1
|
Coppola L, Lori G, Tait S, Sogorb MA, Estevan C. Evaluation of developmental toxicity of chlorpyrifos through new approach methodologies: a systematic review. Arch Toxicol 2025; 99:935-981. [PMID: 39869190 PMCID: PMC11821739 DOI: 10.1007/s00204-024-03945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models. The comparison of the collected evidence with available adverse outcome pathways allows us to conclude that adverse outcomes observed in animals, such as memory and learning impairments as well as reduction in cognitive function, could involve several mechanisms of action including inhibition of acetylcholinesterase, overactivation of glutamate receptors and activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, followed by both disruption of neurotransmitter release and increase in oxidative stress and apoptosis.
Collapse
Affiliation(s)
- L Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - G Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - S Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - M A Sogorb
- Bioengineering Institute, Miguel Hernández de Elche University, Elche, Spain
| | - C Estevan
- Applied Biology Department, Miguel Hernández de Elche University, Elche, Spain.
| |
Collapse
|
2
|
Sherif MA, Carter WG, Mellor IR. Chlorpyrifos Acts as a Positive Modulator and an Agonist of N-Methyl-d-Aspartate (NMDA) Receptors: A Novel Mechanism of Chlorpyrifos-Induced Neurotoxicity. J Xenobiot 2025; 15:12. [PMID: 39846544 PMCID: PMC11755529 DOI: 10.3390/jox15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood. Normal NMDA receptor (NMDAR) function is essential for neuronal development and higher brain functionality, while its inappropriate stimulation results in neurological deficits. Thus, the current study aimed to investigate the role of NMDARs in CPF-induced neurotoxicity. We show that NMDARs mediate CPF-induced excitotoxicity in differentiated human fetal cortical neuronal ReNcell CX stem cells. In addition, by using two-electrode voltage clamp electrophysiology of Xenopus oocytes expressing NMDARs, we show CPF potentiation of both GluN1-1a/GluN2A (EC50 ≈ 40 nM) and GluN1-1a/GluN2B (EC50 ≈ 55 nM) receptors, as well as reductions (approximately halved) in the NMDA EC50s and direct activation by 10 μM CPF of both receptor types. In silico molecular docking validated CPF's association with NMDARs through relatively high affinity binding (-8.82 kcal/mol) to a modulator site at the GluN1-GluN2A interface of the ligand-binding domains.
Collapse
Affiliation(s)
- Mahmoud Awad Sherif
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK;
| | - Ian R. Mellor
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
3
|
Unar A, Sahito OM, Alsawalha L, Afridi HI, Ataya FS, Bashir MS, Fouad D, Talpur FN, Ali N. Determination of Toxic Elements in Cannabinoid and Opioid Drugs and Their Impact on Addicts' Health: A Comparative Study. Biol Trace Elem Res 2024; 202:5339-5347. [PMID: 38383917 DOI: 10.1007/s12011-024-04096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Drug addiction is associated with significant health risks, including cardiovascular complications, cancer, and mental disorders. Illicit drugs, such as cannabinoids and opioids, including prescription medications, are widely consumed and have profound health consequences. Understanding the health effects of the toxic elements in these substances is critical for overdose prevention and effective recovery strategies. This study aimed to determine toxic elements, including arsenic (As), cadmium (Cd), mercury (Hg), and nickel (Ni), in cannabinoid and opioid drugs and in biological samples (whole blood, scalp hair, and serum) from 311 male drug abuse patients aged 15-60 years with a history of drug abuse. The participants were categorized into three age groups. The comparative analysis involved 113 reference subjects of the same age groups. The sample preparation employed microwave-assisted acid digestion, and the toxic elements were quantified using atomic absorption spectrophotometry. Accuracy was ensured using certified reference materials for hair, whole blood, and serum samples. Drug-addicted subjects had significantly higher concentrations of toxic elements (arsenic, cadmium, mercury, and nickel) in biological samples than referent subjects (p > 0.001). Elevated levels of these toxic elements may increase susceptibility to infections, possibly due to malnutrition, drug-related effects, and additional contaminants. These findings necessitate further studies to explore the long-term health outcomes, potential treatment options, and broader socioeconomic impacts of substance abuse. This study serves as a baseline for future research in this critical public health field.
Collapse
Affiliation(s)
- Ahsanullah Unar
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', 80138, Naples, Italy.
| | - Oan Muhammad Sahito
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | | | - Hassan Imran Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Muhammad Sohail Bashir
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, 11495, Riyadh, Saudi Arabia
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Naveed Ali
- Department of Political Science, University of Campania 'L. Vanvitelli', 81100, Caserta, Italy
| |
Collapse
|
4
|
Zhang X, Zhang L, Si Y, Wen X, Wang L, Song L. Unveiling the functional diversity of ionotropic glutamate receptors in the Pacific oyster ( Crassostrea gigas) by systematic studies. Front Physiol 2023; 14:1280553. [PMID: 37965105 PMCID: PMC10642201 DOI: 10.3389/fphys.2023.1280553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs), pivotal in mediating excitatory neurosignals within the central nervous system, are instrumental in environmental stress responses. In this investigation, 12 iGluRs identified in the Pacific oyster are herein designated as CgiGluRs, and further categorized into three distinct subfamilies based on their transmembrane domains. Cross-species evolutionary analysis unveiled a high degree of conservation in the sequence and structural attributes of these CgiGluRs. These receptors are ubiquitously distributed across various tissues, with pronounced expression in the oyster's mantle, labial palps, and gills, underlining their integral role in the oyster's environmental sensing mechanisms. Post the D-shaped larval stage, a marked upward trend in CgiGluRs expression was observed, denoting their critical involvement in oyster development beyond this phase. Exposure to five metals-cadmium (Cd), copper (Cu), zinc (Zn), mercury (Hg), and lead (Pb)-elicited a significant upregulation of CgGRIA4 expression, indicating a robust response to metal stress. A KEGG enrichment analysis on 142 genes, exhibiting parallel expression trends with CgGRIA4 under metal stress, suggests that CgGRIA4 could augment excitatory signal transmission by activating glutamatergic and dopaminergic synapses, thereby contributing to the metal stress response in the oyster. This inquiry not only bolsters our comprehension of the iGluRs gene family in metal stress response but also paves the way for future exploration of its cardinal role in cellular signaling and environmental adaptability.
Collapse
Affiliation(s)
- Xueshu Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linfang Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Yiran Si
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xue Wen
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
5
|
Wang A, Wan Y, Mahai G, Qian X, Li Y, Xu S, Xia W. Association of Prenatal Exposure to Organophosphate, Pyrethroid, and Neonicotinoid Insecticides with Child Neurodevelopment at 2 Years of Age: A Prospective Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107011. [PMID: 37856202 PMCID: PMC10586492 DOI: 10.1289/ehp12097] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Widespread insecticide exposure might be a risk factor for neurodevelopment of our children, but few studies examined the mixture effect of maternal coexposure to organophosphate insecticides (OPPs), pyrethroids (PYRs), and neonicotinoid insecticides (NNIs) during pregnancy on child neurodevelopment, and critical windows of exposure are unknown. OBJECTIVES We aimed to evaluate the association of prenatal exposure to multiple insecticides with children's neurodevelopment and to identify critical windows of the exposure. METHODS Pregnant women were recruited into a prospective birth cohort study in Wuhan, China, from 2014-2017. Eight metabolites of OPPs (mOPPs), three metabolites of PYRs (mPYRs), and nine metabolites of NNIs (mNNIs) were measured in 3,123 urine samples collected at their first, second, and third trimesters. Children's neurodevelopment [mental development index (MDI) and psychomotor development index (PDI)] was assessed using the Bayley Scales of Infant Development at 2 years of age (N = 1,041 ). Multivariate linear regression models, generalized estimating equation models, and weighted quantile sum (WQS) regression were used to estimate the association between the insecticide metabolites and Bayley scores. Potential sex-specific associations were also examined. RESULTS Single chemical analysis suggested higher urinary concentrations of some insecticide metabolites at the first trimester were significantly associated with lower MDI and PDI scores, and the associations were more prominent among boys. Each 1-unit increase in ln-transformed urinary concentrations of two mOPPs, 3,5,6-trichloro-2-pyridinol and 4-nitrophenol, was associated with a decrease of 3.16 points [95% confidence interval (CI): - 5.59 , - 0.74 ] and 3.06 points (95% CI: - 5.45 , - 0.68 ) respectively in boys' MDI scores. Each 1-unit increase in that of trans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid (trans-DCCA; an mPYR) was significantly associated with a decrease of 2.24 points (95% CI: - 3.89 , - 0.58 ) in boys' MDI scores and 1.90 points (95% CI: - 3.16 , - 0.64 ) in boys' PDI scores, respectively. Significantly positive associations of maternal urinary biomarker concentrations [e.g., dimethyl phosphate (a nonspecific mOPP) and desmethyl-clothianidin (a relatively specific mNNI)] with child neurodevelopment were also observed. Using repeated holdout validation, a 1-quartile increase in the WQS index of the insecticide mixture (in the negative direction) at the first trimester was significantly associated with a decrease of 3.02 points (95% CI: - 5.47 , - 0.57 ) in MDI scores among the boys, and trans-DCCA contributed the most to the association (18%). CONCLUSIONS Prenatal exposure to higher levels of certain insecticides and their mixture were associated with lower Bayley scores in children, particularly in boys. Early pregnancy may be a sensitive window for such an effect. Future studies are needed to confirm our findings. https://doi.org/10.1289/EHP12097.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
6
|
Anyachor CP, Dooka DB, Orish CN, Amadi CN, Bocca B, Ruggieri F, Senofonte M, Frazzoli C, Orisakwe OE. Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: An updated systematic review. IBRO Neurosci Rep 2022; 13:136-146. [PMID: 35989698 PMCID: PMC9382260 DOI: 10.1016/j.ibneur.2022.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/30/2022] [Indexed: 10/27/2022] Open
Abstract
The environment has been implicated to be a strong determinant of brain health with higher risk of neurodegeneration. The drastic rise in the prevalence of neurodegenerative diseases (NDDs) including Alzheimer's disease (AD), Parkinson's disease (PD), autism spectrum disorder (ASD), multiple sclerosis (MS) etc., supports the idea that environmental factors may play a major role in NDDs aetiology. Nickel is one of the listed environmental metals reported to pose a serious threat to human health. This paper reported available studies on nickel level in NDDs covering both animal and human studies. Different databases were searched for articles reporting the main neurotoxicity mechanisms and the concentration of nickel in fluids and tissues of NDDs patients compared to controls. Data were extracted and synthesized by ensuring the articles were related to nickel and NDDs. Various mechanisms were reported as oxidative stress, disturbances in mitochondrial membrane potential, trace elements homeostasis destabilization, etc. Nickel was found elevated in biological fluids as blood, serum/plasma and CSF and in the brain of NDDs, as a consequence of unintentional exposure thorough nickel-contaminated air, food, water, and skin contact. In addition, after exposure to nickel, the concentration of markers of lipid peroxidation were increased, while some antioxidant defence systems decreased. Thus, the reduction in the exposure to nickel contaminant may hold a promise in reducing the incidence of NDDs.
Collapse
Affiliation(s)
- Chidinma Promise Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Donatus Baridoo Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome Viale Regina Elena, 29900161 Roma, Italy
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
7
|
Vellingiri B, Suriyanarayanan A, Abraham KS, Venkatesan D, Iyer M, Raj N, Gopalakrishnan AV. Influence of heavy metals in Parkinson's disease: an overview. J Neurol 2022; 269:5798-5811. [PMID: 35900586 DOI: 10.1007/s00415-022-11282-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is an ageing disorder with deterioration of dopamine neurons which leads to motor complications like tremor, stiffness, slow movement and postural disturbances. In PD, both genetics as well as environmental factors both play a major role in causing the pathogenesis. Though there are surfeit of risk factors involved in PD occurrence, till now there is lack of an exact causative agent as a risk for PD with confirmative findings. The role of heavy metals reported to be a significant factor in PD pathogenesis. Heavy metal functions in cell maintenance but growing pieces of evidences reported to cause dyshomeostasis with increased PD rate. Metals disturb the molecular processes and results in oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis. The present review elucidates the role of cobalt, nickel, mercury, chromium, thallium metals in α-synuclein aggregation and its involvement in blood brain barrier flux. Also, the review explains the plausible role of aforementioned metals with a mechanistic approach and therapeutic recommendations in PD.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Atchaya Suriyanarayanan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kripa Susan Abraham
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
8
|
Silva M, Kwok RKH. Use of Computational Toxicology Tools to Predict In Vivo Endpoints Associated with Mode of Action and the Endocannabinoid System: A Case Study with Chlorpyrifos, Chlorpyrifos-oxon and Δ9Tetrahydrocannabinol. Curr Res Toxicol 2022; 3:100064. [PMID: 35243363 PMCID: PMC8860916 DOI: 10.1016/j.crtox.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 01/04/2023] Open
|
9
|
Keswani C, Dilnashin H, Birla H, Roy P, Tyagi RK, Singh D, Rajput VD, Minkina T, Singh SP. Global footprints of organochlorine pesticides: a pan-global survey. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:149-177. [PMID: 34027568 DOI: 10.1007/s10653-021-00946-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2021] [Indexed: 05/16/2023]
Abstract
Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants widely used all over the world. These chlorinated hydrocarbons are toxic and often cause detrimental health effects because of their long shelf life and bioaccumulation in the adipose tissues of primates. OCP exposure to humans occurs through skin, inhalation and contaminated foods including milk and dairy products, whereas developing fetus and neonates are exposed through placental transfer and lactation, respectively. In 1960s, OCPs were banned in most developed countries, but because they are cheap and easily available, they are still widely used in most third world countries. The overuse or misuse of OCPs has been rising continuously which pose threats to environmental and human health. This review reports the comparative occurrence of OCPs in human and bovine milk samples around the globe and portrays the negative impacts encountered through the long history of OCP use.
Collapse
Affiliation(s)
- Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, 247667, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dheer Singh
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Tessari L, Angriman M, Díaz-Román A, Zhang J, Conca A, Cortese S. Association Between Exposure to Pesticides and ADHD or Autism Spectrum Disorder: A Systematic Review of the Literature. J Atten Disord 2022; 26:48-71. [PMID: 32697136 DOI: 10.1177/1087054720940402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To conduct a systematic review of studies assessing the relationship between exposure to pesticides and ADHD or Autism Spectrum Disorder (ASD). METHODS Based on a pre-registered protocol in PROPSERO (CRD42018107847), we searched PubMed, Ovid databases, and ISI Web of Knowledge with no date/language/document type restrictions, up to May 2019. The Newcastle Ottawa Scale was used to assess study quality. RESULTS Among the 29 retained studies, 13 focused on ADHD, 14 on ASD, and two on both disorders. Ten studies reported a significant association between exposure to pesticides and ADHD/ADHD symptoms and 12 studies found a significant association with ASD/ASD traits. The strengths of the association and the possible confounders controlled for varied substantially across studies. CONCLUSION Whilst there is some evidence suggesting a possible link between pesticides and ADHD/ASD, heterogeneity across studies prevents firm conclusions. We provide methodological indications for future studies.
Collapse
Affiliation(s)
- Luca Tessari
- Child and Adolescent Psychiatry Unit, Bolzano, Italy
| | | | | | | | - Andreas Conca
- Child and Adolescent Psychiatry Unit, Bolzano, Italy.,San Maurizio Hospital, Bolzano, Italy
| | - Samuele Cortese
- University of Southampton, UK.,Solent NHS Trust, Southampton, UK.,New York University Child Study Center, New York, NY, USA.,University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Lichtensteiger W, Bassetti-Gaille C, Rehrauer H, Georgijevic JK, Tresguerres JAF, Schlumpf M. Converging Effects of Three Different Endocrine Disrupters on Sox and Pou Gene Expression in Developing Rat Hippocampus: Possible Role of microRNA in Sex Differences. Front Genet 2021; 12:718796. [PMID: 34858468 PMCID: PMC8632217 DOI: 10.3389/fgene.2021.718796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) can impair hippocampus-dependent behaviors in rat offspring and in children. In search for key processes underlying this effect, we compared the transcriptomes of rat hippocampus on postnatal day 6 after gestational and lactational exposure to three different EDCs at doses known to impair development of learning and memory. Aroclor 1254, a commercial PCB mixture (5 mg/kg or 0.5 mg/kg), or bisphenol A (5 mg/kg or 0.5 mg/kg) were administered in chow, chlorpyrifos (3 mg/kg or 1 mg/kg) was injected subcutaneously. Male hippocampus exhibited a common effect of all three chemicals on genes involved in cell-autonomous processes, Sox6, Sox11, Pou2f2/Oct2, and Pou3f2/Brn2, all upregulated at the high dose. Additional genes of the Sox and Pou families were affected by only one or two of the chemicals. Real time RT PCR showed a comparable expression change for bisphenol A also at the lower dose. Female hippocampus exhibited much fewer genes with expression changes (almost none with false discovery rate <0.05), and none of the genes of the Sox and Pou families was affected. Since gene network analyses in male hippocampus suggested a link between Sox6 and miR-24, known to be repressed by activation of ER-alpha and to repress Sox6 in other tissues, this microRNA was measured. miR-24 was downregulated by all chemicals at the high dose in males. Values of Sox6 mRNA and miR-24 were inversely correlated in individual male hippocampus samples, supporting the hypothesis that the change in Sox6 expression resulted from an action of miR-24. In contrast, miR-24 levels remained unchanged in hippocampus of females. A sexually dimorphic response of miR-24 may thus be at the basis of the sex difference in Sox6 expression changes following exposure to the three chemicals. ER-alpha expression was also sex-dependent, but the expression changes did not parallel those of potential downstream genes such as Sox6. Sox6 is known to suppress differentiation of Parvalbumin (Pvalb)-expressing interneurons. Individual Sox6 levels (FPKM) were inversely correlated with levels of Pvalb, but not with markers of Sox6-independent interneuron subpopulations, Nos1 and 5HT3aR. Effects on interneuron development are further suggested, in males, by expression changes of Nrg1 and its receptor Erbb4, controlling interneuron migration. Our study disclosed new types of EDC-responsive morphogenetic genes, and illustrated the potential relevance of microRNAs in sexually dimorphic EDC actions.
Collapse
Affiliation(s)
- Walter Lichtensteiger
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Catherine Bassetti-Gaille
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Jelena Kühn Georgijevic
- Functional Genomics Center, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | | | - Margret Schlumpf
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Navaei-Nigjeh M, Daniali M, Rahimifard M, Khaksar MR. Multi-organ Toxicity Attenuation by Cerium Oxide and Yttrium Oxide Nanoparticles: Comparing the Beneficial Effects on Tissues Oxidative Damage Induced by Sub-acute Exposure to Diazinon. Pharm Nanotechnol 2021; 8:225-238. [PMID: 32767961 DOI: 10.2174/2211738508666200808135226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Excessive use of diazinon, as an organophosphate pesticide (OP), contributes to cytotoxic and pathologic cellular damage and, in particular, oxidative stress. However, metal-oxide nanoparticles (NPs), such as cerium oxide (CeO2) and yttrium oxide (Y2O3), with the property of free radical scavenging demonstrated beneficial effects in the alleviation of oxidative stress biomarkers. OBJECTIVE The aims of this study include evaluating beneficial effects of CeO2 NPs, Y2O3 NPs, and their combination against diazinon-induced oxidative stress in different tissues of brain, heart, lung, kidney, liver, and spleen. METHODS Eight randomized groups of 6 adult male Wistar rats were formed. Each group of rats administered a different combination of diazinon, CeO2 and Y2O3 NPs daily and levels of oxidative stress markers, such as reactive oxygen species (ROS), lipid peroxidation (LPO), total thiol molecules (TTM) and total anti-oxidant power (TAP) and catalase enzyme, were measured after 2 weeks of the treatment. RESULTS Measurements of the mentioned markers in the brain, heart, lung, kidney, liver, and spleen showed that the administration of NPs could significantly alleviate the oxidative stress induced by diazinon. However, the findings of this study illustrated that the combination of both CeO2 and Y2O3 NPs led to a better reduction in oxidative stress markers. CONCLUSION Sub-acute exposure of diazinon in rats led to increased levels of oxidative stress markers in pivotal tissues such as the brain, heart, lung, kidney, liver, and spleen. CeO2 and Y2O3 NPs neutralize the oxidative stress to compensate diazinon-induced tissue damages. Lay Summary: Organophosphate pesticides (OPs), which are mainly used for pest control, are responsible for the entry of pesticides into the human food cycle. Organophosphate such as diazinon increases the molecular biomarkers of oxidative stress inside the cells of vital tissues such as the heart, liver, lungs, etc. Metal oxide nanoparticles (NPs) such as cerium oxide (CeO2) and yitrium oxide (Y2O3) can have free radical scavenging potential under oxidative stress and through various mechanisms. Although these nanoparticles reduce oxidative stress, it should be borne in the design of the study that additional doses of these substances reverse the beneficial effects.
Collapse
Affiliation(s)
- Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Daniali
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Khaksar
- Department of Occupational Health, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
13
|
|
14
|
Sun X, Lv Y, Wang J, Cheng H, Huang J, Du Y, Dong J. Differential protein expression profiling by iTRAQ‐2D‐LC‐MS/MS of rats treated with oxaliplatin. J Cell Biochem 2019; 120:18128-18141. [PMID: 31237037 DOI: 10.1002/jcb.29116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Junjun Wang
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - HuiQin Cheng
- Department of Prevention and Healthcare Yangpu Daqiao Community Health Service Center Shanghai China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Yijie Du
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| |
Collapse
|
15
|
Biological impacts of organophosphates chlorpyrifos and diazinon on development, mitochondrial bioenergetics, and locomotor activity in zebrafish (Danio rerio). Neurotoxicol Teratol 2018; 70:18-27. [DOI: 10.1016/j.ntt.2018.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
|
16
|
Salamzadeh J, Shakoori A, Moradi V. Occurrence of multiclass pesticide residues in tomato samples collected from different markets of Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2018; 16:55-63. [PMID: 29983989 PMCID: PMC6021478 DOI: 10.1007/s40201-018-0296-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/16/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Pesticides are a reason for popular concern due to their possible unfavorable results on human safety. Most pesticide residues are present in food owing to the direct application of a pesticide to a crop. The aims of this study were; development a multiresidue method for analysis of 81 pesticides in tomato using GC/MS, and detection and quantitation of the studied pesticides in tomato samples gathered from various stores of Iran. METHODS The pesticides were assessed concurrently in a single run applying GC/MS after extraction with QuEChERS method. Homogenized tomato samples were weighed into centrifuge tubes. The studied pesticides were extracted using acetonitrile, followed by the addition of a mixture of anhydrous magnesium sulfate and sodium acetate. In order to remove excess water and other components of tomato a combination of primary secondary amine and magnesium sulfate was applied, and then the extracted components were analyzed by GC-MS. RESULTS The calibration curves for all analytes were linear in the range of 20-200 ng/g with a determination coefficient (R2) in the range between 0.993 and 0.999. The LODs and LOQs were in the range between 2.5-6.7 and 7.5-20 ng/g respectively, and the mean recoveries obtained for three fortification levels (25,50 and 100 ng/g -five replicates each) were 72-116% with RSD < 20%. Six residues were found in 31 (20.7%) samples. Iprodione was the most common detected residues (6.0%), followed by permethrine (4.7%), esfenvalerate (4.7%), chlorpyrifos (3.3%), diazinon (2.0%), and penconazole (1.3%). CONCLUSIONS Among the detected pesticides, only Iprodione, permethrine, chlorpyrifos and diazinon are registered for tomato production in Iran. With exception of Chlorpyrifos and diazinon the concentrations of iprodione and permethrine were found below the maximum residue levels (MRLs) established by Iranian National Standard Organization (INSO). Esfenvalerate and penconazole are not registered for tomato production in Iran. Therefore, it is necessary to control and management of their residues in tomato.
Collapse
Affiliation(s)
- Jamshid Salamzadeh
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Attaollah Shakoori
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Vice-Chancellor for Food and Drug Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahideh Moradi
- Vice-Chancellor for Food and Drug Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 2018; 117:82-113. [PMID: 29859868 DOI: 10.1016/j.nbd.2018.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 μM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Collapse
|
18
|
Jhamtani RC, Shukla S, Sivaperumal P, Dahiya MS, Agarwal R. Impact of co-exposure of aldrin and titanium dioxide nanoparticles at biochemical and molecular levels in Zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:141-155. [PMID: 29331773 DOI: 10.1016/j.etap.2017.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Aldrin (ALD), a persistent-organic-pollutant (POP), an organochlorine-cyclodiene-pesticide is highly toxic in nature. Titanium dioxide nanoparticles (TNP) are widely used for various industrial applications. Despite the remarkable research on pesticide toxicity, the work with impact of nanoparticles on POP has been dealt with marginally. Chemicals co-exist in the environment and exhibit interactive effects. An investigation was carried out to evaluate the individual and combined effects of ALD (6 ppm) and TNP (60 ppm) exposure at sub-lethal concentration for 24 h in zebrafish. Significant reversal of lipid peroxidation level in liver and brain tissues and restoration in enhanced catalase activity in all examined tissues were observed in combined group. For other parameters, combined exposure of ALD and TNP does not show significant reversal action on ALD toxicity. Further studies are inline to understand combined effects of both to achieve significant reversal of ALD toxicity by TNP nanoparticles with threshold concentration of aldrin.
Collapse
Affiliation(s)
- Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - P Sivaperumal
- Pesticide Toxicology Division, National Institute of Occupational Health, Ahmedabad, Gujarat, India.
| | - M S Dahiya
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| |
Collapse
|
19
|
Van Emon JM, Pan P, van Breukelen F. Effects of chlorpyrifos and trichloropyridinol on HEK 293 human embryonic kidney cells. CHEMOSPHERE 2018; 191:537-547. [PMID: 29059561 PMCID: PMC7462251 DOI: 10.1016/j.chemosphere.2017.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Chlorpyrifos (CPF) [O, O-diethyl -O-3, 5, 6-trichloro-2-pyridyl phosphorothioate] is an organophosphate insecticide widely used for agricultural and urban pest control. Trichloropyridinol (TCP; 3,5,6-trichloro-2-pyridinol), the primary metabolite of CPF, is often used as a generic biomarker of exposure for CPF and related compounds. Human embryonic kidney 293 (HEK 293) cells were exposed to CPF and TCP with varying concentrations and exposure periods. Cell cultures enable the cost-effective study of specific biomarkers to help determine toxicity pathways to predict the effects of chemical exposures without relying on whole animals. Both CPF and TCP were found to induce cytotoxic effects with CPF being more toxic than TCP with EC50 values of 68.82 μg/mL and 146.87 μg·ml-1 respectively. Cell flow cytometric analyses revealed that exposure to either CPF or TCP leads to an initial burst of apoptotic induction followed by a slow recruitment of cells leading towards further apoptosis. CPF produced a strong induction of IL6, while TCP exposure resulted in a strong induction of IL1α. Importantly, the concentrations of CPF and TCP required for these cytokine inductions were higher than those required to induce apoptosis. These data suggest CPF and TCP are cytotoxic to HEK 293 cells but that the mechanism may not be related to an inflammatory response. CPF and TCP also varied in their effects on the HEK 293 proteome with 5 unique proteins detected after exposure to CPF and 31 unique proteins after TCP exposure.
Collapse
Affiliation(s)
- Jeanette M Van Emon
- U. S. Environmental Protection Agency, National Exposure Research Laboratory, 944 E. Harmon Ave, Las Vegas, NV 89119, USA.
| | - Peipei Pan
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| |
Collapse
|
20
|
Savy CY, Fitchett AE, Blain PG, Morris CM, Judge SJ. Gene expression analysis reveals chronic low level exposure to the pesticide diazinon affects psychological disorders gene sets in the adult rat. Toxicology 2017; 393:90-101. [PMID: 29108742 DOI: 10.1016/j.tox.2017.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 11/29/2022]
Abstract
Chronic low level exposure to organophosphate (OPs) pesticides in adulthood has been linked to adverse neurobehavioural deficits and psychological disorder symptoms, although this remains a contentious issue. The OP-induced biological changes that could underlie these effects are unclear. We assessed gene expression changes following chronic low level exposure to diazinon, a pesticide with a high dietary exposure risk. Adult male rats were orally exposed to diazinon (0, 1, 2mg/kg, 5days a week for 12 weeks). After 4 weeks, marble burying behaviour was lower in diazinon exposed rats than vehicle exposed rats; this difference persisted for 8 weeks. Chronic diazinon exposure did not significantly inhibit acetylcholinesterase activity, the primary mechanism of action of high level OPs. Affymetrix GeneChip® HT RG-230 PM Arrays were used for gene profiling followed by Ingenuity Pathway analysis. In the hippocampus, the most significant gene expression changes caused by OP exposure were associated with Psychological Disorders, and Cell-To-Cell Signalling and Interaction functions. Genes encoding the AMPA3 glutamate receptor, glutaminase, dopamine transporter and tyrosine hydroxylase were up-regulated, whereas the gene encoding the GABAB1 receptor was down-regulated. In the dorsal raphe nucleus, genes associated with development and the Psychological Disorders function were significantly affected, including the up-regulation of the gene encoding the α1b-adrenoceptor, the major driver of serotoninergic (5-HT) neuronal activity. These data indicate that chronic exposure to diazinon in adulthood, below the threshold to inhibit acetylcholinesterase, stimulates glutamatergic, dopaminergic and serotonergic synaptic transmission which may underlie adverse neurological outcomes.
Collapse
Affiliation(s)
- Claire Y Savy
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Ann E Fitchett
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Peter G Blain
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Christopher M Morris
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Sarah J Judge
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
21
|
Song X, Fiati Kenston SS, Kong L, Zhao J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology 2017; 392:47-54. [PMID: 29032222 DOI: 10.1016/j.tox.2017.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
Abstract
Nickel (Ni) is widely used in many industrial sectors such as alloy, welding, printing inks, electrical and electronics industries. Excessive environmental or occupational exposure to Ni may result in tumor, contact dermatitis, as well as damages to the nervous system. In recent years, more and more research has demonstrated that Ni induced nerve damages are related to mitochondrial dysfunction. In this paper, we try to characterize Ni induced neurotoxicity as well as the underlying mechanisms, and how to find new drugs for chemoprevention, by reviewing chemicals with neuroprotective effects on Ni induced neurotoxicity.
Collapse
Affiliation(s)
- Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
22
|
Shakoori A, Mahasti P, Moradi V. Determination of Twenty Organophosphorus Pesticides in Wheat Samples from Different Regions of Iran. IRANIAN JOURNAL OF TOXICOLOGY 2017. [DOI: 10.29252/arakmu.11.5.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. ENVIRONMENT INTERNATIONAL 2017; 99:55-77. [PMID: 27908457 PMCID: PMC5285268 DOI: 10.1016/j.envint.2016.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/19/2023]
Abstract
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
24
|
Yu C, Sun X, Niu Y. An investigation of the developmental neurotoxic potential of curcumol in PC12 cells. Toxicol Mech Methods 2016; 26:635-643. [DOI: 10.1080/15376516.2016.1207735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunlei Yu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Xiaojie Sun
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
25
|
De Felice A, Greco A, Calamandrei G, Minghetti L. Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E2 synthesis in a mouse model of idiopathic autism. J Neuroinflammation 2016; 13:149. [PMID: 27301868 PMCID: PMC4908699 DOI: 10.1186/s12974-016-0617-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are emerging as polygenic and multifactorial disorders in which complex interactions between defective genes and early exposure to environmental stressors impact on the correct neurodevelopment and brain processes. Organophosphate insecticides, among which chlorpyrifos (CPF), are widely diffused environmental toxicants associated with neurobehavioral deficits and increased risk of ASD occurrence in children. Oxidative stress and dysregulated immune responses are implicated in both organophosphate neurodevelopmental effects and ASD etiopathogenesis. BTBR T+tf/J mice, a well-studied model of idiopathic autism, show several behavioral and immunological alterations found in ASD children, and we recently showed that CPF gestational exposure strengthened some of these autistic-like traits. In the present study, we aimed at investigating whether the behavioral effects of gestational CPF administration are associated with brain increased oxidative stress and altered lipid mediator profile. METHODS Brain levels of F2-isoprostanes (15-F2t-IsoP), as index of in vivo oxidative stress, and prostaglandin E2 (PGE2), a major arachidonic acid metabolite released by immune cells and by specific glutamatergic neuron populations mainly in cortex and hippocampus, were assessed by specific enzyme-immuno assays in brain homogenates from BTBR T+tf/J and C57Bl6/J mice, exposed during gestation to either vehicle or CPF. Measures were performed in mice of both sexes, at different postnatal stages (PNDs 1, 21, and 70). RESULTS At birth, BTBR T+tf/J mice exhibited higher baseline 15-F2t-IsoP levels as compared to C57Bl6/J mice, suggestive of greater oxidative stress processes. Gestational treatment with CPF-enhanced 15-F2t-IsoP and PGE2 levels in strain- and age-dependent manner, with 15-F2t-IsoP increased in BTBR T+tf/J mice at PNDs 1 and 21, and PGE2 elevated in BTBR T+tf/J mice at PNDs 21 and 70. At PND 21, CPF effects were sex-dependent being the increase of the two metabolites mainly associated with male mice. CPF treatment also induced a reduction of somatic growth, which reached statistical significance at PND 21. CONCLUSIONS These findings indicate that the autistic-like BTBR T+tf/J strain is highly vulnerable to environmental stressors during gestational period. The results further support the hypothesis that oxidative stress might be the link between environmental neurotoxicants such as CPF and ASD. The increased levels of oxidative stress during early postnatal life could result in delayed and long-lasting alterations in specific pathways relevant to ASD, of which PGE2 signaling represents an important one.
Collapse
Affiliation(s)
- Alessia De Felice
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
- Present address: Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Via Bettini 31, 38068, Rovereto (TN), Italy
| | - Anita Greco
- Section of Experimental Neurology, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Gemma Calamandrei
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Luisa Minghetti
- Section of Experimental Neurology, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy.
| |
Collapse
|
26
|
Yu CJ, Du JC, Chiou HC, Chung MY, Yang W, Chen YS, Fuh MR, Chien LC, Hwang B, Chen ML. Increased risk of attention-deficit/hyperactivity disorder associated with exposure to organophosphate pesticide in Taiwanese children. Andrology 2016; 4:695-705. [DOI: 10.1111/andr.12183] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/31/2016] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
Affiliation(s)
- C.-J. Yu
- School of Medicine; Institute of Environmental and Occupational Health Sciences; National Yang Ming University; Taipei Taiwan
| | - J.-C. Du
- Department of Pediatrics; Taipei City Hospital; Taipei Taiwan
| | - H.-C. Chiou
- Department of Child and Adolescent Psychiatry; Taipei City Hospital; Taipei Taiwan
| | - M.-Y. Chung
- Department of Life Sciences and Institute of Genome Sciences; National Yang Ming University; Taipei Taiwan
| | - W. Yang
- Department of Pediatrics; Taipei City Hospital; Taipei Taiwan
| | - Y.-S. Chen
- Department of Psychiatry; Taipei Veterans General Hospital; Taipei Taiwan
| | - M.-R. Fuh
- Department of Chemistry; Soochow University; Taipei Taiwan
| | - L.-C. Chien
- School of Public Health; Taipei Medical University; Taipei Taiwan
| | - B. Hwang
- Department of Pediatrics; Taipei City Hospital; Taipei Taiwan
| | - M.-L. Chen
- School of Medicine; Institute of Environmental and Occupational Health Sciences; National Yang Ming University; Taipei Taiwan
| |
Collapse
|
27
|
An Overview on Human Umbilical Cord Blood Stem Cell-Based Alternative In Vitro Models for Developmental Neurotoxicity Assessment. Mol Neurobiol 2015; 53:3216-3226. [PMID: 26041658 DOI: 10.1007/s12035-015-9202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
The developing brain is found highly vulnerable towards the exposure of different environmental chemicals/drugs, even at concentrations, those are generally considered safe in mature brain. The brain development is a very complex phenomenon which involves several processes running in parallel such as cell proliferation, migration, differentiation, maturation and synaptogenesis. If any step of these cellular processes hampered due to exposure of any xenobiotic/drug, there is almost no chance of recovery which could finally result in a life-long disability. Therefore, the developmental neurotoxicity (DNT) assessment of newly discovered drugs/molecules is a very serious concern among the neurologists. Animal-based DNT models have their own limitations such as ethical concerns and lower sensitivity with less predictive values in humans. Furthermore, non-availability of human foetal brain tissues/cells makes job more difficult to understand about mechanisms involve in DNT in human beings. Although, the use of cell culture have been proven as a powerful tool for DNT assessment, but many in vitro models are currently utilizing genetically unstable cell lines. The interpretation of data generated using such terminally differentiated cells is hard to extrapolate with in vivo situations. However, human umbilical cord blood stem cells (hUCBSCs) have been proposed as an excellent tool for alternative DNT testing because neuronal development from undifferentiated state could exactly mimic the original pattern of neuronal development in foetus when hUCBSCs differentiated into neuronal cells. Additionally, less ethical concern, easy availability and high plasticity make them an attractive source for establishing in vitro model of DNT assessment. In this review, we are focusing towards recent advancements on hUCBSCs-based in vitro model to understand DNTs.
Collapse
|
28
|
Slotkin TA, Skavicus S, Card J, Levin ED, Seidler FJ. Amelioration strategies fail to prevent tobacco smoke effects on neurodifferentiation: Nicotinic receptor blockade, antioxidants, methyl donors. Toxicology 2015; 333:63-75. [PMID: 25891525 DOI: 10.1016/j.tox.2015.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/12/2015] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
Tobacco smoke exposure is associated with neurodevelopmental disorders. We used neuronotypic PC12 cells to evaluate the mechanisms by which tobacco smoke extract (TSE) affects neurodifferentiation. In undifferentiated cells, TSE impaired DNA synthesis and cell numbers to a much greater extent than nicotine alone; TSE also impaired cell viability to a small extent. In differentiating cells, TSE enhanced cell growth at the expense of cell numbers and promoted emergence of the dopaminergic phenotype. Nicotinic receptor blockade with mecamylamine was ineffective in preventing the adverse effects of TSE and actually enhanced the effect of TSE on the dopamine phenotype. A mixture of antioxidants (vitamin C, vitamin E, N-acetyl-l-cysteine) provided partial protection against cell loss but also promoted loss of the cholinergic phenotype in response to TSE. Notably, the antioxidants themselves altered neurodifferentiation, reducing cell numbers and promoting the cholinergic phenotype at the expense of the dopaminergic phenotype, an effect that was most prominent for N-acetyl-l-cysteine. Treatment with methyl donors (vitamin B12, folic acid, choline) had no protectant effect and actually enhanced the cell loss evoked by TSE; they did have a minor, synergistic interaction with antioxidants protecting against TSE effects on growth. Thus, components of tobacco smoke perturb neurodifferentiation through mechanisms that cannot be attributed to the individual effects of nicotine, oxidative stress or interference with one-carbon metabolism. Consequently, attempted amelioration strategies may be partially effective at best, or, as seen here, can actually aggravate injury by interfering with normal developmental signals and/or by sensitizing cells to TSE effects on neurodifferentiation.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer Card
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
29
|
Multifactorial Origin of Neurodevelopmental Disorders: Approaches to Understanding Complex Etiologies. TOXICS 2015; 3:89-129. [PMID: 29056653 PMCID: PMC5634696 DOI: 10.3390/toxics3010089] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
A significant body of evidence supports the multifactorial etiology of neurodevelopmental disorders (NDDs) affecting children. The present review focuses on early exposure to environmental chemicals as a risk factor for neurodevelopment, and presents the major lines of evidence derived from epidemiological studies, underlying key uncertainties and research needs in this field. We introduce the exposome concept that, encompassing the totality of human environmental exposures to multiple risk factors, aims at explaining individual vulnerability and resilience to early chemical exposure. In this framework, we synthetically review the role of variable gene backgrounds, the involvement of epigenetic mechanisms as well as the function played by potential effect modifiers such as socioeconomic status. We describe laboratory rodent studies where the neurodevelopmental effects of environmental chemicals are assessed in the presence of either a “vulnerable” gene background or adverse pregnancy conditions (i.e., maternal stress). Finally, we discuss the need for more descriptive and “lifelike” experimental models of NDDs, to identify candidate biomarkers and pinpoint susceptible groups or life stages to be translated to large prospective studies within the exposome framework.
Collapse
|
30
|
Early-Life Toxic Insults and Onset of Sporadic Neurodegenerative Diseases-an Overview of Experimental Studies. Curr Top Behav Neurosci 2015; 29:231-264. [PMID: 26695168 DOI: 10.1007/7854_2015_416] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The developmental origin of health and disease hypothesis states that adverse fetal and early childhood exposures can predispose to obesity, cardiovascular, and neurodegenerative diseases (NDDs) in adult life. Early exposure to environmental chemicals interferes with developmental programming and induces subclinical alterations that may hesitate in pathophysiology and behavioral deficits at a later life stage. The mechanisms by which perinatal insults lead to altered programming and to disease later in life are still undefined. The long latency between exposure and onset of disease, the difficulty of reconstructing early exposures, and the wealth of factors which the individual is exposed to during the life course make extremely difficult to prove the developmental origin of NDDs in clinical and epidemiological studies. An overview of animal studies assessing the long-term effects of perinatal exposure to different chemicals (heavy metals and pesticides) supports the link between exposure and hallmarks of neurodegeneration at the adult stage. Furthermore, models of maternal immune activation show that brain inflammation in early life may enhance adult vulnerability to environmental toxins, thus supporting the multiple hit hypothesis for NDDs' etiology. The study of prospective animal cohorts may help to unraveling the complex pathophysiology of sporadic NDDs. In vivo models could be a powerful tool to clarify the mechanisms through which different kinds of insults predispose to cell loss in the adult age, to establish a cause-effect relationship between "omic" signatures and disease/dysfunction later in life, and to identify peripheral biomarkers of exposure, effects, and susceptibility, for translation to prospective epidemiological studies.
Collapse
|
31
|
Marchetti C. Interaction of metal ions with neurotransmitter receptors and potential role in neurodiseases. Biometals 2014; 27:1097-113. [PMID: 25224737 DOI: 10.1007/s10534-014-9791-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022]
Abstract
There is increasing evidence that toxic metals play a role in diseases of unknown etiology. Their action is often mediated by membrane proteins, and in particular neurotransmitter receptors. This brief review will describe recent findings on the direct interaction of metal ions with ionotropic γ-aminobutyric acid (GABAA) and glutamate receptors, the main inhibitory and excitatory neurotransmitter receptors in the mammalian central nervous system, respectively. Both hyper and hypo function of these receptors are involved in neurological and psychotic syndromes and modulation by metal ions is an important pharmacological issue. The focus will be on three xenobiotic metals, lead (Pb), cadmium (Cd) and nickel (Ni) that have no biological function and whose presence in living organisms is only detrimental, and two trace metals, zinc (Zn) and copper (Cu), which are essential for several enzymatic functions, but can mediate toxic actions if deregulated. Despite limited access to the brain and tight control by metalloproteins, exogenous metals interfere with receptor performances by mimicking physiological ions and occupying one or more modulatory sites on the protein. These interactions will be discussed as a potential cause of neuronal dysfunction.
Collapse
Affiliation(s)
- Carla Marchetti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini, 6, 16149, Genoa, Italy,
| |
Collapse
|
32
|
Pizzurro DM, Dao K, Costa LG. Astrocytes protect against diazinon- and diazoxon-induced inhibition of neurite outgrowth by regulating neuronal glutathione. Toxicology 2014; 318:59-68. [PMID: 24561003 PMCID: PMC3999384 DOI: 10.1016/j.tox.2014.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/17/2014] [Accepted: 01/27/2014] [Indexed: 12/19/2022]
Abstract
Evidence demonstrating that human exposure to various organophosphorus insecticides (OPs) is associated with neurobehavioral deficits in children continues to emerge. The present study focused on diazinon (DZ) and its active oxygen metabolite, diazoxon (DZO), and explored their ability to impair neurite outgrowth in rat primary hippocampal neurons as a mechanism of developmental neurotoxicity. Both DZ and DZO (0.5-10 μM) significantly inhibited neurite outgrowth in hippocampal neurons, at concentrations devoid of any cyototoxicity. These effects appeared to be mediated by oxidative stress, as they were prevented by antioxidants (melatonin, N-t-butyl-alpha-phenylnitrone, and glutathione ethyl ester). Inhibition of neurite outgrowth was observed at concentrations below those required to inhibit the catalytic activity of acetylcholinesterase. The presence of astrocytes in the culture was able to provide protection against inhibition of neurite outgrowth by DZ and DZO. Astrocytes increased neuronal glutathione (GSH) in neurons, to levels comparable to those of GSH ethyl ester. Astrocytes depleted of GSH by L-buthionine-(S,R)-sulfoximine no longer conferred protection against DZ- and DZO-induced inhibition of neurite outgrowth. The findings indicate that DZ and DZO inhibit neurite outgrowth in hippocampal neurons by mechanisms involving oxidative stress, and that these effects can be modulated by astrocytes and astrocyte-derived GSH. Oxidative stress from other chemical exposures, as well as genetic abnormalities that result in deficiencies in GSH synthesis and regulation, may render individuals more susceptible to these developmental neurotoxic effects of OPs.
Collapse
Affiliation(s)
- Daniella M Pizzurro
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Parma, Italy.
| |
Collapse
|
33
|
Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: a birth cohort study in Shenyang, China. PLoS One 2014; 9:e88491. [PMID: 24551109 PMCID: PMC3923780 DOI: 10.1371/journal.pone.0088491] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022] Open
Abstract
Background A large amount of organophosphate pesticides (OPs) are used in agriculture in China every year, contributing to exposure of OPs through dietary consumption among the general population. However, the level of exposure to OPs in China is still uncertain. Objective To investigate the effect of the exposure to OPs on the neonatal neurodevelopment during pregnancy in Shenyang, China. Methods 249 pregnant women enrolled in the Central Hospital Affiliated to Shenyang Medical College from February 2011 to August 2012. A cohort of the mothers and their neonates participated in the study and information on each subject was obtained by questionnaire. Dialkyl phosphate (DAP) metabolites were detected in the urine of mothers during pregnancy to evaluate the exposure level to OPs. Neonate neurobehavioral developmental levels were assessed according to the standards of the Neonatal Behavioral Neurological Assessment (NBNA). Multiple linear regressions were utilized to analyze the association between pregnancy exposure to OPs and neonatal neurobehavioral development. Results The geometric means (GM) of urinary metabolites for dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP), diethyl phosphate (DEP), and diethyl thiophosphate (DETP) in pregnant women were 18.03, 8.53, 7.14, and 5.64 µg/L, respectively. Results from multiple linear regressions showed that prenatal OP exposure was one of the most important factors affecting NBNA scores. Prenatal total DAP concentrations were inversely associated with scores on the NBNA scales.?Additionally, a 10-fold increase in DAP concentrations was associated with a decrease of 1.78 regarding the Summary NBNA (95% CI, −2.12 to −1.45). And there was an estimated 2.11-point difference in summary NBNA scores between neonates in the highest quintile of prenatal OP exposure and the lowest quintile group. Conclusion The high exposure of pregnant women to OPs in Shenyang, China was the predominant risk factor for neonatal neurobehavioral development.
Collapse
|
34
|
Pizzurro DM, Dao K, Costa LG. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. Toxicol Appl Pharmacol 2014; 274:372-82. [PMID: 24342266 PMCID: PMC3916905 DOI: 10.1016/j.taap.2013.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/25/2022]
Abstract
Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial-neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons.
Collapse
Affiliation(s)
- Daniella M. Pizzurro
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
35
|
Prins JM, Chao CK, Jacobson SM, Thompson CM, George KM. Oxidative stress resulting from exposure of a human salivary gland cells to paraoxon: an in vitro model for organophosphate oral exposure. Toxicol In Vitro 2014; 28:715-21. [PMID: 24486155 DOI: 10.1016/j.tiv.2014.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/19/2022]
Abstract
Organophosphate (OP) compounds are used as insecticides, acaricides, and chemical agents and share a common neurotoxic mechanism of action. The biochemical alterations leading to many of the deleterious effects have been studied in neuronal cell lines, however, non-neuronal toxic effects of OPs are far less well characterized in vitro, and specifically in cell lines representing oral routes of exposure. To address this void, the human salivary gland (HSG) cell line, representing likely interactions in the oral cavity, was exposed to the representative OP paraoxon (PX; O,O-diethyl-p-nitrophenoxy phosphate) over a range of concentrations (0.01-100 μM) and analyzed for cytotoxicity. PX induced cytotoxicity in HSG cells at most of the exposure concentrations as revealed by MTT assay, however, the release of LDH only occurred at the highest concentration of PX tested (100 μM) at 48 h. Slight increases in cellular ATP levels were measured in PX-exposed (10 μM) HSG cells at 24 h. Exposing HSG cells to 10 μM PX also led to an increase in DNA fragmentation prior to loss of cellular membrane integrity implicating reactive oxygen species (ROS) as a trigger of toxicity. The ROS genes gss, gstm2, gstt2 and sod2 were upregulated, and the presence of superoxide following 10 μM PX exposure was determined via dihydroethidium fluorescence studies further implicating PX-induced oxidative stress in HSG cells.
Collapse
Affiliation(s)
- John M Prins
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Saskia M Jacobson
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States.
| | - Kathleen M George
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
36
|
Rashedinia M, Hosseinzadeh H, Imenshahidi M, Lari P, Razavi BM, Abnous K. Effect of exposure to diazinon on adult rat’s brain. Toxicol Ind Health 2013; 32:714-20. [DOI: 10.1177/0748233713504806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain.
Collapse
Affiliation(s)
- Marzieh Rashedinia
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Parisa Lari
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry and Department of Biotechnology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| |
Collapse
|
37
|
Chang X, Lu W, Dou T, Wang X, Lou D, Sun X, Zhou Z. Paraquat inhibits cell viability via enhanced oxidative stress and apoptosis in human neural progenitor cells. Chem Biol Interact 2013; 206:248-55. [DOI: 10.1016/j.cbi.2013.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/02/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022]
|
38
|
Chimeddorj T, Suzuki T, Murakane K, Inai M, Satoh M, Oyama Y. Synergistic increase in cell lethality by dieldrin and H2O2 in rat thymocytes: effect of dieldrin on the cells exposed to oxidative stress. CHEMOSPHERE 2013; 93:353-358. [PMID: 23726008 DOI: 10.1016/j.chemosphere.2013.04.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/04/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Dieldrin, one of persistent pesticides, is highly resistant to biotic and abiotic degradation. It is accumulated in organisms. Recent studies suggest that dieldrin exerts a potent cytotoxic action on cells exposed to oxidative stress. In this study, the effect of dieldrin on rat thymocytes exposed to hydrogen peroxide (H2O2)-induced oxidative stress was examined. Dieldrin at 5μM and H2O2 at 300μM slightly increased cell lethality from a control value of 5.4±0.5% (mean±standard deviation of four experiments) to 7.8±1.3% and 9.0±0.3%, respectively. Simultaneous application of dieldrin and H2O2 significantly increased cell lethality to 46.2±1.8%. The synergistic increase in cell lethality was dependent on dieldrin concentration (0.3-5μM) but not on H2O2 concentration (30-300μM). Dieldrin accelerated H2O2-induced cell death, which was estimated with the help of annexin V-FITC and propidium iodide. Presence of either dieldrin or H2O2 decreased the cellular content of nonprotein thiol and increased intracellular Zn(2+) concentration. The combination of dieldrin and H2O2 further pronounced these effects. TPEN, a chelator of intracellular Zn(2+), significantly attenuated the synergistic increase in cell lethality induced by dieldrin and H2O2. It is, therefore, suggested that dieldrin augments the cytotoxicity of H2O2 in a Zn(2+)-dependent manner.
Collapse
Affiliation(s)
- Tsolmon Chimeddorj
- Division of Environmental Symbiosis Studies, Graduate School of Integrated Arts and Sciences, University of Tokushima, Tokushima 770-8502, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Allen EMG, Florang VR, Davenport LL, Jinsmaa Y, Doorn JA. Cellular localization of dieldrin and structure-activity relationship of dieldrin analogues in dopaminergic cells. Chem Res Toxicol 2013; 26:1043-54. [PMID: 23763672 DOI: 10.1021/tx300458b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The incidence of Parkinson's disease (PD) correlates with environmental exposure to pesticides, such as the organochlorine insecticide, dieldrin. Previous studies found an increased concentration of the pesticide in the striatal region of the brains of PD patients and also that dieldrin adversely affects cellular processes associated with PD. These processes include mitochondrial function and reactive oxygen species production. However, the mechanism and specific cellular targets responsible for dieldrin-mediated cellular dysfunction and the structural components of dieldrin contributing to its toxicity (toxicophore) have not been fully defined. In order to identify the toxicophore of dieldrin, a structure-activity approach was used, with the toxicity profiles of numerous analogues of dieldrin (including aldrin, endrin, and cis-aldrin diol) assessed in PC6-3 cells. The MTT and lactate dehydrogenase (LDH) assays were used to monitor cell viability and membrane permeability after treatment with each compound. Cellular assays monitoring ROS production and extracellular dopamine metabolite levels were also used. Structure and stereochemistry for dieldrin were found to be very important for toxicity and other end points measured. Small changes in structure for dieldrin (e.g., comparison to the stereoisomer endrin) yielded significant differences in toxicity. Interestingly, the cis-diol metabolite of dieldrin was found to be significantly more toxic than the parent compound. Disruption of dopamine catabolism yielded elevated levels of the neurotoxin, 3,4-dihydroxyphenylacetaldehyde, for many organochlorines. Comparisons of the toxicity profiles for each dieldrin analogue indicated a structure-specific effect important for elucidating the mechanisms of dieldrin neurotoxicity.
Collapse
Affiliation(s)
- Erin M G Allen
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa , Iowa City, Iowa 52242, United States
| | | | | | | | | |
Collapse
|
40
|
Jafari M, Salehi M, Ahmadi S, Asgari A, Abasnezhad M, Hajigholamali M. The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats. Toxicol Mech Methods 2012; 22:638-47. [DOI: 10.3109/15376516.2012.716090] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
41
|
Slotkin TA, Seidler FJ. Does mechanism matter? Unrelated neurotoxicants converge on cell cycle and apoptosis during neurodifferentiation. Neurotoxicol Teratol 2012; 34:395-402. [PMID: 22546817 DOI: 10.1016/j.ntt.2012.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
Mechanistically unrelated developmental neurotoxicants often produce neural cell loss culminating in similar functional and behavioral outcomes. We compared an organophosphate pesticide (diazinon), an organochlorine pesticide (dieldrin) and a metal (Ni(2+)) for effects on the genes regulating cell cycle and apoptosis in differentiating PC12 cells, an in vitro model of neuronal development. Each agent was introduced at 30μM for 24 or 72h, treatments devoid of cytotoxicity. Using microarrays, we examined the mRNAs encoding nearly 400 genes involved in each of the biological processes. All three agents targeted both the cell cycle and apoptosis pathways, evidenced by significant transcriptional changes in 40-45% of the cell cycle-related genes and 30-40% of the apoptosis-related genes. There was also a high degree of overlap as to which specific genes were affected by the diverse agents, with 80 cell cycle genes and 56 apoptosis genes common to all three. Concordance analysis, which assesses stringent matching of the direction, magnitude and timing of the transcriptional changes, showed highly significant correlations for pairwise comparisons of all the agents, for both cell cycle and apoptosis. Our results show that otherwise disparate developmental neurotoxicants converge on common cellular pathways governing the acquisition and programmed death of neural cells, providing a specific link to cell deficits. Our studies suggest that identifying the initial mechanism of action of a developmental neurotoxicant may be strategically less important than focusing on the pathways that converge on common final outcomes such as cell loss.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
42
|
Jayasinghe SS, Pathirana KD. Effects of deliberate ingestion of organophosphate or paraquat on brain stem auditory-evoked potentials. J Med Toxicol 2012; 7:277-80. [PMID: 21833797 PMCID: PMC3228965 DOI: 10.1007/s13181-011-0173-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Organophosphate (OP) and paraquat (PQ) ingestion is a serious health problem. A common pathology behind OP or PQ poisoning is the generation of reactive oxygen species (ROS) which is known to cause ototoxicity. The aim of the study was to identify the effects of deliberate ingestion of OP or PQ on brain stem auditory-evoked potentials (BAEPs). Consecutive patients with deliberate self-poisoning with OP or PQ who were admitted to a secondary and a tertiary care hospital in the Southern province of Sri Lanka and matched controls were recruited. BAEPs were performed at 1 week (first assessment) and 6 weeks (second assessment) after the exposure. Interpeak latencies of I–III, III–V, and I–V were measured. There were 70 and 28 patients in the OP and PQ arms with the mean age of 32 ± 12 and 29 ± 12 years, respectively. There were 70 controls and their mean age was 33 ± 12 years. In OP and PQ poisoning, 53/70 and 18/28 came for the second assessment, respectively. The interpeak latency was not statistically different in the controls vs the first assessment, controls vs the second assessment, and the first vs the second assessment. There were no significant lesions in the auditory pathway in OP or PQ poisoned patients. The generation of ROS within the perilymphatic space following the ingestion of OP or PQ may not be sufficient to cause lesions in the auditory pathway. Further studies with the assessment of auditory threshold are needed.
Collapse
|
43
|
Cabaj M, Toman R, Adamkovičová M, Massányi P, Šiška B, Lukáč N, Golian J, Hluchý S. Quantitative and structural changes of testis and semen quality parameters changes caused by peroral administration of diazinon in rats. POTRAVINARSTVO 2012. [DOI: 10.5219/188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to find the quantitative and structural changes in the rat testis and changes of semen quality after a diazinon administration. METHODS: Rats received diazinon (99% purity) in thier drinking water (40 mg.l-1) with free access. Age of rats at the beginning of the experiment was 30 days and experiment lasted for next 90 days. The histological samples were evaluated by histological and morphometric methods in light microscopy and the samples of semen were evaluated with CASA method. RESULTS: Disintergation of cellular associations in the seminiferous epithelium, germ cells evacuation into the tubule lumen and thier necrosis were mostly observed. Rarely vacuolisation and cracks of epithelium and fibrotisation of interstitial tissue were noted. Morphometric methods have shown extension of epithelium (P<0,01), reduction of tubule lumen (P<0,001) and dilatation of blood vessels (P<0,001). In CASA analysis elevation of all parameters were noted, with statistically significant increase of DSL, VSL, ALH. Dilatation of blood vessels will be probably one of the most significant finding in diazinon toxicity because changes in blood flow in the testis are the key factors of accurate physiological function of testis. The epithelium despite the serious disintegration of germ cells associations and release of these necrotised germ cells to the lumen was significantly extended. This fact indicates the self-reparation compensational function. The same tendency (stimulation effects) has been found in all analysed sperm parameters. It supports previous hypothesis. CONCLUSIONS: Diazinon in this design of experiment causes the disintegration of the germinal epithelium cells associations consequently leading to necrosis and release of these cells to the tubule lumen. Dilatation of blood vessels and unknown stimulation effect on sperm quality parameters are two other common effects of diazinon. We concluded that diazinon in our subchronic low dose test causes middle to moderate histological, morphometric and semen quality changes which were partially compensated with some unknown recovery mechanism. Otherwise, subcellular structures and their functions may be damaged which can lead to subfertility. Further investigation of diazinon is needed for verification of our hypothesis.
Collapse
|
44
|
Slotkin TA, Seidler FJ. Developmental neurotoxicity of organophosphates targets cell cycle and apoptosis, revealed by transcriptional profiles in vivo and in vitro. Neurotoxicol Teratol 2011; 34:232-41. [PMID: 22222554 DOI: 10.1016/j.ntt.2011.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 11/25/2022]
Abstract
Developmental organophosphate exposure reduces the numbers of neural cells, contributing to neurobehavioral deficits. We administered chlorpyrifos or diazinon to newborn rats on postnatal days 1-4, in doses straddling the threshold for barely-detectable cholinesterase inhibition, and evaluated gene expression in the cell cycle and apoptosis pathways on postnatal day 5. Both organophosphates evoked transcriptional changes in 20-25% of the genes in each category; chlorpyrifos and diazinon targeted the same genes, with similar magnitudes of change, as evidenced by high concordance. Furthermore, the same effects were obtained with doses above or below the threshold for cholinesterase inhibition, indicating a mechanism unrelated to anticholinesterase actions. We then evaluated the effects of chlorpyrifos in undifferentiated and differentiating PC12 cells and found even greater targeting of cell cycle and apoptosis genes, affecting up to 40% of all genes in the pathways. Notably, the genes affected in undifferentiated cells were not concordant with those in differentiating cells, pointing to dissimilar outcomes dependent on developmental stage. The in vitro model successfully identified 60-70% of the genes affected by chlorpyrifos in vivo, indicating that the effects are exerted directly on developing neural cells. Our results show that organophosphates target the genes regulating the cell cycle and apoptosis in the developing brain and in neuronotypic cells in culture, with the pattern of vulnerability dependent on the specific stage of development. Equally important, these effects do not reflect actions on cholinesterase and operate at exposures below the threshold for any detectable inhibition of this enzyme.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
45
|
Li S, Ran XQ, Xu L, Wang JF. microRNA and mRNA Expression Profiling Analysis of Dichlorvos Cytotoxicity in Porcine Kidney Epithelial PK15 Cells. DNA Cell Biol 2011; 30:1073-83. [DOI: 10.1089/dna.2011.1267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sheng Li
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xue Qin Ran
- Faculty of Animal Science and Veterinary Medicine, Guizhou University, Guiyang, China
| | - Lin Xu
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jia Fu Wang
- Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Faculty of Animal Science and Veterinary Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
46
|
Prueitt RL, Goodman JE, Bailey LA, Rhomberg LR. Hypothesis-based weight-of-evidence evaluation of the neurodevelopmental effects of chlorpyrifos. Crit Rev Toxicol 2011; 41:822-903. [PMID: 22085162 DOI: 10.3109/10408444.2011.616877] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Xu SC, He MD, Lu YH, Li L, Zhong M, Zhang YW, Wang Y, Yu ZP, Zhou Z. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin. J Pineal Res 2011; 51:426-33. [PMID: 21797922 DOI: 10.1111/j.1600-079x.2011.00906.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system.
Collapse
Affiliation(s)
- Shang-Cheng Xu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Slotkin TA, Seidler FJ. Developmental exposure to organophosphates triggers transcriptional changes in genes associated with Parkinson's disease in vitro and in vivo. Brain Res Bull 2011; 86:340-7. [PMID: 21968025 DOI: 10.1016/j.brainresbull.2011.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
Epidemiologic studies support a connection between organophosphate pesticide exposures and subsequent risk of Parkinson's disease (PD). We used differentiating, neuronotypic PC12 cells to compare organophosphates (chlorpyrifos, diazinon), an organochlorine (dieldrin) and a metal (Ni(2+)) for their effects on the transcription of PD-related genes. Both of the organophosphates elicited significant changes in gene expression but with differing patterns: chlorpyrifos evoked both up- and downregulation whereas diazinon elicited overall reductions in expression. Dieldrin was without effect but Ni(2+) produced a pattern resembling that of diazinon. We then exposed neonatal rats to chlorpyrifos or diazinon for the first 4 days after birth and examined the expression of PD-related genes in the brainstem and forebrain. Chlorpyrifos had no significant effect whereas diazinon produced significant increases and decreases in expression of the same PD genes that were targeted in vitro. Our results provide some of the first evidence for a mechanistic relationship between developmental organophosphate exposure and the genes known to confer PD risk in humans; but they also point to disparities between different organophosphates that reinforce the concept that their neurotoxic actions do not rest solely on their shared property as cholinesterase inhibitors. The parallel effects of diazinon and Ni(2+) also show how otherwise unrelated developmental neurotoxicants can nevertheless produce similar outcomes by converging on common molecular pathways, further suggesting a need to examine metals such as Ni(2+) as potential contributors to PD risk.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA.
| | | |
Collapse
|
49
|
Canesi L, Negri A, Barmo C, Banni M, Gallo G, Viarengo A, Dondero F. The organophosphate Chlorpyrifos interferes with the responses to 17β-estradiol in the digestive gland of the marine mussel Mytilus galloprovincialis. PLoS One 2011; 6:e19803. [PMID: 21625485 PMCID: PMC3098840 DOI: 10.1371/journal.pone.0019803] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/06/2011] [Indexed: 01/12/2023] Open
Abstract
Background Many pesticides have been shown to act as endocrine disrupters. Although the
potencies of currently used pesticides as hormone agonists/antagonists are
low compared with those of natural ligands, their ability to act via
multiple mechanisms might enhance the biological effect. The organophosphate
Chlorpyrifos (CHP) has been shown to be weakly estrogenic and cause adverse
neurodevelopmental effects in mammals. However, no information is available
on the endocrine effects of CHP in aquatic organisms. In the digestive gland
of the bivalve Mytilus galloprovincialis, a target tissue
of both estrogens and pesticides, the possible effects of CHP on the
responses to the natural estrogen 17β-estradiol (E2) were
investigated. Methodology/Principal Findings Mussels were exposed to CHP (4.5 mg/l, 72 hrs) and subsequently injected with
E2 (6.75 ng/g dw). Responses were evaluated in CHP,
E2 and CHP/E2 treatment groups at 24 h p.i. by a
biomarker/transcriptomic approach. CHP and E2 induced additive,
synergistic, and antagonistic effects on lysosomal biomarkers (lysosomal
membrane stability, lysosome/cytoplasm volume ratio, lipofuscin and neutral
lipid accumulation). Additive and synergistic effects were also observed on
the expression of estrogen-responsive genes (GSTπ, catalase, 5-HTR)
evaluated by RT-Q-PCR. The use of a 1.7K cDNA Mytilus
microarray showed that CHP, E2 and CHP/E2, induced 81,
44, and 65 Differentially Expressed Genes (DEGs), respectively. 24 genes
were exclusively shared between CHP and CHP/E2, only 2 genes
between E2 and CHP/E2. Moreover, 36 genes were
uniquely modulated by CHP/E2. Gene ontology annotation was used
to elucidate the putative mechanisms involved in the responses elicited by
different treatments. Conclusions The results show complex interactions between CHP and E2 in the
digestive gland, indicating that the combination of certain pesticides and
hormones may give rise to unexpected effects at the molecular/cellular
level. Overall, these data demonstrate that CHP can interfere with the
mussel responses to natural estrogens.
Collapse
Affiliation(s)
- Laura Canesi
- Dipartimento di Biologia, Università di Genova, Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Sztrum AA, D'Eramo JL, Herkovits J. Nickel toxicity in embryos and larvae of the South American toad: effects on cell differentiation, morphogenesis, and oxygen consumption. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1146-1152. [PMID: 21312246 DOI: 10.1002/etc.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/05/2010] [Accepted: 11/12/2010] [Indexed: 05/30/2023]
Abstract
Nickel, a widely distributed heavy metal in the biosphere, produces systemic, carcinogenic, and teratogenic effects. The objectives of the present study are to report the acute, short-term chronic, and chronic toxicity of Ni in Rhinella arenarum embryos as well as the stage-dependent susceptibility to this heavy metal, including oxygen consumption, teratogenesis, and adverse effects on cell differentiation processes. The stages evaluated were blastula (S.7), gastrula (S.11), tail bud (S.17), fin circulation (S.22), and complete operculum (S.25), in this last case by means of toxicity profile curves. Nickel increases its adverse effects gradually, with a maximum value after 96 h. The 50% lethal concentrations (LC50s) for 96, 168, and 240 h at S.25 were 1.14, 0.60, and 0.48 mg Ni²(+) /L, respectively; S.11 and S.22 were the least and most susceptible to Ni with, LC50s 96 h of 6.12 and 0.19 mg Ni²(+) /L, respectively. A reduction of approximately 25% in oxygen consumption anticipates lethal effects from S.17 onward. The main teratogenic effects were retarded growth and development, extremely severe axis incurvations, persistent yolk plug, asymmetry, microcephaly and mouth and gill agenesia, and limited neuromuscular activity. Ciliated cells were not functional. The possibility of associating the remarkable stage-dependent susceptibility to Ni with environmental changes during the evolutionary process is also considered.
Collapse
Affiliation(s)
- Abelardo Andrés Sztrum
- Instituto de Ciencias Ambientales y Salud, Fundación Pro Salud y Medio Ambiente, Buenos Aires, Argentina
| | | | | |
Collapse
|