the genome-wide information and functional characterization of ARFs in orchardgrass is limited. This study identified 27 ARF genes based on the orchardgrass genome database. These DgARFs were unevenly distributed across the seven orchardgrass chromosomes and clustered into four classes. Phylogenetic analysis with multispecies of ARF proteins indicated that the ARFs exhibit a relatively conserved evolutionary path. Focusing on hormone signaling responses, DgARF7 demonstrated a potential positive regulatory role in response to 3-indole acetic acid, methyl jasmonate, gibberellin, salicylic acid, and abscisic acid signals. Additionally, exposure to drought stress induced noticeable oscillatory changes in DgARF7 gene. Notably, DgARF7 enhanced drought tolerance through heterologous expression in yeast and overexpression in Arabidopsis. Overexpressed Arabidopsis lines of DgARF7 exhibited a markedly higher relative water content and superoxide dismutase activity, while the malondialdehyde content was significantly decreased compared to wild type under drought stress. DgARF7 also accelerated flowering time by inducing the flowering-related gene expression levels in Arabidopsis. This research provides important insights into the role of DgARF7 in orchardgrass and provides further understanding in molecular breeding.
Collapse
Affiliation(s)
- Miaoli Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Dousti M, Mazhary L, Lohrasebi T, Minuchehr Z, Sanjarian F, Razavi K. How abscisic acid collaborates in Brassica napus responses to salt and drought stress: An in silico approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109453. [PMID: 39742782 DOI: 10.1016/j.plaphy.2024.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Canola (Brassica napus sp.), the most important oily seed product in the world, is affected largely by salinity and drought stresses due to its ability to be planted in arid and semiarid regions. Therefore, studying potent genes involved in salt/drought stress response in canola would help improve abiotic stress tolerance. In this study, genes involved in response to salt and drought stresses in B. napus were investigated via sequence-read archive databases at different time points. The results were analyzed by the GALAXY server to detect DEGs. DEGs associated with short-, medium- and long-term salinity and drought stress were identified via extensive meta-analysis and robust rank aggregation methods. Subsequently, Gene Ontology (GO) analysis of the identified robust DEGs was performed via BLAST2GO. By constructing a protein-protein interaction (PPI) network with Cytoscape software, the hub genes associated with each line of salt and drought stress response were identified. Among all DEGs, HAI2 and DREB1B, which are hub genes, were selected for validation by qRT‒PCR in salt/drought-tolerant and salt/drought-sensitive cultivars of canola, Okapi and RGS, respectively, under salt and drought treatments. Fine-tuning affected the manner and time of contribution of each Abscisic Acid (ABA)-dependent and ABA-independent signaling pathway in response to salinity and drought tolerant and sensitive canola cultivars. Furthermore, the identification of hub genes through meta-analysis provided insight into the molecular responses of canola to salinity/drought stresses and the engineering of abiotic stress tolerance in canola for industrial cultivation of canola in poor-quality lands.
Collapse
Affiliation(s)
- Mohadese Dousti
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Leila Mazhary
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Tahmineh Lohrasebi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Foroogh Sanjarian
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Khadijeh Razavi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
5
|
Miguel VN, Monaghan J. A quick guide to the calcium-dependent protein kinase family in Brassica napus. Genome 2025; 68:1-12. [PMID: 39499907 DOI: 10.1139/gen-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is an economically valuable oilseed crop grown throughout Canada that currently faces several challenges due to industrial farming practices as well as a changing climate. Calcium-dependent protein kinases (CDPKs) are key regulators of stress signaling in multiple plant species. CDPKs sense changes in cellular calcium levels via a calmodulin-like domain and are able to respond to these changes via their protein kinase domain. In this mini-review, we provide a quick guide to BnaCDPKs. We present an updated phylogeny of the BnaCDPK family in relation to CDPKs from Arabidopsis thaliana and Oryza sativa and we provide a standardized nomenclature for the large BnaCDPK family that contains many co-orthologs. We analyze expression patterns of BnaCDPKs across tissue types and in response to abiotic and biotic stresses, and we summarize known functions of BnaCDPKs. We hope this guide is useful to anyone interested in exploring the prospect of harnessing the potential of BnaCDPKs in the generation of elite cultivars of B. napus.
Collapse
|
6
|
Wang L, He P, Hui M, Li H, Sun A, Yin H, Gao X. Metabolomics combined with transcriptomics and physiology reveals the regulatory responses of soybean plants to drought stress. Front Genet 2024; 15:1458656. [PMID: 39512800 PMCID: PMC11541050 DOI: 10.3389/fgene.2024.1458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Drought, a prevalent environmental stressor, has had significant consequences on soybean (Glycine max L.), notably impeding its growth and production. Therefore, it is crucial to gain insight into the regulatory responses of soybean plants exposed to drought stress during soybean flowering in the field. In this study, the cultivar 'Liaodou 15' was performed light drought (LD, 24.3% soil moisture content), moderate drought (MD, 20.6% soil moisture content) and severe drought (SD, 16.9% soil moisture content) treatments at flowering stages of soybean and then rehydrated (30% soil moisture content) until harvest. The yield-related indicators were measured and revealed that MD and SD treatments significantly reduced 6.3% and 10.8% of the 100-grain weight. Soybean plants subjected to three drought stresses showed that net photosynthetic rates were 20.8%, 51.5% and 71.8% lower in LD, MD and SD than that of CK. The WUE increased by 31.8%, 31.5% and 18.8% under three drought stress treatments compared to CK. In addition, proline content was 25.94%, 41.01% and 65.43% greater than that of CK under three drought stress treatments. The trend of the MDA content was consistent with that of the proline content. SOD activity was significantly increasing by 10.86%, 46.73% and 14.54% under three drought stress treatments. The activity of CAT in the SD treatment increased by 49.28%. All the indices recovered after rehydration. Furthermore, 54,78 and 51 different expressed metabolomics (DEMs) were identified in the LDCK/LD, MDCK/MD and SDCK/SD groups, respectively. There were 1,211, 1,265 and 1,288 different expressed genes (DEGs) were upregulated and 1,003, 1,819 and 1,747 DEGs were downregulated. Finally, combined transcriptomic and metabolomic analysis suggested that 437 DEGs and 24 DEMs of LDCK/LD group, 741 DEGs and 35 DEMs of MDCK/MD group, 633 DEGs and 23 DEMs of SDCK/SD group, were highly positively correlated in soybean plants under drought stress. Drought stress induced the expression of the PAO1, PAO4, PAO5 and P5CS genes to promote the accumulation of spermidine and proline. Our study elucidates the responses of drought-stressed soybean plants in the field and provides a genetic basis for the breeding of drought-tolerant soybean plants.
Collapse
Affiliation(s)
- Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| | - Peijin He
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Mengmeng Hui
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- Liaoyang Meteorological Bureau, Liaoyang, Liaoning, China
| | - Anni Sun
- Anshan Meteorological Bureau, Anshan, Liaoning, China
| | - Hong Yin
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
7
|
Singh A, Chauhan R, Rajput VD, Minkina T, Prasad R, Goel A. Exploring the insights of bioslurry-Nanoparticle amalgam for soil amelioration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58310-58323. [PMID: 39307866 DOI: 10.1007/s11356-024-35003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
In response to global agricultural challenges, this review examines the synergistic impact of bioslurry and biogenic nanoparticles on soil amelioration. Bioslurry, rich in N, P, K and beneficial microorganisms, combined with zinc oxide nanoparticles synthesized through eco-friendly methods, demonstrates remarkable soil improvement capabilities. Their synergistic effects include enhanced nutrient availability through increased soil enzymatic activities, improved soil structure via stable aggregate formation, stimulated microbial activity particularly beneficial groups, enhanced water retention due to increased organic matter and modified soil surface properties and reduced soil pH fluctuations. These mechanisms significantly impact soil physico-chemical properties including cation exchange capacity, electrical conductivity and nutrient dynamics. This review analyses these effects and their implications for sustainable agricultural practices, focusing on crop yield improvements, reduced chemical fertilizer dependence and enhanced plant stress tolerance. Knowledge gaps such as long-term nanoparticle accumulation effects and impacts on non-target organisms are identified. Future research directions include optimizing bioslurry-nanoparticle ratios for various soil types and developing "smart" nanoparticle-enabled biofertilizers with controlled release properties. This innovative approach contributes to environmentally friendly farming practices, potentially enhancing global food security and supporting sustainable agriculture transitions. The integration of bioslurry and biogenic nanoparticles presents a promising solution to soil degradation and agricultural sustainability challenges.
Collapse
Affiliation(s)
- Abhinav Singh
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Ritika Chauhan
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845801, Bihar, India
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
8
|
Liu C, Li Q, Peng S, He L, Lin R, Zhang J, Cui P, Liu H. O-Glycosyltransferase Gene BnaC09.OGT Involved in Regulation of Unsaturated Fatty Acid Biosynthesis for Enhancing Osmotic Stress Tolerance in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1964. [PMID: 39065490 PMCID: PMC11280806 DOI: 10.3390/plants13141964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Osmotic stress is a major threaten to the growth and yield stability of Brassica napus. Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc) is ubiquitous in plants, and participates in a variety of signal transduction and metabolic regulation. However, studies on the role of O-GlcNAc transferase (OGT) in osmotic stress tolerance of plants are limited. In previous study, a O-glycosyltransferase, named BnaC09.OGT, was identified from the B. napus variety 'Zhongshuang 11' by yeast one hybrid with promoter of BnaA01.GPAT9. It was found that BnaC09.OGT localized in both nucleus and cytoplasm. The spatiotemporal expression pattern of BnaC09.OGT exhibited tissue specificity in developmental seed, especially in 15 days after pollination. In view of osmotic stress inducing, the BnaC09.OGT overexpression and knockout transgenic lines were constructed for biological function study. Phenotypic analysis of BnaC09.OGT overexpression seedlings demonstrated that BnaC09.OGT could enhance osmotic stress tolerance than WT and knockout lines in euphylla stage under 15% PEG6000 treatment after 7 days. In addition, compared with WT and knockout lines, overexpression of BnaC09.OGT had significantly higher activities of antioxidant enzymes (SOD and POD), higher content of soluble saccharide, and while significantly less content of malondialdehyde, proline and anthocyanidin under 15% PEG6000 treatment after 7 days. On the other hand, the unsaturated fatty acid content of BnaC09.OGT overexpression was significantly higher than that of WT and knockout lines, so it is speculated that the BnaC09.OGT could increase unsaturated fatty acid biosynthesis for osmotic stress tolerance by promoting the expression of BnaA01.GPAT9 in glycerolipid biosynthesis. In summary, the above results revealed that the function of BnaC09.OGT provides new insight for the analysis of the pathway of O-glycosylation in regulating osmotic stress tolerance in B. napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Cui
- The College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (C.L.); (Q.L.); (S.P.); (L.H.); (R.L.); (J.Z.)
| | - Hongbo Liu
- The College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (C.L.); (Q.L.); (S.P.); (L.H.); (R.L.); (J.Z.)
| |
Collapse
|
9
|
Luo D, Wang C, Mubeen S, Rehman M, Cao S, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. HcLEA113, a late embryogenesis abundant protein gene, positively regulates drought-stress responses in kenaf. PHYSIOLOGIA PLANTARUM 2024; 176:e14506. [PMID: 39191701 DOI: 10.1111/ppl.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Late embryogenesis abundant (LEA) proteins have been widely recognized for their role in various abiotic stress responses in higher plants. Nevertheless, the specific mechanism responsible for the function of LEA proteins in plants has not yet been explored. This research involved the isolation and characterization of HcLEA113 from kenaf, revealing a significant increase in its expression in response to drought stress. When HcLEA113 was introduced into yeast, it resulted in an improved survival rate under drought conditions. Furthermore, the overexpression of HcLEA113 in tobacco plants led to enhanced tolerance to drought stress. Specifically, HcLEA113-OE plants exhibited higher germination rates, longer root lengths, greater chlorophyll content, and higher relative water content under drought stress compared to wild-type (WT) plants, while their relative conductivity was significantly lower than that of WT plants. Further physiological measurements revealed that the proline content, soluble sugars, and antioxidant activities of WT and HcLEA113-OE tobacco leaves increased significantly under drought stress, with greater changes in HcLEA113-OE plants than WT. The increase in hydrogen peroxide (H2O2), superoxide anions (O2 -), and malondialdehyde (MDA) content was significantly lower in HcLEA113-OE lines than in WT plants. Additionally, HcLEA113-OE plants can activate reactive oxygen species (ROS)- and osmotic-related genes in response to drought stress. On the other hand, silencing the HcLEA113 gene through virus-induced gene silencing (VIGS) in kenaf plants led to notable growth suppression when exposed to drought conditions, manifesting as decreased plant height and dry weight. Meanwhile, antioxidant enzymes' activity significantly decreased and the ROS content increased. This study offers valuable insights for future research on the genetic engineering of drought resistance in plants.
Collapse
Affiliation(s)
- Dengjie Luo
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Caijin Wang
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Muzammal Rehman
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Shan Cao
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Yue
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Pan
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Peng Chen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| |
Collapse
|
10
|
Sun N, Zhou J, Liu Y, Li D, Xu X, Zhu Z, Xu X, Zhan R, Zhang H, Wang L. Genome-wide characterization of Remorin gene family and their responsive expression to abiotic stresses and plant hormone in Brassica napus. PLANT CELL REPORTS 2024; 43:155. [PMID: 38814469 DOI: 10.1007/s00299-024-03240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
KEY MESSAGE Remorin proteins could be positively related to salt and osmotic stress resistance in rapeseed. Remorins (REMs) play a crucial role in adaptations to adverse environments. However, their roles in abiotic stress and phytohormone responses in oil crops are still largely unknown. In this study, we identified 47 BnaREM genes in the B.napus genome. Phylogenetic relationship and synteny analysis revealed that they were categorized into 5 distinct groups and have gone through 55 segmental duplication events under purifying selection. Gene structure and conserved domains analysis demonstrated that they were highly conserved and all BnaREMs contained a conserved Remorin_C domain, with a variable N-terminal region. Promoter sequence analysis showed that BnaREM gene promoters contained various hormones and stress-related cis-acting elements. Transcriptome data from BrassicaEDB database exhibited that all BnaREMs were ubiquitously expressed in buds, stamens, inflorescences, young leaves, mature leaves, roots, stems, seeds, silique pericarps, embryos and seed coats. The qRT-PCR analysis indicated that most of them were responsive to ABA, salt and osmotic treatments. Further mutant complementary experiments revealed that the expression of BnaREM1.3-4C-1 in the Arabidopsis rem1.3 mutant restored the retarded growth phenotype and the ability to resistance to salt and osmotic stresses. Our findings provide fundamental information on the structure and evolutionary relationship of the BnaREM family genes in rapeseed, and reveal the potential function of BnaREM1.3-4C-1 in stress and hormone response.
Collapse
Affiliation(s)
- Nan Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, People's Republic of China
| | - Jiale Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, People's Republic of China
- College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, People's Republic of China
| | - Dong Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, People's Republic of China
| | - Xin Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, People's Republic of China
- College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Zihao Zhu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, People's Republic of China
- College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Xuesheng Xu
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, People's Republic of China
| | - Renhui Zhan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, People's Republic of China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, People's Republic of China.
| |
Collapse
|
11
|
Zhou Y, Bai YH, Han FX, Chen X, Wu FS, Liu Q, Ma WZ, Zhang YQ. Transcriptome sequencing and metabolome analysis reveal the molecular mechanism of Salvia miltiorrhiza in response to drought stress. BMC PLANT BIOLOGY 2024; 24:446. [PMID: 38778268 PMCID: PMC11112794 DOI: 10.1186/s12870-024-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan-Hong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng-Xia Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fu-Sheng Wu
- Shandong Provincial Center of Forest and Grass, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Jinan, China.
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yong-Qing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
12
|
Chen L, Wu X, Zhang M, Yang L, Ji Z, Chen R, Cao Y, Huang J, Duan Q. Genome-Wide Identification of BrCMF Genes in Brassica rapa and Their Expression Analysis under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1118. [PMID: 38674527 PMCID: PMC11054530 DOI: 10.3390/plants13081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
CCT MOTIF FAMILY (CMF) genes belong to the CCT gene family and have been shown to play a role in diverse processes, such as flowering time and yield regulation, as well as responses to abiotic stresses. CMF genes have not yet been identified in Brassica rapa. A total of 25 BrCMF genes were identified in this study, and these genes were distributed across eight chromosomes. Collinearity analysis revealed that B. rapa and Arabidopsis thaliana share many homologous genes, suggesting that these genes have similar functions. According to sequencing analysis of promoters, several elements are involved in regulating the expression of genes that mediate responses to abiotic stresses. Analysis of the tissue-specific expression of BrCMF14 revealed that it is highly expressed in several organs. The expression of BrCMF22 was significantly downregulated under salt stress, while the expression of BrCMF5, BrCMF7, and BrCMF21 was also significantly reduced under cold stress. The expression of BrCMF14 and BrCMF5 was significantly increased under drought stress, and the expression of BrCMF7 was upregulated. Furthermore, protein-protein interaction network analysis revealed that A. thaliana homologs of BrCMF interacted with genes involved in the abiotic stress response. In conclusion, BrCMF5, BrCMF7, BrCMF14, BrCMF21, and BrCMF22 appear to play a role in responses to abiotic stresses. The results of this study will aid future investigations of CCT genes in B. rapa.
Collapse
Affiliation(s)
- Luhan Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Xiaoyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Meiqi Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Lin Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Zhaojing Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Rui Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Jiabao Huang
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| |
Collapse
|
13
|
Gu Z, Hu C, Gan Y, Zhou J, Tian G, Gao L. Role of Microbes in Alleviating Crop Drought Stress: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:384. [PMID: 38337917 PMCID: PMC10857462 DOI: 10.3390/plants13030384] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Drought stress is an annual global phenomenon that has devastating effects on crop production, so numerous studies have been conducted to improve crop drought resistance. Plant-associated microbiota play a crucial role in crop health and growth; however, we have a limited understanding of the key processes involved in microbiome-induced crop adaptation to drought stress. In this review, we summarize the adverse effects of drought stress on crop growth in terms of germination, photosynthesis, nutrient uptake, biomass, and yield, with a focus on the response of soil microbial communities to drought stress and plant-microbe interactions under drought stress. Moreover, we review the morpho-physiological, biochemical, and molecular mechanisms underlying the mitigation effect of microbes on crop drought stress. Finally, we highlight future research directions, including the characterization of specific rhizosphere microbiome species with corresponding root exudates and the efficiency of rhizobacteria inoculants under drought conditions. Such research will advance our understanding of the complex interactions between crops and microbes and improve crop resistance to drought stress through the application of beneficial drought-adaptive microbes.
Collapse
Affiliation(s)
- Zechen Gu
- Engineering and Technical Center for Modern Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Chengji Hu
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Yuxin Gan
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Jinyan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Guangli Tian
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Limin Gao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing 210014, China
| |
Collapse
|
14
|
Castillo-Lorenzo E, Breman E, Gómez Barreiro P, Viruel J. Current status of global conservation and characterisation of wild and cultivated Brassicaceae genetic resources. Gigascience 2024; 13:giae050. [PMID: 39110621 PMCID: PMC11304946 DOI: 10.1093/gigascience/giae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/23/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The economic importance of the globally distributed Brassicaceae family resides in the large diversity of crops within the family and the substantial variety of agronomic and functional traits they possess. We reviewed the current classifications of crop wild relatives (CWRs) in the Brassicaceae family with the aim of identifying new potential cross-compatible species from a total of 1,242 species using phylogenetic approaches. RESULTS In general, cross-compatibility data between wild species and crops, as well as phenotype and genotype characterisation data, were available for major crops but very limited for minor crops, restricting the identification of new potential CWRs. Around 70% of wild Brassicaceae did not have genetic sequence data available in public repositories, and only 40% had chromosome counts published. Using phylogenetic distances, we propose 103 new potential CWRs for this family, which we recommend as priorities for cross-compatibility tests with crops and for phenotypic characterisation, including 71 newly identified CWRs for 10 minor crops. From the total species used in this study, more than half had no records of being in ex situ conservation, and 80% were not assessed for their conservation status or were data deficient (IUCN Red List Assessments). CONCLUSIONS Great efforts are needed on ex situ conservation to have accessible material for characterising and evaluating the species for future breeding programmes. We identified the Mediterranean region as one key conservation area for wild Brassicaceae species, with great numbers of endemic and threatened species. Conservation assessments are urgently needed to evaluate most of these wild Brassicaceae.
Collapse
Affiliation(s)
- Elena Castillo-Lorenzo
- Royal Botanic Gardens, Kew, Wakehurst, Partnerships department, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst, Partnerships department, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Pablo Gómez Barreiro
- Royal Botanic Gardens, Kew, Wakehurst, Science Operations, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Research department, Surrey, TW9 3AE, UK
| |
Collapse
|
15
|
Limbalkar OM, Vasisth P, Singh G, Jain P, Sharma M, Singh R, Dhanasekaran G, Kumar M, Meena ML, Iquebal MA, Jaiswal S, Rao M, Watts A, Bhattacharya R, Singh KH, Kumar D, Singh N. Dissection of QTLs conferring drought tolerance in B. carinata derived B. juncea introgression lines. BMC PLANT BIOLOGY 2023; 23:664. [PMID: 38129793 PMCID: PMC10740311 DOI: 10.1186/s12870-023-04614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Drought is one of the important abiotic stresses that can significantly reduce crop yields. In India, about 24% of Brassica juncea (Indian mustard) cultivation is taken up under rainfed conditions, leading to low yields due to moisture deficit stress. Hence, there is an urgent need to improve the productivity of mustard under drought conditions. In the present study, a set of 87 B. carinata-derived B. juncea introgression lines (ILs) was developed with the goal of creating drought-tolerant genotypes. METHOD The experiment followed the augmented randomized complete block design with four blocks and three checks. ILs were evaluated for seed yield and its contributing traits under both rainfed and irrigated conditions in three different environments created by manipulating locations and years. To identify novel genes and alleles imparting drought tolerance, Quantitative Trait Loci (QTL) analysis was carried out. Genotyping-by-Sequencing (GBS) approach was used to construct the linkage map. RESULTS The linkage map consisted of 5,165 SNP markers distributed across 18 chromosomes and spanning a distance of 1,671.87 cM. On average, there was a 3.09 cM gap between adjoining markers. A total of 29 additive QTLs were identified for drought tolerance; among these, 17 (58.6% of total QTLs detected) were contributed by B. carinata (BC 4), suggesting a greater contribution of B. carinata towards improving drought tolerance in the ILs. Out of 17 QTLs, 11 (64.7%) were located on the B genome, indicating more introgression segments on the B genome of B. juncea. Eight QTL hotspots, containing two or more QTLs, governing seed yield contributing traits, water use efficiency, and drought tolerance under moisture deficit stress conditions were identified. Seventeen candidate genes related to biotic and abiotic stresses, viz., SOS2, SOS2 like, NPR1, FAE1-KCS, HOT5, DNAJA1, NIA1, BRI1, RF21, ycf2, WRKY33, PAL, SAMS2, orf147, MAPK3, WRR1 and SUS, were reported in the genomic regions of identified QTLs. CONCLUSIONS The significance of B. carinata in improving drought tolerance and WUE by introducing genomic segments in Indian mustard is well demonstrated. The findings also provide valuable insights into the genetic basis of drought tolerance in mustard and pave the way for the development of drought-tolerant varieties.
Collapse
Affiliation(s)
- Omkar Maharudra Limbalkar
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- Present Address: ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Prashant Vasisth
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Guman Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Sewar, Bharatpur, Rajasthan, India
| | - Priyanka Jain
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- Present Address: AIMMSCR, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Mohit Sharma
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rajendra Singh
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Gokulan Dhanasekaran
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Manish Kumar
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- Present Address: College of Agriculture, Navgaon, Alwar, Sri Karan Narendra Agriculture University, Jobner, Rajasthan, India
| | - Mohan Lal Meena
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Kunwar Harendra Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Sewar, Bharatpur, Rajasthan, India
- Present Address: ICAR, Indian Institute of Soybean Research, Indore, Madhya Pradesh, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Naveen Singh
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
16
|
Wang M, Feng G, Yang Z, Wu J, Liu B, Xu X, Nie G, Huang L, Zhang X. Genome-Wide Characterization of the Aux/IAA Gene Family in Orchardgrass and a Functional Analysis of DgIAA21 in Responding to Drought Stress. Int J Mol Sci 2023; 24:16184. [PMID: 38003372 PMCID: PMC10671735 DOI: 10.3390/ijms242216184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Drought stress is an important factor that reduces plant biomass production and quality. As one of the most important economic forage grasses, orchardgrass (Dactylis glomerata) has high drought tolerance. Auxin/indole-3-acetic acid (Aux/IAA) is one of the early responsive gene families of auxin and plays a key role in the response to drought stress. However, the characteristics of the Aux/IAA gene family in orchardgrass and their potential function in responding to drought stress remain unclear. Here, 30 Aux/IAA members were identified in orchardgrass. Segmental duplication may be an important driving force in the evolution of the Aux/IAA gene family in orchardgrass. Some Aux/IAA genes were induced by IAA, drought, salt, and temperature stresses, implying that these genes may play important roles in responding to abiotic stresses. Heterologous expression in yeast revealed that DgIAA21 can reduce drought tolerance. Similarly, the overexpression of DgIAA21 also reduced drought tolerance in transgenic Arabidopsis, which was supported by lower total chlorophyll content and relative water content as well as higher relative electrolyte leakage and malondialdehyde content (MDA) than Col-0 plants under drought conditions. The results of this study provided valuable insight into the function of DgIAAs in response to drought stress, which can be further used to improve forage grass breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (G.F.); (Z.Y.)
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (G.F.); (Z.Y.)
| |
Collapse
|
17
|
Nikolić N, Ghirardelli A, Schiavon M, Masin R. Effects of the salinity-temperature interaction on seed germination and early seedling development: a comparative study of crop and weed species. BMC PLANT BIOLOGY 2023; 23:446. [PMID: 37736710 PMCID: PMC10515249 DOI: 10.1186/s12870-023-04465-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Weeds represent a great constraint for agricultural production due to their remarkable adaptability and their ability to compete with crops. Climate change exacerbates the abiotic stresses that plants encounter. Therefore, studying plant responses to adverse conditions is extremely important. Here, the response to saline stress at different temperatures of three weed species (Chenopodium album, Echinochloa crus-galli and Portulaca oleracea) and three crops (maize, soybean and rice) was investigated. RESULTS The germination percentage of soybean notably decreased as salinity and low temperatures increased. In contrast, maize and rice consistently maintained a high germination percentage, particularly when subjected to low salinity levels. Regarding weed species, the germination percentage of C. album was not significantly affected by salinity, but it decreased in E. crus-galli and P. oleracea with increasing salinity. The mean germination time for all species increased with salinity, especially at lower temperatures. This effect was most pronounced for soybean and E. crus-galli. C. album exhibited significant reduction in stem growth with high salinity and high temperatures, while in E. crus-galli stem growth was less reduced under similar conditions. CONCLUSION This study showed that successful germination under saline stress did not ensure successful early development and emphasizes the species-specific nature of the temperature-salinity interaction, perhaps influenced by intraspecific variability. Increasing salinity levels negatively impacted germination and seedling growth in most species, yet higher temperatures partially alleviated these effects.
Collapse
Affiliation(s)
- Nebojša Nikolić
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy.
| | - Aurora Ghirardelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences - DISAFA, University of Turin, Grugliasco, TO, 10095, Italy
| | - Roberta Masin
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy
| |
Collapse
|
18
|
Sun M, Wei S, Liu J, Wang L, Zhang Y, Hu L, Piao J, Liang Z, Jiang H, Xin D, Zhao Y, Chen Q, Foyer CH, Liu C, Qi Z. The impact of GmTSA and GmALS on soybean salt tolerance: uncovering the molecular landscape of amino acid and secondary metabolism pathways. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:212. [PMID: 37740151 DOI: 10.1007/s00122-023-04461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
KEY MESSAGE GmTSA and GmALS were screened out for salt stress in soybean and explore the poteintial amino acid secondary metabolism pathways. Soybean (Glycine max L.) is an oil and protein crop of global importance, and salinity has significant effects on soybean growth. Here, a population of soybean chromosome segment substitution lines was screened to identify highly salt-tolerant lines. In total, 24 quantitative trait loci (QTLs) on seven chromosomes were associated with salt tolerance, and CSSL_R71 was selected for further analysis. Although numerous genes were differentially expressed in CSSL_R71 in response to salt statically no differently, transcript levels of classical salt-response genes, including those of the salt overly sensitive pathway. Rather, salt tolerance in CSSL_R71 was associated with changes in amino acid and lipid metabolism. In particular, changes in p-coumaric acid, shikimic acid, and pyrrole-2-carboxylic acid levels accompanied salt tolerance in CSSL_R71. Eleven differentially expressed genes (DEGs) related to amino acid and secondary metabolism were identified as candidate genes on the substituted chromosome fragment. Six of these showed differences in coding sequence between the parental genotypes. Crucially, overexpression of GmTSA (Glyma.03G158400, tryptophan synthase) significantly enhanced salt tolerance in soybean hairy roots, whereas overexpression of GmALS (Glyma.13G241000, acetolactate synthase) decreased salt tolerance. Two KASP markers were developed for GmALS and used to genotype salt-tolerant and salt-sensitive lines in the CSSL population. Non-synonymous mutations were directly associated with salt tolerance. Taken together, these data provide evidence that changes in amino acid and secondary metabolism have the potential to confer salt tolerance in soybean.
Collapse
Affiliation(s)
- Minghao Sun
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Siming Wei
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jiarui Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Luyao Wang
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, 150028, China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Limin Hu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jingxi Piao
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Zhao Liang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, 130033, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Ying Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK.
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
| | - Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
19
|
Xu B, Zheng C, Sun T, Wu Y, He M, Chen W, Zhang P, Jiang H. Beneficial effects of triadimefon in overcoming drought stress in soybean at fluorescence stage. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154015. [PMID: 37301038 DOI: 10.1016/j.jplph.2023.154015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Soybean (Glycine max [L.] Merr.) at fluorescence stage frequently experiences drought stress. Although triadimefon has been observed to improve drought tolerance of plants, reports on its role in drought resistance on leaf photosynthesis and assimilate transport are limited. This study examined the effects of triadimefon on leaf photosynthesis and assimilate transport at fluorescence stage of soybean experiencing drought stress. Results showed that triadimefon application relieved the inhibitory effects of drought stress on photosynthesis and increased RuBPCase activity. Drought increased soluble sugar contents, yet reduced starch content in the leaves by heightening the activities of sucrose phosphate synthase (SPS), fructose-1,6-bisphosphatase (FBP), invertase (INV), and amylolytic enzyme, impeding the translocation of carbon assimilates to roots and reducing plant biomass. Nevertheless, triadimefon elevated starch content and minimized sucrose degradation by augmenting sucrose synthase (SS) activity and restraining the activities of SPS, FBP, INV, and amylolytic enzyme compared with drought alone, regulating the carbohydrate balance of drought-stressed plants. Therefore, triadimefon application could reduce the photosynthesis inhibition and regulate the carbohydrate balance of drought-stressed soybean plants to lessen the impacts of drought on soybean biomass.
Collapse
Affiliation(s)
- Bingjie Xu
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Chonglan Zheng
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China; Liangshan Yi Aotonomous Prefecture Academy of Forestry and Grassland Sciences, 615000, PR China
| | - Ting Sun
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yue Wu
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingjie He
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weiping Chen
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Pei Zhang
- Jiangsu Meteorological Bureau, Nanjing, 210008, PR China.
| | - Haidong Jiang
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
20
|
Fang F, Zhou W, Liu Y, Song Z, Zheng S, Wang F, Lu Z, Qi D, Li B, Sun N, Tang X, Zhang J, Zhan R, Wang L, Zhang H. Characterization of RING-type ubiquitin SINA E3 ligases and their responsive expression to salt and osmotic stresses in Brassica napus. PLANT CELL REPORTS 2023; 42:859-877. [PMID: 36788135 DOI: 10.1007/s00299-023-02996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
SINA (Seven in absentia) proteins in the subtype of E3 ubiquitin ligase family play a crucial role in plant growth and development. However, their functions in response to salt and osmotic stresses in oil crops are still largely unknown. In this study, a total number of 23 BnaSINAs were identified in the rapeseed genome. Chromosome location and collinear relationship analyses revealed that they were unevenly distributed on 13 chromosomes, and have gone through 22 segmental duplication events under purifying selection. Phylogenetic and gene structural analyses indicated that they belonged to five main groups, and those in the same subgroup showed similar gene structure. All BnaSINAs were predicted to form homo- or heterodimers. Except BnaSINA7, BnaSINA11, BnaSINA17 and BnaSINA18, which lacked the N-terminal RING finger, all BnaSINAs contained a conserved C-terminal SINA domain, a typical structural feature of the RING-type E3 ligase family. Transcriptional expression analyses demonstrated that most BnaSINAs were ubiquitously expressed in roots, stems, leaves, flowers, pods and seeds, and all were responsive to salt and osmotic stresses. Further, yeast two-hybrid and Arabidopsis mutant complementation analyses demonstrated that BnaSINA4 interacted with BnaSINA17 to form heterodimer, and expression of BnaSINA17 in the Arabidopsis sina2 mutant restored its growth resistance to salt and osmotic stresses. Our findings provide an important genetic foundation for the functional elucidation of BnaSINAs and a novel gene resource for the breeding of new oil crop cultivars with improved abiotic stress resistance.
Collapse
Affiliation(s)
- Fengyan Fang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Wenlong Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Songfeng Zheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Fei Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Zeyu Lu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Dazhuang Qi
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Nan Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Xiaoli Tang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Renhui Zhan
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China.
| |
Collapse
|
21
|
Indexing Resilience to Heat and Drought Stress in the Wild Relatives of Rapeseed-Mustard. Life (Basel) 2023; 13:life13030738. [PMID: 36983893 PMCID: PMC10055847 DOI: 10.3390/life13030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Wild species are weedy relatives and progenitors of cultivated crops, usually maintained in their centres of origin. They are rich sources of diversity as they possess many agriculturally important traits. In this study, we analysed 25 wild species and 5 U triangle species of Brassica for their potential tolerance against heat and drought stress during germination and in order to examine the early seedling stage. We identified the germplasms based on the mean membership function value (MFV), which was calculated from the tolerance index of shoot length, root length, and biochemical analysis. The study revealed that B. napus (GSC-6) could withstand high temperatures and drought. Other genotypes that were tolerant to the impact of heat stress were B. tournefortii (RBT 2002), D. gomez-campoi, B. tournefortii (Rawa), L. sativum, and B. carinata (PC-6). C. sativa resisted drought but did not perform well when subjected to high temperatures. Tolerance to drought was observed in B. fruticulosa (Spain), B. tournefortii (RBT 2003), C. bursa-pastoris (late), D. muralis, C. abyssinica (EC694145), C. abyssinica (EC400058) and B. juncea (Pusa Jaikisan). This investigation contributes to germplasm characterization and the identification of the potential source of abiotic stress tolerance in the Brassica breeding programme. These identified genotypes can be potential sources for transferring the gene(s)/genomic regions that determine tolerance to the elite cultivars.
Collapse
|
22
|
Jalal A, da Silva Oliveira CE, Galindo FS, Rosa PAL, Gato IMB, de Lima BH, Teixeira Filho MCM. Regulatory Mechanisms of Plant Growth-Promoting Rhizobacteria and Plant Nutrition against Abiotic Stresses in Brassicaceae Family. Life (Basel) 2023; 13:211. [PMID: 36676160 PMCID: PMC9860783 DOI: 10.3390/life13010211] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Extreme environmental conditions, such as abiotic stresses (drought, salinity, heat, chilling and intense light), offer great opportunities to study how different microorganisms and plant nutrition can influence plant growth and development. The intervention of biological agents such as plant growth-promoting rhizobacteria (PGPRs) coupled with proper plant nutrition can improve the agricultural importance of different plant species. Brassicaceae (Cruciferae) belongs to the monophyletic taxon and consists of around 338 genera and 3709 species worldwide. Brassicaceae is composed of several important species of economical, ornamental and food crops (vegetables, cooking oils, forage, condiments and industrial species). Sustainable production of Brassicas plants has been compromised over the years due to several abiotic stresses and the unbalanced utilization of chemical fertilizers and uncertified chemicals that ultimately affect the environment and human health. This chapter summarized the influence of PGPRs and nutrient management in the Brassicaceae family against abiotic stresses. The use of PGPRs contributed to combating climate-induced change/abiotic factors such as drought, soil and water salinization and heavy metal contamination that limits the general performance of plants. Brassica is widely utilized as an oil and vegetable crop and is harshly affected by abiotic stresses. Therefore, the use of PGPRs along with proper mineral nutrients management is a possible strategy to cope with abiotic stresses by improving biochemical, physiological and growth attributes and the production of brassica in an eco-friendly environment.
Collapse
Affiliation(s)
- Arshad Jalal
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- Faculty of Agricultural and Technological Sciences, Campus of Dracena, São Paulo State University (UNESP), Dracena 17900-000, SP, Brazil
| | - Poliana Aparecida Leonel Rosa
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Isabela Martins Bueno Gato
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Bruno Horschut de Lima
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| |
Collapse
|
23
|
Huan X, Li L, Liu Y, Kong Z, Liu Y, Wang Q, Liu J, Zhang P, Guo Y, Qin P. Integrating transcriptomics and metabolomics to analyze quinoa ( Chenopodium quinoa Willd.) responses to drought stress and rewatering. FRONTIERS IN PLANT SCIENCE 2022; 13:988861. [PMID: 36388589 PMCID: PMC9645111 DOI: 10.3389/fpls.2022.988861] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 06/01/2023]
Abstract
The crop production of quinoa (Chenopodium quinoa Willd.), the only plant meeting basic human nutritional requirements, is affected by drought stress. To better understand the drought tolerance mechanism of quinoa, we screened the drought-tolerant quinoa genotype "Dianli 129" and studied the seedling leaves of the drought-tolerant quinoa genotype after drought and rewatering treatments using transcriptomics and targeted metabolomics. Drought-treatment, drought control, rewatering-treated, and rewatered control were named as DR, DC, RW, and RC, respectively. Among four comparison groups, DC vs. DR, RC vs. RW, RW vs. DR, and RC vs. DC, we identified 10,292, 2,307, 12,368, and 3 differentially expressed genes (DEGs), and 215, 192, 132, and 19 differentially expressed metabolites (DEMs), respectively. A total of 38,670 genes and 142 pathways were annotated. The results of transcriptome and metabolome association analysis showed that gene-LOC110713661 and gene-LOC110738152 may be the key genes for drought tolerance in quinoa. Some metabolites accumulated in quinoa leaves in response to drought stress, and the plants recovered after rewatering. DEGs and DEMs participate in starch and sucrose metabolism and flavonoid biosynthesis, which are vital for improving drought tolerance in quinoa. Drought tolerance of quinoa was correlated with gene expression differences, metabolite accumulation and good recovery after rewatering. These findings improve our understanding of drought and rewatering responses in quinoa and have implications for the breeding of new drought-tolerance varieties while providing a theoretical basis for drought-tolerance varieties identification.
Collapse
Affiliation(s)
- Xiuju Huan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yongjiang Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Zhiyou Kong
- College of Resources and Environment, Baoshan College, Baoshan, China
| | - Yeju Liu
- Graduate Office, Yunnan Agricultural University, Kunming, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yirui Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
24
|
Lv L, Chen X, Li H, Huang J, Liu Y, Zhao A. Different adaptive patterns of wheat with different drought tolerance under drought stresses and rehydration revealed by integrated metabolomic and transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1008624. [PMID: 36311061 PMCID: PMC9608176 DOI: 10.3389/fpls.2022.1008624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 05/27/2023]
Abstract
Wheat as a staple food crop is enduring ever-frequent intermittent and changing drought with the climate change. It is of great significance to highlight the adaptive approaches under such variable conditions at multiple levels to provide a comprehensive understanding of drought tolerance and facilitate the genetic breeding of wheat. Therefore, three wheat lines with different drought tolerance (drought-tolerant mutant Mu > common wheat CK > drought susceptible mutant mu) were analyzed under moderate and severe drought stresses as well as rehydration. Samples were subjected to transcriptomic and metabolomic profiling in combination with physiological and biochemical determination. The moderate drought stress rendered 198 and 115 differentially expressed metabolites (DEMs) in CK and Mu, respectively. The severe drought stress rendered 166, 151 and 137 DEMs in CK, Mu and mu, respectively. The rehydration rendered 150 and 127 DEMs in CK and Mu. 12,557 and 10,402 differentially expressed genes (DEGs) were identified for CK and Mu under moderate drought stress, respectively. 9,893, 7,924, and 9,387 DEGs were identified for CK, Mu, and mu under severe drought stress, respectively. 13,874 and 14,839 were identified in CK and Mu under rehydration, respectively. Metabolomics results showed that amino acid was the most differentially expressed metabolites, followed by phenolic acids. Flavonoids played an important role in drought tolerance. Most enriched pathways under drought included biosynthesis of secondary metabolites, metabolic pathways and photosynthesis. Metabolites and genes involved in osmotic regulation, antioxidase activities, and ABA signaling were more enriched in Mu than in CK and mu. Various drought-responsive genes and metabolites in Mu showed different trends with those in CK and mu. Increased amino acids biosynthetic capability and ROS scavenging ability resulted from higher antioxidase activities and increased flavonoids may be the mechanisms underlying the drought tolerance characteristic of Mu. Recovery from reversible ROS damage and rapid amino acid biosynthesis may contribute to the rapid recovery of Mu. The present study provides new insights for mechanisms of wheat under complex drought conditions.
Collapse
|
25
|
Fang S, Li T, Zhang P, Liu C, Cong B, Liu S. Integrated transcriptome and metabolome analyses reveal the adaptation of Antarctic moss Pohlia nutans to drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:924162. [PMID: 36035699 PMCID: PMC9403716 DOI: 10.3389/fpls.2022.924162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Most regions of the Antarctic continent are experiencing increased dryness due to global climate change. Mosses and lichens are the dominant vegetation of the ice-free areas of Antarctica. However, the molecular mechanisms of these Antarctic plants adapting to drought stress are less documented. Here, transcriptome and metabolome analyses were employed to reveal the responses of an Antarctic moss (Pohlia nutans subsp. LIU) to drought stress. We found that drought stress made the gametophytes turn yellow and curled, and enhanced the contents of malondialdehyde and proline, and the activities of antioxidant enzymes. Totally, 2,451 differentially expressed genes (DEGs) were uncovered under drought treatment. The representative DEGs are mainly involved in ROS-scavenging and detoxification, flavonoid metabolism pathway, plant hormone signaling pathway, lipids metabolism pathway, transcription factors and signal-related genes. Meanwhile, a total of 354 differentially changed metabolites (DCMs) were detected in the metabolome analysis. Flavonoids and lipids were the most abundant metabolites and they accounted for 41.53% of the significantly changed metabolites. In addition, integrated transcriptome and metabolome analyses revealed co-expression patterns of flavonoid and long-chain fatty acid biosynthesis genes and their metabolites. Finally, qPCR analysis demonstrated that the expression levels of stress-related genes were significantly increased. These genes included those involved in ABA signaling pathway (NCED3, PP2C, PYL, and SnAK2), jasmonate signaling pathway (AOC, AOS, JAZ, and OPR), flavonoid pathway (CHS, F3',5'H, F3H, FLS, FNS, and UFGT), antioxidant and detoxifying functions (POD, GSH-Px, Prx and DTX), and transcription factors (ERF and DREB). In summary, we speculated that P. nutans were highly dependent on ABA and jasmonate signaling pathways, ROS scavenging, flavonoids and fatty acid metabolism in response to drought stress. These findings present an important knowledge for assessing the impact of coastal climate change on Antarctic basal plants.
Collapse
Affiliation(s)
- Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| | - Chenlin Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| |
Collapse
|
26
|
Yuan S, Hu D, Wang Y, Shao C, Liu T, Zhang C, Cheng F, Hou X, Li Y. BcWRKY1 confers salt sensitivity via inhibiting Reactive oxygen species scavenging. PLANT MOLECULAR BIOLOGY 2022; 109:741-759. [PMID: 35553313 DOI: 10.1007/s11103-022-01272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
WRKY transcription factors play important roles in abiotic stress by directly regulating stress-related genes. However, the molecular mechanism of its involvement in salt stress in pak-choi is still poorly understood. In this study, we elucidated the function of BcWRKY1 from pak-choi (Brassica rapa ssp. chinensis) in salt stress. The expression level of BcWRKY1 showed the highest in rosette leaves among different tissues and was induced by salt and ABA treatment in pak-choi. Subcellular localization showed that BcWRKY1 was located in nucleus. The transgenic Arabidopsis overexpressing BcWRKY1 exhibited enhanced salt sensitivity and higher H2O2 contents, which were further confirmed by silencing BcWRKY1 in pak-choi. In addition, the expression of ZAT12 was negatively regulated with BcWRKY1 under salt stress both in pak-choi and Arabidopsis. Yeast one-hybrid and dual luciferase reporter assay showed that BcWRKY1 could bind to the promoter of BcZAT12, and BcsAPX expression was activated by BcZAT12. To sum up, we propose a BcWRKY1-BcZAT12-BcsAPX regulatory model that involves in pak-choi salt stress response.
Collapse
Affiliation(s)
- Shuilin Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Die Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
| | - Yuan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cen Shao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tongkun Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Changwei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
27
|
Chataika BY, Akundabweni LSM, Sibiya J, Achigan-Dako EG, Sogbohossou DEO, Kwapata K, Awala S. Major Production Constraints and Spider Plant [Gynandropsis gynandra (L.) Briq.] Traits Preferences Amongst Smallholder Farmers of Northern Namibia and Central Malawi. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.831821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spider plant (Gynandropsis gynandra (L.) Briq.) is among the most important African Leafy Vegetables (ALVs) as a source of essential nutrients with the potential of contributing significantly to household food and nutritional security and mitigation of hidden hunger. Nevertheless, the vegetable is considered an orphan crop and its production is challenged by inadequate research to identify and improve traits preferred by smallholder farmers. The research was conducted to identify the main challenges impacting the production of spider plants and identify traits preferred by smallholder farmers in northern Namibia and central Malawi for use in demand-led crop improvement. Semi-structured interviews involving a random selection of 197 farming households from five regions of northern Namibia and three districts of central Malawi were conducted. In addition, six key informant interviews and four focus group discussions were conducted to triangulate the findings. Data were analyzed using IBM SPSS version 20. Fischer's exact test was used to test for independence in the ranking of production constraints and agronomic traits, while Kendall's Coefficient of Concordance (W) was used to measure agreement levels in the ranking across the countries. Farmers indicated lack of seed, poor soil fertility, poor seed germination and drought as the main production challenges across the two countries. Production constraints were ranked differently (p < 0.001) across the study sites suggesting the influence of biophysical and socio-economic factors associated with production. High yield and drought tolerance were considered the most important agronomic traits among the smallholder farmers in both countries. The findings of this study are useful for designing demand-driven pre-breeding trials that prioritize the needs of the end-users. Demand-led breeding has the potential to stimulate the production and utilization of spider plant, hence contributing to household food and nutritional security.
Collapse
|
28
|
Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. Construction of a Quantitative Genomic Map, Identification and Expression Analysis of Candidate Genes for Agronomic and Disease-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:862363. [PMID: 35360294 PMCID: PMC8963808 DOI: 10.3389/fpls.2022.862363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Ahmad Lone W, Majeed N, Yaqoob U, John R. Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. PLANT CELL REPORTS 2022; 41:603-617. [PMID: 34374791 DOI: 10.1007/s00299-021-02763-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Exogenously supplied BR and JA help KS101 and KBS3 genotypes of Brassica rapa to alleviate drought stress by modifying osmolyte concentration, levels of antioxidant enzymes and photosynthetic system. Oilseed plants are susceptible to drought stress and a significant loss in yield has been reported during recent decades. Thus, it is imperative to understand the various underlying drought response mechanisms in Brassica oilseed plants to formulate the sustainable strategies to protect the crop yield under water-limiting conditions. Phytohormones play a key role in fine-tuning various regulatory mechanisms for drought stress adaptation in plants, and the present study explores the response of several physiological stress markers by exogenous supplementation of 24-epibrassinolide (EBL) and jasmonic acid (JA) on two genotypes of Brassica rapa, KS101 and KBS3 under drought stress conditions. The exogenous application of BR and JA, separately or in combination, significantly alleviated the drought stress by improving photosynthetic rate, photosynthetic pigments, stomatal conductance, transpiration rate and antioxidant defence. We observed that concentration of different osmolytes increased and membrane damage significantly reduced by the application of BR and JA. The overall activity of antioxidant enzymes POD, CAT, GR, APX and CAT elevated during all the treatments, be it stress alone or in combination with BR and JA, compared to the control. However, we observed that the BR was much better in mitigating the drought stress compared to JA. Thus, the present study suggests that BR and JA supplementation improves the performance of B. rapa on exposure to drought stress, which hints at the critical role of BR and JA in improving crop productivity in drought-prone areas.
Collapse
Affiliation(s)
- Waseem Ahmad Lone
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Kashmir, India
| | - Neelofar Majeed
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Kashmir, India
| | - Umer Yaqoob
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Kashmir, India
| | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Kashmir, India.
| |
Collapse
|
30
|
Raja V, Wani UM, Wani ZA, Jan N, Kottakota C, Reddy MK, Kaul T, John R. Pyramiding ascorbate-glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. PLANT CELL REPORTS 2022; 41:619-637. [PMID: 34383122 DOI: 10.1007/s00299-021-02764-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Stacking Glutathione-Ascorbate pathway genes (PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR) under stress inducible promoter RD29A imparts significant tolerance to drought and salinity stress in Solanum lycopersicum. Although the exposure of plants to different environmental stresses results in overproduction of reactive oxygen species (ROS), many plants have developed some unique systems to alleviate the ROS production and mitigate its deleterious effect. One of the key pathways that gets activated in plants is ascorbate glutathione (AsA-GSH) pathway. To demonstrate the effect of this pathway in tomato, we developed the AsA-GSH overexpression lines by stacking the genes of the AsA-GSH pathway genes isolated from Pennisetum glaucoma (Pg) including PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR under stress inducible promoter RD29A. The overexpression lines have an improved germination and seedling growth with concomitant elevation in the survival rate. The exposure of transgenic seedlings to varying stress regiments exhibited escalation in the antioxidant enzyme activity and lesser membrane damage as reflected by decreased electrolytic leakage and little accumulation of malondialdehyde and H2O2. Furthermore, the transgenic lines accumulated high levels of osmoprotectants with increase in the relative water content. The increased photosynthetic activity and enhanced gaseous exchange parameters further confirmed the enhanced tolerance of AsA-GSH overexpression lines. We concluded that pyramiding of AsA-GSH pathway genes is an effective strategy for developing stress resistant crops.
Collapse
Affiliation(s)
- Vaseem Raja
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Umer Majeed Wani
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Zubair Ahmad Wani
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Nelofer Jan
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Chandrasekhar Kottakota
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Malireddy K Reddy
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Tanushri Kaul
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
31
|
Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. JOURNAL OF PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s00344-021-10338-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
32
|
Using UAV and Field Measurement Technology to Monitor the Impact of Coal Gangue Pile Temperature on Vegetation Ecological Construction. REMOTE SENSING 2022. [DOI: 10.3390/rs14020353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Coal gangue is an inevitable product in coal mining and processing and is the most important source of pollution in mines. Vegetation restoration of coal gangue piles must consider its special site conditions. Therefore, we conducted unmanned air vehicle (UAV) temperature monitoring, field investigation and experimental analysis on spontaneous combustion coal gangue piles in Lu’an mining area. In the vegetation construction of coal gangue piles, high-temperature stress affects plant survival. The spontaneous combustion coal gangue piles have abnormal temperature, high surface temperature and few vegetation types. The plant community species diversity index (Shannon–Wiener index, Pielou’s index and Species abundance index) is small, the plant community is single and the plant diversity is low. Spontaneous combustion of coal gangue leads to soil acidification, reducing soil water content, soil organic carbon (SOM), available nitrogen (AN), available potassium (AK) and available phosphorus (AP). These factors are single or interactive in plants and have an impact on plant survival and growth. The research results are of great significance to the vegetation restoration of spontaneous combustion coal gangue piles, ecological reconstruction and the improvement of the ecological environment of coal mine areas.
Collapse
|
33
|
Analyses of Lysin-motif Receptor-like Kinase ( LysM-RLK) Gene Family in Allotetraploid Brassica napus L. and Its Progenitor Species: An In Silico Study. Cells 2021; 11:cells11010037. [PMID: 35011598 PMCID: PMC8750388 DOI: 10.3390/cells11010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The LysM receptor-like kinases (LysM-RLKs) play a crucial role in plant symbiosis and response to environmental stresses. Brassica napus, B. rapa, and B. oleracea are utilized as valuable vegetables. Different biotic and abiotic stressors affect these crops, resulting in yield losses. Therefore, genome-wide analysis of the LysM-RLK gene family was conducted. From the genome of the examined species, 33 LysM-RLK have been found. The conserved domains of Brassica LysM-RLKs were divided into three groups: LYK, LYP, and LysMn. In the BrassicaLysM-RLK gene family, only segmental duplication has occurred. The Ka/Ks ratio for the duplicated pair of genes was less than one indicating that the genes’ function had not changed over time. The BrassicaLysM-RLKs contain 70 cis-elements, indicating that they are involved in stress response. 39 miRNA molecules were responsible for the post-transcriptional regulation of 12 Brassica LysM-RLKs. A total of 22 SSR loci were discovered in 16 Brassica LysM-RLKs. According to RNA-seq data, the highest expression in response to biotic stresses was related to BnLYP6. According to the docking simulations, several residues in the active sites of BnLYP6 are in direct contact with the docked chitin and could be useful in future studies to develop pathogen-resistant B. napus. This research reveals comprehensive information that could lead to the identification of potential genes for Brassica species genetic manipulation.
Collapse
|
34
|
Li J, Duan Y, Sun N, Wang L, Feng S, Fang Y, Wang Y. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111062. [PMID: 34763855 DOI: 10.1016/j.plantsci.2021.111062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
As an ancient and conserved plant microRNA (miRNA) family, miR169 targets nuclear factor Y subunit alpha (NF-YA) family members. The miR169-NF-YA module is associated with plant development and various stress responses. However, the function of miR169 in response to drought stress in rapeseed (Brassica napus L.) is unclear. In the present study, we showed that miR169n acted as a negative regulator of drought resistance in rapeseed by targeting a nuclear factor Y-A gene, NF-YA8. miR169n was strongly down-regulated by drought stress. Expression of a miR169n target mimicry construct (MIM169n) which functioned as a sponge to trap miR169n resulted in enhanced resistance of transgenic plants to both osmotic stress at the post-germination stage and drought stress at the seedling stage. MIM169n plants had a higher relative water content (RWC) and proline content, lower relative electrolyte leakage (REL), and showed higher antioxidative capability compared with those of control (CK) plants under drought stress. Moreover, NF-YA8 was verified as a target of miR169n, and overexpression of NF-YA8 led to improved tolerance of rapeseed to osmotic stress at the post-germination stage. Overall, our findings implied that the miR169n-NF-YA8 regulatory module could serve as a potential target for genetic improvement of drought resistance in B. napus.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Yujing Duan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Nianli Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Lu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Shanshan Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, China.
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
35
|
Li N, Zhang Z, Gao S, Lv Y, Chen Z, Cao B, Xu K. Different responses of two Chinese cabbage (Brassica rapa L. ssp. pekinensis) cultivars in photosynthetic characteristics and chloroplast ultrastructure to salt and alkali stress. PLANTA 2021; 254:102. [PMID: 34671899 DOI: 10.1007/s00425-021-03754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Salt and alkali stress affected the photosynthetic characteristics of Chinese cabbages. A salt-tolerant cultivar maintained its tolerance by ensuring the high ability of photosynthesis. The synthesis of organic acids and carbohydrates in leaves played important roles in improving the photosynthetic capacity of alkali-tolerant plants. Soil salinization has become an increasingly serious ecological problem, which limits the quality and yield of crops. As an important economic vegetable in winter, however, little is known about the response of Chinese cabbage to salt, alkali and salt-alkali stress in photosynthetic characteristics and chloroplast ultrastructure. Thus, two Chinese cabbage cultivars, 'Qinghua' (salt-tolerant-alkali-sensitive) and 'Biyu' (salt-sensitive-alkali-tolerant) were investigated under stresses to clarify the similarities and differences between salt tolerance and alkali tolerance pathways in Chinese cabbage. We found that the root of Qinghua, the leaf ultrastructure and net photosynthetic rate (Pn), stomatal conductance (Gs), water use efficiency (WUE), maximum photochemical quantum yield of PSII (Fv/Fm) and nonphotochemical quenching (NPQ) were not affected by salt stress. However, Biyu was seriously affected under salt stress. Its growth indexes decreased by between 60 and 30% compared with the control and the photosynthetic indexes were also seriously affected under salt stress. This indicated that the salt-tolerant cultivar Qinghua improved the photosynthetic fluorescence ability to promote the synthesis of organic matter resulting in salt tolerance. In contrast, under alkali treatment, the root of Biyu was affected by alkali stress, but could still maintain good growth, and root and leaf structure were not seriously affected and could maintain the normal operations. Biyu improved its tolerance by improving the water use efficiency, regulating the synthesis of organic acids and carbohydrates, ensuring the synthesis of organic matter and ensured the normal growth of the plant.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Zhihuan Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Song Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai'an, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China.
- State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
36
|
Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, Mora-Poblete F. Advances and Challenges for QTL Analysis and GWAS in the Plant-Breeding of High-Yielding: A Focus on Rapeseed. Biomolecules 2021; 11:1516. [PMID: 34680149 PMCID: PMC8533950 DOI: 10.3390/biom11101516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Yield is one of the most important agronomic traits for the breeding of rapeseed (Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Muhammad Hafeez Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| | - Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raheel Shahzad
- Department of Biotechnology, Faculty of Science & Technology, Universitas Muhammadiyah Bandung, Bandung 40614, Indonesia;
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| |
Collapse
|
37
|
Billah M, Aktar S, Brestic M, Zivcak M, Khaldun ABM, Uddin MS, Bagum SA, Yang X, Skalicky M, Mehari TG, Maitra S, Hossain A. Progressive Genomic Approaches to Explore Drought- and Salt-Induced Oxidative Stress Responses in Plants under Changing Climate. PLANTS (BASEL, SWITZERLAND) 2021; 10:1910. [PMID: 34579441 PMCID: PMC8471759 DOI: 10.3390/plants10091910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Drought and salinity are the major environmental abiotic stresses that negatively impact crop development and yield. To improve yields under abiotic stress conditions, drought- and salinity-tolerant crops are key to support world crop production and mitigate the demand of the growing world population. Nevertheless, plant responses to abiotic stresses are highly complex and controlled by networks of genetic and ecological factors that are the main targets of crop breeding programs. Several genomics strategies are employed to improve crop productivity under abiotic stress conditions, but traditional techniques are not sufficient to prevent stress-related losses in productivity. Within the last decade, modern genomics studies have advanced our capabilities of improving crop genetics, especially those traits relevant to abiotic stress management. This review provided updated and comprehensive knowledge concerning all possible combinations of advanced genomics tools and the gene regulatory network of reactive oxygen species homeostasis for the appropriate planning of future breeding programs, which will assist sustainable crop production under salinity and drought conditions.
Collapse
Affiliation(s)
- Masum Billah
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.B.); (T.G.M.)
| | - Shirin Aktar
- Institute of Tea Research, Chinese Academy of Agricultural Sciences, South Meiling Road, Hangzhou 310008, China;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | | | - Md. Shalim Uddin
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (A.B.M.K.); (M.S.U.); (S.A.B.)
| | - Shamim Ara Bagum
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (A.B.M.K.); (M.S.U.); (S.A.B.)
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong St., Tai’an 271000, China;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Teame Gereziher Mehari
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.B.); (T.G.M.)
| | - Sagar Maitra
- Department of Agronomy, Centurion University of Technology and Management, Village Alluri Nagar, R.Sitapur 761211, Odisha, India;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
38
|
Koochak H, Ludwig-Müller J. Physcomitrium patens Mutants in Auxin Conjugating GH3 Proteins Show Salt Stress Tolerance but Auxin Homeostasis Is Not Involved in Regulation of Oxidative Stress Factors. PLANTS 2021; 10:plants10071398. [PMID: 34371602 PMCID: PMC8309278 DOI: 10.3390/plants10071398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Salt stress is among the most challenging abiotic stress situations that a plant can experience. High salt levels do not only occur in areas with obvious salty water, but also during drought periods where salt accumulates in the soil. The moss Physcomitrium patens became a model for studying abiotic stress in non-vascular plants. Here, we show that high salt concentrations can be tolerated in vitro, and that auxin homeostasis is connected to the performance of P. patens under these stress conditions. The auxin levels can be regulated by conjugating IAA to amino acids by two members of the family of GH3 protein auxin amino acid-synthetases that are present in P. patens. Double GH3 gene knock-out mutants were more tolerant to high salt concentrations. Furthermore, free IAA levels were differentially altered during the time points investigated. Since, among the mutant lines, an increase in IAA on at least one NaCl concentration tested was observed, we treated wild type (WT) plants concomitantly with NaCl and IAA. This experiment showed that the salt tolerance to 100 mM NaCl together with 1 and 10 µM IAA was enhanced during the earlier time points. This is an additional indication that the high IAA levels in the double GH3-KO lines could be responsible for survival in high salt conditions. While the high salt concentrations induced several selected stress metabolites including phenols, flavonoids, and enzymes such as peroxidase and superoxide dismutase, the GH3-KO genotype did not generally participate in this upregulation. While we showed that the GH3 double KO mutants were more tolerant of high (250 mM) NaCl concentrations, the altered auxin homeostasis was not directly involved in the upregulation of stress metabolites.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-5910, USA
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Correspondence:
| |
Collapse
|
39
|
Yu C, Miao R, Khanna M. Maladaptation of U.S. corn and soybeans to a changing climate. Sci Rep 2021; 11:12351. [PMID: 34117293 PMCID: PMC8196191 DOI: 10.1038/s41598-021-91192-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 11/08/2022] Open
Abstract
We quantify long-run adaptation of U.S. corn and soybean yields to changes in temperature and precipitation over 1951-2017. Results show that although the two crops became more heat- and drought-tolerant, their productivity under normal temperature and precipitation conditions decreased. Over 1951-2017, heat- and drought-tolerance increased corn and soybean yields by 33% and 20%, whereas maladaptation to normal conditions reduced yields by 41% and 87%, respectively, with large spatial variations in effects. Changes in climate are projected to reduce average corn and soybean yields by 39-68% and 86-92%, respectively, by 2050 relative to 2013-2017 depending on the warming scenario. After incorporating estimated effects of climate-neutral technological advances, the net change in yield ranges from (-)13 to 62% for corn and (-)57 to (-)26% for soybeans in 2050 relative to 2013-2017. Our analysis uncovers the inherent trade-offs and limitations of existing approaches to crop adaptation.
Collapse
Affiliation(s)
- Chengzheng Yu
- Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruiqing Miao
- Department of Agricultural Economics and Rural Sociology, Auburn University, Auburn, AL, USA
| | - Madhu Khanna
- Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
40
|
Li D, Peng S, Chen S, Li Z, He Y, Ren B, Yang G. Identification and characterization of 5 walnut MYB genes in response to drought stress involved in ABA signaling. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1323-1335. [PMID: 34177150 PMCID: PMC8212255 DOI: 10.1007/s12298-021-01008-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 05/17/2023]
Abstract
UNLABELLED Walnut is a popular nut tree species and usually suffers from drought stress. However, little information is available on the mechanism of walnut responding to drought stress, resulting in lack of basic understanding for its resistance. In order to excavate more functional genes that can respond to stressors, and enrich the theoretical basis for walnut resistance, in this study, 5 MYB genes with complete ORFs were identified from J. regia and the basic bio-information as well as expression patterns in different tissues and response to drought and ABA stresses were confirmed using qRT-PCR assay. The results showed that 2 JrMYB genes belong to R1-MYB subfamily and 3 JrMYBs belong to R2R3-MYB, encoding the proteins from 212 to 362 aa in length. The phylogenetic analysis categorized proteins of 5 JrMYBs and 40 Arabidopsis AtMYBs into 10 subgroups. JrMYBs in the same subgroup exhibited significant similarities in the composition of conserved domains and motifs in amino acid sequences and exon/intron organization in DNA sequences. The results of qRT-PCR analysis revealed that JrMYB genes diversely expressed in various tissues. Moreover, the expression values of JrMYBs were upregulated or downregulated significantly under drought and ABA stresses. Most attractively, in contrast with suffering from drought stress alone, the treatments with drought and additional ABA greatly enhanced the transcript levels of JrMYBs. All these results suggested that JrMYB genes play a vital role in plant biological processes and drought as well as ABA stress response, and possibly perform as ABA-dependent drought response transcription factors in plant. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01008-z.
Collapse
Affiliation(s)
- Dapei Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shaobing Peng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shuwen Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Ziyi Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yi He
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Bin Ren
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
41
|
Gad M, Chao H, Li H, Zhao W, Lu G, Li M. QTL Mapping for Seed Germination Response to Drought Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 11:629970. [PMID: 33633753 PMCID: PMC7900748 DOI: 10.3389/fpls.2020.629970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Drought stress is one of the most environmental abiotic stresses affecting seed germination and crop growth. In the present study, the genetic characteristics of seed germination under drought stress in a Brassica napus double haploid population were analyzed. Five germination-related indexes, including germination percentage (GP), root length (RL), shoot length (SL), fresh weight (FW), and root-to-shoot length ratio (R/S) under control and drought stress, were calculated, and the drought stress index (DSI), including DSI-GP, DSI-RL, DSI-SL, DSI-FW, and DSI-R/S, was determined using the quantitative trait loci (QTLs) analysis based on high-density genetic linkage map. The phenotypic analysis indicated that the R/S is an effective morphological trait in the determination of drought tolerance in the seedling stage. Thirty-nine identified QTLs were observed for these traits and then integrated into 36 consensus QTLs, in which 18 QTLs were found to affect the DSI of four traits (GP, RL, SL, and R/S). Based on the co-linearity between genetic and physical maps of B. napus, 256 candidate genes were detected, and 128 genes have single-nucleotidepolymorphisms/insertion-deletion (SNP/InDel) variations between two parents, some of which were associated with the drought stress tolerance (for example, BnaC03g32780D, BnaC03g37030D, and BnaC09g27300D). The present results laid insights into drought tolerance and its genetic bases in B. napus.
Collapse
Affiliation(s)
- Mahmoud Gad
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huaixin Li
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Zhao
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Lu
- Faculty of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Maoteng Li
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Das Laha S, Dutta S, Schäffner AR, Das M. Gene duplication and stress genomics in Brassicas: Current understanding and future prospects. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153293. [PMID: 33181457 DOI: 10.1016/j.jplph.2020.153293] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Polyploidy or whole genome duplication (WGD) is an evolutionary phenomenon that happened in all angiosperms multiple times over millions of years. Extensive studies on the model plant Arabidopsis thaliana genome have revealed that it has undergone five rounds of WGDs followed, in the Brassicaceae tribe, by a characteristic whole genome triplication (WGT). In addition, small-scale events such as tandem or segmental duplications and retrotransposition also enable plants to reshape their genomes. Over the decades, extensive research efforts have been undertaken to understand the evolutionary significance of polyploidy. On the other hand, much less attention has been paid to understanding the impact of gene duplication on the diversification of important stress response genes. The main objective of this review is to discuss key aspects of gene and genome duplications with a focus on genes primarily regulated by osmotic stresses. The focal family is the Brassicaceae, since it (i) underwent multiple rounds of WGDs plus WGTs, (ii) hosts many economically important crops and wild relatives that are tolerant to a range of stresses, and (iii) comprises many species that have already been sequenced. Diverse molecular mechanisms that lead to structural and regulatory alterations of duplicated genes are discussed. Examples are drawn from recent literature to elucidate expanded, stress responsive gene families identified from different Brassica crops. A combined bioinformatic and transcriptomic method has been proposed and tested on a known stress-responsive gene pair to prove that stress-responsive duplicated allelic variants can be identified by this method. Finally, future prospects for engineering these genes into crops to enhance stress tolerance are discussed, and important resources for Brassica genome research are provided.
Collapse
Affiliation(s)
- Shayani Das Laha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Smritikana Dutta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Malay Das
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
43
|
Hojjat SS. Effects of TiO2 Nanoparticles on Germination and Growth Characteristics of Grass Pea (Lathyrus sativus L.) Seed under Drought Stress. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s199507802002010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Drought Stress Detection in Juvenile Oilseed Rape Using Hyperspectral Imaging with a Focus on Spectra Variability. REMOTE SENSING 2020. [DOI: 10.3390/rs12203462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperspectral imaging (HSI) has been gaining recognition as a promising proximal and remote sensing technique for crop drought stress detection. A modelling approach accounting for the treatment effects on the stress indicators’ standard deviations was applied to proximal images of oilseed rape—a crop subjected to various HSI studies, with the exception of drought. The aim of the present study was to determine the spectral responses of two cultivars, ‘Cadeli’ and ‘Viking’, representing distinctive water management strategies, to three types of watering regimes. Hyperspectral data cubes were acquired at the leaf level using a 2D frame camera. The influence of the experimental factors on the extent of leaf discolorations, vegetation index values, and principal component scores was investigated using Bayesian linear models. Clear treatment effects were obtained primarily for the vegetation indexes with respect to the watering regimes. The mean values of RGI, MTCI, RNDVI, and GI responded to the difference between the well-watered and water-deprived plants. The RGI index excelled among them in terms of effect strengths, which amounted to −0.96[−2.21,0.21] and −0.71[−1.97,0.49] units for each cultivar. A consistent increase in the multiple index standard deviations, especially RGI, PSRI, TCARI, and TCARI/OSAVI, was associated with worsening of the hydric regime. These increases were captured not only for the dry treatment but also for the plants subjected to regeneration after a drought episode, particularly by PSRI (a multiplicative effect of 0.33[0.16,0.68] for ‘Cadeli’). This result suggests a higher sensitivity of the vegetation index variability measures relative to the means in the context of the oilseed rape drought stress diagnosis and justifies the application of HSI to capture these effects. RGI is an index deserving additional scrutiny in future studies, as both its mean and standard deviation were affected by the watering regimes.
Collapse
|
45
|
Tong J, Walk TC, Han P, Chen L, Shen X, Li Y, Gu C, Xie L, Hu X, Liao X, Qin L. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. BMC PLANT BIOLOGY 2020; 20:464. [PMID: 33036562 PMCID: PMC7547492 DOI: 10.1186/s12870-020-02648-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/14/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND High-affinity nitrate transporter 2 (NRT2) genes have been implicated in nitrate absorption and remobilization under nitrogen (N) starvation stress in many plant species, yet little is known about this gene family respond to various stresses often occurs in the production of rapeseed (Brassica napus L.). RESULTS This report details identification of 17 NRT2 gene family members in rapeseed, as well as, assessment of their expression profiles using RNA-seq analysis and qRT-PCR assays. In this study, all BnNRT2.1 members, BnNRT2.2a and BnNRT2.4a were specifically expressed in root tissues, while BnNRT2.7a and BnNRT2.7b were mainly expressed in aerial parts, including as the predominantly expressed NRT2 genes detected in seeds. This pattern of shoot NRT expression, along with homology to an Arabidopsis NRT expressed in seeds, strongly suggests that both BnNRT2.7 genes play roles in seed nitrate accumulation. Another rapeseed NRT, BnNRT2.5 s, exhibited intermediate expression, with transcripts detected in both shoot and root tissues. Functionality of BnNRT2s genes was further outlined by testing for adaptive responses in expression to exposure to a series of environmental stresses, including N, phosphorus (P) or potassium (K) deficiency, waterlogging and drought. In these tests, most NRT2 gene members were up-regulated by N starvation and restricted by the other stresses tested herein. In contrast to this overall trend, transcription of BnNRT2.1a was up-regulated under waterlogging and K deficiency stress, and BnNRT2.5 s was up-regulated in roots subjected to waterlogging. Furthermore, the mRNA levels of BnNRT2.7 s were enhanced under both waterlogging stress and P or K deficiency conditions. These results suggest that these three BnNRT2 genes might participate in crosstalk among different stress response pathways. CONCLUSIONS The results presented here outline a diverse set of NRT2 genes present in the rapeseed genome that collectively carry out specific functions throughout rapeseed development, while also responding not just to N deficiency, but also to several other stresses. Targeting of individual BnNRT2 members that coordinate rapeseed nitrate uptake and transport in response to cues from multiple stress response pathways could significantly expand the genetic resources available for improving rapeseed resistance to environmental stresses.
Collapse
Affiliation(s)
- Jiafeng Tong
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | | | - Peipei Han
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Institute of Agriculture Science in Jiangsu Coastal Area, Yancheng, 224002, P. R. China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xinjie Shen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Yinshui Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Chiming Gu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Lihua Xie
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Xiaojia Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Xing Liao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China.
| | - Lu Qin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China.
| |
Collapse
|
46
|
Li S, Chen H, Hou Z, Li Y, Yang C, Wang D, Song CP. Screening of abiotic stress-responsive cotton genes using a cotton full-length cDNA overexpressing Arabidopsis library. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:998-1016. [PMID: 31393066 DOI: 10.1111/jipb.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/29/2019] [Indexed: 05/06/2023]
Abstract
Cotton (Gossypium hirsutum L.) is a major crop and the main source of natural fiber worldwide. Because various abiotic and biotic stresses strongly influence cotton fiber yield and quality, improved stress resistance of this crop plant is urgently needed. In this study, we used Gateway technology to construct a normalized full-length cDNA overexpressing (FOX) library from upland cotton cultivar ZM12 under various stress conditions. The library was transformed into Arabidopsis to produce a cotton-FOX-Arabidopsis library. Screening of this library yielded 6,830 transgenic Arabidopsis lines, of which 757 were selected for sequencing to ultimately obtain 659 cotton ESTs. GO and KEGG analyses mapped most of the cotton ESTs to plant biological process, cellular component, and molecular function categories. Next, 156 potential stress-responsive cotton genes were identified from the cotton-FOX-Arabidopsis library under drought, salt, ABA, and other stress conditions. Four stress-related genes identified from the library, designated as GhCAS, GhAPX, GhSDH, and GhPOD, were cloned from cotton complementary DNA, and their expression patterns under stress were analyzed. Phenotypic experiments indicated that overexpression of these cotton genes in Arabidopsis affected the response to abiotic stress. The method developed in this study lays a foundation for high-throughput cloning and rapid identification of cotton functional genes.
Collapse
Affiliation(s)
- Shengting Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hao Chen
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhi Hou
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yu Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Cuiling Yang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Daojie Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
47
|
Dai L, Li J, Harmens H, Zheng X, Zhang C. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:86-95. [PMID: 32058897 DOI: 10.1016/j.plaphy.2020.01.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 05/23/2023]
Abstract
Two contrasting rapeseed (Brassica napus L.) genotypes, Qinyou 8 (drought-sensitive) and Q2 (drought-tolerant), were studied under drought stress with or without pretreatment with melatonin to (i) explore whether melatonin enhances drought resistance by regulating root growth and (ii) determine the relationship between the belowground and aboveground responses to melatonin under drought stress. Results show that the light-saturated rate of photosynthesis (Pn), stomatal conductance (gs), water use efficiency (WUE) and chlorophyll content were decreased by drought for Qinyou 8, whereas drought only decreased Pn and chlorophyll content for Q2. Drought decreased actual photochemical efficiency in saturated light (Fv'/Fm'), actual photochemical efficiency (PhiPSⅡ), quenching of photochemical efficiency (qL) and electron transport rate (ETR) in Qinyou 8. However drought only decreased Fv'/Fm' and qL in Q2. Drought increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents in the roots of both genotypes. Melatonin had no significant additional effects on root guaiacol peroxidase (POD) and superoxide dismutase (SOD) activities, but enhanced root catalase (CAT) activity of droughted plants further. Melatonin promoted taproot and lateral root growth under drought stress. Melatonin also promoted stomatal opening resulting in enhanced photosynthesis in the two genotypes. The two mechanisms induced by melatonin synergistically enhance drought resistance of rapeseed as indicated by enhanced gas exchange parameters under melatonin pretreatment. The findings provide evidence for a physiological role of melatonin in improving drought resistance, especially in belowground parts.
Collapse
Affiliation(s)
- Lulu Dai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distract, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan Disctrict, Beijing, 100049, China
| | - Jun Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Harry Harmens
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao, 266109, China
| | - Chunlei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
48
|
Lohani N, Jain D, Singh MB, Bhalla PL. Engineering Multiple Abiotic Stress Tolerance in Canola, Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:3. [PMID: 32161602 PMCID: PMC7052498 DOI: 10.3389/fpls.2020.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/03/2020] [Indexed: 05/22/2023]
Abstract
Impacts of climate change like global warming, drought, flooding, and other extreme events are posing severe challenges to global crop production. Contribution of Brassica napus towards the oilseed industry makes it an essential component of international trade and agroeconomics. Consequences from increasing occurrences of multiple abiotic stresses on this crop are leading to agroeconomic losses making it vital to endow B. napus crop with an ability to survive and maintain yield when faced with simultaneous exposure to multiple abiotic stresses. For an improved understanding of the stress sensing machinery, there is a need for analyzing regulatory pathways of multiple stress-responsive genes and other regulatory elements such as non-coding RNAs. However, our understanding of these pathways and their interactions in B. napus is far from complete. This review outlines the current knowledge of stress-responsive genes and their role in imparting multiple stress tolerance in B. napus. Analysis of network cross-talk through omics data mining is now making it possible to unravel the underlying complexity required for stress sensing and signaling in plants. Novel biotechnological approaches such as transgene-free genome editing and utilization of nanoparticles as gene delivery tools are also discussed. These can contribute to providing solutions for developing climate change resilient B. napus varieties with reduced regulatory limitations. The potential ability of synthetic biology to engineer and modify networks through fine-tuning of stress regulatory elements for plant responses to stress adaption is also highlighted.
Collapse
Affiliation(s)
| | | | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Ji MG, Park HJ, Cha JY, Kim JA, Shin GI, Jeong SY, Lee ES, Yun DJ, Lee SY, Kim WY. Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:313-321. [PMID: 31901883 DOI: 10.1016/j.plaphy.2019.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 05/16/2023]
Abstract
Salt stress limits crop productivity worldwide, particularly in arid and heavily irrigated regions. Salt stress causes oxidative stress, in which plant cells accumulate harmful levels of reactive oxygen species (ROS). Thioredoxins (Trxs; EC 1.8.4.8) are antioxidant proteins encoded by a ubiquitous multigene family. Arabidopsis thaliana Trx h-type proteins localize in the cytoplasm and other subcellular organelles, and function in plant responses to abiotic stresses and pathogen attack. Here, we isolated the Arabidopsis genes encoding two cytosolic h-type Trx proteins, AtTrx-h2 and AtTrx-h3 and generated transgenic oilseed rape (Brassica napus) plants overexpressing AtTrx-h2 or AtTrx-h3. Heterologous expression of AtTrx-h2 in B. napus conferred salt tolerance with plants grown on 50 mM NaCl having higher fresh weight and chlorophyll contents compared with controls in hydroponic growth system. By contrast, expression of AtTrx-h3 or the empty vector control did not improve salt tolerance. In addition, AtTrx-h2-overexpressing transgenic plants exhibited lower levels of hydrogen peroxide and higher activities of antioxidant enzymes including peroxidase, catalase, and superoxide dismutase, compared with the plants expressing the empty vector control or AtTrx-h3. These results suggest that AtTrx-h2 is a promising candidate for engineering or breeding crops with enhanced salt stress tolerance.
Collapse
Affiliation(s)
- Myung Geun Ji
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hee Jin Park
- Institute of Glocal Disease Control, Konkuk University, Seoul, 05029, Republic of Korea; Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Eun Seon Lee
- PMBBRC, IALS & RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea; PMBBRC, IALS & RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea; PMBBRC, IALS & RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
50
|
Physiological and Transcriptional Responses of Industrial Rapeseed ( Brassica napus) Seedlings to Drought and Salinity Stress. Int J Mol Sci 2019; 20:ijms20225604. [PMID: 31717503 PMCID: PMC6888191 DOI: 10.3390/ijms20225604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Abiotic stress greatly inhibits crop growth and reduces yields. However, little is known about the transcriptomic changes that occur in the industrial oilseed crop, rapeseed (Brassica napus), in response to abiotic stress. In this study, we examined the physiological and transcriptional responses of rapeseed to drought (simulated by treatment with 15% (w/v) polyethylene glycol (PEG) 6000) and salinity (150 mM NaCl) stress. Proline contents in young seedlings greatly increased under both conditions after 3 h of treatment, whereas the levels of antioxidant enzymes remained unchanged. We assembled transcripts from the leaves and roots of rapeseed and performed BLASTN searches against the rapeseed genome database for the first time. Gene ontology analysis indicated that DEGs involved in catalytic activity, metabolic process, and response to stimulus were highly enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially expressed genes (DEGs) from the categories metabolic pathways and biosynthesis of secondary metabolites were highly enriched. We determined that myeloblastosis (MYB), NAM/ATAF1-2/CUC2 (NAC), and APETALA2/ethylene-responsive element binding proteins (AP2-EREBP) transcription factors function as major switches that control downstream gene expression and that proline plays a role under short-term abiotic stress treatment due to increased expression of synthesis and decreased expression of degradation. Furthermore, many common genes function in the response to both types of stress in this rapeseed.
Collapse
|