1
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
3
|
Orfali R, AlFaiz A, Alanazi M, Alabdulsalam R, Alharbi M, Alromaih Y, Dallak I, Alrahal M, Alwatban A, Saud R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. Int J Mol Sci 2024; 25:10551. [PMID: 39408877 PMCID: PMC11476765 DOI: 10.3390/ijms251910551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4) channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume decrease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can significantly impact key pathological processes in the disease. Further investigation into TRPV4 modulators could lead to innovative treatments that alleviate severe respiratory complications and improve outcomes for CF patients.
Collapse
Affiliation(s)
- Razan Orfali
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ali AlFaiz
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Madhawi Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Rahaf Alabdulsalam
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Meaad Alharbi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Yara Alromaih
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ismail Dallak
- King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Marah Alrahal
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Abdulaziz Alwatban
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia
| | - Reem Saud
- General Education Department, Dar Al-Hikmah University, Jeddah 22246, Saudi Arabia
| |
Collapse
|
4
|
Hernández-Vega AM, Llorente I, Sánchez-Hernández R, Segura Y, Tusié-Luna T, Morales-Buenrostro LE, García-Villegas R, Islas LD, Rosenbaum T. Identification and Properties of TRPV4 Mutant Channels Present in Polycystic Kidney Disease Patients. FUNCTION 2024; 5:zqae031. [PMID: 38984987 PMCID: PMC11384909 DOI: 10.1093/function/zqae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Polycystic kidney disease (PKD), a disease characterized by the enlargement of the kidney through cystic growth is the fourth leading cause of end-stage kidney disease world-wide. Transient receptor potential Vanilloid 4 (TRPV4), a calcium-permeable TRP, channel participates in kidney cell physiology and since TRPV4 forms complexes with another channel whose malfunction is associated to PKD, TRPP2 (or PKD2), we sought to determine whether patients with PKD, exhibit previously unknown mutations in TRPV4. Here, we report the presence of mutations in the TRPV4 gene in patients diagnosed with PKD and determine that they produce gain-of-function (GOF). Mutations in the sequence of the TRPV4 gene have been associated to a broad spectrum of neuropathies and skeletal dysplasias but not PKD, and their biophysical effects on channel function have not been elucidated. We identified and examined the functional behavior of a novel E6K mutant and of the previously known S94L and A217S mutant TRVP4 channels. The A217S mutation has been associated to mixed neuropathy and/or skeletal dysplasia phenotypes, however, the PKD carriers of these variants had not been diagnosed with these reported clinical manifestations. The presence of certain mutations in TRPV4 may influence the progression and severity of PKD through GOF mechanisms. PKD patients carrying TRVP4 mutations are putatively more likely to require dialysis or renal transplant as compared to those without these mutations.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yayoi Segura
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis E Morales-Buenrostro
- Departmento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina. Universidad Nacional Autónoma de México,Ciudad de México 04510, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Revand R, Dontham A, Sarkar S, Patil A. Subacute Exposure to Gaseous Pollutants from Diesel Engine Exhaust Attenuates Capsaicin-Induced Cardio-Pulmonary Reflex Responses Involving Oxidant Stress Mechanisms in Adult Wistar Rats. Cardiovasc Toxicol 2024; 24:396-407. [PMID: 38451349 DOI: 10.1007/s12012-024-09842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Intravenous injection of capsaicin produces vagal-mediated protective cardio-pulmonary (CP) reflexes manifesting as tachypnea, bradycardia, and triphasic blood pressure (BP) response in anesthetized rats. Particulate matter from diesel engine exhaust has been reported to attenuate these reflexes. However, the effects of gaseous constituents of diesel exhaust are not known. Therefore, the present study was designed to investigate the effects of gaseous pollutants in diesel exhaust, on capsaicin-induced CP reflexes in rat model. Adult male rats were randomly assigned to three groups: Non-exposed (NE) group, filtered diesel exhaust-exposed (FDE) group and N-acetyl cysteine (NAC)-treated FDE group. FDE group of rats (n = 6) were exposed to filtered diesel exhaust for 5 h a day for 5 days (D1-D5), and were taken for dissection on day 6 (D6), while NE group of rats (n = 6) remained unexposed. On D6, rats were anesthetized, following which jugular vein was cannulated for injection of chemicals, and femoral artery was cannulated to record the BP. Lead II electrocardiogram and respiratory movements were also recorded. Results show that intravenous injection of capsaicin (0.1 ml; 10 µg/kg) produced immediate tachypneic, hyperventilatory, hypotensive, and bradycardiac responses in both NE and FDE groups of rats. However, these capsaicin-induced CP responses were significantly attenuated in FDE group as compared to the NE group of rats. Further, FDE-induced attenuation of capsaicin-evoked CP responses were diminished in the N-acetyl cysteine-treated FDE rats. These findings demonstrate that oxidant stress mechanisms could possibly be involved in inhibition of CP reflexes by gaseous pollutants in diesel engine exhaust.
Collapse
Affiliation(s)
- Ravindran Revand
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Dontham
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Swarnabha Sarkar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Asmita Patil
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
6
|
Liang L, Zhang J, Duan H, Li X, Xie S, Wang C. Effects of spray cryotherapy on cough receptors and airway microenvironment in a canine model of chronic bronchitis. Cryobiology 2023; 113:104569. [PMID: 37597598 DOI: 10.1016/j.cryobiol.2023.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The aim of this study was to explore the effects of spray cryotherapy (SCT) on cough receptors and airway microenvironment in a canine model of chronic bronchitis. We examined the expression of transient receptor potential vanilloid 1/4 (TRPV1/4) and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) at the gene and protein levels before and after SCT. In addition, we explored whether TRPV1/4 could regulate inflammatory factors via mediator adenosine triphosphate (ATP). The levels of ATP and cytokines in alveolar lavage fluid and cell supernatant were measured using ELISA. SCT effectively downregulated the expression of TRPV1/4 and SP/CGRP in canine airway tissues with chronic bronchitis and reduced the levels of inflammatory mediators and cytokines that affect cough receptor sensitivity, achieving cough relief. TRPV1/4 - ATP - inflammatory cytokines axis has been demonstrated at the cellular level, which in turn modulate the milieu of the airways and promote the formation of a cough feedback loop. Our study has fully revealed the specific mechanism of SCT in treating cough in a canine model of chronic bronchitis, providing a solid theoretical basis for future clinical treatment.
Collapse
Affiliation(s)
- Long Liang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongxia Duan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Xuan Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
7
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. Respiratory Syncytial Virus Infection Does Not Induce Epithelial-Mesenchymal Transition. J Virol 2023; 97:e0039423. [PMID: 37338373 PMCID: PMC10373540 DOI: 10.1128/jvi.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections during our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, transforming growth factor β1 (TGF-β1), driving cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT. IMPORTANCE We have previously shown that RSV infects ciliated cells on the apical side of the lung airway. RSV-induced cytoskeletal inflammation contributes to an uneven increase in the height of the airway epithelium, resembling noncanonical bronchial wall thickening. RSV infection changes epithelial cell morphology by modulating actin-protein 2/3 complex-driven actin polymerization. Therefore, it is prudent to investigate whether RSV-induced cell morphological changes contribute to EMT. Our data indicate that RSV does not induce EMT in at least three different epithelial in vitro models: an epithelial cell line, primary epithelial cells, and pseudostratified bronchial airway epithelium.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
8
|
Dryn DO, Melnyk MI, Melanaphy D, Kizub IV, Johnson CD, Zholos AV. Bidirectional TRP/L Type Ca 2+ Channel/RyR/BK Ca Molecular and Functional Signaloplex in Vascular Smooth Muscles. Biomolecules 2023; 13:biom13050759. [PMID: 37238629 DOI: 10.3390/biom13050759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
TRP channels are expressed both in vascular myocytes and endothelial cells, but knowledge of their operational mechanisms in vascular tissue is particularly limited. Here, we show for the first time the biphasic contractile reaction with relaxation followed by a contraction in response to TRPV4 agonist, GSK1016790A, in a rat pulmonary artery preconstricted with phenylephrine. Similar responses were observed both with and without endothelium, and these were abolished by the TRPV4 selective blocker, HC067047, confirming the specific role of TRPV4 in vascular myocytes. Using selective blockers of BKCa and L-type voltage-gated Ca2+ channels (CaL), we found that the relaxation phase was inducted by BKCa activation generating STOCs, while subsequent slowly developing TRPV4-mediated depolarisation activated CaL, producing the second contraction phase. These results are compared to TRPM8 activation using menthol in rat tail artery. Activation of both types of TRP channels produces highly similar changes in membrane potential, namely slow depolarisation with concurrent brief hyperpolarisations due to STOCs. We thus propose a general concept of bidirectional TRP-CaL-RyR-BKCa molecular and functional signaloplex in vascular smooth muscles. Accordingly, both TRPV4 and TRPM8 channels enhance local Ca2+ signals producing STOCs via TRP-RyR-BKCa coupling while simultaneously globally engaging BKCa and CaL channels by altering membrane potential.
Collapse
Affiliation(s)
- Dariia O Dryn
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
| | - Mariia I Melnyk
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Donal Melanaphy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Igor V Kizub
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher D Johnson
- Centre for Biomedical Sciences Education, Queen's University Belfast, Whitla Medical Building, Belfast BT9 7BL, UK
| | - Alexander V Zholos
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| |
Collapse
|
9
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. RSV infection does not induce EMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532506. [PMID: 36993657 PMCID: PMC10055011 DOI: 10.1101/2023.03.13.532506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections in our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, TGF-β1-driven cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
10
|
Benítez-Angeles M, Juárez-González E, Vergara-Jaque A, Llorente I, Rangel-Yescas G, Thébault SC, Hiriart M, Islas LD, Rosenbaum T. Unconventional interactions of the TRPV4 ion channel with beta-adrenergic receptor ligands. Life Sci Alliance 2023; 6:6/3/e202201704. [PMID: 36549871 PMCID: PMC9780703 DOI: 10.26508/lsa.202201704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is present in different tissues including those of the airways. This channel is activated in response to stimuli such as changes in temperature, hypoosmotic conditions, mechanical stress, and chemicals from plants, lipids, and others. TRPV4's overactivity and/or dysfunction has been associated with several diseases, such as skeletal dysplasias, neuromuscular disorders, and lung pathologies such as asthma and cardiogenic lung edema and COVID-19-related respiratory malfunction. TRPV4 antagonists and blockers have been described; nonetheless, the mechanisms involved in achieving inhibition of the channel remain scarce, and the search for safe use of these molecules in humans continues. Here, we show that the widely used bronchodilator salbutamol and other ligands of β-adrenergic receptors inhibit TRPV4's activation. We also demonstrate that inhibition of TRPV4 by salbutamol is achieved through interaction with two residues located in the outer region of the pore and that salbutamol leads to channel closing, consistent with an allosteric mechanism. Our study provides molecular insights into the mechanisms that regulate the activity of this physiopathologically important ion channel.
Collapse
Affiliation(s)
- Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| | - Emmanuel Juárez-González
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| | | | | | - Marcia Hiriart
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, UNAM, México, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| |
Collapse
|
11
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
12
|
Mallah MA, Changxing L, Mallah MA, Noreen S, Liu Y, Saeed M, Xi H, Ahmed B, Feng F, Mirjat AA, Wang W, Jabar A, Naveed M, Li JH, Zhang Q. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. CHEMOSPHERE 2022; 296:133948. [PMID: 35151703 DOI: 10.1016/j.chemosphere.2022.133948] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals of considerable environmental significance. PAHs are chemical contaminants of fused carbon and hydrogen aromatic rings, basically white, light-yellow, or solid compounds without color. Natural sources of pollution are marginal or less significant, such as volcanic eruptions, natural forest fires, and moorland fires that trigger lightning bursts. The significant determinants of PAH pollution are anthropogenic pollution sources, classified into four groups, i.e., industrial, mobile, domestic, and agricultural pollution sources. Humans can consume PAHs via different routes, such as inhalation, dermal touch, and ingestion. The Effect of PAHs on human health is primarily based on the duration and route of exposure, the volume or concentration of PAHs to which one is exposed, and the relative toxicity of PAHs. Many PAHs are widely referred to as carcinogens, mutagens, and teratogens and thus pose a significant danger to human health and the well-being of humans. Skin, lung, pancreas, esophagus, bladder, colon, and female breast are numerous organs prone to tumor development due to long-term PAH exposure. PAH exposure may increase the risk of lung cancer as well as cardiovascular disease (CVD), including atherosclerosis, thrombosis, hypertension, and myocardial infarction (MI). Preclinical studies have found a relationship between PAH exposure, oxidative stress, and atherosclerosis. In addition, investigations have discovered a relationship between PAH exposure at work and CVD illness and mortality development. This review aims to explain PAH briefly, its transportation, its effects on human health, and a relationship between environmental exposures to PAHs and CVD risk in humans.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, 67480, Sindh, Pakistan
| | - Sobia Noreen
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 6300, Pakistan
| | - Yang Liu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Saeed
- The Cholestane University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - He Xi
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Ahmed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ali Asghar Mirjat
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Abdul Jabar
- Faculty of Pharmacy, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China.
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Faris P, Casali C, Negri S, Iengo L, Biggiogera M, Maione AS, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate Induces Intracellular Ca2+ Signalling and Stimulates Proliferation in Human Cardiac Mesenchymal Stromal Cells. Front Cell Dev Biol 2022; 10:874043. [PMID: 35392169 PMCID: PMC8980055 DOI: 10.3389/fcell.2022.874043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a newly discovered second messenger that gates two pore channels 1 (TPC1) and 2 (TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced lysosomal Ca2+ release may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release (CICR) mechanism. NAADP-induced intracellular Ca2+ signals were shown to modulate a growing number of functions in the cardiovascular system, but their occurrence and role in cardiac mesenchymal stromal cells (C-MSCs) is still unknown. Herein, we found that exogenous delivery of NAADP-AM induced a robust Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store with Gly-Phe β-naphthylamide, nigericin, and bafilomycin A1, and blocking TPC1 and TPC2, that are both expressed at protein level in C-MSCs. Furthermore, NAADP-induced EL Ca2+ release resulted in the Ca2+-dependent recruitment of ER-embedded InsP3Rs and SOCE activation. Transmission electron microscopy revealed clearly visible membrane contact sites between lysosome and ER membranes, which are predicted to provide the sub-cellular framework for lysosomal Ca2+ to recruit ER-embedded InsP3Rs through CICR. NAADP-induced EL Ca2+ mobilization via EL TPC was found to trigger the intracellular Ca2+ signals whereby Fetal Bovine Serum (FBS) induces C-MSC proliferation. Furthermore, NAADP-evoked Ca2+ release was required to mediate FBS-induced extracellular signal-regulated kinase (ERK), but not Akt, phosphorylation in C-MSCs. These finding support the notion that NAADP-induced TPC activation could be targeted to boost proliferation in C-MSCs and pave the way for future studies assessing whether aberrant NAADP signaling in C-MSCs could be involved in cardiac disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lara Iengo
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| |
Collapse
|
14
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
15
|
The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4. Rev Physiol Biochem Pharmacol 2022; 186:57-93. [PMID: 36378366 DOI: 10.1007/112_2022_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.
Collapse
|
16
|
Thermosensory Transient Receptor Potential Ion Channels and Asthma. Biomedicines 2021; 9:biomedicines9070816. [PMID: 34356881 PMCID: PMC8301310 DOI: 10.3390/biomedicines9070816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a widespread chronic disease of the bronchopulmonary system with a heterogeneous course due to the complex etiopathogenesis. Natural-climatic and anthropogenic factors play an important role in the development and progression of this pathology. The reception of physical and chemical environmental stimuli and the regulation of body temperature are mediated by thermosensory channels, members of a subfamily of transient receptor potential (TRP) ion channels. It has been found that genes encoding vanilloid, ankyrin, and melastatin TRP channels are involved in the development of some asthma phenotypes and in the formation of exacerbations of this pathology. The review summarizes modern views on the role of high and low temperatures in airway inflammation in asthma. The participation of thermosensory TRP channels (vanilloid, ankyrin, and melastatin TRP channels) in the reaction to high and low temperatures and air humidity as well as in the formation of bronchial hyperreactivity and respiratory symptoms accompanying asthma is described. The genetic aspects of the functioning of thermosensory TRP channels are discussed. It is shown that new methods of treatment of asthma exacerbations caused by the influence of temperature and humidity should be based on the regulation of channel activity.
Collapse
|
17
|
Rajan S, Schremmer C, Weber J, Alt P, Geiger F, Dietrich A. Ca 2+ Signaling by TRPV4 Channels in Respiratory Function and Disease. Cells 2021; 10:cells10040822. [PMID: 33917551 PMCID: PMC8067475 DOI: 10.3390/cells10040822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022] Open
Abstract
Members of the transient receptor potential (TRP) superfamily are broadly expressed in our body and contribute to multiple cellular functions. Most interestingly, the fourth member of the vanilloid family of TRP channels (TRPV4) serves different partially antagonistic functions in the respiratory system. This review highlights the role of TRPV4 channels in lung fibroblasts, the lung endothelium, as well as the alveolar and bronchial epithelium, during physiological and pathophysiological mechanisms. Data available from animal models and human tissues confirm the importance of this ion channel in cellular signal transduction complexes with Ca2+ ions as a second messenger. Moreover, TRPV4 is an excellent therapeutic target with numerous specific compounds regulating its activity in diseases, like asthma, lung fibrosis, edema, and infections.
Collapse
|
18
|
Milici A, Talavera K. TRP Channels as Cellular Targets of Particulate Matter. Int J Mol Sci 2021; 22:2783. [PMID: 33803491 PMCID: PMC7967245 DOI: 10.3390/ijms22052783] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Particulate matter (PM) is constituted by particles with sizes in the nanometer to micrometer scales. PM can be generated from natural sources such as sandstorms and wildfires, and from human activities, including combustion of fuels, manufacturing and construction or specially engineered for applications in biotechnology, food industry, cosmetics, electronics, etc. Due to their small size PM can penetrate biological tissues, interact with cellular components and induce noxious effects such as disruptions of the cytoskeleton and membranes and the generation of reactive oxygen species. Here, we provide an overview on the actions of PM on transient receptor potential (TRP) proteins, a superfamily of cation-permeable channels with crucial roles in cell signaling. Their expression in epithelial cells and sensory innervation and their high sensitivity to chemical, thermal and mechanical stimuli makes TRP channels prime targets in the major entry routes of noxious PM, which may result in respiratory, metabolic and cardiovascular disorders. On the other hand, the interactions between TRP channel and engineered nanoparticles may be used for targeted drug delivery. We emphasize in that much further research is required to fully characterize the mechanisms underlying PM-TRP channel interactions and their relevance for PM toxicology and biomedical applications.
Collapse
Affiliation(s)
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium;
| |
Collapse
|
19
|
Naumov DE, Kotova OO, Gassan DA, Sugaylo IY, Afanas’eva EY, Sheludko EG, Perelman JM. Effect of TRPM8 and TRPA1 Polymorphisms on COPD Predisposition and Lung Function in COPD Patients. J Pers Med 2021; 11:108. [PMID: 33567636 PMCID: PMC7915134 DOI: 10.3390/jpm11020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/13/2023] Open
Abstract
Certain transient receptor potential (TRP) channels including TRPM8 and TRPA1 are widely expressed in the respiratory tract and have been shown to be the receptors of cigarette smoke and particulate matter-the main causative factors of chronic obstructive pulmonary disease (COPD). The aim of the study was to investigate the effect of TRPM8 and TRPA1 polymorphisms on COPD predisposition and lung function in COPD patients. The study enrolled 143 COPD patients and 104 smokers with post-bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) > 70%. Lung function was measured by spirometry. TRPM8 and TRPA1 polymorphisms were genotyped by LATE-PCR. None of the polymorphisms significantly influenced COPD predisposition after correction for covariates and multiple testing. Among COPD patients, the TT genotype of TRPA1 rs7819749 was significantly associated with higher degree of bronchial obstruction. In addition, we established that carriers of the C allele of TRPM8 rs11562975 more commonly had post-bronchodilator FEV1 < 60% (OR 3.2, 95%CI (1.14-8.94), p = 0.03) and revealed the effect of TRPA1 rs959976 and TRPM8 rs17865682 on bronchodilator response in COPD. Thus, the obtained results suggest possible involvement of TRPM8 and TRPA1 in COPD pathogenesis, indicating the necessity to further investigate their functional role in this pathology.
Collapse
Affiliation(s)
- Denis E. Naumov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Olesya O. Kotova
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Dina A. Gassan
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Ivana Y. Sugaylo
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Evgeniya Y. Afanas’eva
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Elizaveta G. Sheludko
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Juliy M. Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Functional Research of the Respiratory System, 675000 Blagoveshchensk, Russia;
| |
Collapse
|
20
|
Choi J, Moon MY, Han GY, Chang MS, Yang D, Cha J. Phellodendron amurense Extract Protects Human Keratinocytes from PM2.5-Induced Inflammation via PAR-2 Signaling. Biomolecules 2020; 11:biom11010023. [PMID: 33379296 PMCID: PMC7824043 DOI: 10.3390/biom11010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary supplement and personal care products aiming to provide protection from air pollution have been of great interest for decades. Epidemiology demonstrated that PM10 and PM2.5 particulate matter (PM) are an actual threat to public health worldwide, but the detailed processes of how these particles attack the cells are not fully understood. Here, we report that the measurement of intracellular calcium concentration ([Ca2+]i) using human respiratory or skin cells can illustrate pollutant challenges by triggering Ca2+ influx in these cells. This signal was generated by proteinase-activated receptor-2 (PAR-2), confirmed by competition analyses, and Phellodendron amurense bark extract (PAE), a traditional medicine, was able to control the response and expression of PAR-2. Increase in proinflammatory cytokines and decrease in cell adhesion components could suggest a severe damage status by air pollutants and protection by PAE. Finally, we identified 4-O-feruloylquinic acid (FQA), an active compound of PAE, showing the same effects on Ca2+ influx and PAR-2 regulation. The results presented here should help understand the underlying mechanism of PM insults and the beneficial effect of standardized PAE as dietary supplement or cosmetical ingredient.
Collapse
Affiliation(s)
- Jiyoung Choi
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
| | - Mi Yeon Moon
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
| | - Gi Yeon Han
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
| | - Moon Sik Chang
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Correspondence: (D.Y.); (J.C.); Tel.: +82-32-899-6072 (D.Y.); +82-31-374-5240(J.C.)
| | - Joonseok Cha
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
- Correspondence: (D.Y.); (J.C.); Tel.: +82-32-899-6072 (D.Y.); +82-31-374-5240(J.C.)
| |
Collapse
|
21
|
Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca 2+ signaling to regulate extracellular matrix remodeling. FEBS J 2020; 288:5867-5887. [PMID: 33300268 DOI: 10.1111/febs.15665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
In healthy connective tissues, mechanosensors trigger the generation of Ca2+ signals, which enable cells to maintain the structure of the fibrillar collagen matrix through actomyosin contractile forces. Transient receptor potential vanilloid type 4 (TRPV4) is a mechanosensitive Ca2+ -permeable channel that, when expressed in cell-matrix adhesions of the plasma membrane, regulates extracellular matrix (ECM) remodeling. In high prevalence disorders such as fibrosis and tumor metastasis, dysregulated matrix remodeling is associated with disruptions of Ca2+ homeostasis and TRPV4 function. Here, we consider that ECM polymers transmit cell-activating mechanical signals to TRPV4 in cell adhesions. When activated, TRPV4 regulates fibrillar collagen remodeling, thereby altering the mechanical properties of the ECM. In this review, we integrate functionally connected processes of matrix remodeling to highlight how TRPV4 in cell adhesions and matrix mechanics are reciprocally regulated through Ca2+ signaling.
Collapse
Affiliation(s)
- Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
22
|
Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir Res 2020; 21:299. [PMID: 33187512 PMCID: PMC7666487 DOI: 10.1186/s12931-020-01563-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have found strong associations between air pollution and respiratory effects including development and/or exacerbation of asthma and chronic obstructive pulmonary disease (COPD) as well as increased occurrence of respiratory infections and lung cancer. It has become increasingly clear that also polycyclic aromatic hydrocarbons (PAHs) may affect processes linked to non-malignant diseases in the airways. The aim of the present paper was to review epidemiological studies on associations between gas phase and particle-bound PAHs in ambient air and non-malignant respiratory diseases or closely related physiological processes, to assess whether PAH-exposure may explain some of the effects associated with air pollution. Based on experimental in vivo and in vitro studies, we also explore possible mechanisms for how different PAHs may contribute to such events. Epidemiological studies show strongest evidence for an association between PAHs and asthma development and respiratory function in children. This is supported by studies on prenatal and postnatal exposure. Exposure to PAHs in adults seems to be linked to respiratory functions, exacerbation of asthma and increased morbidity/mortality of obstructive lung diseases. However, available studies are few and weak. Notably, the PAHs measured in plasma/urine also represent other exposure routes than inhalation. Furthermore, the role of PAHs measured in air is difficult to disentangle from that of other air pollution components originating from combustion processes. Experimental studies show that PAHs may trigger various processes linked to non-malignant respiratory diseases. Physiological- and pathological responses include redox imbalance, oxidative stress, inflammation both from the innate and adaptive immune systems, smooth muscle constriction, epithelial- and endothelial dysfunction and dysregulated lung development. Such biological responses may at the molecular level be initiated by PAH-binding to the aryl hydrocarbon receptor (AhR), but possibly also through interactions with beta-adrenergic receptors. In addition, reactive PAH metabolites or reactive oxygen species (ROS) may interfere directly with ion transporters and enzymes involved in signal transduction. Overall, the reviewed literature shows that respiratory effects of PAH-exposure in ambient air may extend beyond lung cancer. The relative importance of the specific PAHs ability to induce disease may differ between the biological endpoint in question.
Collapse
|
23
|
Weber J, Rajan S, Schremmer C, Chao YK, Krasteva-Christ G, Kannler M, Yildirim AÖ, Brosien M, Schredelseker J, Weissmann N, Grimm C, Gudermann T, Dietrich A. TRPV4 channels are essential for alveolar epithelial barrier function as protection from lung edema. JCI Insight 2020; 5:134464. [PMID: 32931478 PMCID: PMC7605532 DOI: 10.1172/jci.insight.134464] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Ischemia/reperfusion-induced edema (IRE), one of the most significant causes of mortality after lung transplantation, can be mimicked ex vivo in isolated perfused mouse lungs (IPL). Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel studied in endothelium; however, its role in the lung epithelium remains elusive. Here, we show enhanced IRE in TRPV4-deficient (TRPV4–/–) IPL compared with that of WT controls, indicating a protective role of TRPV4 in maintenance of the alveolar epithelial barrier. By immunohistochemistry, mRNA profiling, and electrophysiological characterization, we detected TRPV4 in bronchial epithelium, alveolar epithelial type I (ATI), and alveolar epithelial type II (ATII) cells. Genetic ablation of TRPV4 resulted in reduced expression of the water-conducting aquaporin-5 (AQP-5) channel in ATI cells. Migration of TRPV4–/– ATI cells was reduced, and cell barrier function was impaired. Analysis of isolated primary TRPV4–/– ATII cells revealed a reduced expression of surfactant protein C, and the TRPV4 activator GSK1016790A induced increases in current densities only in WT ATII cells. Moreover, TRPV4–/– lungs of adult mice developed significantly larger mean chord lengths and altered lung function compared with WT lungs. Therefore, our data illustrate essential functions of TRPV4 channels in alveolar epithelial cells and in protection from edema formation. TRPV4, a non-selective cation channel, is essential for alveolar epithelial function and protects from ischemia-reperfusion-induced lung edema.
Collapse
Affiliation(s)
- Jonas Weber
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Suhasini Rajan
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Christian Schremmer
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Homburg, Germany
| | - Martina Kannler
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, a member of the DZL, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Monika Brosien
- Justus Liebig University Giessen, Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, a member of the DZL, Giessen, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Norbert Weissmann
- Justus Liebig University Giessen, Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, a member of the DZL, Giessen, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| |
Collapse
|
24
|
Liviero F, Scarpa MC, De Stefani D, Folino F, Campisi M, Mason P, Iliceto S, Pavanello S, Maestrelli P. Modulation of TRPV-1 by prostaglandin-E 2 and bradykinin changes cough sensitivity and autonomic regulation of cardiac rhythm in healthy subjects. Sci Rep 2020; 10:15163. [PMID: 32938990 PMCID: PMC7494872 DOI: 10.1038/s41598-020-72062-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
A neurogenic pathway, involving airway TRPV-1, has been implicated in acute cardiovascular events occurring after peaks of air pollution. We tested whether inhaled prostaglandin-E2 (PGE2) and bradykinin (BK) regulate TRPV-1 activity in vivo by changing cough response to capsaicin (CPS) and affecting heart rate variability (HRV), while also taking into account the influence of TRPV-1 polymorphisms (SNPs). Moreover, we assessed the molecular mechanism of TRPV-1 modulation in vitro. Seventeen healthy volunteers inhaled 100 μg PGE2, 200 μg BK or diluent in a randomized double-blind fashion. Subsequently, the response to CPS was assessed by cough challenge and the sympathetic activity by HRV, expressed by low (nLF) and high (nHF) normalized frequency components, as well as nLF/nHF ratio. Intracellular [Ca2+] was measured in HeLa cells, transfected with wild-type TRPV-1, pre-treated with increasing doses of PGE2, BK or diesel exhaust particulate (DEP), after CPS stimulation. Six functional TRPV-1 SNPs were characterized in DNA from each subject. Inhalation of PGE2 and BK was associated with significant increases in cough response induced by 30 μM of CPS (cough number after PGE2 = 4.20 ± 0.42; p < 0.001, and after BK = 3.64 ± 0.37; p < 0.01), compared to diluent (2.77 ± 0.29) and in sympathetic activity (nLF/nHF ratio after PGE2 = 6.1; p < 0.01, and after BK = 4.2; p < 0.05), compared to diluent (2.5–3.3). No influence of SNPs was observed on autonomic regulation and cough sensitivity. Unlike PGE2 and BK, DEP directly activated TRPV-1. Inhalation of PGE2 and BK sensitizes TRPV-1 and is associated with autonomic dysregulation of cardiac rhythm in healthy subjects.
Collapse
Affiliation(s)
- Filippo Liviero
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Maria Cristina Scarpa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Franco Folino
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Manuela Campisi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Paola Mason
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
| | - Piero Maestrelli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| |
Collapse
|
25
|
Rosenbaum T, Benítez-Angeles M, Sánchez-Hernández R, Morales-Lázaro SL, Hiriart M, Morales-Buenrostro LE, Torres-Quiroz F. TRPV4: A Physio and Pathophysiologically Significant Ion Channel. Int J Mol Sci 2020; 21:ijms21113837. [PMID: 32481620 PMCID: PMC7312103 DOI: 10.3390/ijms21113837] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
- Correspondence: ; Tel.: +52-555-622-56-24; Fax: +52-555-622-56-07
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Sara Luz Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Marcia Hiriart
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Luis Eduardo Morales-Buenrostro
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Francisco Torres-Quiroz
- Departamento de Bioquímica y Biología Estructural, División Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
26
|
Holme JA, Brinchmann BC, Le Ferrec E, Lagadic-Gossmann D, Øvrevik J. Combustion Particle-Induced Changes in Calcium Homeostasis: A Contributing Factor to Vascular Disease? Cardiovasc Toxicol 2020; 19:198-209. [PMID: 30955163 DOI: 10.1007/s12012-019-09518-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Air pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear. Moreover, CDP typically consist of carbon cores with a complex mixture of organic chemicals such as polycyclic aromatic hydrocarbons (PAHs) adhered. The relative contribution of the carbon core and adhered soluble components to cardiovascular effects of CDP is still a matter of discussion. In the present review, we summarize evidence showing that CDP affects intracellular calcium regulation, and argue that CDP-induced impairment of normal calcium control may be a critical cellular event through which CDP exposure contributes to development or exacerbation of cardiovascular disease. Furthermore, we highlight in vitro research suggesting that adhered organic chemicals such as PAHs may be key drivers of these responses. CDP, extractable organic material from CDP (CDP-EOM), and PAHs may increase intracellular calcium levels by interacting with calcium channels like transient receptor potential (TRP) channels, and receptors such as G protein-coupled receptors (GPCR; e.g., beta-adrenergic receptors [βAR] and protease-activated receptor 2 [PAR-2]) and the aryl hydrocarbon receptor (AhR). Clarifying a possible role of calcium signaling and mechanisms involved may increase our understanding of how air pollution contributes to CVD.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Increase in IGF-1 Expression in the Injured Infraorbital Nerve and Possible Implications for Orofacial Neuropathic Pain. Int J Mol Sci 2019; 20:ijms20246360. [PMID: 31861182 PMCID: PMC6940743 DOI: 10.3390/ijms20246360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is upregulated in the injured peripheral nerve bundle and controls nociceptive neuronal excitability associated with peripheral nerve injury. Here, we examined the involvement of IGF-1 signaling in orofacial neuropathic pain following infraorbital nerve injury (IONI) in rats. IONI promoted macrophage accumulation in the injured ION, as well as in the ipsilateral trigeminal ganglion (TG), and induced mechanical allodynia of the whisker pad skin together with the enhancement of neuronal activities in the subnucleus caudalis of the spinal trigeminal nucleus and in the upper cervical spinal cord. The levels of IGF-1 released by infiltrating macrophages into the injured ION and the TG were significantly increased. The IONI-induced the number of transient receptor potential vanilloid (TRPV) subfamily type 4 (TRPV4) upregulation in TRPV subfamily type 2 (TRPV2)-positive small-sized, and medium-sized TG neurons were inhibited by peripheral TRPV2 antagonism. Furthermore, the IONI-induced mechanical allodynia was suppressed by TRPV4 antagonism in the whisker pad skin. These results suggest that IGF-1 released by macrophages accumulating in the injured ION binds to TRPV2, which increases TRPV4 expression in TG neurons innervating the whisker pad skin, ultimately resulting in mechanical allodynia of the whisker pad skin.
Collapse
|
28
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
29
|
Petit A, Knabe L, Khelloufi K, Jory M, Gras D, Cabon Y, Begg M, Richard S, Massiera G, Chanez P, Vachier I, Bourdin A. Bronchial Epithelial Calcium Metabolism Impairment in Smokers and Chronic Obstructive Pulmonary Disease. Decreased ORAI3 Signaling. Am J Respir Cell Mol Biol 2019; 61:501-511. [DOI: 10.1165/rcmb.2018-0228oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aurelie Petit
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Lucie Knabe
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| | - Kamel Khelloufi
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille UMR 7325, and
| | - Myriam Jory
- UMR 5221 CNRS, Laboratoire Charles Coulomb (L2C), Montpellier, France
| | - Delphine Gras
- Assistance Publique Hôpitaux de Marseille (APHM), Centre de recherche en CardioVasculaire et Nutrition, INSERM U1263 Institut National de la Recherche Agronomique (INRA) 1260, Clinique des Bronches Allergies et Sommeil, Aix Marseille University, Marseille, France
| | - Yann Cabon
- Department of Medical Information, Montpellier University Hospital, Montpellier, France; and
| | - Malcolm Begg
- Refractory Respiratory Inflammation Data Processing Unit, Respiratory TAU, GlaxoSmithKline, Stevenage, United Kingdom
| | - Sylvain Richard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| | - Gladys Massiera
- UMR 5221 CNRS, Laboratoire Charles Coulomb (L2C), Montpellier, France
| | - Pascal Chanez
- Assistance Publique Hôpitaux de Marseille (APHM), Centre de recherche en CardioVasculaire et Nutrition, INSERM U1263 Institut National de la Recherche Agronomique (INRA) 1260, Clinique des Bronches Allergies et Sommeil, Aix Marseille University, Marseille, France
| | - Isabelle Vachier
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Arnaud Bourdin
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| |
Collapse
|
30
|
Holme JA, Brinchmann BC, Refsnes M, Låg M, Øvrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health 2019; 18:74. [PMID: 31439044 PMCID: PMC6704565 DOI: 10.1186/s12940-019-0514-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
31
|
Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat Commun 2019; 10:2297. [PMID: 31127085 PMCID: PMC6534540 DOI: 10.1038/s41467-019-09915-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is a fungal pathobiont, able to cause epithelial cell damage and immune activation. These functions have been attributed to its secreted toxin, candidalysin, though the molecular mechanisms are poorly understood. Here, we identify epidermal growth factor receptor (EGFR) as a critical component of candidalysin-triggered immune responses. We find that both C. albicans and candidalysin activate human epithelial EGFR receptors and candidalysin-deficient fungal mutants poorly induce EGFR phosphorylation during murine oropharyngeal candidiasis. Furthermore, inhibition of EGFR impairs candidalysin-triggered MAPK signalling and release of neutrophil activating chemokines in vitro, and diminishes neutrophil recruitment, causing significant mortality in an EGFR-inhibited zebrafish swimbladder model of infection. Investigation into the mechanism of EGFR activation revealed the requirement of matrix metalloproteinases (MMPs), EGFR ligands and calcium. We thus identify a PAMP-independent mechanism of immune stimulation and highlight candidalysin and EGFR signalling components as potential targets for prophylactic and therapeutic intervention of mucosal candidiasis. Candida albicans is an opportunistic fungus primarily affecting immunocompromised patients. Here, the authors identify a novel mechanism of host immune stimulation and highlight candidalysin and EGFR signalling components as potential targets for prophylactic and therapeutic intervention of mucosal candidiasis.
Collapse
|
32
|
Zhao H, Tong G, Liu J, Wang J, Zhang H, Bai J, Hou L, Zhang Z. IP3R and RyR channels are involved in traffic-related PM 2.5-induced disorders of calcium homeostasis. Toxicol Ind Health 2019; 35:339-348. [PMID: 31023176 DOI: 10.1177/0748233719843763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traffic-related PM2.5 can result in immune system damage and diseases; however, the possible mechanism of its effect remains unclear. Calcium (Ca2+) is a critical signaling molecule in a variety of cells. Indeed, Ca2+ is involved in numerous basic functions, including cell growth and death. In this study, Jurkat T cells were used to explore the possible mechanisms of PM2.5-elicited intracellular Ca2+signal responses. The results indicate that PM2.5 could raise the level of intracellular Ca2+ concentration ([Ca2+]i). The [Ca2+]i in Jurkat T cells significantly decreased after treatment with heparin as an inhibitor of inositol trisphosphate receptors (IP3 R), or procaine as an inhibitor of ryanodine receptors (RyR). The expression of calmodulin (CAM) protein decreased in a time-dependent manner after exposure to PM2.5, whereas the activity of Ca2+-Mg2+-ATPase seemed to show a slight drop trend after exposure to PM2.5. Our findings demonstrate that PM2.5 stimulation to Jurkat T cells would result in an increase in [Ca2+]i, which is modulated by IP3 R and RyR, as well as CAM.
Collapse
Affiliation(s)
- Huichao Zhao
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Guoqiang Tong
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jiejing Liu
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jing Wang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Hongmei Zhang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jianying Bai
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Lifang Hou
- 2 Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,3 Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhihong Zhang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| |
Collapse
|
33
|
Kulvinskiene I, Raudoniute J, Bagdonas E, Ciuzas D, Poliakovaite K, Stasiulaitiene I, Zabulyte D, Bironaite D, Rimantas Venskutonis P, Martuzevicius D, Aldonyte R. Lung alveolar tissue destruction and protein citrullination in diesel exhaust-exposed mouse lungs. Basic Clin Pharmacol Toxicol 2019; 125:166-177. [PMID: 30801928 DOI: 10.1111/bcpt.13213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/07/2019] [Indexed: 01/03/2023]
Abstract
Humanity faces an increasing impact of air pollution worldwide, including threats to human health. Air pollutants prompt and promote chronic inflammation, tumourigenesis, autoimmune and other destructive processes in the human body. Post-translational modification of proteins, for example citrullination, results from damaging attacks of pollutants, including smoking, air pollution and others, rendering host tissues immunogenic. Citrullinated proteins and citrullinating enzymes, deiminases, are more prevalent in patients with COPD and correlate with ongoing inflammation and oxidative stress. In this study, we installed an in-house-designed diesel exhaust delivery and cannabidiol vaporization system where mice were exposed to relevant, urban traffic-related levels of diesel exhaust for 14 days and assessed integrity of alveolar tissue, gene expression shifts and changes in protein content in the lungs and other tissues of exposed mice. Systemic presence of modified proteins was also tested. The protective effect of phytocannabinoids was investigated as well. Data obtained in our study show subacute effects of diesel exhaust on mouse lung integrity and protein content. Emphysematous changes are documented in exposed mouse lungs. In parallel, increased levels of citrulline were detected in the alveolar lung tissue and peripheral blood of exposed mice. Pre-treatment with vaporized cannabidiol ameliorated some damaging effects. Results reported hereby provide new insights into subacute lung tissue changes that follow diesel exhaust exposure and suggest possible dietary and/or other therapeutic interventions for maintaining lung health and healthy ageing.
Collapse
Affiliation(s)
- Ieva Kulvinskiene
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Jovile Raudoniute
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Edvardas Bagdonas
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Darius Ciuzas
- Department of Environmental Technologies, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Inga Stasiulaitiene
- Department of Environmental Technologies, Kaunas University of Technology, Kaunas, Lithuania
| | - Danguole Zabulyte
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Daiva Bironaite
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | | | - Dainius Martuzevicius
- Department of Environmental Technologies, Kaunas University of Technology, Kaunas, Lithuania
| | - Ruta Aldonyte
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
34
|
Organic chemicals from diesel exhaust particles affects intracellular calcium, inflammation and β-adrenoceptors in endothelial cells. Toxicol Lett 2018; 302:18-27. [PMID: 30503853 DOI: 10.1016/j.toxlet.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/14/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Abstract
Exposure to diesel exhaust particles (DEP) may contribute to endothelial dysfunction and cardiovascular disease. DEP, extractable organic material from DEP (DEP-EOM) and certain PAHs seem to trigger [Ca2+]i increase as well as inflammation via GPCRs like βARs and PAR-2. In the present study we explored the involvement of βARs and PAR-2 in effects of DEP-EOM on [Ca2+]i and expression of inflammation-associated genes in the endothelial cell-line HMEC-1. We exposed the human microvascular endothelial cell line HMEC-1 to DEP-EOM fractionated by sequential extraction with solvents of increasing polarity: n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol (Methanol-EOM) and water (Water-EOM). While Methanol-EOM and Water-EOM had no marked effects, n-Hex-EOM and DCM-EOM enhanced [Ca2+]i (2-3 times baseline) and expression of inflammation-associated genes (IL-1α, IL-1β, COX-2 and CXCL8; 2-15 times baseline) in HMEC-1. The expression of βARs (60-80% of baseline) and βAR-inhibitor carazolol suppressed the increase in [Ca2+]i induced by both n-Hex- and DCM-EOM. Carazolol as well as the Ca2+-channel inhibitor SKF-96365 reduced the DCM-EOM-induced pro-inflammatory gene-expression. Overexpression of βARs increased DCM-EOM-induced [Ca2+]i responses in HEK293 cells, while βAR-overexpression suppressed [Ca2+]i responses from n-Hex-EOM. Furthermore, the PAR-2-inhibitor ENMD-1068 attenuated [Ca2+]i responses to DCM-EOM, but not n-Hex-EOM in HMEC-1. The results suggest that βAR and PAR-2 are partially involved in effects of complex mixtures of chemicals extracted from DEP on calcium signalling and inflammation-associated genes in the HMEC-1 endothelial cell-line.
Collapse
|
35
|
Cytotoxicity of Air Pollutant 9,10-Phenanthrenequinone: Role of Reactive Oxygen Species and Redox Signaling. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9523968. [PMID: 29984252 PMCID: PMC6015725 DOI: 10.1155/2018/9523968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 01/22/2023]
Abstract
Atmospheric pollution has been a principal topic recently in the scientific and political community due to its role and impact on human and ecological health. 9,10-phenanthrenequinone (9,10-PQ) is a quinone molecule found in air pollution abundantly in the diesel exhaust particles (DEP). This compound has studied extensively and has been shown to develop cytotoxic effects both in vitro and in vivo. 9, 10-PQ has been proposed to play a critical role in the development of cytotoxicity via generation of reactive oxygen species (ROS) through redox cycling. This compound also reduces expression of glutathione (GSH), which is critical in Phase II detoxification reactions. Understanding the underlying cellular mechanisms involved in cytotoxicity can allow for the development of therapeutics designed to target specific molecules significantly involved in the 9,10-PQ-induced ROS toxicity. This review highlights the developments in the understanding of the cytotoxic effects of 9, 10-PQ with special emphasis on the possible mechanisms involved.
Collapse
|
36
|
Brinchmann BC, Skuland T, Rambøl MH, Szoke K, Brinchmann JE, Gutleb AC, Moschini E, Kubátová A, Kukowski K, Le Ferrec E, Lagadic-Gossmann D, Schwarze PE, Låg M, Refsnes M, Øvrevik J, Holme JA. Lipophilic components of diesel exhaust particles induce pro-inflammatory responses in human endothelial cells through AhR dependent pathway(s). Part Fibre Toxicol 2018; 15:21. [PMID: 29751765 PMCID: PMC5948689 DOI: 10.1186/s12989-018-0257-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/31/2022] Open
Abstract
Background Exposure to traffic-derived particulate matter (PM), such as diesel exhaust particles (DEP), is a leading environmental cause of cardiovascular disease (CVD), and may contribute to endothelial dysfunction and development of atherosclerosis. It is still debated how DEP and other inhaled PM can contribute to CVD. However, organic chemicals (OC) adhered to the particle surface, are considered central to many of the biological effects. In the present study, we have explored the ability of OC from DEP to reach the endothelium and trigger pro-inflammatory reactions, a central step on the path to atherosclerosis. Results Exposure-relevant concentrations of DEP (0.12 μg/cm2) applied on the epithelial side of an alveolar 3D tri-culture, rapidly induced pro-inflammatory and aryl hydrocarbon receptor (AhR)-regulated genes in the basolateral endothelial cells. These effects seem to be due to soluble lipophilic constituents rather than particle translocation. Extractable organic material of DEP (DEP-EOM) was next fractionated with increasing polarity, chemically characterized, and examined for direct effects on pro-inflammatory and AhR-regulated genes in human microvascular endothelial (HMEC-1) cells and primary human endothelial cells (PHEC) from four healthy donors. Exposure-relevant concentrations of lipophilic DEP-EOM (0.15 μg/cm2) induced low to moderate increases in IL-1α, IL-1β, COX2 and MMP-1 gene expression, and the MMP-1 secretion was increased. By contrast, the more polar EOM had negligible effects, even at higher concentrations. Use of pharmacological inhibitors indicated that AhR and protease-activated receptor-2 (PAR-2) were central in regulation of EOM-induced gene expression. Some effects also seemed to be attributed to redox-responses, at least at the highest exposure concentrations tested. Although the most lipophilic EOM, that contained the majority of PAHs and aliphatics, had the clearest low-concentration effects, there was no straight-forward link between chemical composition and biological effects. Conclusion Lipophilic and semi-lipophilic chemicals seemed to detach from DEP, translocate through alveolar epithelial cells and trigger pro-inflammatory reactions in endothelial cells at exposure-relevant concentrations. These effects appeared to be triggered by AhR agonists, and involve PAR-2 signaling. Electronic supplementary material The online version of this article (10.1186/s12989-018-0257-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.,Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Mia H Rambøl
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Krisztina Szoke
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Jan E Brinchmann
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Arno C Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Belvaux, Grand Duchy of Luxembourg
| | - Elisa Moschini
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Belvaux, Grand Duchy of Luxembourg
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Eric Le Ferrec
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail (IRSET), Rennes, France.,Université de Rennes 1, Faculté des Sciences pharmaceutiques et biologiques, Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail (IRSET), Rennes, France.,Université de Rennes 1, Faculté des Sciences pharmaceutiques et biologiques, Rennes, France
| | - Per E Schwarze
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.
| |
Collapse
|
37
|
Brinchmann BC, Le Ferrec E, Podechard N, Lagadic-Gossmann D, Shoji KF, Penna A, Kukowski K, Kubátová A, Holme JA, Øvrevik J. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling. Int J Mol Sci 2018; 19:E1429. [PMID: 29748474 PMCID: PMC5983734 DOI: 10.3390/ijms19051429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1) using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE). By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE). Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR) non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction extracted by DCM also caused an AhR-dependent reduction in global membrane order, which appeared to be connected to the [Ca2+]i increase.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
- Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, N-0315 Oslo, Norway.
| | - Eric Le Ferrec
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Kenji F Shoji
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Aubin Penna
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| |
Collapse
|
38
|
Le Ferrec E, Øvrevik J. G-protein coupled receptors (GPCR) and environmental exposure. Consequences for cell metabolism using the β-adrenoceptors as example. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid Redox Signal 2018; 28:797-818. [PMID: 29084451 PMCID: PMC5831906 DOI: 10.1089/ars.2017.7394] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Particulate matter (PM) air pollution is a leading cause of global cardiovascular morbidity and mortality. Understanding the biological action of PM is of particular importance in improvement of public health. Recent Advances: Both fine (PM <2.5 μM) and ultrafine particles (<0.1 μM) are widely believed to mediate their effects through redox regulated pathways. A rather simplistic graded ramp model of redox stress has been replaced by a more sophisticated understanding of the role of oxidative stress in signaling, and the realization that many of the observed effects may involve disruption and/or enhancement of normal endogenous redox signaling and induction of a potent immune-mediated response, through entrainment of multiple reactive oxygen species (ROS). CRITICAL ISSUES The molecular events by which pulmonary oxidative stress in response to inhalational exposure to air pollution triggers inflammation, major ROS (e.g., superoxide, hydroxyl radical, nitric oxide, and peroxynitrite) generated in air pollution exposure, types of oxidative tissue damage in target organs, contributions of nonimmune and immune cells in inflammation, and the role of protective proteins (e.g., surfactant, proteins, and antioxidants) are highly complex and may differ depending on models and concomitant disease states. FUTURE DIRECTIONS While the role of oxidative stress in the lung has been well demonstrated, the role of oxidative stress in mediating systemic effects especially in inflammation and injury processes needs further work. The role of antioxidant defenses with chronic exposure will also need further exploration. Antioxid. Redox Signal. 28, 797-818.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Jixin Zhong
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Robert D. Brook
- Department of Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sanjay Rajagopalan
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
40
|
Sanchez A, Alvarez JL, Demydenko K, Jung C, Alpizar YA, Alvarez-Collazo J, Cokic SM, Valverde MA, Hoet PH, Talavera K. Silica nanoparticles inhibit the cation channel TRPV4 in airway epithelial cells. Part Fibre Toxicol 2017; 14:43. [PMID: 29100528 PMCID: PMC5670529 DOI: 10.1186/s12989-017-0224-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Silica nanoparticles (SiNPs) have numerous beneficial properties and are extensively used in cosmetics and food industries as anti-caking, densifying and hydrophobic agents. However, the increasing exposure levels experienced by the general population and the ability of SiNPs to penetrate cells and tissues have raised concerns about possible toxic effects of this material. Although SiNPs are known to affect the function of the airway epithelium, the molecular targets of these particles remain largely unknown. Given that SiNPs interact with the plasma membrane of epithelial cells we hypothesized that they may affect the function of Transient Receptor Potential Vanilloid 4 (TRPV4), a cation-permeable channel that regulates epithelial barrier function. The main aims of this study were to evaluate the effects of SiNPs on the activation of TRPV4 and to determine whether these alter the positive modulatory action of this channel on the ciliary beat frequency in airway epithelial cells. RESULTS Using fluorometric measurements of intracellular Ca2+ concentration ([Ca2+]i) we found that SiNPs inhibit activation of TRPV4 by the synthetic agonist GSK1016790A in cultured human airway epithelial cells 16HBE and in primary cultured mouse tracheobronchial epithelial cells. Inhibition of TRPV4 by SiNPs was confirmed in intracellular Ca2+ imaging and whole-cell patch-clamp experiments performed in HEK293T cells over-expressing this channel. In addition to these effects, SiNPs were found to induce a significant increase in basal [Ca2+]i, but in a TRPV4-independent manner. SiNPs enhanced the activation of the capsaicin receptor TRPV1, demonstrating that these particles have a specific inhibitory action on TRPV4 activation. Finally, we found that SiNPs abrogate the increase in ciliary beat frequency induced by TRPV4 activation in mouse airway epithelial cells. CONCLUSIONS Our results show that SiNPs inhibit TRPV4 activation, and that this effect may impair the positive modulatory action of the stimulation of this channel on the ciliary function in airway epithelial cells. These findings unveil the cation channel TRPV4 as a primary molecular target of SiNPs.
Collapse
Affiliation(s)
- Alicia Sanchez
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Julio L Alvarez
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Kateryna Demydenko
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium.,Present address: Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, Leuven, KU, Belgium
| | - Carole Jung
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yeranddy A Alpizar
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Stevan M Cokic
- KU Leuven BIOMAT, Department of Oral Health Sciences, KU Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - Miguel A Valverde
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Peter H Hoet
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium.
| |
Collapse
|
41
|
|
42
|
Robinson RK, Birrell MA, Adcock JJ, Wortley MA, Dubuis ED, Chen S, McGilvery CM, Hu S, Shaffer MSP, Bonvini SJ, Maher SA, Mudway IS, Porter AE, Carlsten C, Tetley TD, Belvisi MG. Mechanistic link between diesel exhaust particles and respiratory reflexes. J Allergy Clin Immunol 2017; 141:1074-1084.e9. [PMID: 28532657 PMCID: PMC5840514 DOI: 10.1016/j.jaci.2017.04.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 02/09/2023]
Abstract
Background Diesel exhaust particles (DEPs) are a major component of particulate matter in Europe's largest cities, and epidemiologic evidence links exposure with respiratory symptoms and asthma exacerbations. Respiratory reflexes are responsible for symptoms and are regulated by vagal afferent nerves, which innervate the airway. It is not known how DEP exposure activates airway afferents to elicit symptoms, such as cough and bronchospasm. Objective We sought to identify the mechanisms involved in activation of airway sensory afferents by DEPs. Methods In this study we use in vitro and in vivo electrophysiologic techniques, including a unique model that assesses depolarization (a marker of sensory nerve activation) of human vagus. Results We demonstrate a direct interaction between DEP and airway C-fiber afferents. In anesthetized guinea pigs intratracheal administration of DEPs activated airway C-fibers. The organic extract (DEP-OE) and not the cleaned particles evoked depolarization of guinea pig and human vagus, and this was inhibited by a transient receptor potential ankyrin-1 antagonist and the antioxidant N-acetyl cysteine. Polycyclic aromatic hydrocarbons, major constituents of DEPs, were implicated in this process through activation of the aryl hydrocarbon receptor and subsequent mitochondrial reactive oxygen species production, which is known to activate transient receptor potential ankyrin-1 on nociceptive C-fibers. Conclusions This study provides the first mechanistic insights into how exposure to urban air pollution leads to activation of guinea pig and human sensory nerves, which are responsible for respiratory symptoms. Mechanistic information will enable the development of appropriate therapeutic interventions and mitigation strategies for those susceptible subjects who are most at risk.
Collapse
Affiliation(s)
- Ryan K Robinson
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - John J Adcock
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Michael A Wortley
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Eric D Dubuis
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Shu Chen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Catriona M McGilvery
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Sheng Hu
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Milo S P Shaffer
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom; Department of Chemistry and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Sarah A Maher
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Ian S Mudway
- MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, London, United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, London, United Kingdom
| | - Chris Carlsten
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Teresa D Tetley
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, London, United Kingdom; Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
43
|
Chen Y, Moore CD, Zhang JY, Hall RP, MacLeod AS, Liedtke W. TRPV4 Moves toward Center-Fold in Rosacea Pathogenesis. J Invest Dermatol 2017; 137:801-804. [PMID: 28340683 PMCID: PMC5536341 DOI: 10.1016/j.jid.2016.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022]
Abstract
Mascarenhas et al. report that TRPV4 expression is upregulated in mast cells in response to the proteolytic cathelicidin fragment LL37 in a murine rosacea model and that TRPV4 loss of function attenuates mast cell degranulation. These findings render TRPV4 a translational-medical target in rosacea. However, signaling mechanisms causing increased expression of TRPV4 await elucidation. Moreover, we ask whether TRPV4-mediated Ca++-influx evokes mast cell degranulation.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neurology, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Carlene D Moore
- Department of Neurology, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, North Carolina, USA
| | - Russell P Hall
- Department of Dermatology, Duke University, Durham, North Carolina, USA
| | - Amanda S MacLeod
- Department of Dermatology, Duke University, Durham, North Carolina, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University, School of Medicine, Durham, North Carolina, USA; Department of Anesthesiology, Duke University, School of Medicine, Durham, North Carolina, USA; Department of Neurobiology, Duke University, School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
44
|
Øvrevik J, Refsnes M, Låg M, Brinchmann BC, Schwarze PE, Holme JA. Triggering Mechanisms and Inflammatory Effects of Combustion Exhaust Particles with Implication for Carcinogenesis. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:55-62. [PMID: 28001342 DOI: 10.1111/bcpt.12746] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
A number of biological responses may contribute to the carcinogenic effects of combustion-derived particulate matter (CPM). Here, we focus on mechanisms that trigger CPM-induced pro-inflammatory responses. Inflammation has both genotoxic and non-genotoxic implications and is considered to play a central role in development of various health outcome associated with CPM exposure, including cancer. Chronic, low-grade inflammation may cause DNA damage through a persistent increased level of reactive oxygen species (ROS) produced and released by activated immune cells. Moreover, a number of pro-inflammatory cytokines and chemokines display mitogenic, motogenic, morphogenic and/or angiogenic properties and may therefore contribute to tumour growth and metastasis. The key triggering events involved in activation of pro-inflammatory responses by CPM and soluble CPM components can be categorized into (i) formation of ROS and oxidative stress, (ii) interaction with the lipid layer of cellular membranes, (iii) activation of receptors, ion channels and transporters on the cell surface and (iv) interactions with intracellular molecular targets including receptors such as the aryl hydrocarbon receptor (AhR). In particular, we will elucidate the effects of diesel exhaust particles (DEP) using human lung epithelial cells as a model system.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per E Schwarze
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
45
|
Sharma S, Goswami R, Merth M, Cohen J, Lei KY, Zhang DX, Rahaman SO. TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. Am J Physiol Cell Physiol 2017; 312:C562-C572. [PMID: 28249987 DOI: 10.1152/ajpcell.00187.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Scleroderma is a multisystem fibroproliferative disease with no effective medical treatment. Myofibroblasts are critical to the fibrogenic tissue repair process in the skin and many internal organs. Emerging data support a role for both matrix stiffness, and transforming growth factor β1 (TGFβ1), in myofibroblast differentiation. Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel activated by both mechanical and biochemical stimuli. The objective of this study was to determine the role of TRPV4 in TGFβ1- and matrix stiffness-induced differentiation of dermal fibroblasts. We found that TRPV4 channels are expressed and functional in both human (HDF) and mouse (MDF) dermal fibroblasts. TRPV4 activity (agonist-induced Ca2+ influx) was induced by both matrix stiffness and TGFβ1 in dermal fibroblasts. TGFβ1 induced expression of TRPV4 proteins in a dose-dependent manner. Genetic ablation or pharmacological antagonism of TRPV4 channel abrogated Ca2+ influx and both TGFβ1-induced and matrix stiffness-induced myofibroblast differentiation as assessed by 1) α-smooth muscle actin expression/incorporation into stress fibers, 2) generation of polymerized actin, and 3) expression of collagen-1. We found that TRPV4 inhibition abrogated TGFβ1-induced activation of AKT but not of Smad2/3, suggesting that the mechanism by which profibrotic TGFβ1 signaling in dermal fibroblasts is modified by TRPV4 may be through non-Smad pathways. Altogether, these data identify a novel reciprocal functional link between TRPV4 activation and TGFβ1 signals regulating dermal myofibroblast differentiation. These findings suggest that therapeutic inhibition of TRPV4 activity may provide a targeted approach to the treatment of scleroderma.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Michael Merth
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Jonathan Cohen
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland; and
| | - Kai Y Lei
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland;
| |
Collapse
|
46
|
Ye J, Salehi S, North ML, Portelli AM, Chow CW, Chan AWH. Development of a Novel Simulation Reactor for Chronic Exposure to Atmospheric Particulate Matter. Sci Rep 2017; 7:42317. [PMID: 28169367 PMCID: PMC5294446 DOI: 10.1038/srep42317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/06/2017] [Indexed: 01/31/2023] Open
Abstract
Epidemiological studies have shown that air pollution is associated with the morbidity and mortality from cardiopulmonary diseases. Currently, limited experimental models are available to evaluate the physiological and cellular pathways activated by chronic multi-pollutant exposures. This manuscript describes an atmospheric simulation reactor (ASR) that was developed to investigate the health effects of air pollutants by permitting controlled chronic in vivo exposure of mice to combined particulate and gaseous pollutants. BALB/c mice were exposed for 1 hr/day for 3 consecutive days to secondary organic aerosol (SOA, a common particulate air pollutant) at 10-150 μg/m3, SOA (30 μg/m3) + ozone (65 ppb) or SOA + ozone (65 ppb) + nitrogen dioxide (NO2; 100 ppb). Daily exposure to SOA alone led to increased airway hyperresponsiveness (AHR) to methacholine with increasing SOA concentrations. Multi-pollutant exposure with ozone and/or NO2 in conjunction with a sub-toxic concentration of SOA resulted in additive effects on AHR to methacholine. Inflammatory cell recruitment to the airways was not observed in any of the exposure conditions. The ASR developed in this study allows us to evaluate the chronic health effects of relevant multi-pollutant exposures at 'real-life' levels under controlled conditions and permits repeated-exposure studies.
Collapse
Affiliation(s)
- Jianhuai Ye
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
| | - Sepehr Salehi
- Division of Respirology and Multi-Organ Transplantation Programme, University Health Network, University of Toronto, Canada
| | - Michelle L. North
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
| | - Anjelica M. Portelli
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
| | - Chung-Wai Chow
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
- Division of Respirology and Multi-Organ Transplantation Programme, University Health Network, University of Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Canada.
| | - Arthur W. H. Chan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
| |
Collapse
|
47
|
Lee W, Guilak F, Liedtke W. Role of Piezo Channels in Joint Health and Injury. CURRENT TOPICS IN MEMBRANES 2017; 79:263-273. [PMID: 28728820 DOI: 10.1016/bs.ctm.2016.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cartilage is an intrinsically mechanically sensitive tissue composed of chondrocytes as the only cell type. Chondrocyte mechanotransduction is not well understood, but recently we identified critical components of the mechanotransduction machinery demonstrating how mechanical stimulation of these cells can be converted into cellular calcium signals. Physiologic mechanical cues induce anabolic responses of (post-mitotic) chondrocytes via transient receptor potential vanilloid 4 ion channels, whereas injurious mechanical stress is transduced by Piezo1 jointly with Piezo2 ion channels. This chapter sheds light on the latter discovery and provides a rationale for follow-up questions, such as the nature of interaction between Piezo1 and Piezo2, and their tethering to the cytoskeleton. These recent insights can be leveraged toward translational medical progress to benefit diagnosis and treatment of osteoarthritis, representing a large and growing unmet medical need in the United States and large parts of the world.
Collapse
Affiliation(s)
- W Lee
- Duke University Medical Center, Durham, NC, United States
| | - F Guilak
- Washington University in St Louis and Shriners Hospitals for Children, St Louis, MO, United States
| | - W Liedtke
- Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
48
|
Dubes V, Parpaite T, Ducret T, Quignard JF, Mornet S, Reinhardt N, Baudrimont I, Dubois M, Freund-Michel V, Marthan R, Muller B, Savineau JP, Courtois A. Calcium signalling induced by in vitro exposure to silicium dioxide nanoparticles in rat pulmonary artery smooth muscle cells. Toxicology 2016; 375:37-47. [PMID: 27939335 DOI: 10.1016/j.tox.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
The development and use of nanomaterials, especially engineered nanoparticles (NP), is expected to provide many benefits. But at the same time the development of such materials is also feared because of their potential human health risks. Indeed, NP display some characteristics similar to ultrafine environmental particles which are known to exert deleterious cardiovascular effects including pro-hypertensive ones. In this context, the effect of NP on calcium signalling, whose deregulation is often involved in hypertensive diseases, remain poorly described. We thus assessed the effect of SiO2 NP on calcium signalling by fluorescence imaging and on the proliferation response in rat pulmonary artery smooth muscle cells (PASMC). In PASMC, acute exposure to SiO2 NP, from 1 to 500μg/mL, produced an increase of the [Ca2+]i. In addition, when PASMC were exposed to NP at 200μg/mL, a proliferative response was observed. This calcium increase was even greater in PASMC isolated from rats suffering from pulmonary hypertension. The absence of extracellular calcium, addition of diltiazem or nicardipine (L-type voltage-operated calcium channel inhibitors both used at 10μM), and addition of capsazepine or HC067047 (TRPV1 and TRPV4 inhibitors used at 10μM and 5μM, respectively) significantly reduced this response. Moreover, this response was also inhibited by thapsigargin (SERCA inhibitor, 1μM), ryanodine (100μM) and dantrolene (ryanodine receptor antagonists, 10μM) but not by xestospongin C (IP3 receptor antagonist, 10μM). Thus, NP induce an intracellular calcium rise in rat PASMC originating from both extracellular and intracellular calcium sources. This study also provides evidence for the implication of TRPV channels in NP induced calcium rise that may highlight the role of these channels in the deleterious cardiovascular effects of NP.
Collapse
Affiliation(s)
- Virginie Dubes
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Thibaud Parpaite
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Thomas Ducret
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Jean-François Quignard
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Stéphane Mornet
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; CNRS, ICMCB, UPR 9048, 87 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Nora Reinhardt
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; CNRS, ICMCB, UPR 9048, 87 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Isabelle Baudrimont
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Mathilde Dubois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Véronique Freund-Michel
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Roger Marthan
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Hôpital du Haut-Lévêque, Service d'Exploration Fonctionnelle Respiratoire, Avenue de Magellan, Pessac, F-33076, France.
| | - Bernard Muller
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Jean-Pierre Savineau
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Arnaud Courtois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente, Place Amélie Raba Léon, Bordeaux, F-33076, France.
| |
Collapse
|
49
|
Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 2016; 78:217-228. [PMID: 27425399 DOI: 10.1016/j.biocel.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023]
Abstract
Transient receptor potential ion channels (TRP) are a superfamily of non-selective ion channels which are opened in response to a diverse range of stimuli. The TRP vanilloid 4 (TRPV4) ion channel is opened in response to heat, mechanical stimuli, hypo-osmolarity and arachidonic acid metabolites. However, recently TRPV4 has been identified as an ion channel that is modulated by, and opened by intracellular signalling cascades from other receptors and signalling pathways. Although TRPV4 knockout mice show relatively mild phenotypes, some mutations in TRPV4 cause severe developmental abnormalities, such as the skeletal dyplasia and arthropathy. Regulated TRPV4 function is also essential for healthy cardiovascular system function as a potent agonist compromises endothelial cell function, leading to vascular collapse. A better understanding of the signalling mechanisms that modulate TRPV4 function is necessary to understand its physiological roles. Post translational modification of TRPV4 by kinases and other signalling molecules can modulate TRPV4 opening in response to stimuli such as mechanical and hyposmolarity and there is an emerging area of research implicating TRPV4 as a transducer of these signals as opposed to a direct sensor of the stimuli. Due to its wide expression profile, TRPV4 is implicated in multiple pathophysiological states. TRPV4 contributes to the sensation of pain due to hypo-osmotic stimuli and inflammatory mechanical hyperalsgesia, where TRPV4 sensitizaton by intracellular signalling leads to pain behaviors in mice. In the vasculature, TRPV4 is a regulator of vessel tone and is implicated in hypertension and diabetes due to endothelial dysfunction. TRPV4 is a key regulator of epithelial and endothelial barrier function and signalling to and opening of TRPV4 can disrupt these critical protective barriers. In respiratory function, TRPV4 is involved in cystic fibrosis, cilary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.In this review we highlight how modulation of TRPV4 opening is a vital signalling component in a range of tissues and why understanding of TRPV4 regulation in the body may lead to novel therapeutic approaches to treating a range of disease states.
Collapse
Affiliation(s)
- W G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - M S Grace
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Baker IDI, Melbourne, Australia
| | - S Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - P McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
50
|
Kanju P, Chen Y, Lee W, Yeo M, Lee SH, Romac J, Shahid R, Fan P, Gooden DM, Simon SA, Spasojevic I, Mook RA, Liddle RA, Guilak F, Liedtke WB. Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci Rep 2016; 6:26894. [PMID: 27247148 PMCID: PMC4887995 DOI: 10.1038/srep26894] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
TRPV4 ion channels represent osmo-mechano-TRP channels with pleiotropic function and wide-spread expression. One of the critical functions of TRPV4 in this spectrum is its involvement in pain and inflammation. However, few small-molecule inhibitors of TRPV4 are available. Here we developed TRPV4-inhibitory molecules based on modifications of a known TRPV4-selective tool-compound, GSK205. We not only increased TRPV4-inhibitory potency, but surprisingly also generated two compounds that potently co-inhibit TRPA1, known to function as chemical sensor of noxious and irritant signaling. We demonstrate TRPV4 inhibition by these compounds in primary cells with known TRPV4 expression - articular chondrocytes and astrocytes. Importantly, our novel compounds attenuate pain behavior in a trigeminal irritant pain model that is known to rely on TRPV4 and TRPA1. Furthermore, our novel dual-channel blocker inhibited inflammation and pain-associated behavior in a model of acute pancreatitis – known to also rely on TRPV4 and TRPA1. Our results illustrate proof of a novel concept inherent in our prototype compounds of a drug that targets two functionally-related TRP channels, and thus can be used to combat isoforms of pain and inflammation in-vivo that involve more than one TRP channel. This approach could provide a novel paradigm for treating other relevant health conditions.
Collapse
Affiliation(s)
| | - Yong Chen
- Dept of Neurology, Duke University, Durham NC USA
| | - Whasil Lee
- Dept of Neurology, Duke University, Durham NC USA
| | - Michele Yeo
- Dept of Neurology, Duke University, Durham NC USA
| | - Suk Hee Lee
- Dept of Neurology, Duke University, Durham NC USA
| | - Joelle Romac
- Dept of Medicine, Duke University, Durham NC USA
| | - Rafiq Shahid
- Dept of Medicine, Duke University, Durham NC USA
| | - Ping Fan
- Dept of Medicine, Duke University, Durham NC USA
| | | | | | | | - Robert A Mook
- Dept of Medicine, Duke University, Durham NC USA.,Dept of Chemistry, Duke University, Durham NC USA
| | | | - Farshid Guilak
- Dept of Orthopedic Surgery, Washington University in St Louis and Shriners Hospitals for Children, St Louis MO USA
| | - Wolfgang B Liedtke
- Dept of Neurology, Duke University, Durham NC USA.,Dept of Neurobiology, Duke University, Durham NC USA.,Dept of Anesthesiology, Duke University, Durham NC USA.,Neurology Clinics for Headache, Head-Pain and Trigeminal Sensory Disorders, Duke University, Durham NC USA
| |
Collapse
|