1
|
Zhang H, Liu Y, Zhang K, Hong Z, Liu Z, Liu Z, Li G, Xu Y, Pi J, Fu J, Xu Y. Understanding the Transcription Factor NFE2L1/NRF1 from the Perspective of Hallmarks of Cancer. Antioxidants (Basel) 2024; 13:758. [PMID: 39061827 PMCID: PMC11274343 DOI: 10.3390/antiox13070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer cells subvert multiple properties of normal cells, including escaping strict cell cycle regulation, gaining resistance to cell death, and remodeling the tumor microenvironment. The hallmarks of cancer have recently been updated and summarized. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also named NRF1) belongs to the cap'n'collar (CNC) basic-region leucine zipper (bZIP) family. It acts as a transcription factor and is indispensable for maintaining both cellular homoeostasis and organ integrity during development and growth, as well as adaptive responses to pathophysiological stressors. In addition, NFE2L1 mediates the proteasome bounce-back effect in the clinical proteasome inhibitor therapy of neuroblastoma, multiple myeloma, and triple-negative breast cancer, which quickly induces proteasome inhibitor resistance. Recent studies have shown that NFE2L1 mediates cell proliferation and metabolic reprogramming in various cancer cell lines. We combined the framework provided by "hallmarks of cancer" with recent research on NFE2L1 to summarize the role and mechanism of NFE2L1 in cancer. These ongoing efforts aim to contribute to the development of potential novel cancer therapies that target the NFE2L1 pathway and its activity.
Collapse
Affiliation(s)
- Haomeng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yong Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Ke Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Zhixuan Hong
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Zongfeng Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Zhe Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Guichen Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| |
Collapse
|
2
|
Łuczyńska K, Zhang Z, Pietras T, Zhang Y, Taniguchi H. NFE2L1/Nrf1 serves as a potential therapeutical target for neurodegenerative diseases. Redox Biol 2024; 69:103003. [PMID: 38150994 PMCID: PMC10788251 DOI: 10.1016/j.redox.2023.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
The failure of the proper protein turnover in the nervous system is mainly linked to a variety of neurodegenerative disorders. Therefore, a better understanding of key protein degradation through the ubiquitin-proteasome system is critical for effective prevention and treatment of those disorders. The proteasome expression is tightly regulated by a CNC (cap'n'collar) family of transcription factors, amongst which the nuclear factor-erythroid 2-like bZIP factor 1 (NFE2L1, also known as Nrf1, with its long isoform TCF11 and short isoform LCR-F1) has been identified as an indispensable regulator of the transcriptional expression of the ubiquitin-proteasome system. However, much less is known about how the pivotal role of NFE2L1/Nrf1, as compared to its homologous NFE2L2 (also called Nrf2), is translated to its physiological and pathophysiological functions in the nervous system insomuch as to yield its proper cytoprotective effects against neurodegenerative diseases. The potential of NFE2L1 to fulfill its unique neuronal function to serve as a novel therapeutic target for neurodegenerative diseases is explored by evaluating the hitherto established preclinical and clinical studies of Alzheimer's and Parkinson's diseases. In this review, we have also showcased a group of currently available activators of NFE2L1, along with an additional putative requirement of this CNC-bZIP factor for healthy longevity based on the experimental evidence obtained from its orthologous SKN1-A in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Poland; The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957, Warsaw, Poland
| | - Zhengwen Zhang
- Laboratory of Neuroscience, Institute of Cognitive Neuroscience and School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, England, United Kingdom
| | - Tadeusz Pietras
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957, Warsaw, Poland; Department of Clinical Pharmacology, Medical University of Lodz, 90-153, Łódź, Poland
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Poland.
| |
Collapse
|
3
|
Ho DV, Suryajaya KG, Manh K, Duong AN, Chan JY. Characterization of NFE2L1-616, an isoform of nuclear factor-erythroid-2 related transcription factor-1 that activates antioxidant response element-regulated genes. Sci Rep 2023; 13:19900. [PMID: 37963997 PMCID: PMC10646089 DOI: 10.1038/s41598-023-47055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
The NFE2L1 transcription factor (aka Nrf1) is a basic leucine zipper protein that performs a critical role in the cellular stress response pathway. Here, we characterized a novel variant of NFE2L1 referred to as NFE2L1-616. The transcript encoding NFE2L1-616 is derived from an intronic promoter, and it has a distinct first exon than other reported full-length NFE2L1 isoforms. The NFE2L1-616 protein constitutively localizes in the nucleus as it lacks the N-terminal amino acid residues that targets other full-length NFE2L1 isoforms to the endoplasmic reticulum. The expression level of NFE2L1-616 is lower than other NFE2L1 isoforms. It is widely expressed across different cell lines and tissues that were examined. NFE2L1-616 showed strong transcriptional activity driving luciferase reporter expression from a promoter containing antioxidant response element. Together, the results suggest that NFE2L1-616 variant can function as a positive regulator in the transcriptional regulation of NFE2L1 responsive genes.
Collapse
Affiliation(s)
- Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA, 92697, USA
| | - Kaylen G Suryajaya
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA, 92697, USA
| | - Kaitlyn Manh
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA, 92697, USA
| | - Amanda N Duong
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA, 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Liu X, Xu C, Xiao W, Yan N. Unravelling the role of NFE2L1 in stress responses and related diseases. Redox Biol 2023; 65:102819. [PMID: 37473701 PMCID: PMC10404558 DOI: 10.1016/j.redox.2023.102819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
The nuclear factor erythroid 2 (NF-E2)-related factor 1 (NFE2L1, also known as Nrf1) is a highly conserved transcription factor that belongs to the CNC-bZIP subfamily. Its significance lies in its control over redox balance, proteasome activity, and organ integrity. Stress responses encompass a series of compensatory adaptations utilized by cells and organisms to cope with extracellular or intracellular stress initiated by stressful stimuli. Recently, extensive evidence has demonstrated that NFE2L1 plays a crucial role in cellular stress adaptation by 1) responding to oxidative stress through the induction of antioxidative responses, and 2) addressing proteotoxic stress or endoplasmic reticulum (ER) stress by regulating the ubiquitin-proteasome system (UPS), unfolded protein response (UPR), and ER-associated degradation (ERAD). It is worth noting that NFE2L1 serves as a core factor in proteotoxic stress adaptation, which has been extensively studied in cancer and neurodegeneration associated with enhanced proteasomal stress. In these contexts, utilization of NFE2L1 inhibitors to attenuate proteasome "bounce-back" response holds tremendous potential for enhancing the efficacy of proteasome inhibitors. Additionally, abnormal stress adaptations of NFE2L1 and disturbances in redox and protein homeostasis contribute to the pathophysiological complications of cardiovascular diseases, inflammatory diseases, and autoimmune diseases. Therefore, a comprehensive exploration of the molecular basis of NFE2L1 and NFE2L1-mediated diseases related to stress responses would not only facilitate the identification of novel diagnostic and prognostic indicators but also enable the identification of specific therapeutic targets for NFE2L1-related diseases.
Collapse
Affiliation(s)
- Xingzhu Liu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chang Xu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Wanglong Xiao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
5
|
Xue P, Wang H, Yang L, Jiang Z, Li H, Liu Q, Zhang Q, Andersen ME, Crabbe MJC, Hao L, Qu W. NRF2-ARE signaling is responsive to haloacetonitrile-induced oxidative stress in human keratinocytes. Toxicol Appl Pharmacol 2022; 450:116163. [PMID: 35842135 DOI: 10.1016/j.taap.2022.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022]
Abstract
Humans are exposed to disinfection by-products through oral, inhalation, and dermal routes, during bathing and swimming, potentially causing skin lesions, asthma, and bladder cancer. Nuclear factor E2-related factor 2 (NRF2) is a master regulator of the adaptive antioxidant response via the antioxidant reaction elements (ARE) orchestrating the transcription of a large group of antioxidant and detoxification genes. Here we used an immortalized human keratinocyte model HaCaT cells to investigate NRF2-ARE as a responder and protector in the acute cytotoxicity of seven haloacetonitriles (HANs), including chloroacetonitrile (CAN), bromoacetonitrile (BAN), iodoacetonitrile (IAN), bromochloroacetonitrile (BCAN), dichloroacetonitrile (DCAN), dibromoacetonitrile (DBAN), and trichloroacetonitrile (TCAN) found in drinking water and swimming pools. The rank order of cytotoxicity among the HANs tested was IAN ≈ BAN ˃ DBAN ˃ BCAN ˃ CAN ˃ TCAN ˃ DCAN based on their LC50. The HANs induced intracellular reactive oxygen species accumulation and activated cellular antioxidant responses in concentration- and time-dependent fashions, showing elevated NRF2 protein levels and ARE activity, induction of antioxidant genes, and increased glutathione levels. Additionally, knockdown of NRF2 by lentiviral shRNAs sensitized the HaCaT cells to HANs-induced cytotoxicity, emphasizing a protective role of NRF2 against the cytotoxicity of HANs. These results indicate that HANs cause oxidative stress and activate NRF2-ARE-mediated antioxidant response, which in turn protects the cells from HANs-induced cytotoxicity, highlighting that NRF2-ARE activity could be a sensitive indicator to identify and characterize the oxidative stress induced by HANs and other environmental pollutants.
Collapse
Affiliation(s)
- Peng Xue
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lili Yang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hongliang Li
- Pudong New Area Center for Diseases Control & Prevention, Pudong New Area, Shanghai 200120, China
| | - Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA 30322, USA
| | | | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, UK; Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, UK
| | - Lipeng Hao
- Pudong New Area Center for Diseases Control & Prevention, Pudong New Area, Shanghai 200120, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Li Y, Sun R, Fang X, Ruan Y, Hu Y, Wang K, Liu J, Wang H, Pi J, Chen Y, Xu Y. Long-isoform NFE2L1 silencing inhibits acquisition of malignant phenotypes induced by arsenite in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113268. [PMID: 35124418 DOI: 10.1016/j.ecoenv.2022.113268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Chronic arsenic exposure is associated with the increased risk of several types of cancer, among which, lung cancer is the most deadly one. Nuclear factor erythroid 2 like 1 (NFE2L1), a transcription factor belonging to CNC-bZIP family, regulates multiple important cellular functions in response to acute arsenite exposure. However, the role of NFE2L1 in lung cancer induced by chronic arsenite exposure is unknown. In this study, we firstly showed that chronic arsenite exposure (36 weeks) led to epithelial-mesenchymal transition (EMT) and malignant transformation in human bronchial epithelial cells (BEAS-2B). During the process of malignant transformation, the expression of long isoforms of NFE2L1 (NFE2L1-L) was elevated. Thereafter, BEAS-2B cells with NFE2L1-L stable knockdown (NFE2L1-L-KD) was chronically exposed to arsenite. As expected, silencing of NFE2L1-L gene strikingly inhibited the arsenite-induced EMT and the subsequent malignant transformation. Additionally, NFE2L1-L silencing suppressed the transcription of EMT-inducer SNAIL1 and increased the expression of E-cadherin. Conversely, NFE2L1-L overexpression increased SNAIL1 transcription but decreased E-cadherin expression. Collectively, our data suggest that NFE2L1-L promotes EMT by positively regulating SNAIL1 transcription, and is involved in malignant transformation induced by arsenite.
Collapse
Affiliation(s)
- Yongfang Li
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ru Sun
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Xin Fang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yihui Ruan
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuxin Hu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Kemu Wang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Jiao Liu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Huihui Wang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Target Gene Diversity of the Nrf1-MafG Transcription Factor Revealed by a Tethered Heterodimer. Mol Cell Biol 2022; 42:e0052021. [PMID: 35129372 DOI: 10.1128/mcb.00520-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the cap'n'collar (CNC) family of transcription factors, including Nrf1 and Nrf2, heterodimerize with small Maf proteins (MafF, MafG and MafK) and regulate target gene expression through CNC-sMaf binding elements (CsMBEs). We recently developed a unique tethered dimer assessment system combined with small Maf triple knockout fibroblasts, which enabled the characterization of specific CNC-sMaf heterodimer functions. In this study, we evaluated the molecular function of the tethered Nrf1-MafG (T-N1G) heterodimer. We found that T-N1G activates the expression of proteasome subunit genes, well-known Nrf1 target genes, and binds specifically to CsMBEs in the proximity of these genes. T-N1G was also found to activate genes involved in proteostasis-related pathways, including endoplasmic reticulum-associated degradation, chaperone, and ubiquitin-mediated degradation pathways, indicating that the Nrf1-MafG heterodimer regulates a wide range of proteostatic stress response genes. By taking advantage of this assessment system, we found that Nrf1 has the potential to activate canonical Nrf2 target cytoprotective genes when strongly induced. Our results also revealed that transposable SINE B2 repeats harbor CsMBEs with high frequency and contribute to the target gene diversity of CNC-sMaf transcription factors.
Collapse
|
8
|
Wang JM, Ho DV, Kritzer A, Chan JY. A novel nonsense variant in the NFE2L1 transcription factor in a patient with developmental delay, hypotonia, genital anomalies, and failure to thrive. Hum Mutat 2022; 43:471-476. [PMID: 35112409 PMCID: PMC8960367 DOI: 10.1002/humu.24337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/08/2022]
Abstract
The NFE2L1 transcription factor (also known as Nrf1 for nuclear factor erythroid 2-related factor-1) is a broadly expressed basic leucine zipper protein that performs a critical role in the cellular stress response pathway. Here, we identified a heterozygous nonsense mutation located in the last exon of the gene that terminates translation prematurely, resulting in the production of a truncated peptide devoid of the carboxyl-terminal region containing the DNA-binding and leucine-zipper dimerization interface of the protein. Variant derivatives were well expressed in vitro, and they inhibited the transactivation function of wild-type proteins in luciferase reporter assays. Our studies suggest that this dominant-negative effect of truncated variants is through the formation of inactive heterodimers with wild-type proteins preventing the expression of its target genes. These findings suggest the potential role of diminished NFE2L1 function as an explanation for the developmental delay, hypotonia, hypospadias, bifid scrotum, and failure to thrive observed in the patient.
Collapse
Affiliation(s)
- Julia M Wang
- Department of Laboratory Medicine and Pathology, University of California, Irvine, Irvine, California, USA
| | - Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, Irvine, California, USA
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children Hospital, Boston, Massachusetts, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
9
|
Yu XJ, Xiao T, Liu XJ, Li Y, Qi J, Zhang N, Fu LY, Liu KL, Li Y, Kang YM. Effects of Nrf1 in Hypothalamic Paraventricular Nucleus on Regulating the Blood Pressure During Hypertension. Front Neurosci 2021; 15:805070. [PMID: 34938159 PMCID: PMC8685333 DOI: 10.3389/fnins.2021.805070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
The incidence rate and mortality of hypertension increase every year. Hypothalamic paraventricular nucleus (PVN) plays a critical role on the pathophysiology of hypertension. It has been demonstrated that the imbalance of neurotransmitters including norepinephrine (NE), glutamate (Glu) and γ-aminobutyric acid (GABA) are closely related to sympathetic overactivity and pathogenesis of hypertension. N-methyl-D-aspartate receptor (NMDAR), consisting of GluN1 and GluN2 subunits, is considered to be a glutamate-gated ion channel, which binds to Glu, and activates neuronal activity. Studies have found that the synthesis of respiratory chain enzyme complex was affected and mitochondrial function was impaired in spontaneously hypertensive rats (SHR), further indicating that mitochondria is associated with hypertension. Nuclear respiratory factor 1 (Nrf1) is a transcription factor that modulates mitochondrial respiratory chain and is related to GluN1, GluN2A, and GluN2B promoters. However, the brain mechanisms underlying PVN Nrf1 modulating sympathoexcitation and blood pressure during the development of hypertension remains unclear. In this study, an adeno-associated virus (AAV) vector carrying the shRNA targeting rat Nrf1 gene (shNrf1) was injected into bilateral PVN of male rats underwent two kidneys and one clip to explore the role of Nrf1 in mediating the development of hypertension and sympathoexcitation. Administration of shNrf1 knocked down the expression of Nrf1 and reduced the expression of excitatory neurotransmitters, increased the expression of inhibitory neurotransmitters, and reduced the production of reactive oxygen species (ROS), and attenuated sympathoexcitation and hypertension. The results indicate that knocking down Nrf1 suppresses sympathoexcitation in hypertension by reducing PVN transcription of NMDAR subunits (GluN1, GluN2A, and GluN2B), rebalancing PVN excitatory and inhibitory neurotransmitters, inhibiting PVN neuronal activity and oxidative stress, and attenuating sympathetic activity.
Collapse
Affiliation(s)
- Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Tong Xiao
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Xiao-Jing Liu
- Department of Cardiology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ying Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Jie Qi
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Nianping Zhang
- Department of Clinical Medicine, Shanxi Datong University School of Medicine, Datong, China
| | - Li-Yan Fu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Yanjun Li
- Department of Microbiology and Immunology, Shanxi Datong University School of Medicine, Datong, China
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| |
Collapse
|
10
|
Liu Z, Wang H, Hou Y, Yang Y, Jia J, Wu J, Zuo Z, Gao T, Ren S, Bian Y, Liu S, Fu J, Sun Y, Li J, Yamamoto M, Zhang Q, Xu Y, Pi J. CNC-bZIP protein NFE2L1 regulates osteoclast differentiation in antioxidant-dependent and independent manners. Redox Biol 2021; 48:102180. [PMID: 34763297 PMCID: PMC8591424 DOI: 10.1016/j.redox.2021.102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
Fine-tuning of osteoclast differentiation (OD) and bone remodeling is crucial for bone homeostasis. Dissecting the mechanisms regulating osteoclastogenesis is fundamental to understanding the pathogenesis of various bone disorders including osteoporosis and arthritis. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1), which belongs to the CNC-bZIP family of transcription factors, orchestrates a variety of physiological processes and stress responses. While Nfe2l1 gene may be transcribed into multiple alternatively spliced isoforms, the biological function of the different isoforms of NFE2L1 in bone metabolism, osteoclastogenesis in particular, has not been reported. Here we demonstrate that knockout of all isoforms of Nfe2l1 transcripts specifically in the myeloid lineage in mice [Nfe2l1(M)-KO] results in increased activity of osteoclasts, decreased bone mass and worsening of osteoporosis induced by ovariectomy and aging. In comparison, LysM-Cre-mediated Nfe2l1 deletion has no significant effect on the osteoblast and osteocytes. Mechanistic investigations using bone marrow cells and RAW 264.7 cells revealed that deficiency of Nfe2l1 leads to accelerated and elevated OD, which is attributed, at least in part, to enhanced accumulation of ROS in the early stage of OD and expression of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1α (Nfatc1/α). In addition, NFE2L1 regulates the transcription of multiple antioxidant genes and Nfatc1/α and OD in an isoform-specific manner. While long isoforms of NFE2L1 function as accelerators of induction of Nfatc1/α and antioxidant genes and OD, the short isoform NFE2L1-453 serves as a brake that keeps the long isoforms' accelerator effects in check. These findings provide a novel insight into the regulatory roles of NFE2L1 in osteoclastogenesis and highlight that NFE2L1 is essential in regulating bone remodeling and thus may be a valuable therapeutic target for bone disorders.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yang Yang
- The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Jingkun Jia
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jinzhi Wu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianchang Gao
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yongxin Sun
- The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, 46202, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
11
|
Nfe2l1 deficiency mitigates streptozotocin-induced pancreatic β-cell destruction and development of diabetes in male mice. Food Chem Toxicol 2021; 158:112633. [PMID: 34699923 DOI: 10.1016/j.fct.2021.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Streptozotocin (STZ) is a pancreatic β cell-specific toxicant that is widely used to generate models of diabetes in rodents as well as in the treatment of tumors derived from pancreatic β cells. DNA alkylation, oxidative stress and mitochondrial toxicity have been recognized as the mechanisms for STZ-induced pancreatic β cell damage. Here, we found that pancreatic β cell-specific deficiency of nuclear factor erythroid-derived factor 2-related factor 1 (NFE2L1), a master regulator of the cellular adaptive response to a variety of stresses, in mice led to a dramatic resistance to STZ-induced hyperglycemia. Indeed, fifteen days subsequent to last dosage of STZ, the pancreatic β cell specific Nfe2l1 knockout [Nfe2l1(β)-KO] mice showed reduced hyperglycemia, improved glucose tolerance, higher plasma insulin and more intact islets surrounded by exocrine acini compared to the Nfe2l1-Flox control mice with the same treatment. Immunohistochemistry staining revealed a greater amount of insulin-positive cells in the pancreas of Nfe2l1(β)-KO mice than those in Nfe2l1-Flox mice 15 days after the last STZ injection. In line with this observation, both isolated Nfe2l1(β)-KO islets and Nfe2l1-deficient MIN6 (Nfe2l1-KD) cells were resistant to STZ-induced toxicity and apoptosis. Furthermore, pretreatment of the MIN6 cells with glycolysis inhibitor 2-Deoxyglucose sensitized Nfe2l1-KD cells to STZ-induced toxicity. These findings demonstrated that loss of Nfe2l1 attenuates pancreatic β cells damage and dysfunction caused by STZ exposure, partially due to Nfe2l1 deficiency-induced metabolic switch to enhanced glycolysis.
Collapse
|
12
|
Yin Y, Peng H, Shao J, Zhang J, Li Y, Pi J, Guo J. NRF2 deficiency sensitizes human keratinocytes to zinc oxide nanoparticles-induced autophagy and cytotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103721. [PMID: 34339875 DOI: 10.1016/j.etap.2021.103721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most commonly used metal oxide particles in many industrial fields. Many studies have shown that ZnO NPs induce harmful effects to human skin, but the mechanisms remain poorly understood. Our results showed that ZnO NPs concentration-dependently induced cytotoxicity, ROS accumulation, and mitochondrial dysfunction in HaCaT cells. The expressions of adaptive antioxidant response transcriptional factor NRF2 and autophagy-related proteins P62 and LC3 II/I were increased by ZnO NPs. Knock-down of NRF2 (NRF2-KD) sensitized the cells to ZnO NPs-induced autophagy and cytotoxicity while an autophagy inhibitor, 3-methyladenine, protected the cells from ZnO NPs-induced cell death. These results demonstrated that NRF2 deficiency sensitizes human keratinocytes to ZnO NPs induced autophagy and cytotoxicity, and proposed a key role of NRF2 in protecting skin cells against ZnO NPs through regulation of antioxidants and autophagy.
Collapse
Affiliation(s)
- Yuanyuan Yin
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Hui Peng
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China
| | - Junbo Shao
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jing Zhang
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back District, Dongcheng Area, Beijing, 100010, China
| | - Yujie Li
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China
| | - Jingbo Pi
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Jiabin Guo
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
13
|
Li Y, Yu XJ, Xiao T, Chi HL, Zhu GQ, Kang YM. Nrf1 Knock-Down in the Hypothalamic Paraventricular Nucleus Alleviates Hypertension Through Intervention of Superoxide Production-Removal Balance and Mitochondrial Function. Cardiovasc Toxicol 2021; 21:472-489. [PMID: 33582931 DOI: 10.1007/s12012-021-09641-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Oxidative stress in the hypothalamic paraventricular nucleus (PVN) contributes greatly to the development of hypertension. The recombinant nuclear respiratory factor 1 (Nrf1) regulates the transcription of several genes related to mitochondrial respiratory chain function or antioxidant expression, and thus may be involved in the pathogenesis of hypertension. Here we show that in the two-kidney, one-clip (2K1C) hypertensive rats the transcription level of Nrf1 was elevated comparing to the normotensive controls. Knocking down of Nrf1 in the PVN of 2K1C rats can significantly reduce their blood pressure and level of plasma norepinephrine (NE). Analysis revealed significant reduction of superoxide production level in both whole cell and mitochondria, along with up-regulation of superoxide dismutase 1 (Cu/Zn-SOD), NAD(P)H: quinone oxidoreductase 1 (NQO1), thioredoxin-dependent peroxiredoxin 3 (Prdx3), cytochrome c (Cyt-c) and glutathione synthesis rate-limiting enzyme (glutamyl-cysteine ligase catalytic subunit (Gclc) and modifier subunit (Gclm)), and down-regulation of cytochrome c oxidase subunit VI c (Cox6c) transcription after Nrf1 knock-down. In addition, the reduced ATP production and elevated mitochondrial membrane potential in the PVN of 2K1C rats were reinstated with Nrf1 knock-down, together with restored expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitochondrial transcription factor A (Tfam), coiled-coil myosin-like BCL2-interacting protein (Beclin1), and Mitofusin 1 (Mfn1), which are related to the mitochondrial biogenesis, fusion, and autophagy. Together, the results indicate that the PVN Nrf1 is associated with the development of 2K1C-induced hypertension, and Nrf1 knock-down in the PVN can alleviate hypertension through intervention of mitochondrial function and restorement of the production-removal balance of superoxide.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Tong Xiao
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Hong-Li Chi
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China.
| |
Collapse
|
14
|
Ren S, Bian Y, Hou Y, Wang Z, Zuo Z, Liu Z, Teng Y, Fu J, Wang H, Xu Y, Zhang Q, Chen Y, Pi J. The roles of NFE2L1 in adipocytes: Structural and mechanistic insight from cell and mouse models. Redox Biol 2021; 44:102015. [PMID: 34058615 PMCID: PMC8170497 DOI: 10.1016/j.redox.2021.102015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Adipocytes play pivotal roles in maintaining energy homeostasis by storing lipids in adipose tissue (AT), regulating the flux of lipids between AT and the circulation in response to the body's energy requirements and secreting a variety of hormones, cytokines and other factors. Proper AT development and function ensure overall metabolic health. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1) belongs to the CNC-bZIP family and plays critical roles in regulating a wide range of essential cellular functions and varies stress responses in many cells and tissues. Human and rodent Nfe2l1 genes can be transcribed into multiple splice variants resulting in various protein isoforms, which may be further modified by a variety of post-translational mechanisms. While the long isoforms of NFE2L1 have been established as master regulators of cellular adaptive antioxidant response and proteasome homeostasis, the exact tissue distribution and physiological function of NFE2L1 isoforms, the short isoforms in particular, are still under intense investigation. With regard to key roles of NFE2L1 in adipocytes, emerging data indicates that deficiency of Nfe2l1 results in aberrant adipogenesis and impaired AT functioning. Intriguingly, a single nucleotide polymorphism (SNP) of the human NFE2L1 gene is associated with obesity. In this review, we summarize the most significant findings regarding the specific roles of the multiple isoforms of NFE2L1 in AT formation and function. We highlight that NFE2L1 plays a fundamental regulatory role in the expression of multiple genes that are crucial to AT metabolism and function and thus could be an important target to improve disease states involving aberrant adipose plasticity and lipid homeostasis.
Collapse
Affiliation(s)
- Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhendi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yue Teng
- Department of Hepatopancreatobiliary Surgery, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, Liaoning, 110001, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
15
|
Han JJW, Ho DV, Kim HM, Lee JY, Jeon YS, Chan JY. The deubiquitinating enzyme USP7 regulates the transcription factor Nrf1 by modulating its stability in response to toxic metal exposure. J Biol Chem 2021; 296:100732. [PMID: 33933455 PMCID: PMC8163974 DOI: 10.1016/j.jbc.2021.100732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
The nuclear factor E2-related factor 1 (Nrf1) transcription factor performs a critical role in regulating cellular homeostasis as part of the cellular stress response and drives the expression of antioxidants and detoxification enzymes among many other functions. Ubiquitination plays an important role in controlling the abundance and thus nuclear accumulation of Nrf1 proteins, but the regulatory enzymes that act on Nrf1 are not fully defined. Here, we identified ubiquitin specific protease 7 (USP7), a deubiquitinating enzyme, as a novel regulator of Nrf1 activity. We found that USP7 interacts with Nrf1a and TCF11—the two long protein isoforms of Nrf1. Expression of wildtype USP7, but not its catalytically defective mutant, resulted in decreased ubiquitination of TCF11 and Nrf1a, leading to their increased stability and increased transactivation of reporter gene expression by TCF11 and Nrf1a. In contrast, knockdown or pharmacologic inhibition of USP7 dramatically increased ubiquitination of TCF11 and Nrf1a and reduction of their steady state levels. Loss of USP7 function attenuated the induction of Nrf1 protein expression in response to treatment with arsenic and other toxic metals, and inhibition of USP7 activity significantly sensitized cells to arsenic treatment. Collectively, these findings suggest that USP7 may act to modulate abundance of Nrf1 protein to induce gene expression in response to toxic metal exposure.
Collapse
Affiliation(s)
- John J W Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Hyun M Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Jun Y Lee
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Yerin S Jeon
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA.
| |
Collapse
|
16
|
Wang Z, Hou Y, Ren S, Liu Z, Zuo Z, Huang S, Wang W, Wang H, Chen Y, Xu Y, Yamamoto M, Zhang Q, Fu J, Pi J. CL316243 treatment mitigates the inflammation in white adipose tissues of juvenile adipocyte-specific Nfe2l1 knockout mice. Free Radic Biol Med 2021; 165:289-298. [PMID: 33545311 DOI: 10.1016/j.freeradbiomed.2021.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor-erythroid 2-related factor 1 (NFE2L1) is a key transcription factor that regulates cellular adaptive responses to various stresses. Our previous studies revealed that adult adipocyte-specific Nfe2l1-knockout [Nfe2l1(f)-KO] mice show adipocyte hypertrophy and severe adipose inflammation, which can be worsened by rosiglitazone, a peroxisome proliferator-activated receptor γ agonist. To further assess the crucial roles of NFE2L1 in adipocytes, we investigated the effect of CL316243, a β3 adrenergic agonist that promotes lipolysis via a post-translational mechanism, on adipose inflammation in juvenile Nfe2l1(f)-KO mice. In contrast to adult mice, 4-week-old juvenile Nfe2l1(f)-KO mice displayed a normal fat distribution but reduced fasting plasma glycerol levels and elevated adipocyte hypertrophy and macrophage infiltration in inguinal and gonadal WAT. In addition, Nfe2l1(f)-KO mice had decreased expression of multiple lipolytic genes and reduced lipolytic activity in WAT. While 7 days of CL316243 treatment showed no significant effect on adipose inflammation in Nfe2l1-Floxed control mice, the same treatment dramatically alleviated macrophage infiltration and mRNA expression of inflammation and pyroptosis-related genes in WAT of Nfe2l1(f)-KO mice. Together with previous findings in adult mice, the current study highlights that NFE2L1 plays a fundamental regulatory role in lipolytic gene expression and thus might be an important target to improve adipose plasticity and lipid homeostasis.
Collapse
Affiliation(s)
- Zhendi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Sicui Huang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Wanqi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, 110001, PR China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China.
| |
Collapse
|
17
|
Xu Y, Tokar EJ, Pi J. Arsenic as an environmental toxicant and a therapeutic agent: Foe and friend. Toxicol Appl Pharmacol 2021; 415:115438. [PMID: 33548274 DOI: 10.1016/j.taap.2021.115438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yuanyuan Xu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, NIEHS, 111 TW Alexander Drive, Building 101, Room E-105, RTP, NC 27709, USA.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
18
|
Protracted rosiglitazone treatment exacerbates inflammation in white adipose tissues of adipocyte-specific Nfe2l1 knockout mice. Food Chem Toxicol 2020; 146:111836. [DOI: 10.1016/j.fct.2020.111836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/24/2020] [Indexed: 12/22/2022]
|
19
|
Lou B, Hu Y, Lu X, Zhang X, Li Y, Pi J, Xu Y. Long-isoform NRF1 protects against arsenic cytotoxicity in mouse bone marrow-derived mesenchymal stem cells by suppressing mitochondrial ROS and facilitating arsenic efflux. Toxicol Appl Pharmacol 2020; 407:115251. [PMID: 32980394 DOI: 10.1016/j.taap.2020.115251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Acute exposure to arsenic is known to cause bone marrow depression and result in anemia, in which the dusfunction of cells in the bone marrow niche such as mesenchymal stem cells (MSCs) is vital. However, the mechanism underlying response of MSCs to arsenic challange is not fully understood. In the present study, we investigated the role of nuclear factor erythroid 2-related factor (NRF) 1 (NRF1), a sister member of the well-known master regulator in antioxidative response NRF2, in arsenite-induced cytotoxicity in mouse bone marrow-derived MSCs (mBM-MSCs). We found that arsenite exposure induced significant increase in the protein level of long-isoform NRF1 (L-NRF1). Though short-isoform NRF1 (S-NRF1) was induced by arsenite at mRNA level, its protein level was not obviously altered. Silencing L-Nrf1 sensitized the cells to arsenite-induced cytotoxicity. L-Nrf1-silenced mBM-MSCs showed decreased arsenic efflux with reduced expression of arsenic transporter ATP-binding cassette subfamily C member 4 (ABCC4), as well as compromised NRF2-mediated antioxidative defense with elevated level of mitochondrial reactive oxygen species (mtROS) under arsenite-exposed conditions. A specific mtROS scavenger (Mito-quinone) alleviated cell apoptosis induced by arsenite in L-Nrf1-silenced mBM-MSCs. Taken together, these findings suggest that L-NRF1 protects mBM-MSCs from arsenite-induced cytotoxicity via suppressing mtROS in addition to facilitating cellular arsenic efflux.
Collapse
Affiliation(s)
- Bin Lou
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xiaoyu Lu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xinyu Zhang
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yongfang Li
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Research Center of Environment and Non-Communicable Diseases, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jingbo Pi
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
20
|
Mitochondrial Respiratory Defect Enhances Hepatoma Cell Invasiveness via STAT3/NFE2L1/STX12 Axis. Cancers (Basel) 2020; 12:cancers12092632. [PMID: 32942643 PMCID: PMC7565734 DOI: 10.3390/cancers12092632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Mitochondria are essential organelles responsible for aerobic ATP production in eukaryotes. However, many solid tumor cells harbor an impaired mitochondrial ATP production system: oxidative phosphorylation (OXPHOS). The aim of this study was to elucidate the involvement of the mitochondrial OXPHOS defect in cancer cell activity, especially focusing on hepatoma cell invasiveness. We demonstrated that NADH:Ubiquinone Oxidoreductase Subunit A9 (NDUFA9) depletion was an upstream driver of the OXPHOS defect and nuclear factor-erythroid 2 like 1 (NFE2L1) upregulation in HCC tumors. NFE2L1 is the key transcription factor to enhance hepatoma cell invasiveness via STX12 expression. Our study presents a novel mitochondrial dysfunction-mediated retrograde signaling pathway and the resulting transcriptomic reprogramming in liver cancer progression, providing the NDUFA9/NFE2L1/STX12 axis as a key prognostic marker of aggressive liver cancer with mitochondrial defects. Abstract Mitochondrial respiratory defects have been implicated in cancer progression and metastasis, but how they control tumor cell aggressiveness remains unclear. Here, we demonstrate that a mitochondrial respiratory defect induces nuclear factor-erythroid 2 like 1 (NFE2L1) expression at the transcriptional level via reactive oxygen species (ROS)-mediated STAT3 activation. We identified syntaxin 12 (STX12) as an effective downstream target of NFE2L1 by performing cDNA microarray analysis after the overexpression and depletion of NFE2L1 in hepatoma cells. Bioinformatics analysis of The Cancer Genome Atlas Liver Hepatocellular carcinoma (TCGA-LIHC) open database (n = 371) also revealed a significant positive association (r = 0.3, p = 2.49 × 10−9) between NFE2L1 and STX12 expression. We further demonstrated that STX12 is upregulated through the ROS/STAT3/NFE2L1 axis and is a key downstream effector of NFE2L1 in modulating hepatoma cell invasiveness. In addition, gene enrichment analysis of TCGA-LIHC also showed that epithelial–mesenchymal transition (EMT)-related core genes are significantly upregulated in tumors co-expressing NFE2L1 and STX12. The positive association between NFE2L1 and STX12 expression was validated by immunohistochemistry of the hepatocellular carcinoma tissue array. Finally, higher EMT gene enrichment and worse overall survival (p = 0.043) were observed in the NFE2L1 and STX12 co-expression group with mitochondrial defect, as indicated by low NDUFA9 expression. Collectively, our results indicate that NFE2L1 is a key mitochondrial retrograde signaling-mediated primary gene product enhancing hepatoma cell invasiveness via STX12 expression and promoting liver cancer progression.
Collapse
|
21
|
A Systematic Review of the Various Effect of Arsenic on Glutathione Synthesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9414196. [PMID: 32802886 PMCID: PMC7411465 DOI: 10.1155/2020/9414196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Background Arsenic is a toxic metalloid widely present in nature, and arsenic poisoning in drinking water is a serious global public problem. Glutathione is an important reducing agent that inhibits arsenic-induced oxidative stress and participates in arsenic methylation metabolism. Therefore, glutathione plays an important role in regulating arsenic toxicity. In recent years, a large number of studies have shown that arsenic can regulate glutathione synthesis in many ways, but there are many contradictions in the research results. At present, the mechanism of the effect of arsenic on glutathione synthesis has not been elucidated. Objective We will conduct a meta-analysis to illustrate the effects of arsenic on GSH synthesis precursors Glu, Cys, Gly, and rate-limiting enzyme γ-GCS in mammalian models, as well as the regulation of p38/Nrf2 of γ-GCS subunit GCLC, and further explore the molecular mechanism of arsenic affecting glutathione synthesis. Results This meta-analysis included 30 studies in vivo and 58 studies in vitro, among which in vivo studies showed that arsenic exposure could reduce the contents of GSH (SMD = -2.86, 95% CI (-4.45, -1.27)), Glu (SMD = -1.11, 95% CI (-2.20,-0.02)), and Cys (SMD = -1.48, 95% CI (-2.63, -0.33)), with no statistically significant difference in p38/Nrf2, GCLC, and GCLM. In vitro studies showed that arsenic exposure increased intracellular GSH content (SMD = 1.87, 95% CI (0.18, 3.56)) and promoted the expression of p-p38 (SMD = 4.19, 95% CI (2.34, 6.05)), Nrf2 (SMD = 4.60, 95% CI (2.34, 6.86)), and GCLC (SMD = 1.32, 95% CI (0.23, 2.41)); the p38 inhibitor inhibited the expression of Nrf2 (SMD = -1.27, 95% CI (-2.46, -0.09)) and GCLC (SMD = -5.37, 95% CI (-5.37, -2.20)); siNrf2 inhibited the expression of GCLC, and BSO inhibited the synthesis of GSH. There is a dose-dependent relationship between the effects of exposure on GSH in vitro. Conclusions. These indicate the difference between in vivo and in vitro studies of the effect of arsenic on glutathione synthesis. In vivo studies have shown that arsenic exposure can reduce glutamate and cysteine levels and inhibit glutathione synthesis, while in vitro studies have shown that chronic low-dose arsenic exposure can activate the p38/Nrf2 pathway, upregulate GCLC expression, and promote glutathione synthesis.
Collapse
|
22
|
Hamazaki J, Murata S. ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. Int J Mol Sci 2020; 21:ijms21103683. [PMID: 32456207 PMCID: PMC7279161 DOI: 10.3390/ijms21103683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Protein folding is a substantively error prone process, especially when it occurs in the endoplasmic reticulum (ER). The highly exquisite machinery in the ER controls secretory protein folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol; these misfolded proteins are then degraded by the ubiquitin–proteasome system termed as the ER-associated degradation (ERAD). The 26S proteasome is a multisubunit protease complex that recognizes and degrades ubiquitinated proteins in an ATP-dependent manner. The complex structure of the 26S proteasome requires exquisite regulation at the transcription, translation, and molecular assembly levels. Nuclear factor erythroid-derived 2-related factor 1 (Nrf1; NFE2L1), an ER-resident transcription factor, has recently been shown to be responsible for the coordinated expression of all the proteasome subunit genes upon proteasome impairment in mammalian cells. In this review, we summarize the current knowledge regarding the transcriptional regulation of the proteasome, as well as recent findings concerning the regulation of Nrf1 transcription activity in ER homeostasis and metabolic processes.
Collapse
|
23
|
Wang S, Cheng H, Wang L, Zhao R, Guan D. Overexpression of NRF1-742 or NRF1-772 Reduces Arsenic-Induced Cytotoxicity and Apoptosis in Human HaCaT Keratinocytes. Int J Mol Sci 2020; 21:2014. [PMID: 32188015 PMCID: PMC7139366 DOI: 10.3390/ijms21062014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence indicates that human exposure to inorganic arsenic causes cutaneous diseases and skin cancers. Nuclear factor erythroid 2-like 1 (NRF1) belongs to the cap "n" collar (CNC) basic-region leucine zipper (bZIP) transcription factor family and regulates antioxidant response element (ARE) genes. The human NRF1 gene is transcribed into multiple isoforms, which contain 584, 616, 742, 761, or 772 amino acids. We previously demonstrated that the long isoforms of NRF1 (i.e., NRF1-742, NRF1-761 and NRF1-772) are involved in the protection of human keratinocytes from acute arsenic cytotoxicity by enhancing the cellular antioxidant response. The aim of the current study was to investigate the roles of NRF1-742 and NRF1-772 in the arsenic-induced antioxidant response and cytotoxicity. We found that overexpression of NRF1-742 or NRF1-772 in human HaCaT keratinocytes decreased susceptibility to arsenic-induced apoptosis and cytotoxicity. In addition, we characterized the different protein bands observed for NRF1-742 and NRF1-772 by western blotting. The posttranslational modifications and nuclear translocation of these isoforms differed and were partially affected by arsenic exposure. Antioxidant protein levels were increased in the NRF1-742 and NRF1-772-overexpressing cell lines. The upregulation of antioxidant protein levels was partly due to the translation of nuclear factor erythroid 2-like 2 (NRF2) and its increased nuclear transport. Overall, overexpression of NRF1-742 and NRF1-772 protected HaCaT cells from arsenic-induced cytotoxicity, mainly through translational modifications and the promotion of antioxidant gene expression.
Collapse
Affiliation(s)
| | | | | | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.W.); (H.C.); (L.W.)
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.W.); (H.C.); (L.W.)
| |
Collapse
|
24
|
Xue P, Hou Y, Zuo Z, Wang Z, Ren S, Dong J, Fu J, Wang H, Andersen ME, Zhang Q, Xu Y, Pi J. Long isoforms of NRF1 negatively regulate adipogenesis via suppression of PPARγ expression. Redox Biol 2019; 30:101414. [PMID: 31931283 PMCID: PMC6957832 DOI: 10.1016/j.redox.2019.101414] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 01/12/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 1 (NRF1), a ubiquitously expressed CNC-bZIP transcription factor, plays a critical role in white adipocyte (WAC) biology, whereas the underlying mechanisms remain unknown. The mouse Nrf1 gene is transcribed in a number of alternatively spliced forms, resulting in two long protein isoforms (L-NRF1) containing 741 and 742 amino acids (aa) and multiple short isoforms (S-NRF1). Our previous study found that adipocyte-specific knockout of Nrf1 [Nrf1(f)-KO] in mice disturbs the expression of lipolytic genes in adipocytes, leading to adipocyte hypertrophy followed by inflammation, pyroptosis and insulin resistance. In the present study, we found that the stromal vascular fraction (SVF) cells isolated from white adipose tissues (WAT) of Nrf1(f)-KO mice display augmented adipogenesis showing elevated mRNA and protein expression of adipogenic markers and lipid accumulation. In 3T3-L1 cells, stable knockdown (KD) of all or long isoforms of Nrf1 (termed as A-Nrf1-KD and L-Nrf1-KD, respectively) using lentiviral shRNAs resulted in enhanced and accelerated adipogenic differentiation. Conversely, overexpression of L-NRF1-741, but not any of the S-NRF1, substantially attenuated adipogenesis in 3T3-L1 cells. These findings indicate that L-NRF1 might serve as a critical negative regulator of adipogenesis. Mechanistic investigation revealed that L-NRF1 may negatively regulates the transcription of peroxisome proliferator-activated receptor γ (PPARγ), in particular the master regulator of adipogenesis PPARγ2. Taken all together, the findings in the present study provide further evidence for a novel role of NRF1 beyond its participation in cellular antioxidant response and suggest that L-NRF1 is a negative regulator of PPARγ2 expression and thereby can suppress adipogenesis. SVF cells isolated from WAT of Nrf1(f)-KO mice displayed augmented adipogenesis. Stable silencing of L-Nrf1 in 3T3-L1 cells resulted in enhanced and accelerated adipogenesis. Overexpression of L-NRF1-741, but not S-NRF1s, attenuated adipogenesis in 3T3-L1 cells. L-NRF1 suppressed adipogenesis via downregulating PPARγ2 expression.
Collapse
Affiliation(s)
- Peng Xue
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; ScitoVation LLC, Research Triangle Park, NC, USA
| | - Yongyong Hou
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Zhuo Zuo
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Zhendi Wang
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Suping Ren
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jian Dong
- ScitoVation LLC, Research Triangle Park, NC, USA
| | - Jingqi Fu
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Huihui Wang
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | | | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yuanyuan Xu
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Jingbo Pi
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
25
|
TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages through JNK signaling pathway. Cell Signal 2019; 67:109522. [PMID: 31883458 DOI: 10.1016/j.cellsig.2019.109522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Activated macrophages play an important role in many inflammatory diseases including septic shock and atherosclerosis. TRIM59 has been showed to participate in many pathological processes, such as inflammation, cytotoxicity and tumorigenesis. However, the molecular mechanisms controlling its expression in activated macrophages are not fully understood. Here we report that TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages. TRIM59 is highly expressed in macrophages, and markedly decreased by LPS stimuli in vivo and in vitro. TRIM59 promoter activity is also significantly suppressed by LPS and further analysis demonstrated that Sp1 and Nrf1 directly bound to the proximal promoter of TRIM59 gene. LPS treatment significantly decreased Sp1 expression, nuclear translocation and reduced its binding to the promoter, whereas increased Nrf1 expression, nuclear translocation and enhanced its binding to the promoter. Moreover, LPS-decreased TRIM59 expression was reversed by JNK inhibitor. Finally, TRIM59 level is significantly decreased during atherosclerosis progression. Taken together, our results demonstrated that TRIM59 expression was precisely regulated by Sp1 and Nrf1 in LPS-activated macrophages, which may be dependent on the activation of JNK signaling pathway and TRIM59 may be a potential therapeutic target for inflammatory diseases such as atherosclerosis.
Collapse
|
26
|
Zhu YP, Zheng Z, Hu S, Ru X, Fan Z, Qiu L, Zhang Y. Unification of Opposites between Two Antioxidant Transcription Factors Nrf1 and Nrf2 in Mediating Distinct Cellular Responses to the Endoplasmic Reticulum Stressor Tunicamycin. Antioxidants (Basel) 2019; 9:antiox9010004. [PMID: 31861550 PMCID: PMC7022656 DOI: 10.3390/antiox9010004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1α-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1α−/− cells. By contrast, Nrf2−/−ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1α−/− and Nrf2−/−ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1α (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1α is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone or plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1α−/− cells, but rather are, to our surprise, decreased in Nrf2−/−ΔTA cells.
Collapse
Affiliation(s)
- Yu-ping Zhu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China (Z.Z.); (S.H.); (X.R.); (Z.F.); (L.Q.)
| | - Ze Zheng
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China (Z.Z.); (S.H.); (X.R.); (Z.F.); (L.Q.)
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China (Z.Z.); (S.H.); (X.R.); (Z.F.); (L.Q.)
| | - Xufang Ru
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China (Z.Z.); (S.H.); (X.R.); (Z.F.); (L.Q.)
| | - Zhuo Fan
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China (Z.Z.); (S.H.); (X.R.); (Z.F.); (L.Q.)
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China (Z.Z.); (S.H.); (X.R.); (Z.F.); (L.Q.)
- School of Life Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China (Z.Z.); (S.H.); (X.R.); (Z.F.); (L.Q.)
- Correspondence: or
| |
Collapse
|
27
|
Yang B, Cheng H, Wang L, Fu J, Zhang G, Guan D, Qi R, Gao X, Zhao R. Protective roles of NRF2 signaling pathway in cobalt chloride-induced hypoxic cytotoxicity in human HaCaT keratinocytes. Toxicol Appl Pharmacol 2018; 355:189-197. [PMID: 29966676 DOI: 10.1016/j.taap.2018.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Hypoxia is a key pathological process involved in many cutaneous diseases. Nuclear factor E2-related factor 2 (NRF2) is a central regulator of antioxidant response element (ARE)-dependent transcription and plays a pivotal role in the cellular adaptive response to oxidative stress. Kelch-like ECH-associated protein 1 (KEAP1) is a cullin-3-adapter protein that represses the activity of NRF2 by mediating its ubiquitination and degradation. In the present study, we examined the role of NRF2 signaling pathway in the cytotoxicity induced by cobalt chloride(CoCl2), a hypoxia-mimicking agent, in human keratinocyte HaCaT cells with stable knockdown of NRF2 (NRF2-KD) and KEAP1 (KEAP1-KD). Acute CoCl2 exposure markedly increased the levels of intracellular reactive oxygen species (ROS), and resulted in hypoxic damage and cytotoxicity of HaCaT cells. Stable knockdown of NRF2 dramatically reduced the expression of many antioxidant enzymes and sensitized the cells to acute CoCl2-induced oxidative stress and cytotoxicity. In contrast, KEAP1-KD cells observably enhanced the activity of NRF2 and ARE-regulated genes and led to a significant resistance to CoCl2-induced cellular damage. In addition, pretreatment of HaCaT cells with tert-butylhydroquinone, a well-known NRF2 activator, protected HaCaT cells from CoCl2-induced cellular injury in a NRF2-dependent fashion. Likewise, physical hypoxia-induced cytotoxicity could be significantly ameliorated through NRF2 signaling pathway in HaCaT cells. Together, our results suggest that NRF2 signaling pathway is involved in antioxidant response triggered by CoCl2-induced oxidative stress and could protect human keratinocytes against acute CoCl2 -induced hypoxic cytotoxicity.
Collapse
Affiliation(s)
- Bei Yang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Ruiqun Qi
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Xinghua Gao
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China.
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China.
| |
Collapse
|
28
|
Zhu J, Wang H, Chen F, Lv H, Xu Z, Fu J, Hou Y, Xu Y, Pi J. Triptolide enhances chemotherapeutic efficacy of antitumor drugs in non-small-cell lung cancer cells by inhibiting Nrf2-ARE activity. Toxicol Appl Pharmacol 2018; 358:1-9. [PMID: 30196066 DOI: 10.1016/j.taap.2018.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) has a high mortality rate worldwide. Various treatments strategies have been used against NSCLC including individualized chemotherapies, but innate or acquired cancer cell drug resistance remains a major obstacle. Recent studies revealed that the Kelch-like ECH associated protein 1/Nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway is intimately involved in cancer progression and chemoresistance. Thus, antagonizing Nrf2 would seem to be a viable strategy in cancer therapy. In the present study a traditional Chinese medicine, triptolide, was identified that markedly inhibited expression and transcriptional activity of Nrf2 in various cancer cells, including NSCLC and liver cancer cells. Consequently, triptolide made cancer cells more chemosensitivity toward antitumor drugs both in vitro and in a xenograft tumor model system using lung carcinoma cells. These results suggest that triptolide blocks chemoresistance in cancer cells by targeting the Nrf2 pathway. Triptolide should be further investigated in clinical cancer trials.
Collapse
Affiliation(s)
- Jiayu Zhu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China.
| | - Feng Chen
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, 110001, China; Interventional Department, Qianfoshan Hospital, Shandong University, No.16766 Jingshi Road, Jinan 250014, China
| | - Hang Lv
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Zijin Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China.
| |
Collapse
|
29
|
Hou Y, Liu Z, Zuo Z, Gao T, Fu J, Wang H, Xu Y, Liu D, Yamamoto M, Zhu B, Zhang Y, Andersen ME, Zhang Q, Pi J. Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice. Biochem Biophys Res Commun 2018; 503:264-270. [DOI: 10.1016/j.bbrc.2018.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 01/10/2023]
|
30
|
Dong W, Yang B, Wang L, Li B, Guo X, Zhang M, Jiang Z, Fu J, Pi J, Guan D, Zhao R. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol Appl Pharmacol 2018; 346:28-36. [PMID: 29571711 DOI: 10.1016/j.taap.2018.03.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide with no effective treatment. Curcumin has been shown to be beneficial for neuroprotection in vivo and in vitro, but the underlying mechanism remains unclear. This study determined whether the neuroprotective role of curcumin in mouse TBI is dependent on the NF-E2-related factor (Nrf2) pathway. The Feeney weight-drop contusion model was used to mimic TBI. Curcumin was administered intraperitoneally 15 min after TBI induction, and brains were collected at 24 h after TBI. The levels of Nrf2 and its downstream genes (Hmox-1, Nqo1, Gclm, and Gclc) were detected by Western blot and qRT-PCR at 24 h after TBI. In addition, edema, oxidative damage, cell apoptosis and inflammatory reactions were evaluated in wild type (WT) and Nrf2-knockout (Nrf2-KO) mice to explore the role of Nrf2 signaling after curcumin treatment. In wild type mice, curcumin treatment resulted in reduced ipsilateral cortex injury, neutrophil infiltration, and microglia activation, improving neuron survival against TBI-induced apoptosis and degeneration. These effects were accompanied by increased expression and nuclear translocation of Nrf2, and enhanced expression of antioxidant enzymes. However, Nrf2 deletion attenuated the neuroprotective effects of curcumin in Nrf2-KO mice after TBI. These findings demonstrated that curcumin effects on TBI are associated with the activation the Nrf2 pathway, providing novel insights into the neuroprotective role of Nrf2 and the potential therapeutic use of curcumin for TBI.
Collapse
Affiliation(s)
- Wenwen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Bei Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Bingxuan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Xiangshen Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Zhenfei Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical Univeristy, Shenyang 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical Univeristy, Shenyang 110122, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China.
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China.
| |
Collapse
|
31
|
Wang H, Zhu J, Liu Z, Lv H, Lv P, Chen F, Fu J, Hou Y, Zhao R, Xu Y, Zhang Q, Pi J. Silencing of long isoforms of nuclear factor erythroid 2 like 1 primes macrophages towards M1 polarization. Free Radic Biol Med 2018; 117:37-44. [PMID: 29421237 DOI: 10.1016/j.freeradbiomed.2018.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/06/2018] [Accepted: 01/20/2018] [Indexed: 01/09/2023]
Abstract
Macrophages are a major component of the immune system and play an important role in regulating the magnitude, duration, and quality of the inflammatory response. Dissecting the functions of transcription factors regulating macrophage activation is important for understanding the inflammatory responses. Nuclear factor erythroid 2 like 1 (NFE2L1, also known as Nrf1) is a CNC-bZIP protein, which has multiple isoforms. While the exact physiological functions of various isoforms of NFE2L1 are still under investigation, accumulating evidence indicate that long isoforms of NFE2L1 (NFE2L1(L)) are important regulators in the antioxidant response, proteasome homeostasis and inflammation. In this study, we found that NFE2L1(L) was upregulated in response to LPS stimulation in RAW264.7 macrophages. Stable knockdown of Nfe2l1(L) (Nfe2l1(L)-KD) in RAW264.7 cells resulted in increased expression of multiple genes indicative of M1 polarization, including Il6, Il1β, Cox2, and Ccl2, under both resting and LPS-challenged conditions. In addition, lentiviral shRNA-mediated silencing of NFE2L1(L) in human monocytic SC and THP1 cells also significantly increased mRNA expression of IL6, IL1β, and TNFα. Furthermore, transient silence of NFE2L1(L) in primary human monocytes isolated from peripheral blood by nucleofection with small interfering RNA resulted in increased expression of IL6 and TNFα. Analysis of the key transcription factors involved in M1 polarization revealed that Nfe2l1(L)-KD RAW264.7 cells have increased mRNA and protein expression and phosphorylation of STAT1 and STAT3 under both resting and M1 polarized conditions. Activation of the NFκB, ERK1/2 and p38 pathways in response to LPS was not affected by the reduction of NFE2L1(L). Moreover, Nfe2l1(L)-KD cells were found to have elevated levels of intracellular ROS, but macrophage M1 polarization induced by Nfe2l1(L) silence was independent of ROS accumulation. Collectively, our results show that knockdown of Nfe2l1(L) leads macrophages to M1 polarization by disinhibition of STAT1/3, and not through the NFκB, ERK1/2 and/or p38 signaling pathways. These findings indicate that NFE2L1(L) functions as a negative regulator of M1 polarization and pro-inflammatory response in macrophages.
Collapse
Affiliation(s)
- Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jiayu Zhu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Hang Lv
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Peng Lv
- The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC, 27709, USA; Chinese Medical Association, 42 Dongsi Xidajie, Beijing 100710,China
| | - Feng Chen
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Road, Heping District, Shenyang 110001, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Rui Zhao
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
32
|
Fu J, Zheng H, Cui Q, Chen C, Bao S, Sun J, Li L, Yang B, Wang H, Hou Y, Xu Y, Xu Y, Zhang Q, Pi J. Nfe2l1-silenced insulinoma cells acquire aggressiveness and chemoresistance. Endocr Relat Cancer 2018; 25:185-200. [PMID: 29203613 DOI: 10.1530/erc-17-0458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
The transcription factor nuclear factor erythroid 2-like 1 (NFE2L1 or NRF1) is involved in various critical cell processes such as maintenance of ubiquitin-proteasome system and regulation of the cellular antioxidant response. We previously determined that pancreatic β-cell-specific Nfe2l1-knockout mice had hyperinsulinemia and that silencing of Nfe2l1 in mouse islets or MIN6 insulinoma β-cells induced elevated basal insulin release and altered glucose metabolism. Hypoglycemia is a major issue with aggressive insulinomas, although a role of NFE2L1 in this pathology is not defined. In the present work, we studied the tumorigenicity of Nfe2l1-deficient insulinoma MIN6 cells (Nfe2l1-KD) and sensitivity to chemotherapy. Nfe2l1-KD cells grew faster and were more aggressive than Scramble cells in vitro In a mouse allograft transplantation model, insulinomas arising from Nfe2l1-KD cells were more aggressive and chemoresistant. The conclusion was amplified using streptozotocin (STZ) administration in an allograft transplantation model in diabetic Akita background mice. Furthermore, Nfe2l1-KD cells were resistant to damage by the chemotherapeutic drugs STZ and 5-fluorouracil, which was linked to binding of hexokinase 1 with mitochondria, enhanced mitochondrial membrane potential and closed mitochondrial potential transition pore. Overall, both in vitro and in vivo data from Nfe2l1-KD insulinoma cells provided evidence of a previously un-appreciated action of NFE2L1 in suppression of tumorigenesis. Nfe2l1 silencing desensitizes insulinoma cells and derived tumors to chemotherapeutic-induced damage, likely via metabolic reprograming. These data indicate that NFE2L1 could potentially play an important role in the carcinogenic process and impact chemosensitivity, at least within a subset of pancreatic endocrine tumors.
Collapse
Affiliation(s)
- Jingqi Fu
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hongzhi Zheng
- Department of Geriatric EndocrinologyThe First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Qi Cui
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Chengjie Chen
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Simeng Bao
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Jing Sun
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Lu Li
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Bei Yang
- Department of Histology and EmbryologySchool of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Huihui Wang
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yongyong Hou
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yuanhong Xu
- Department of Pancreatic SurgeryThe First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Qiang Zhang
- Department of Environmental HealthRollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jingbo Pi
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
33
|
Chen F, Wang H, Zhu J, Zhao R, Xue P, Zhang Q, Bud Nelson M, Qu W, Feng B, Pi J. Camptothecin suppresses NRF2-ARE activity and sensitises hepatocellular carcinoma cells to anticancer drugs. Br J Cancer 2017; 117:1495-1506. [PMID: 28910823 PMCID: PMC5680465 DOI: 10.1038/bjc.2017.317] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Resistance to chemotherapy is a major obstacle in the treatment of human hepatocellular carcinoma (HCC). Despite playing an important role in chemoprevention, nuclear factor erythroid 2-related factor 2 (NRF2) also contributes to chemo- and radio-resistance. The current study focusses on camptothecin as a novel NRF2 inhibitor to sensitise HCC to chemotherapy. METHODS The expression and transcriptional activity of NRF2 in human HCC biopsies and camptothecin-treated culture cells were determined using immunostaining, western blot, reverse-transcription quantitative real-time PCR (RT-qPCR) and luciferase reporter assay. The effect of camptothecin on chemosensitivity of cancer cells was assessed in vitro and in xenografts. RESULTS The expression and transcriptional activity of NRF2 were substantially elevated in HCC biopsies compared with corresponding adjacent tissues, and positively correlated with serum α-fetoprotein, a clinical indicator of pathological progression. In searching chemicals targeting NRF2 for chemotherapy, we discovered that camptothecin is a potent NRF2 inhibitor. Camptothecin markedly suppressed NRF2 expression and transcriptional activity in different types of cancer cells including HepG2, SMMC-7721 and A549. As a result, camptothecin sensitised these cells to chemotherapeutic drugs in vitro and in xenografts. CONCLUSIONS Camptothecin is a novel NRF2 inhibitor that may be repurposed in combination with other chemotherapeutics to enhance their efficacy in treating high NRF2-expressing cancers.
Collapse
Affiliation(s)
- Feng Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang 110001, China
- Interventional Department, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jiayu Zhu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Peng Xue
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, P.O. Box 249, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - M Bud Nelson
- MedBlue Incubator, Inc., Research Triangle Park, NC 27709, USA
| | - Weidong Qu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, P.O. Box 249, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Bo Feng
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang 110001, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| |
Collapse
|
34
|
Wu X, Yang B, Hu Y, Sun R, Wang H, Fu J, Hou Y, Pi J, Xu Y. NRF2 Is a Potential Modulator of Hyperresistance to Arsenic Toxicity in Stem-Like Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7417694. [PMID: 29081891 PMCID: PMC5610874 DOI: 10.1155/2017/7417694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/07/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022]
Abstract
Arsenic is a well-known human carcinogen. Stem cells are indicated to be involved in arsenic carcinogenesis and have a survival selection advantage during arsenic exposure with underlying mechanisms undefined. In the present study, we demonstrated that CD34high-enriched cells derived from HaCaT human keratinocytes showed stem-like phenotypes. These cells were more resistant to arsenic toxicity and had higher arsenic efflux ability than their mature compartments. The master transcription factor in antioxidant defense, nuclear factor erythroid 2-related factor 2 (NRF2) with its downstream genes, was highly expressed in CD34high-enriched cells. Stable knockdown of NRF2 abolished the hyperresistance to arsenic toxicity and holoclone-forming ability of CD34high-enriched cells. Our results suggest that skin epithelial stem/progenitor cells are more resistant to arsenic toxicity than mature cells, which is associated with the high innate expression of NRF2 in skin epithelial stem/progenitor cells.
Collapse
Affiliation(s)
- Xiafang Wu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Bei Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ru Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
35
|
Han JW, Valdez JL, Ho DV, Lee CS, Kim HM, Wang X, Huang L, Chan JY. Nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) is regulated by O-GlcNAc transferase. Free Radic Biol Med 2017. [PMID: 28625484 DOI: 10.1016/j.freeradbiomed.2017.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Nrf1 (Nuclear factor E2-related factor 1) transcription factor performs a critical role in regulating cellular homeostasis. Using a proteomic approach, we identified Host Cell Factor-1 (HCF1), a co-regulator of transcription, and O-GlcNAc transferase (OGT), the enzyme that mediates protein O-GlcNAcylation, as cellular partners of Nrf1a, an isoform of Nrf1. Nrf1a directly interacts with HCF1 through the HCF1 binding motif (HBM), while interaction with OGT is mediated through HCF1. Overexpression of HCF1 and OGT leads to increased Nrf1a protein stability. Addition of O-GlcNAc decreases ubiquitination and degradation of Nrf1a. Transcriptional activation by Nrf1a is increased by OGT overexpression and treatment with PUGNAc. Together, these data suggest that OGT can act as a regulator of Nrf1a.
Collapse
Affiliation(s)
- Jeong Woo Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Joshua L Valdez
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Candy S Lee
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Hyun Min Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Xiaorong Wang
- Departments of Physiology and Biophysics, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Lan Huang
- Departments of Physiology and Biophysics, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
36
|
The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO 2-induced hepatotoxicity. Oncotarget 2017; 8:65302-65312. [PMID: 29029432 PMCID: PMC5630332 DOI: 10.18632/oncotarget.18582] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
Arsenic exposure produces hepatotoxicity. The common mechanism determining its toxicity is the generation of oxidative stress. Oxidative stress induced by arsenic leads to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. (-)-Epigallocatechin-3-gallate (EGCG) possesses a potent antioxidant capacity and exhibits extensive pharmacological activities. This study aims to evaluate effects of EGCG on arsenic-induced hepatotoxicity and activation of Nrf2 pathway. Plasma activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were measured; Histological analyses were conducted to observe morphological changes; Biochemical indexes such as oxidative stress (Catalase (CAT), malonyldialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS)), Nrf2 signaling related genes (Nrf2, Nqo1, and Ho-1) were assessed. The results showed that EGCG inhibited arsenic-induced hepatic pathological damage, liver ROS level and MDA level. Arsenic decreases the antioxidant enzymes SOD, GPX, and CAT activity and the decrease was inhibited by treatment of EGCG. Furthermore, EGCG attenuated the retention of arsenic in liver tissues and improved the expressions of Nrf2 signaling related genes (Nrf2, Nqo1, and Ho-1). These findings provide evidences that EGCG may be useful for reducing hepatotoxicity associated with oxidative stress by the activation of Nrf2 signaling pathway. Our findings suggest a possible mechanism of antioxidant EGCG in preventing hepatotoxicity, which implicate that EGCG may be a potential treatment for arsenicosis therapy.
Collapse
|
37
|
Cui Q, Fu J, Hu Y, Li Y, Yang B, Li L, Sun J, Chen C, Sun G, Xu Y, Zhang Q, Pi J. Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic β cells to arsenite-induced cytotoxicity. Toxicol Appl Pharmacol 2017; 329:67-74. [PMID: 28549828 DOI: 10.1016/j.taap.2017.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022]
Abstract
Increasing evidence indicates that chronic inorganic arsenic exposure is associated with type 2 diabetes (T2D), a disease of growing prevalence. Pancreatic β-cells were targeted and damaged by oxidative stress induced by arsenite. We previously showed that nuclear factor erythroid 2 like 2 (Nfe2l2)-deficient pancreatic β-cells were vulnerable to cell damage induced by oxidative stressors including arsenite, due to a muted antioxidant response. Like nuclear factor erythroid 2 like 2 (NFE2L2), NFE2L1 also belongs to the cap 'n' collar (CNC) basic-region leucine zipper (bZIP) transcription factor family, and regulates antioxidant response element (ARE) related genes. Our prior work showed NFE2L1 regulates glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells and isolated islets. In the current study, we demonstrated that MIN6 cells with a specific knockdown of long isoforms of Nfe2l1 (L-Nfe2l1) by lentiviral shRNA (Nfe2l1(L)-KD) were vulnerable to arsenite-induced apoptosis and cell damage. The expression levels of antioxidant genes, such as Gclc, Gclm and Ho-1, and intracellular reactive oxygen species (ROS) levels were not different in Scramble and Nfe2l1(L)-KD cells, while the expression of arsenic metabolism related-genes, such as Gsto1, Gstm1 and Nqo1, increased in Nfe2l1(L)-KD cells with or without arsenite treatment. The up-regulation of arsenic biotransformation genes was due to activated NFE2L2 in Nfe2l1(L)-KD MIN6 cells. Furthermore, the level of intracellular monomethylarsenic (MMA) was higher in Nfe2l1(L)-KD MIN6 cells than in Scramble cells. These results showed that deficiency of L-Nfe2l1 in pancreatic β-cells increased susceptibility to acute arsenite-induced cytotoxicity by promoting arsenic biotransformation and intracellular MMA levels.
Collapse
Affiliation(s)
- Qi Cui
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Yuxin Hu
- Experimental and Teaching Center, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yongfang Li
- Research Center of Environment and Non-Communicable Disease, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Bei Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Guifan Sun
- Research Center of Environment and Non-Communicable Disease, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
38
|
A Homeostatic Shift Facilitates Endoplasmic Reticulum Proteostasis through Transcriptional Integration of Proteostatic Stress Response Pathways. Mol Cell Biol 2017; 37:MCB.00439-16. [PMID: 27920251 DOI: 10.1128/mcb.00439-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic cells maintain protein homeostasis through the activity of multiple basal and inducible systems, which function in concert to allow cells to adapt to a wide range of environmental conditions. Although the transcriptional programs regulating individual pathways have been studied in detail, it is not known how the different pathways are transcriptionally integrated such that a deficiency in one pathway can be compensated by a change in an auxiliary response. One such pathway that plays an essential role in many proteostasis responses is the ubiquitin-proteasome system, which functions to degrade damaged, unfolded, or short half-life proteins. Transcriptional regulation of the proteasome is mediated by the transcription factor Nrf1. Using a conditional knockout mouse model, we found that Nrf1 regulates protein homeostasis in the endoplasmic reticulum (ER) through transcriptional regulation of the ER stress sensor ATF6. In Nrf1 conditional-knockout mice, a reduction in proteasome activity is accompanied by an ATF6-dependent downregulation of the endoplasmic reticulum-associated degradation machinery, which reduces the substrate burden on the proteasome. This indicates that Nrf1 regulates a homeostatic shift through which proteostasis in the endoplasmic reticulum and cytoplasm are coregulated based on a cell's ability to degrade proteins.
Collapse
|
39
|
Sotzny F, Schormann E, Kühlewindt I, Koch A, Brehm A, Goldbach-Mansky R, Gilling KE, Krüger E. TCF11/Nrf1-Mediated Induction of Proteasome Expression Prevents Cytotoxicity by Rotenone. Antioxid Redox Signal 2016; 25:870-885. [PMID: 27345029 PMCID: PMC6445217 DOI: 10.1089/ars.2015.6539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Precise regulation of cellular protein degradation is essential for maintaining protein and redox homeostasis. The ubiquitin proteasome system (UPS) represents one of the major degradation machineries, and UPS disturbances are strongly associated with neurodegeneration. We have previously shown that the transcription factor TCF11/Nrf1 induces antioxidant response element-mediated upregulation of UPS components in response to proteotoxic stress. Knockout of TCF11/Nrf1 is embryonically lethal, and therefore, the present investigation describes the role of oxidative stress in regulating TCF11/Nrf1-dependent proteasome expression in a model system relevant to Parkinson's disease. RESULTS Using the human dopaminergic neuroblastoma cell line SH-SY5Y and mouse nigrostriatal organotypic slice cultures, gene and protein expression analysis and functional assays revealed oxidative stress is induced by the proteasome inhibitor epoxomicin or the mitochondrial complex I inhibitor rotenone and promotes the upregulation of proteasome expression and function mediated by TCF11/Nrf1 activation. In addition, we show that these stress conditions induce the unfolded protein response. TCF11/Nrf1, thus, has a cytoprotective function in response to oxidative and proteotoxic stress. Innovation and Conclusion: We here demonstrate that adaption of the proteasome system in response to oxidative stress is dependent on TCF11/Nrf1 in this model system. We conclude that TCF11/Nrf1, therefore, plays a vital role in maintaining redox and protein homeostasis. This work provides a vital insight into the molecular mechanisms of neurodegeneration due to oxidative stress by rotenone, and further studies investigating the role of TCF11/Nrf1 in the human condition would be of considerable interest. Antioxid. Redox Signal. 25, 870-885.
Collapse
Affiliation(s)
- Franziska Sotzny
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Eileen Schormann
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Ina Kühlewindt
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Annett Koch
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Anja Brehm
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | | | - Kate E Gilling
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Elke Krüger
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| |
Collapse
|
40
|
Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochem J 2016; 473:961-1000. [PMID: 27060105 DOI: 10.1042/bj20151182] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
Abstract
The consensuscis-regulatory AP-1 (activator protein-1)-like AREs (antioxidant-response elements) and/or EpREs (electrophile-response elements) allow for differential recruitment of Nrf1 [NF-E2 (nuclear factor-erythroid 2)-related factor 1], Nrf2 and Nrf3, together with each of their heterodimeric partners (e.g. sMaf, c-Jun, JunD or c-Fos), to regulate different sets of cognate genes. Among them, NF-E2 p45 and Nrf3 are subject to tissue-specific expression in haemopoietic and placental cell lineages respectively. By contrast, Nrf1 and Nrf2 are two important transcription factors expressed ubiquitously in various vertebrate tissues and hence may elicit putative combinational or competitive functions. Nevertheless, they have de facto distinct biological activities because knockout of their genes in mice leads to distinguishable phenotypes. Of note, Nrf2 is dispensable during development and growth, albeit it is accepted as a master regulator of antioxidant, detoxification and cytoprotective genes against cellular stress. Relative to the water-soluble Nrf2, less attention has hitherto been drawn to the membrane-bound Nrf1, even though it has been shown to be indispensable for embryonic development and organ integrity. The biological discrepancy between Nrf1 and Nrf2 is determined by differences in both their primary structures and topovectorial subcellular locations, in which they are subjected to distinct post-translational processing so as to mediate differential expression of ARE-driven cytoprotective genes. In the present review, we focus on the molecular and cellular basis for Nrf1 and its isoforms, which together exert its essential functions for maintaining cellular homoeostasis, normal organ development and growth during life processes. Conversely, dysfunction of Nrf1 results in spontaneous development of non-alcoholic steatohepatitis, hepatoma, diabetes and neurodegenerative diseases in animal models.
Collapse
|
41
|
Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS J 2016; 284:183-195. [PMID: 27462821 DOI: 10.1111/febs.13820] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022]
Abstract
Mitochondria are semi-autonomous organelles of prokaryotic origin that are postulated to have been acquired by eukaryotic cells through an early endosymbiotic event. Except for their main role in energy production, they are also implicated in fundamental cellular processes, including ion homeostasis, lipid metabolism, and initiation of apoptotic cell death. Perturbed mitochondrial function has been correlated with severe human pathologies such as type-2 diabetes, cardiovascular, and neurodegenerative diseases. Thus, proper mitochondrial physiology is a prerequisite for health and survival. Cells have developed sophisticated and elaborate mechanisms to adapt to stress conditions and alterations in metabolic demands, by regulating mitochondrial number and function. Hence, the generation of new and the removal of damaged or unwanted mitochondria are highly regulated processes that need to be accurately coordinated for the maintenance of mitochondrial and cellular homeostasis. Here, we survey recent research findings that advance our understanding and highlight the importance of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
42
|
TALENs-directed knockout of the full-length transcription factor Nrf1α that represses malignant behaviour of human hepatocellular carcinoma (HepG2) cells. Sci Rep 2016; 6:23775. [PMID: 27065079 PMCID: PMC4827396 DOI: 10.1038/srep23775] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/14/2016] [Indexed: 02/07/2023] Open
Abstract
The full-length Nrf1α is processed into distinct isoforms, which together regulate genes essential for maintaining cellular homeostasis and organ integrity, and liver-specific loss of Nrf1 in mice results in spontaneous hepatoma. Herein, we report that the human constitutive Nrf1α, rather than smaller Nrf1β/γ, expression is attenuated or abolished in the case of low-differentiated high-metastatic hepatocellular carcinomas. Therefore, Nrf1α is of importance in the physio-pathological origin and development, but its specific pathobiological function(s) remains elusive. To address this, TALENs-directed knockout of Nrf1α, but not Nrf1β/γ, is created in the human hepatocellular carcinoma (HepG2) cells. The resulting Nrf1α−/− cells are elongated, with slender spindle-shapes and enlarged gaps between cells observed under scanning electron microscope. When compared with wild-type controls, the invasive and migratory abilities of Nrf1α−/− cells are increased significantly, along with the cell-cycle G2-M arrest and S-phase reduction, as accompanied by suppressed apoptosis. Despite a modest increase in the soft-agar colony formation of Nrf1α−/− cells, its loss-of-function markedly promotes malgrowth of the subcutaneous carcinoma xenograft in nude mice with hepatic metastasis. Together with molecular expression results, we thus suppose requirement of Nrf1α (and major derivates) for gene regulatory mechanisms repressing cancer cell process (e.g. EMT) and malignant behaviour (e.g. migration).
Collapse
|
43
|
Kim HM, Han JW, Chan JY. Nuclear Factor Erythroid-2 Like 1 (NFE2L1): Structure, function and regulation. Gene 2016; 584:17-25. [PMID: 26947393 DOI: 10.1016/j.gene.2016.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Nrf1 (also referred to as NFE2L1) is a member of the CNC-bZIP family of transcription factors that are characterized by a highly conserved CNC-domain, and a basic-leucine zipper domain required for dimerization and DNA binding. Nrf1 is ubiquitously expressed across tissue and cell types as various isoforms, and is induced by stress signals from a broad spectrum of stimuli. Evidence indicates that Nrf1 plays an important role in regulating a range of cellular functions including oxidative stress response, differentiation, inflammatory response, metabolism, and maintaining proteostasis. Thus, Nrf1 has been implicated in the pathogenesis of various disease processes including cancer development, and degenerative and metabolic disorders. This review summarizes our current understanding of Nrf1 and the molecular mechanism underlying its regulation and action in different cellular functions.
Collapse
Affiliation(s)
- Hyun Min Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jeong Woo Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
44
|
Gęgotek A, Biernacki M, Ambrożewicz E, Surażyński A, Wroński A, Skrzydlewska E. The cross-talk between electrophiles, antioxidant defence and the endocannabinoid system in fibroblasts and keratinocytes after UVA and UVB irradiation. J Dermatol Sci 2015; 81:107-17. [PMID: 26674123 DOI: 10.1016/j.jdermsci.2015.11.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/03/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND UV, including UVA and UVB radiation, is one of the most ubiquitous environmental stress factors to human skin and leads to redox imbalance and, consequently, photoaging and cancer development. The aim of the study was to verify which skin cells, keratinocytes or fibroblasts, were more susceptible to UVA or UVB irradiation. OBJECTIVE Keratinocytes and fibroblasts were subjected to UVA and UVB irradiation. METHODS The redox potential (superoxide anion generation and antioxidant level/activity), electrophile level and endocannabinoid system were estimated. RESULTS The results presented in this paper demonstrate a strong relationship between UV-induced oxidative stress and changes in the endocannabinoid system. Simultaneously, in irradiated cells, the transcription factors Nrf1, Nrf2 and NFκB are activated to varying degrees. Fibroblasts have a greater susceptibility to ROS generation and transcription factor activation after both UVA and UVB irradiation than keratinocytes. Keratinocytes are more sensitive to changes in the electrophile levels connected with oxidative stress compared to fibroblasts. CONCLUSION The differences demonstrated in the response of the tested cells to UV irradiation allow for a better understanding of the mechanisms occurring in the human skin, which may be exploited for future therapies in dermatology.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Ambrożewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Adam Wroński
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
45
|
Chiarella P, Carbonari D, Iavicoli S. Utility of checklist to describe experimental methods for investigating molecular biomarkers. Biomark Med 2015; 9:989-95. [DOI: 10.2217/bmm.15.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: In research articles, detailed description of experimental methods and reagents is fundamental for correct reproducibility of the published data. This becomes even more important when such data contribute to identify molecular targets and toxicity biomarkers whose role is crucial in the physiology and pathology of human health. Methods & Objectives: To achieve good reproducibility of data we took advantage of others’ experiences and analyzed molecular biology and immunodetection techniques in 32 journal articles investigating the human NRF2 and Keap1 genes involved in the cell response to oxidative stress. Results & Conclusions: In conclusion of the analysis, we assessed deficiency of information in the published methods, making it difficult to select appropriate protocols. Underlining the importance of assay reproducibility, this paper proposes the utility of a minimum information checklist of methods for biomarker detection.
Collapse
Affiliation(s)
- Pieranna Chiarella
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| | - Damiano Carbonari
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| | - Sergio Iavicoli
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| |
Collapse
|
46
|
Changing gears in Nrf1 research, from mechanisms of regulation to its role in disease and prevention. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1260-76. [PMID: 26254094 DOI: 10.1016/j.bbagrm.2015.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/02/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022]
Abstract
The "cap'n'collar" bZIP transcription factor Nrf1 heterodimerizes with small Maf proteins to bind to the Antioxidant Response Element/Electrophile Response Element to transactivate antioxidant enzyme, phase 2 detoxification enzyme and proteasome subunit gene expression. Nrf1 specifically regulates pathways in lipid metabolism, amino acid metabolism, proteasomal degradation, the citric acid cycle, and the mitochondrial respiratory chain. Nrf1 is maintained in the endoplasmic reticulum (ER) in an inactive glycosylated state. Activation involves retrotranslocation from the ER lumen to the cytoplasm, deglycosylation and partial proteolytic processing to generate the active forms of Nrf1. Recent evidence has revealed how this factor is regulated and its involvement in various metabolic diseases. This review outlines Nrf1 structure, function, regulation and its links to insulin resistance, diabetes and inflammation. The glycosylation/deglycosylation of Nrf1 is controlled by glucose levels. Nrf1 glycosylation affects its control of glucose transport, glycolysis, gluconeogenesis and lipid metabolism.
Collapse
|
47
|
Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, Yamamoto M, Tong Q, Teng W, Qu W, Zhang Q, Andersen ME, Pi J. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal 2015; 22:819-831. [PMID: 25556857 PMCID: PMC4367236 DOI: 10.1089/ars.2014.6017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/01/2015] [Indexed: 12/12/2022]
Abstract
AIMS The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. RESULTS Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. INNOVATION Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. CONCLUSION Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.
Collapse
Affiliation(s)
- Hongzhi Zheng
- The First Affiliated Hospital, China Medical University, Shenyang, China
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jingqi Fu
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- School of Public Health, China Medical University, Shenyang, China
| | - Peng Xue
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- School of Public Health, Fudan University, Shanghai, China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jian Dong
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- Institute of Medicine and Biology, Wuhan University of Science and Technology, Wuhan, China
| | - Dianxin Liu
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Florida
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Qingchun Tong
- Center for Metabolic and Degenerative Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Weiping Teng
- The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Weidong Qu
- School of Public Health, Fudan University, Shanghai, China
| | - Qiang Zhang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Melvin E. Andersen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jingbo Pi
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
48
|
Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z, Chen KC, Rouchka EC, Fondufe-Mittendorf YN. Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genomics 2015; 16:212. [PMID: 25879800 PMCID: PMC4371809 DOI: 10.1186/s12864-015-1295-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with a higher than normal risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes resulting from arsenic exposure and withdrawal. Results In these studies, we sought to understand the molecular mechanisms behind the biological changes induced by arsenic exposure. A comprehensive global approach was employed to determine genome-wide changes to chromatin structure, transcriptome patterns and splicing patterns in response to chronic low dose arsenic and its subsequent withdrawal. Our results show that cells exposed to chronic low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression, and miRNA changes consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic is withdrawn. However, some gene expression patterns remained altered, plausibly as a result of an adaptive response by cells. Additionally, the correlation of changes to gene expression and chromatin structure solidify the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the initiation of transcription as well as at the level of splicing. Conclusions Our results show that adaptation of cells to iAs-mediated EMT is coupled to changes in chromatin structure effecting differential transcriptional and splicing patterns of genes. These studies provide new insights into the mechanism of iAs-mediated pathology, which includes epigenetic chromatin changes coupled with changes to the transcriptome and splicing patterns of key genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlyn Riedmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ye Ma
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Steven Grason Godfrey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Zhou Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
49
|
Zhou S, Zhou J, Liu S, Wang R, Wang Z. Arsenical keratosis caused by medication: a case report and literature. Int J Clin Exp Med 2015; 8:1487-1490. [PMID: 25785160 PMCID: PMC4358615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
Medication-induced arsenical keratosis is a rare type of arsenical keratosis. We describe here a case of 70-year-old man to explore the clinical characters, diagnosis and treatment of medication-induced arsenical keratosis in order to improve the understanding of this disease and reduce the misdiagnosis rate. The clinical characters, signs, lab findings as well as progression, diagnosis and treatment in the case of arsenical keratosis were analyzed. The patient of medication-induced arsenical keratosis suffered from chronic eczema. He has taken realgar during the treatment. His medication caused arsenical keratosis. Medication-induced arsenical keratosis is rare. Making the medication history clear and using urine arsenic detection if necessary are of significance to understand the patients' condition. It is quite effective that using Sodium Dimercaptosulphonate during the treatment without delay.
Collapse
Affiliation(s)
- Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational DiseasesHefei 230022, P. R. China
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, P. R. China
| | - Junsheng Zhou
- Hefei Prevention and Treatment Center for Occupational DiseasesHefei 230022, P. R. China
| | - Shengping Liu
- Hefei Prevention and Treatment Center for Occupational DiseasesHefei 230022, P. R. China
| | - Ran Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, P. R. China
| | - Zaixing Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, P. R. China
| |
Collapse
|
50
|
Wang S, Zheng W, Liu X, Xue P, Jiang S, Lu D, Zhang Q, He G, Pi J, Andersen ME, Tan H, Qu W. Iodoacetic acid activates Nrf2-mediated antioxidant response in vitro and in vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13478-88. [PMID: 25332096 DOI: 10.1021/es502855x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Iodoacetic acid (IAA) is an unregulated drinking-water disinfection byproduct with potent cytotoxicity, genotoxicity, and tumorigenicity in animals. Oxidative stress is thought to be essential for IAA toxicity, but the exact mechanism remains unknown. Here we evaluated the toxicity of IAA by examining nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant response, luciferase antioxidant response element (ARE) activity, and intracellular glutathione (GSH) in HepG2 cells. IAA showed significant activation of ARE-luciferase reporter, mRNA, and protein expression of Nrf2 and its downstream genes (GCLC, NQO1, and HO-1). IAA also increased the intracellular GSH level in HepG2 cells in a time- and concentration-dependent manner. Moreover, we verified IAA induced Nrf2-mediated antioxidant response in rats. Subsequently, we confirmed the specific role of Nrf2 in IAA induced toxicity using NRF2-knockdown cells. Deficiency of NRF2 significantly enhanced sensitivity to IAA toxicity and led to an increase of IAA induced micronulei. We also examined the effects of antioxidant on Nrf2-mediated response in IAA treated cells. Pretreatment with curcumin markedly reduced cytotoxicity and genotoxicity (micronuclei formation) IAA in HepG2 cells. Our work here provides direct evidence that IAA activates Nrf2-mediated antioxidant response in vitro and in vivo and that oxidative stress plays a role in IAA toxicity.
Collapse
Affiliation(s)
- Shu Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University , Yi Xue Yuan Road 138, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|