1
|
Chen K, Liu H, Wang T, Luo M, Ruan X, Sun M, Li Z, Wei J, Qin J. Exploring the association between air pollution and urogenital congenital anomalies: a global ecological analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126471. [PMID: 40383472 DOI: 10.1016/j.envpol.2025.126471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/28/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
The relationship between air pollution and urogenital congenital anomalies (UCAs) remains poorly understood. This study performed an ecological analysis of air pollution emissions and the burden of UCAs, aiming to offer new global insights for air pollution control. Data were obtained from the Global Burden of Disease Study (2021) and Emission Database for Global Atmospheric Research. Joinpoint regression assessed temporal trends in burden of UCAs, mixed-effects, nonlinear lag and time-varying effect models were used to investigate potential associations between air pollution emissions and burden. The burden indicators were incidence, deaths and disability-adjusted life years. From 1990 to 2021, the global incidence of UCAs generally declined, with a significant increase observed since 2016. Our analysis identified a positive correlation between burden of UCAs and several air pollutants. Sulfur dioxide(SO2), ammonia and nitrogen oxides(NOX) are significantly associated with the incidence of UCAs, while SO2, NOX, and non-methane volatile organic compounds are significantly associated with the mortality and disability-adjusted life years rate of UCAs. Sex-specific subgroup analysis indicated differing responses to these pollutants. However, the effect of sulfur dioxide on burden was consistent across sex. Notably, we also found that some pollutants have hysteresis effects that contradict the immediate effects. Additionally, the relationship between air pollution and burden displayed distinct variations over years. This study enhances our understanding of the health impacts on UCAs associated with air pollution, suggested that pregnant women should stay away from ammonia and SO2. It also emphasizes that strengthening air pollution control should be a key monitoring policy.
Collapse
Affiliation(s)
- Kebin Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hanjun Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China.
| | - Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiaorui Ruan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ziye Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiabi Qin
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Lu Y, Ren S, Shao X, Tian J, Hu F, Yao F, Zhang T, Zhao G. Association of Ambient Temperature and Relative Humidity With Respiratory Syncytial Virus Infections Among Hospitalized Children in Suzhou, Eastern China: A Time-Series Analysis. GEOHEALTH 2025; 9:e2025GH001353. [PMID: 40400772 PMCID: PMC12093253 DOI: 10.1029/2025gh001353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 05/23/2025]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of clinical pneumonia in children. We aimed to investigate the associations between ambient temperature, relative humidity, and pediatric RSV infections, and to assess the disease burden attributable to cold or humid conditions. Daily data on RSV hospitalizations among children aged ≤5 years, mean temperature, and relative humidity in Suzhou, China, from January 2016 to December 2019 were collected. A distributed lag nonlinear model with quasi-Poisson regression was employed to assess the exposure-lag-response associations. Attributable risks were calculated to quantify the disease burden due to climatic factors. We found an inverted U-shaped relationship between temperature and RSV infections, with the cumulative risk of RSV peaking at 7.5°C (RR = 4.30, 95% CI: 3.08-6.02). The exposure-response curves for relative humidity exhibited a generally positive trend, peaking at 100.0% (RR = 3.14, 95% CI: 1.84-5.34). Using median values as references, the highest risk effects of extremely low (RR = 1.14, 95% CI: 1.04-1.25) and low (RR = 1.22, 95% CI: 1.12-1.32) temperatures, as well as high (RR = 1.09, 95% CI: 1.04-1.13) and extremely high (RR = 1.16, 95% CI: 1.07-1.27) relative humidity, occurred on the day of exposure and persisted for extended periods. The attributable fraction of RSV infections associated with cold or humid conditions was 55.23% (95% CI: 50.01%-64.03%) and 12.02% (95% CI: 9.36%-20.24%), respectively. The risk effect of high relative humidity was stronger in children aged 1-5 years. Our findings suggest nonlinear, lagged associations between climatic factors and pediatric RSV infections, which may inform future healthcare planning and RSV immunization strategies.
Collapse
Affiliation(s)
- Yingfeng Lu
- Department of EpidemiologySchool of Public HealthFudan UniversityShanghaiChina
| | - Shaolong Ren
- Department of EpidemiologySchool of Public HealthFudan UniversityShanghaiChina
| | - Xuejun Shao
- Soochow University Affiliated Children's HospitalSuzhouChina
| | - Jianmei Tian
- Soochow University Affiliated Children's HospitalSuzhouChina
| | - Feifei Hu
- Changzhou Center for Disease Prevention and ControlChangzhouChina
| | - Fang Yao
- Changzhou Center for Disease Prevention and ControlChangzhouChina
| | - Tao Zhang
- Department of EpidemiologySchool of Public HealthFudan UniversityShanghaiChina
| | - Genming Zhao
- Department of EpidemiologySchool of Public HealthFudan UniversityShanghaiChina
- Changzhou Center for Disease Prevention and ControlChangzhouChina
| |
Collapse
|
3
|
Hu P, Lu W, Gao X, Li Y, Yang Y, Yin W, Dong L, Ren R, Wang X. Atmospheric carbon monoxide and hospitalization for mental and behavioral disorders: insights from a longitudinal study in Shijiazhuang. Front Psychol 2025; 16:1573556. [PMID: 40370374 PMCID: PMC12076220 DOI: 10.3389/fpsyg.2025.1573556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Background and aim Carbon monoxide (CO), a prevalent environmental pollutant, has been implicated in adverse mental health outcomes, but the mechanistic relationship between atmospheric CO levels and hospital admissions for mental and behavioral disorders remains unclear. This study investigates the epidemiological link between atmospheric CO and hospitalizations for mental health conditions in Shijiazhuang, China. Methodology Clinical data from patients hospitalized with mental and behavioral disorders at The First Hospital of Hebei Medical University between January 2014 and December 2020 were analyzed. Daily atmospheric CO levels, temperature, and relative humidity were concurrently monitored. A generalized additive model (GAM) was used to explore the correlation between CO levels and hospital admissions. Blood samples from patients with depressive disorders were analyzed for MAPK3 expression, and a mouse model of CO-induced depression was employed to further explore the molecular mechanisms. Results A total of 15,890 hospitalization records were included. A significant positive correlation was identified between CO levels and the number of daily hospitalizations, with the strongest effects observed when CO concentrations exceeded 40 μg/m3. This association was most pronounced in males and individuals aged over 45, as well as during both warm and cold seasons. A two-pollutant model confirmed CO as a major factor affecting hospitalizations, independent of other pollutants like nitric oxide and sulfur dioxide. Additionally, elevated MAPK3 expression was found in the blood samples of depressed patients, and treatment with the MAPK inhibitor PD98059 alleviated CO-induced depression in a mouse model. Conclusion This study provides compelling evidence for a significant association between atmospheric CO and hospitalizations for mental and behavioral disorders. The findings suggest that CO exposure may exacerbate mental health conditions, particularly in vulnerable populations. These insights underline the importance of air quality management and highlight potential pathways for therapeutic interventions targeting CO-induced mental health disorders.
Collapse
Affiliation(s)
- Peihua Hu
- Institute of Mental Health, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenting Lu
- Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xian Gao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yating Li
- Department of Nursing, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Yang
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wanyi Yin
- Department of Hematology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Dong
- Department of Hospital Infection Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruojia Ren
- Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueyi Wang
- Institute of Mental Health, First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Zhong X, Chen Y, Sun L, Chen H, Qu X, Hao L. The burden of ambient air pollution on years of life lost from ischaemic heart disease in Pudong new area, Shanghai. Sci Rep 2025; 15:12715. [PMID: 40223129 PMCID: PMC11994778 DOI: 10.1038/s41598-025-96745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Ischaemic heart disease (IHD) remains a major public health threat globally. The aim of this study was to evaluate the short-term burden of air pollution exposure on years of life lost (YLLs) from IHD in Pudong New Area, Shanghai. Data on air pollutants, meteorological factors, and daily IHD deaths were collected from 2013 to 2021. A distributed lag nonlinear model (DLNM) combined with linear (for YLLs) and quasi-Poisson (for mortality) regression models was applied to analyse the association between air pollution exposure and the IHD burden. A stratified analysis was conducted according to sex, age, education level, and residence registration. Each 10 µg/m³ increase in PM10, SO2, and NO2 exposure was associated with YLL increases of 0.40 (95% CI: -0.32, 1.11), 4.38 (95% CI: 0.83, 7.92), and 0.67 (95% CI: -0.71, 2.04) years, respectively, at lag0-3. The corresponding YLL increase due to PM2.5 exposure was 0.28 (95% CI: -0.24, 0.80) years at lag0-1. The impacts of air pollution exposure on YLLs and daily IHD deaths were greater for male and urban groups than for female and rural groups. Furthermore, the difference in SO2 exposure was statistically significant among sex-stratified groups. Air pollution exposure was positively associated with IHD-related YLL increases in Pudong New Area, Shanghai.
Collapse
Affiliation(s)
- Xing Zhong
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yichen Chen
- School of Public Health, Fudan University, Shanghai, 200032, China
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China
| | - Lianghong Sun
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China
| | - Hua Chen
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China
| | - Xiaobing Qu
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China
| | - Lipeng Hao
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China.
| |
Collapse
|
5
|
Martin L, Nasir H, Bagheri R, Ugbolue UC, Laporte C, Baker JS, Gu Y, Zak M, Duclos M, Dutheil F. Physical Activity, Air Pollution, and Mortality: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2025; 11:35. [PMID: 40192932 PMCID: PMC11977067 DOI: 10.1186/s40798-025-00830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND As whether the positive effects of physical activity on mortality outweigh the negative effects of exposure to pollution is still under debate, we conducted a systematic review and meta-analysis on the risk of mortality for combined exposure to physical activity and air pollution. METHODS PubMed, Cochrane, Embase and ScienceDirect databases were searched for studies assessing the risk of mortality for combined exposure to physical activity and air pollution. RESULTS We included eight studies for a total of 1,417,945 individuals (mean 57.7 years old, 39% men) - 54,131 died. We confirmed that air pollution increased the risk of mortality by 36% (OR 1.36, 95CI 1.05-1.52), whereas physical activity in a non-polluted environment decreased the risk of mortality by 31% (OR 0.69, 95CI 0.42-0.95). Our meta-analysis demonstrated that combined exposure to physical activity and air pollution decreased the risk of mortality by 26% (OR 0.74, 95CI 0.63-0.85). This risk decreased whatever the level of physical activity: by 19% (OR 0.81, 95CI 0.69-0.93) for low, by 32% (OR 0.68, 95CI 0.44-0.93) for moderate, and by 30% (OR 0.70, 95CI 0.49-0.91) for high physical activity in air pollution. CONCLUSION We confirmed that air pollution increased mortality by 36% in our meta-analysis. Despite the controversial benefit-risk, we demonstrated a reduction of mortality by 26% for combined exposure to physical activity and air pollution - nearly comparable to the reduction of mortality when practicing physical activity without air pollution (- 31%). However, the limited number of included studies precluded the demonstration of a dose-response relationship between levels of physical activity and air pollution, and reduction of mortality.
Collapse
Affiliation(s)
- Louise Martin
- General Medicine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Hijrah Nasir
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Chaire « Santé en Mouvement », Université Clermont Auvergne, Clermont-Ferrand, France
| | - Reza Bagheri
- Exercise Physiology Department, University of Isfahan, Isfahan, Iran
| | - Ukadike C Ugbolue
- Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, University of Strathclyde, Glasgow, Scotland, UK
| | - Catherine Laporte
- Clermont Auvergne INP, CNRS, CHU Clermont-Ferrand, Institut Pascal, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, China
| | - Marek Zak
- Collegium Medicum, Institute of Health Sciences, The Jan Kochanowski University, Kielce, Poland
| | - Martine Duclos
- INRAe, CHU Clermont-Ferrand, Sport Medicine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Dutheil
- LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, CNRS, Occupational and Environmental Medicine, Université Clermont Auvergne, WittyFit, 58 Rue Montalembert, 63000, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Wang T, Zhou W, Liu H, Zhan Y, Tang D, Guo Y, Yin C, Wu D, Cao Y, Ling X, Yang H, Zhou N, Cao J, Zhou W, Chen Q. Association of Ambient Air Pollution and Temperature Exposure with Placental Abruption: A Nested Case-Control Study Based on Live Birth Registrations. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47013. [PMID: 40138323 PMCID: PMC12042270 DOI: 10.1289/ehp14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Placental abruption, a rare disorder of unclear etiology, lacks evidence to illustrate its relationship with exposure to air pollution and temperature. OBJECTIVE This study aimed to investigate the association between exposure to ambient pollutants and temperatures and placental abruption to identify susceptible time windows and subpopulations. METHODS A nested case-control study was based on a live birth registration database in Chongqing, the largest Chinese municipality in China, from 2018 to 2022. The placental abruption cases were each matched with four controls by maternal age at delivery, gestational week, gravidity, parity, and delivery date. Six ambient pollutants [particulate matter (PM) with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ), PM with aerodynamic diameter ≤ 10 μ m (PM 10 ), NO 2 , CO, O 3 , and SO 2 ] and temperature were estimated using machine learning algorithms. A conditional logistic regression model analyzed associations of exposure to air pollution and temperature with placental abruption in five time windows (prepregnancy, the entire pregnancy, and each of the 3 trimesters). Stratification analyses were applied to examine potential modifiers including gravidity, parity, mothers' residential area (urban/rural), pandemic experience, and delivery season. RESULTS After data quality control, 798 cases were identified and matched with 3,192 controls. An exposure relationship was identified between NO 2 during the pregnancy period and placental abruption (p < 0.001 ). In comparison with the first quartile level of NO 2 , the odds ratios (ORs) of abruption associated with exposure to the second, third, and fourth quartile levels of NO 2 were 1.42 [95% confidence interval (CI): 1.03, 1.96], 1.90 (95% CI: 1.30, 2.76), and 2.27 (95% CI: 1.39, 3.71), respectively. The association for NO 2 exposure existed in the 3 trimesters but not prepregnancy. Exposure to locally extreme low temperatures (< fifth percentile) in the third trimester was associated with increased risks of abruption (OR = 3.68 ; 95% CI: 1.67, 8.08) in comparison with locally moderate temperatures (25th-75th percentile). Stratified analysis showed no statistical significances within the effect modifiers. DISCUSSION Based on a large-scale live birth record, the study suggested that exposure to air pollutants, mainly NO 2 , during pregnancy may be a substantial risk factor for placental abruption. https://doi.org/10.1289/EHP14714.
Collapse
Affiliation(s)
- Tong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenzheng Zhou
- Clinical and Public Health Research Center, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Research Center for Prevention & Control of Maternal and Child Disease and Public Health, Chongqing, China
| | - Han Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yu Zhan
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, China
| | - Die Tang
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, China
| | - Ying Guo
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chenran Yin
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongyan Wu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yayun Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Niya Zhou
- Clinical and Public Health Research Center, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Research Center for Prevention & Control of Maternal and Child Disease and Public Health, Chongqing, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Zhou
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Syama KP, Blais E, Kumarathasan P. Maternal mechanisms in air pollution exposure-related adverse pregnancy outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178999. [PMID: 40043646 DOI: 10.1016/j.scitotenv.2025.178999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Air pollution exposure is linked to various adverse health effects including cardiopulmonary, neurological and reproductive outcomes. Susceptible populations such as pregnant women and infants can be affected to a greater extent compared to healthy individuals. Thus, understanding air pollutant exposure-related toxicity pathways in pregnancy can provide information on developmental origin of health and diseases in both mothers and infants. The objective of this literature review was to explore maternal mechanisms underlying the association between air pollutant exposures and adverse maternal/infant health effects. A total of 209 articles published from 1996 until November 2024 were retrieved using PubMed, Scopus and Web of Science using relevant search terms (e.g. "Air Pollution" AND "Maternal" AND "Infant" AND "Health" AND "Biomarker"). After screening and removal of articles based on exclusion criteria, 36 observational studies were included for the final analysis. There were relatively fewer articles on air pollution exposure-related adverse maternal health effects compared to air-pollution-related adverse infant health effects. Of these articles selected for the final review, 32 studies compared the effects of particulate matter (PM), PM2.5, few on other (gaseous) pollutants and one study on effects of mixtures of air pollutants. Adverse maternal health effects included hypertensive disorders, gestational diabetes mellitus (GDM) and clinically recognized early pregnancy loss, while adverse infant health effects ranged from low birth weight, preterm birth, changes in fetal heart rate, crown rump length and fetal hyperinsulinism. Moreover, oxidative stress, inflammatory responses, endothelial and metabolic dysfunction were some of the mechanisms implicated in air pollution exposure-related adverse birth outcomes. These findings warrant further validation work and identification of maternal mechanism(s) constituting the causal pathway.
Collapse
Affiliation(s)
- Krishna Priya Syama
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada
| | - Erica Blais
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada
| | - Premkumari Kumarathasan
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Zhong C, Tian Q, Wei J, Lu W, Xu R, Lan M, Hu N, Qiu L, Zhang H, Li S, Shi C, Liu Y, Zhou Y. Association of short-term exposure to PM 1 with hospital admission from total and cause-specific respiratory diseases. Respirology 2025; 30:242-252. [PMID: 39622696 DOI: 10.1111/resp.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 03/04/2025]
Abstract
BACKGROUND AND OBJECTIVE Evidence of short-term exposure to particulate matter with an aerodynamic diameter ≤1 μm (PM1) on hospital admission for respiratory diseases (RDs) is limited. We aimed to estimate the associated risk of PM1 on hospital admissions for RDs. METHODS In this time-stratified case-crossover study, we assigned cases who had been admitted to hospital for RDs in Guangdong, China between 2016 and 2019. Exposure to PM1 was assigned on the basis of the patient's residence for each case day and its control days. Conditional logistic regression models and distributed lag nonlinear models were used to quantify the association of PM1 exposure with hospital admission for RDs at lag 0-1 days. RESULTS A total of 408, 658 hospital admissions for total RDs were recorded in the study period. Each 10 μg/m3 increase in PM1 was significantly associated with a 1.39% (95% confidence interval [CI]: 0.87%-1.91%), 1.97% (95% CI: 1.06%-2.87%) and 1.69% (95% CI: 0.67%-2.71%) increase in odds of hospital admissions for total RDs, chronic obstructive pulmonary disease (COPD) and pneumonia. The excess fraction of hospital admission for total RDs attributable to PM1 exposure was 6.03%, while 6.59% for COPD and 7.48% for pneumonia. Besides, higher excess fractions were more pronounced for hospital admission of total RDs in older patients (>75 years). CONCLUSION Our results support that PM1 is associated with increased risks of hospital admissions for RDs. It emphasizes the needs to pay attention to the effects of PM1 on respiratory health, especially among elderly patients.
Collapse
Affiliation(s)
- Chenghui Zhong
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qi Tian
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Guangzhou, Guangdong, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, Maryland, USA
| | - Wenfeng Lu
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meiqi Lan
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nan Hu
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lan Qiu
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Han Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - SaiFeng Li
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiang Shi
- National Meteorological Information Center, Beijing, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Zhou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Wang T, Wang J, Sun L, Deng Y, Xiang Y, Wang Y, Chen J, Peng W, Cui Y, He M. Effect of Ozone Exposure on Cardiovascular and Cerebrovascular Disease Mortality in the Elderly. TOXICS 2025; 13:184. [PMID: 40137511 PMCID: PMC11945528 DOI: 10.3390/toxics13030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Ozone pollution has increased alongside China's economic development, contributing to public health issues such as cardiovascular and cerebrovascular diseases. At present, the problem of an aging population is aggravated, which is worth more attention in terms of the health problems of elderly people. METHODS This study employed a distributional lag nonlinear model (DLNM) with Poisson regression to analyze the impact of ozone on cardiovascular and cerebrovascular disease mortality among the elderly in Shenyang, China, from 2014 to 2018. In addition, a time-series generalized additive regression model (GAM) was used to analyze the joint effect between PM2.5 and ozone. RESULTS We found a positive correlation between ozone and mortality from cardiovascular and cerebrovascular diseases in the elderly. The maximum relative risk (RR) of mortality from cardiovascular and cerebrovascular diseases for every 10 μg/m3 increase in ozone was 1.005 (95% CI: 1.002-1.008). Males (RR: 1.018, 95% CI: 1.007-1.030), individuals in unconventional marital status (RR: 1.024, 95% CI: 1.011-1.038), and outdoor workers (RR: 1.017, 95% CI: 1.002-1.031) were more vulnerable to ozone pollution. This study did not find significant differences in the impact of ozone pollution on cardiovascular and cerebrovascular disease mortality risks among different educational groups. Additionally, a joint effect between ozone and PM2.5 was observed. CONCLUSION This study confirms that ozone exposure is positively associated with increased mortality from cardiovascular and cerebrovascular diseases. It emphasizes the joint effect of ozone and PM2.5 in exacerbating cardiovascular and cerebrovascular disease mortality.
Collapse
Affiliation(s)
- Tianyun Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Physical Factors and Health, School of Public Health, Ministry of Education, China Medical University, Shenyang 110122, China; (T.W.); (Y.D.); (Y.X.); (Y.W.); (J.C.); (W.P.); (Y.C.)
| | - Junlong Wang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang 110005, China; (J.W.); (L.S.)
| | - Li Sun
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang 110005, China; (J.W.); (L.S.)
| | - Ye Deng
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Physical Factors and Health, School of Public Health, Ministry of Education, China Medical University, Shenyang 110122, China; (T.W.); (Y.D.); (Y.X.); (Y.W.); (J.C.); (W.P.); (Y.C.)
| | - Yuting Xiang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Physical Factors and Health, School of Public Health, Ministry of Education, China Medical University, Shenyang 110122, China; (T.W.); (Y.D.); (Y.X.); (Y.W.); (J.C.); (W.P.); (Y.C.)
| | - Yuting Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Physical Factors and Health, School of Public Health, Ministry of Education, China Medical University, Shenyang 110122, China; (T.W.); (Y.D.); (Y.X.); (Y.W.); (J.C.); (W.P.); (Y.C.)
| | - Jiamei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Physical Factors and Health, School of Public Health, Ministry of Education, China Medical University, Shenyang 110122, China; (T.W.); (Y.D.); (Y.X.); (Y.W.); (J.C.); (W.P.); (Y.C.)
| | - Wen Peng
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Physical Factors and Health, School of Public Health, Ministry of Education, China Medical University, Shenyang 110122, China; (T.W.); (Y.D.); (Y.X.); (Y.W.); (J.C.); (W.P.); (Y.C.)
| | - Yuanyao Cui
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Physical Factors and Health, School of Public Health, Ministry of Education, China Medical University, Shenyang 110122, China; (T.W.); (Y.D.); (Y.X.); (Y.W.); (J.C.); (W.P.); (Y.C.)
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Physical Factors and Health, School of Public Health, Ministry of Education, China Medical University, Shenyang 110122, China; (T.W.); (Y.D.); (Y.X.); (Y.W.); (J.C.); (W.P.); (Y.C.)
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
10
|
Zhang X, Pei Z, Wang Y, Pang Y, Hao H, Liu Q, Wu M, Zhang R, Zhang H. Associations of short-term exposure to air pollution with risk of pulmonary space-occupying lesions morbidity based on a time-series study. BMC Public Health 2025; 25:112. [PMID: 39789511 PMCID: PMC11721322 DOI: 10.1186/s12889-024-21245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Pulmonary space-occupying lesions are typical chronic pulmonary diseases that contribute significantly to healthcare resource use and impose a large disease burden in China. A time-series ecological trend study was conducted to investigate the associations between environmental factors and hospitalizations for pulmonary space-occupying lesions in North of China from 2014 to 2022. METHODS The DLNM was used to quantify the association of environmental factors with lung cancer admissions. The heating-, age-, gender-, malignancy-specific effects were further estimated to identify the susceptible groups. RESULTS During the study period, fluctuations in air pollutants and climate conditions closely mirrored changes in hospitalizations for pulmonary space-occupying lesions. Totally, the distributed lag surface showed clear positive associations between pulmonary tumor hospitalization and PM2.5 (RRlag30: 1.000912; 95%CI: 1.000076, 1.00175), PM10 (RRlag30: 1.002246; 95%CI: 1.000474, 1.004021), SO2 (RRlag30: 1.002714; 95%CI: 1.001071, 1.004414), CO (RRlag30: 1.002231; 95%CI: 1.000592, 1.003873). Additionally, the associations between air pollutants and hospitalizations for pulmonary space-occupying lesions were significantly stronger during the heating season. Population aged 65 or older, females and those diagnosed with malignancies were more vulnerable for the risk of pulmonary space-occupying lesions diseases due to air pollution exposure. CONCLUSIONS The present study illustrated risk and burden for pulmonary space-occupying lesions hospitalization associated with air pollution, especially among population aged ≥ 65, or female.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, PR China
| | - Zijie Pei
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, PR China
| | - Yan Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Haiyan Hao
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China.
| | - Helin Zhang
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, PR China.
| |
Collapse
|
11
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Mu J, Zhong H, Jiang M. Effects of ambient PM 2.5 on non-accidental death: a time-series study in Shenzhen, China during 2014-2019. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:56-67. [PMID: 38602490 DOI: 10.1080/09603123.2024.2341430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
This study aims to investigate the impact of PM2.5 on non-accidental death of residents. The single-pollutant model revealed that the influence of PM2.5 on non-accidental death was significant at lag0 and lag4-6, and was greatest at lag5. A 10 µg/m3 increase in PM2.5 was related with a 1.31% increase in non-accidental deaths. The connection between PM2.5 and non-accidental death was stronger in femalesthan males, in people aged ≥ 65 years than people aged < 65 years, and in people below high school education than people with high school education or above. Two-pollutant model revealed that the influence of PM2.5 on non-accidental death was essentially unchanged when CO, SO2, and O3 were included and reduced when NO2 was included. The multiple-pollutant model showed that the effect of ambient PM2.5 on non-accidental death was reduced. An increase in PM2.5 concentrations may cause an increase in non-accidental death.
Collapse
Affiliation(s)
- Jingfeng Mu
- Department of Public Health, Shenzhen Eye Hospital, Shenzhen, China
| | - Haoxi Zhong
- Department of Public Health, Shenzhen Eye Hospital, Shenzhen, China
| | - Mingjie Jiang
- Department of Public Health, Shenzhen Eye Hospital, Shenzhen, China
| |
Collapse
|
13
|
Chen Z, Cheng Z, Wu Y, Yu Z, Qin K, Jiang C, Xu J. The association between ambient air pollution and the risk of incident nasopharyngeal carcinoma in Hangzhou, China. Sci Rep 2024; 14:31887. [PMID: 39738575 PMCID: PMC11686072 DOI: 10.1038/s41598-024-83388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Ambient air pollution exposure was associated with an increased risk of incident cancer, but few previous studies have focused on the associations between ambient air pollution and nasopharyngeal carcinoma (NPC). Thus, our goal is to examine whether exposure to ambient air pollution in Hangzhou, which includes sulfur dioxide (SO2), nitrogen dioxide (NO2), and inhalable particles (PM10), will have an impact the risk of incident cancer. We collected data on daily ambient air pollution data, climate, and daily incidence of NPC in Hangzhou from Jan 1, 2013, to Dec 31, 2022. We applied a generalized additive model (GAM) based on the Poisson distribution to investigate the effect of ambient air pollution on the risk of incident NPC. The effects of ambient air pollution exposure on NPC were also discussed in subgroups by age, gender, region, and season. A total of 3121 NPC incident cases were included during the study period. We discovered that the risk of incident NPC was increased by 0.75% (95% CI: 0.01-1.58), 0.36% (95% CI: 0.03-0.69), and 0.14% (95% CI: 0.01-0.28) for every 1 μg/m3 increase in the concentration of SO2, NO2, and PM10, respectively. These pollutants continued to have a substantial impact on the risk of incident NPC even after controlling for other ambient air pollutants. A noteworthy affirmative connection was a significant positive correlation between SO2 and NPC in male, warm season, urban areas, and elderly subgroups. In contrast to SO2, there was a significant positive correlation between PM10 and NPC in female, warm season, rural areas, non-elderly, and elderly subgroups. The association between NO2 and NPC was significantly positively correlated in male, female, rural areas, and elderly subgroups. In conclusion, our study's findings demonstrated that exposure to airborne SO2, NO2, and PM10 can negatively impact the risk of incident NPC.
Collapse
Affiliation(s)
- Zesheng Chen
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), 568 Ming-Shi Rd, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Zongxue Cheng
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), 568 Ming-Shi Rd, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Yaoyao Wu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), 568 Ming-Shi Rd, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Zhecong Yu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), 568 Ming-Shi Rd, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Kang Qin
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), 568 Ming-Shi Rd, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Caixia Jiang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), 568 Ming-Shi Rd, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Jue Xu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), 568 Ming-Shi Rd, Hangzhou, 310021, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Park J, Oh J, Yoon H, Kim A, Kang C, Kwon D, Park J, Kim H, Lee W. Association between fine particulate matter (PM2.5) and violence cases in South Korea: A nationwide time-stratified care-crossover study. PLoS One 2024; 19:e0315914. [PMID: 39689126 DOI: 10.1371/journal.pone.0315914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
Several studies reported the roles of short-term exposure to fine particulate matter (PM2.5) on violent behaviors; however, existing findings had a limitation in assessing the population-representative association between violence and PM2.5 due to the limited data availability: most studies have been based on homicides in monitored urban areas. This study collected violence data from the National Hospital Discharge In-depth Injury Survey in South Korea (2015-2019), based on population-representative samples. To cover unmonitored areas, we used the daily modeled PM2.5, the predicted result driven by a machine-learning ensemble model covering all inland districts in South Korea (R2>0.94). We evaluated the national association between short-term exposure to PM2.5 and violence cases with a time-stratified case-crossover design. A total of 2,867 violence cases were included. We found an approximately linear association between short-term exposure to PM2.5 (lag 0-2 days) and an increased risk of violence, with an estimated odd ratio (OR) per 10 μg/m3 of PM2.5 of 1.07 with 95% CI: 1.02-1.12. This relationship was more prominent in males and individuals aged 64 years or less than in females and individuals aged 65 years or older for the most part. The estimated excess fraction of violence cases attributable to PM2.5 was 14.53% (95% CI: 4.54%-22.92%), and 6.42% (95% CI: 1.97%-10.26%) of the excess violence was attributable to non-compliance with the WHO guidelines (daily PM2.5 > 15 μg/m3). Our findings might be evidence of the need to establish elaborate action plans and stricter air quality guidelines to reduce the hazardous impacts of PM2.5 on violence in South Korea.
Collapse
Affiliation(s)
- Jiwoo Park
- Department of Information Convergence Engineering, Pusan National University, Yangsan, South Korea
| | - Jieun Oh
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Hyewon Yoon
- Graduate School of Data Science, Pusan National University, Pusan, South Korea
| | - Ayoung Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Cinoo Kang
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Dohoon Kwon
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Jinah Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ho Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Whanhee Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, South Korea
- Research and Management Center for Health Risk of Particulate Matter, Seoul, Republic of Korea
| |
Collapse
|
15
|
Tang C, Zhang Y, Yi J, Lu Z, Xuan X, Jiang H, Guo D, Xiang H, Wu T, Yan J, Zhang S, Wang Y, Zhang J. The association between ozone exposure and blood pressure in a general Chinese middle-aged and older population: a large-scale repeated-measurement study. BMC Med 2024; 22:559. [PMID: 39593059 PMCID: PMC11600574 DOI: 10.1186/s12916-024-03783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The relationship between ozone (O3) exposure and blood pressure (BP) remains inconclusive. Given the scarcity of Chinese epidemiological data, more research on this association is of paramount importance, particularly among middle-aged and older Chinese populations. METHODS This study involved 10,875 participants (median age: 60.0 years) in Xiamen, China, from 2013 to 2019, with 34,939 repeated BP measurements. Air pollutant exposure data, including O3, particulate matter, nitrogen dioxide, sulfur dioxide, and carbon monoxide were derived from China High Air Pollutants and High-resolution Air Quality Reanalysis datasets using a k-nearest neighbor algorithm. The relationship between mixed air pollutant exposure and BP was evaluated using Bayesian kernel machine regression model. The effects of daily-specific O3 exposure on BP were assessed by distributed lag models integrated into a linear mixed-effects framework. The mediating role of total cholesterol (TC), serum total bilirubin (STB), triglyceride (TG), and low-density lipoprotein (LDL) were examined using multilevel mediation analysis with a fully adjusted model. RESULTS Mixed air pollutant exposure was positively correlated with BP, with O3 being a predominant contributor exhibiting an inverse effect. O3 exposure had immediate effects on pulse pressure (PP), while systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) showed delayed responses, with 3-, 14-, and 8-day lags, respectively. During the study period of up to 30 days, each 10 μg/m3 increase in maximum daily 8-h average O3 concentration was associated with reductions in SBP (β = - 1.176 mm Hg), DBP (- 0.237 mm Hg), PP (β = - 0.973 mm Hg), and MAP (β = - 0.544 mm Hg). Stronger correlations were observed in the older participants (aged ≥ 65 years), overweight/obese individuals, smokers and alcohol consumers, and those with hypertension or type 2 diabetes mellitus. STB and LDL mediated these effects, while TC and TG played mitigating roles. CONCLUSIONS Short-term O3 exposure is negatively associated with BP in middle-aged and older Chinese individuals. The findings provide preliminary evidence for the impact of O3 exposure on BP regulation and underscore the urgent need to reassess public health policies in response to O3 pollution.
Collapse
Affiliation(s)
- Chen Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian, China
| | - Yiqin Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Jingping Yi
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian, China
| | - Xianfa Xuan
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | | | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian, China
| | - Hanyu Xiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian, China
| | - Ting Wu
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Jianhua Yan
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Siyu Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yuxin Wang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
- Department of Nephrology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, China.
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian, China.
- Department of Nephrology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, China.
| |
Collapse
|
16
|
Zhang L, Ke X, Liu S, You J, Wang X, Li N, Yin C, Zhang Y, Bai Y, Wang M, Zheng S. A longitudinal study on the effect of PM 2.5 components on blood pressure in the hypertensive patients from 2011 to 2019. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117054. [PMID: 39305771 DOI: 10.1016/j.ecoenv.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/17/2024]
Abstract
Extensive research has established the link between PM2.5 exposure and blood pressure (BP) levels among normal individuals. However, the association between PM2.5 components and BP levels in hypertensive patients has not been fully explored. In this study, 12 971 hypertensive cases from Jinchang cohort (in Jinchang City, China) with nearly 9 years of follow-up were enrolled. Based on the linear mixed-effect model, the effects of fine particulate matter (PM2.5) and five major components [sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), black carbon (BC) and organic matter (OM)]on BP [systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP)]were evaluated by single-component model, component-joint model and component-residual model, respectively. A positive correlation was found between PM2.5 as well as its components (SO42-, NO3-, NH4+, BC and OM) exposure and BP levels. The effects of SO42-, BC and OM on BP were observed to be the most robust among the three models. Based on the results of interaction effects and stratified analysis, the effect of BC exposure on SBP, and the effect of PM2.5 and its five components on PP were greater in female than in males. Compared with elderly hypertensive patients, OM had more significant effects on SBP, DBP and MAP in young and (or) middle-aged hypertensive patients. During the heating season, the effect of PM2.5 and its components on BP was grater compared to the non-heating season. Meanwhile, PM2.5 and its components have a greater influence on BP in patients with hypertension combined with diabetes. Therefore, the findings suggested that both PM2.5 exposure and its components had a significant effect on BP in patients with hypertension. Women and young and middle-aged hypertensive patient were the sensitive population. The implementation of source control and reduction of PM2.5 emission (mainly for SO42-, BC and OM) may be of great significance to control BP level and could reduce the risk of cardiovascular disease in patients with hypertension.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ximeng Ke
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shaodong Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinlong You
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xue Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Na Li
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737102, China
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737102, China
| | - Yaqun Zhang
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730020, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
17
|
Jiang S, Tong X, Yu K, Yin P, Shi S, Meng X, Chen R, Zhou M, Kan H, Niu Y, Li Y. Ambient particulate matter and chronic obstructive pulmonary disease mortality: a nationwide, individual-level, case-crossover study in China. EBioMedicine 2024; 107:105270. [PMID: 39137570 PMCID: PMC11367568 DOI: 10.1016/j.ebiom.2024.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Short-term exposure to particulate matter air pollution has been associated with the exacerbations of COPD, but its association with COPD mortality was not fully elucidated. We aimed to assess the association between short-term particulate matter exposure and the risk of COPD mortality in China using individual-level data. METHODS We derived 2.26 million COPD deaths from a national death registry database in Chinese mainland between 2013 and 2019. Exposures to fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) were assessed by satellite-based models of a 1 × 1 km resolution and assigned to each individual based on residential address. The associations of PM2.5 and PM2.5-10 with COPD mortality were examined using a time-stratified case-crossover design and conditional logistic regressions with distributed lag models. We further conducted stratified analyses by age, sex, education level, and season. FINDINGS Short-term exposures to both PM2.5 and PM2.5-10 were associated with increased risks of COPD mortality. These associations appeared and peaked on the concurrent day, attenuated and became nonsignificant after 5 or 7 days, respectively. The exposure-response curves were approximately linear without discernible thresholds. An interquartile range increase in PM2.5 and PM2.5-10 concentrations was associated with 4.23% (95% CI: 3.75%, 4.72%) and 2.67% (95% CI: 2.18%, 3.16%) higher risks of COPD mortality over lag 0-7 d, respectively. The associations of PM2.5 and PM2.5-10 attenuated slightly but were still significant in the mutual-adjustment models. A larger association of PM2.5-10 was observed in the warm season. INTERPRETATION This individual-level, nationwide, case-crossover study suggests that short-term exposure to PM2.5 and PM2.5-10 might act as one of the environmental risk factors for COPD mortality. FUNDING This study is supported by the National Key Research and Development Program of China (2023YFC3708304 and 2022YFC3702701), the National Natural Science Foundation of China (82304090 and 82030103), the 3-year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.2-YQ31), and the Science and Technology Commission of Shanghai Municipality (21TQ015).
Collapse
Affiliation(s)
- Shuo Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xunliang Tong
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kexin Yu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical, Beijing, China.
| |
Collapse
|
18
|
Dye JA, Nguyen HH, Stewart EJ, Schladweiler MCJ, Miller CN. Sex Differences in Impacts of Early Gestational and Peri-Adolescent Ozone Exposure on Lung Development in Rats: Implications for Later Life Disease in Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1636-1663. [PMID: 39182948 PMCID: PMC12036003 DOI: 10.1016/j.ajpath.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 08/27/2024]
Abstract
Air pollution exposure during pregnancy may affect fetal growth. Fetal growth restriction (FGR) is associated with reduced lung function in children that can persist into adulthood. Using an established model of asymmetrical FGR in Long-Evans rats, this study investigated sex differences in effects of early life ozone exposure on lung development and maturation. Adverse health effects for i) gestational exposure (with impacts on primary alveolarization), ii) peri-adolescent exposure (with impacts on secondary alveolarization), and iii) cumulative exposure across both periods were evaluated. Notably, female offspring were most affected by gestational ozone exposure, likely because of impaired angiogenesis and corresponding decreases in primary alveolarization. Females had diminished lung capacity, fewer mature alveoli, and medial hypertrophy of small and large pulmonary arteries. Males, especially FGR-prone offspring, were more affected by peri-adolescent ozone exposure. Males had increased ductal areas, likely due to disrupted secondary alveolarization. Altered lung development may increase risk of developing diseases, such as pulmonary arterial hypertension or chronic obstructive pulmonary disease. Pulmonary arterial hypertension disproportionately affects women. In the United States, chronic obstructive pulmonary disease prevalence is increasing, especially in women; and prevalence for both men and women is highest in urbanized areas. This investigation underlines the importance of evaluating results separately by sex, and provides biologic plausibility for later consequences of early-life exposure to ozone, a ubiquitous urban air pollutant.
Collapse
Affiliation(s)
- Janice A Dye
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina.
| | - Helen H Nguyen
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina
| | - Mette C J Schladweiler
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Colette N Miller
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
19
|
Crank PJ, O'Lenick CR, Baniassadi A, Sailor DJ, Wilhelmi O, Hayden M. Sociodemographic Determinants of Extreme Heat and Ozone Risk Among Older Adults in 3 Sun Belt Cities. J Gerontol A Biol Sci Med Sci 2024; 79:glae164. [PMID: 39073887 DOI: 10.1093/gerona/glae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Vulnerable populations across the United States are frequently exposed to extreme heat, which is becoming more intense due to a combination of climate change and urban-induced warming. Extreme heat can be particularly detrimental to the health and well-being of older citizens when it is combined with ozone. Although population-based studies have demonstrated associations between ozone, extreme heat, and human health, few studies focused on the role of social and behavioral factors that increase indoor risk and exposure among older adults. METHODS We conducted a household survey that aimed to understand how older adults are affected by extreme heat and ozone pollution inside and outside of their homes across Houston, Phoenix, and Los Angeles. We examine contributing factors to the risk of self-reported health effects using a generalized linear mixed-effects regression model of telephone survey data of 909 older adults in 2017. RESULTS We found an increased occurrence of self-reported symptoms for extreme heat with preexisting respiratory health conditions and a lack of air conditioning access; self-reported ozone symptoms were more likely with preexisting respiratory health conditions. The risk of heat-related symptoms was slightly higher in Los Angeles than Houston and Phoenix. We found several demographic, housing, and behavioral characteristics that influenced the risk of heat- and ozone-related symptoms. CONCLUSIONS The increased risk among older adults based on specific social and behavioral factors identified in this study can inform public health policy and help cities tailor their heat and ozone response plans to the specific needs of this vulnerable population.
Collapse
Affiliation(s)
- Peter J Crank
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
| | - Cassandra R O'Lenick
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amir Baniassadi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - David J Sailor
- Urban Climate Research Center, Arizona State University, Tempe, Arizona, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona, USA
| | - Olga Wilhelmi
- NSF National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Mary Hayden
- Lyda Hill Institute for Human Resilience, University of Colorado-Colorado Springs, Colorado Springs, Colorado, USA
| |
Collapse
|
20
|
Mutlu A, Aydın Keskin G, Çıldır İ. Predicting hospital admissions for upper respiratory tract complaints: An artificial neural network approach integrating air pollution and meteorological factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:759. [PMID: 39046576 DOI: 10.1007/s10661-024-12908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
This study uses artificial neural networks (ANNs) to examine the intricate relationship between air pollutants, meteorological factors, and respiratory disorders. The study investigates the correlation between hospital admissions for respiratory diseases and the levels of PM10 and SO2 pollutants, as well as local meteorological conditions, using data from 2017 to 2019. The objective of this study is to clarify the impact of air pollution on the well-being of the general population, specifically focusing on respiratory ailments. An ANN called a multilayer perceptron (MLP) was used. The network was trained using the Levenberg-Marquardt (LM) backpropagation algorithm. The data revealed a substantial increase in hospital admissions for upper respiratory tract diseases, amounting to a total of 11,746 cases. There were clear seasonal fluctuations, with fall having the highest number of cases of bronchitis (N = 181), sinusitis (N = 83), and upper respiratory infections (N = 194). The study also found demographic differences, with females and people aged 18 to 65 years having greater admission rates. The performance of the ANN model, measured using R2 values, demonstrated a high level of predictive accuracy. Specifically, the R2 value was 0.91675 during training, 0.99182 during testing, and 0.95287 for validating the prediction of asthma. The comparative analysis revealed that the ANN-MLP model provided the most optimal result. The results emphasize the effectiveness of ANNs in representing the complex relationships between air quality, climatic conditions, and respiratory health. The results offer crucial insights for formulating focused healthcare policies and treatments to alleviate the detrimental impact of air pollution and meteorological factors.
Collapse
Affiliation(s)
- Atilla Mutlu
- Department of Environmental Engineering, College of Engineering, Balikesir University, Balikesir, Turkey.
| | - Gülşen Aydın Keskin
- Department of Industrial Engineering, College of Engineering, Balikesir University, Balikesir, Turkey
| | - İhsan Çıldır
- Ministry of Health Edremit State Hospital, Edremit, Balikesir, Turkey
| |
Collapse
|
21
|
Xu C, Yin P, Jiang Y, Lin X, Shi S, Li X, Chen J, Jiang Y, Meng X, Zhou M. Joint Effect of Short-Term Exposure to Fine Particulate Matter and Ozone on Mortality: A Time Series Study in 272 Chinese Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12865-12874. [PMID: 38995089 DOI: 10.1021/acs.est.3c10951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Short-term exposure to PM2.5 or O3 can increase mortality risk; however, limited studies have evaluated their interaction. A multicity time series study was conducted to investigate the synergistic effect of PM2.5 and O3 on mortality in China, using mortality data and high-resolution pollutant predictions from 272 cities in 2013-2015. Generalized additive models were applied to estimate associations of PM2.5 and O3 with mortality. Modification and interaction effects were explored by stratified analyses and synergistic indexes. Deaths attributable to PM2.5 and O3 were evaluated with or without modification of the other pollutant. The risk of total nonaccidental mortality increased by 0.70% for each 10 μg/m3 increase in PM2.5 when O3 levels were high, compared to 0.12% at low O3 levels. The effect of O3 on total nonaccidental mortality at high PM2.5 levels (1.26%) was also significantly higher than that at low PM2.5 levels (0.59%). Similar patterns were observed for cardiovascular or respiratory diseases. The relative excess risk of interaction and synergy index of PM2.5 and O3 on nonaccidental mortality were 0.69% and 1.31 with statistical significance, respectively. Nonaccidental deaths attributable to short-term exposure of PM2.5 or O3 when considering modification of the other pollutant were 28% and 31% higher than those without considering modification, respectively. Our results found synergistic effects of short-term coexposure to PM2.5 and O3 on mortality and suggested underestimations of attributable risks without considering their synergistic effects.
Collapse
Affiliation(s)
- Chang Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Xiaolei Lin
- School of Data Science, Fudan University, Shanghai 200433, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Xinyue Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Jiaxin Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Yichen Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
- Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
22
|
Montoro-Ramírez EM, Parra-Anguita L, Álvarez-Nieto C, Parra G, López-Medina IM. Climate change effects in older people's health: A scoping review. J Adv Nurs 2024. [PMID: 38895960 DOI: 10.1111/jan.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Climate change has serious consequences for the morbidity and mortality of older adults. OBJECTIVE To identify the effects of climate change on older people's health. METHODS A scoping review was conducted following the Joanna Briggs Institute guidelines and the PRISMA-ScR checklist. Quantitative research and reports from organizations describing the effects of climate change on older people were selected. RESULTS Sixty-three full-text documents were selected. Heat and air pollution were the two factors that had the most negative effects on cardiovascular and respiratory morbidity and mortality in older people. Mental health and cognitive function were also affected. CONCLUSIONS Climate change affects several health problems in older individuals, especially high temperatures and air pollution. Nursing professionals must have the necessary skills to respond to the climate risks in older adults. More instruments are required to determine nursing competencies on climate change and the health of this population group. PATIENT OF PUBLIC CONTRIBUTION No patient or public contribution.
Collapse
Affiliation(s)
| | - Laura Parra-Anguita
- Department of Nursing, Faculty of Health Sciences, University of Jaen, Jaen, Spain
| | - Carmen Álvarez-Nieto
- Department of Nursing, Faculty of Health Sciences, University of Jaen, Jaen, Spain
| | - Gema Parra
- Animal Biology, Plant Biology and Ecology Department, University of Jaen, Jaen, Spain
| | | |
Collapse
|
23
|
Cheng Z, Qin K, Zhang Y, Yu Z, Li B, Jiang C, Xu J. Air pollution and cancer daily mortality in Hangzhou, China: an ecological research. BMJ Open 2024; 14:e084804. [PMID: 38858146 PMCID: PMC11168133 DOI: 10.1136/bmjopen-2024-084804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Long-term exposure to air pollution has been linked to cancer incidence. However, the evidence is limited regarding the effect of short-term exposure to air pollution on cancer mortality. OBJECTIVES This study aimed to investigate associations between short-term exposure to air pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter <10 mm (PM10) and PM2.5) and cancer daily mortality. METHODS This study used air quality, meteorological and daily cancer death data from 2014 to 2019 in Hangzhou, China. Generalised additive models (GAM) with quasi-Poisson regression were used to analyse the associations between air pollutants and cancer mortality with adjustment for confounding factors including time trends, day of week, temperature and humidity. Then, we conducted stratified analyses by sex, age, season and education. In addition, stratified analyses of age, season and education were performed within each sex to determine whether sex difference was modified by such factors. RESULTS After adjusting for potential confounders, the GAM results indicated a statistically significant relationship between increased cancer mortality and elevated air pollution concentrations, but only in the female population. For every 10 μg/m3 rise in pollutant concentration, the increased risk of cancer death in females was 6.82% (95% CI 3.63% to 10.10%) for SO2 on lag 03, and 2.02% (95% CI 1.12% to 2.93%) for NO2 on lag 01 and 0.89% (95% CI 0.46% to 1.33%) for PM10 on lag 03 and 1.29% (95% CI 0.64% to 1.95%) for PM2.5 on lag 03. However, no statistically significant association was found among males. Moreover, the differences in effect sizes between males and females were more pronounced during the cold season, among the elderly and among subjects with low levels of education. CONCLUSIONS Increased cancer mortality was only observed in females with rising concentrations of air pollutants. Further research is required to confirm this sex difference. Advocate for the reduction of air pollutant emissions to protect vulnerable groups.
Collapse
Affiliation(s)
- Zongxue Cheng
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Kang Qin
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Zhang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhecong Yu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Li
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Caixia Jiang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jue Xu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
24
|
Cai C, Zhu S, Qin M, Li X, Feng C, Yu B, Dai S, Qiu G, Li Y, Ye T, Zhong W, Shao Y, Zhang L, Jia P, Yang S. Long-term exposure to PM 2.5 chemical constituents and diabesity: evidence from a multi-center cohort study in China. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 47:101100. [PMID: 38881803 PMCID: PMC11179652 DOI: 10.1016/j.lanwpc.2024.101100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
Background Long-term exposure to PM2.5 is known to increase the risks for diabetes and obesity, but its effects on their coexistence, termed diabesity, remain uncertain. This study aimed to investigate the associations of long-term exposure to PM2.5 and its chemical constituents with the risks for diabesity, diabetes, and obesity. Methods This cross-sectional study used the baseline data of a multi-center cohort, consisting of three provincially representative cohorts comprising a total of 134,403 participants from the eastern (Fujian Province), central (Hubei Province), and western (Yunnan Province) regions of China. Obesity and diabetes, and diabesity were identified by a body mass index (BMI) ≥28 kg/m2 and fasting plasma glucose (FPG) ≥126 mg/dL. The average concentrations of PM2.5 and five chemical constituents (NO3 -, SO4 2-, NH4 +, organic matter, and black carbon) over participants' residence during the past three years were estimated using machine learning models. Logistic regression models with double robust estimators, Bayesian kernel machine regression, and weighted quantile sum regression were employed to estimate independent and joint effects of PM2.5 chemical constituents on the risks for diabesity, diabetes, and obesity, as well as the differences from the effects on obesity. Stratified analyses were performed to examine effect modification of sociodemographic and lifestyle factors. Findings There were 129,244 participants with a mean age of 54.1 ± 13.8 years included in the study. Each interquartile range increase in PM2.5 concentration (8.53 μg/m3) was associated with an increased risk for diabesity (OR = 1.23 [1.17, 1.30]), diabetes only (OR = 1.16 [1.13, 1.19]), and obesity only (OR = 1.03 [1.00, 1.05]). Long-term exposure to each PM2.5 chemical constituent was associated with an increased risk for diabesity, where organic matter exposure, with maximum weight (48%), was associated with a higher risk for diabesity (OR = 1.21 [1.16, 1.27]). Among those with obesity, black carbon contributed most (68%) to the joint effect of PM2.5 chemical constituents on diabesity (OR = 1.16 [1.11, 1.22]). Physical activity reduced adverse effects of PM2.5 on diabesity. Also, additive rather than multiplicative effects of obesity on the PM2.5-diabetes association were observed. Interpretation Long-term exposure to PM2.5 and its chemical constituents was associated with an increased risk for diabesity, stronger than associations for diabetes and obesity alone. The main constituents associated with diabesity and obesity were black carbon and organic matter. Funding National Natural Science Foundation of China (42271433, 723B2017), National Key R&D Program of China (2023YFC3604702), Fundamental Research Funds for the Central Universities (2042023kfyq04, 2042024kf1024), the Science and Technology Major Project of Tibetan Autonomous Region of China (XZ202201ZD0001G), Science and technology project of Tibet Autonomous Region(XZ202303ZY0007G), Key R&D Project of Sichuan Province (2023YFS0251), Renmin Hospital of Wuhan University (JCRCYG-2022-003), Jiangxi Provincial 03 Special Foundation and 5G Program (20224ABC03A05), Wuhan University Specific Fund for Major School-level Internationalization Initiatives (WHU-GJZDZX-PT07).
Collapse
Affiliation(s)
- Changwei Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Shuzhen Zhu
- Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Mingfang Qin
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Xiaoqing Li
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Chuanteng Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Bin Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Shaoqing Dai
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- Faculty of Geo-information Science and Earth Observation, University of Twente, Enschede, the Netherlands
| | - Ge Qiu
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Yuchen Li
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Department of Geography, The Ohio State University, Columbus, OH, USA
| | - Tingting Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenling Zhong
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Ying Shao
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Lan Zhang
- Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Peng Jia
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- Hubei Luojia Laboratory, Wuhan, China
- Renmin Hospital, Wuhan University, Wuhan, China
- School of Public Health, Wuhan University, Wuhan, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, China
- Respiratory Department, Chengdu Seventh People's Hospital, Chengdu, China
| |
Collapse
|
25
|
Al Okla SM, Al Rasbi FAZK, Al Marhubi HS, Al Mataani SS, Al Sawai YM, Mohammed HI, Al Mamari MAS, Al Balushi SAA, Abbady AQ. The Impact of Air Pollution on Asthma Severity among Residents Living near the Main Industrial Complex in Oman: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:553. [PMID: 38791768 PMCID: PMC11121288 DOI: 10.3390/ijerph21050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Asthma is a widespread chronic respiratory disease that poses a significant public health challenge. The current study investigated the associations between air pollution and asthma severity among individuals residing near the Sohar industrial port (SIP) in Oman. Despite the presence of multiple major industrial complexes in Oman, limited knowledge regarding their impact on respiratory health is accredited. Hence, the primary objective of this study is to offer valuable insights into the respiratory health consequences of industrial air pollution in Al Batinah North. METHODS The state health clinics' records for patient visits related to asthma were collected for the timeframe spanning 2014 to 2022. Exposure was defined as the distance from the SIP, Majan Industerial Area (MIA), and Sohar Industerial Zone (SIZ) to determine high-, intermediate-, and low-exposure zones (<6 km, 6-12 km and >12 km, respectively). Exposure effect modifications by age, gender, and smoking status were also examined. RESULTS The conducted cross-sectional study of 410 patients (46.1% males and 53.9% females) living in over 17 areas around SIP revealed that 73.2% of asthmatics were under 50 years old, with severity significantly associated with closeness to the port. Risk ratios were estimated to be (RR:2.42; CI95%: 1.01-5.78), (RR:1.91; CI95%: 1.01-3.6), and (RR:1.68; CI95%: 0.92-3.09) for SIP, MIP, and SIZ areas, respectively, compared to the control area. Falaj Al Qabail (6.4 km) and Majees (6 km) had the highest number of asthma patients (N 69 and N 72) and highest percentages of severe asthma cases among these patients (28% and 24%) with significant risk ratios (RR:2.97; CI95%: 1.19-7.45 and RR:2.55; CI95%: 1.00-6.48), correspondingly. Moreover, severe asthma prevalence peaked in the 25-50 age group (RR:2.05; CI95%: 1.26-3.33), and this linkage between asthma and age was much more pronounced in males than females. Smoking and exposure to certain contaminants (dust and smoke) also increased the risk of severe asthma symptoms, but their effects were less important in the high-risk zone, suggesting much more important risk factors. A neural network model accurately predicted asthma risk (94.8% accuracy), with proximity to SIP as the most influential predictor. CONCLUSIONS This study highlights the high asthma burden near SIP, linked to port proximity, smoking, and wind direction as major risk factors. These findings inform vital public health policies to reduce air pollution and improve respiratory health in the region, prompting national policy review.
Collapse
Affiliation(s)
- Souad Mahmoud Al Okla
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
- Department of Biology, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria
| | - Fatima Al Zahra Khamis Al Rasbi
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Hawida Said Al Marhubi
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Shima Salim Al Mataani
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Yusra Mohammed Al Sawai
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Hasa Ibrahim Mohammed
- Liwa Extended Health Center, Ministry of Health, Liwa 325, Oman; (H.I.M.); (M.A.S.A.M.)
| | | | | | - Abdul Qader Abbady
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus P.O. Box 6091, Syria;
- Department of Biology and Medical Science, Faculty of Pharmacy, International University for Science and Technology (IUST), Damascus, Syria
| |
Collapse
|
26
|
Fang B, Wei J, Chen L, Jin S, Li Q, Cai R, Qian N, Gu Z, Chen L, Santon R, Wang C, Song W. Short-term association of particulate matter and cardiovascular disease mortality in Shanghai, China between 2003 and 2020. Front Public Health 2024; 12:1388069. [PMID: 38651122 PMCID: PMC11034551 DOI: 10.3389/fpubh.2024.1388069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Objective Evidence regarding the effects of particulate matter (PM) pollutants on cardiovascular disease (CVD) mortality remains limited in Shanghai, China. Our objective was to thoroughly evaluate associations between PM pollutants and CVD mortality. Methods Daily data on CVD mortality, PM (PM10 and PM2.5) pollutants, and meteorological variables in Shanghai, China were gathered from 2003 to 2020. We utilized a time-series design with the generalized additive model to assess associations between PM pollutants and CVD mortality. Additionally, we conducted stratified analyses based on sex, age, education, and seasons using the same model. Results We found that PM pollutants had a significant association with CVD mortality during the study period. Specifically, there was a 0.29% (95%CI: 0.14, 0.44) increase in CVD mortality for every 10 μg/m3 rise in a 2-day average (lag01) concentration of PM10. A 0.28% (95% CI: 0.07, 0.49) increase in CVD mortality was associated with every 10 μg/m3 rise in PM2.5 concentration at lag01. Overall, the estimated effects of PM10 and PM2.5 were larger in the warm period compared with the cold period. Furthermore, males and the older adult exhibited greater susceptibility to PM10 and PM2.5 exposure, and individuals with lower education levels experienced more significant effects from PM10 and PM2.5 than those with higher education levels. Conclusion Our findings suggested that PM pollutants have a substantial impact on increasing CVD mortality in Shanghai, China. Moreover, the impacts of air pollution on health may be altered by factors such as season, sex, age, and educational levels.
Collapse
Affiliation(s)
- Bo Fang
- School of Public Health, Fudan University, Shanghai, China
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Lei Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shan Jin
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Qi Li
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Renzhi Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Naisi Qian
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhen Gu
- Vital Strategies, Shanghai, China
| | - Lei Chen
- Vital Strategies, Shanghai, China
| | | | - Chunfang Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Weimin Song
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Zhang J, Xu Z, Han P, Fu Y, Wang Q, Wei X, Wang Q, Yang L. Exploring the Modifying Role of GDP and Greenness on the Short Effect of Air Pollutants on Respiratory Hospitalization in Beijing. GEOHEALTH 2024; 8:e2023GH000930. [PMID: 38505689 PMCID: PMC10949333 DOI: 10.1029/2023gh000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
It is unclear whether Gross Domestic Product (GDP) and greenness have additional modifying effects on the association between air pollution and respiratory system disease. Utilizing a time-stratified case-crossover design with a distributed lag linear model, we analyzed the association between six pollutants (PM2.5, PM10, NO2, SO2, O3, and CO) and 555,498 respiratory hospital admissions in Beijing from 1st January 2016 to 31st December 2019. We employed conditional logistic regression, adjusting for meteorological conditions, holidays and influenza, to calculate percent change of hospitalization risk. Subsequently, we performed subgroup analysis to investigate potential effect modifications using a two-sample z test. Every 10 μg/m3 increase in PM2.5, PM10, NO2, SO2, and O3 led to increases of 0.26% (95%CI: 0.17%, 0.35%), 0.15% (95%CI: 0.09%, 0.22%), 0.61% (95%CI: 0.44%, 0.77%), 1.72% (95%CI: 1.24%, 2.21%), and 0.32% (95%CI: 0.20%, 0.43%) in admissions, respectively. Also, a 1 mg/m3 increase in CO levels resulted in a 2.50% (95%CI: 1.96%, 3.04%) rise in admissions. The links with NO2 (p < 0.001), SO2 (p < 0.001), O3 (during the warm season, p < 0.001), and CO (p < 0.001) were significantly weaker among patients residing in areas with higher levels of greenness. No significant modifying role of GDP was observed. Greenness can help mitigate the effects of air pollutants, while the role of GDP needs further investigation.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| | - Zhihu Xu
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthBeijingChina
| | - Peien Han
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| | - Yaqun Fu
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| | - Quan Wang
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
- Brown SchoolWashington University in St. LouisSt. LouisMOUSA
| | - Xia Wei
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
- Department of Health Services Research and PolicyLondon School of Hygiene & Tropical MedicineLondonUK
| | - Qingbo Wang
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| | - Li Yang
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| |
Collapse
|
28
|
Song L, Gao Y, Tian J, Liu N, Nasier H, Wang C, Zhen H, Guan L, Niu Z, Shi D, Zhang H, Zhao L, Zhang Z. The mediation effect of asprosin on the association between ambient air pollution and diabetes mellitus in the elderly population in Taiyuan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19674-19686. [PMID: 38363509 DOI: 10.1007/s11356-024-32255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Evidence around the relationship between air pollution and the development of diabetes mellitus (DM) remains limited and inconsistent. To investigate the potential mediation effect of asprosin on the association between fine particulate matter (PM2.5), tropospheric ozone (O3) and blood glucose homeostasis. A case-control study was conducted on a total of 320 individuals aged over 60 years, including both diabetic and non-diabetic individuals, from six communities in Taiyuan, China, from July to September 2021. Generalized linear models (GLMs) suggested that short-term exposure to PM2.5 was associated with elevated fasting blood glucose (FBG), insulin resistance index (HOMA-IR), as well as reduced pancreatic β-cell function index (HOMA-β), and short-term exposure to O3 was associated with increased FBG and decreased HOMA-β in the total population and elderly diabetic patients. Mediation analysis showed that asprosin played a mediating role in the relationship of PM2.5 and O3 with FBG, with mediating ratios of 10.2% and 18.4%, respectively. Our study provides emerging evidence supporting that asprosin mediates the short-term effects of exposure to PM2.5 and O3 on elevated FBG levels in an elderly population. Additionally, the elderly who are diabetic, over 70 years, and BMI over 24 kg/m2 are more vulnerable to air pollutants and need additional protection to reduce their exposure to air pollution.
Collapse
Affiliation(s)
- Lulu Song
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yuhui Gao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Halimaimaiti Nasier
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Huiqiu Zhen
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zeyu Niu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Dongxing Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Lifang Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
29
|
Pouri N, Karimi B, Kolivand A, Mirhoseini SH. Ambient dust pollution with all-cause, cardiovascular and respiratory mortality: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168945. [PMID: 38042201 DOI: 10.1016/j.scitotenv.2023.168945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
A severe health crisis has been well-documented regarding dust particle exposure. We aimed to present the risk of all-cause, cardiovascular, and respiratory mortality due to particulate matter (PM) exposure during non-dust and dust storm events by performing a meta-analysis. A systematic review of the literature was conducted by an online search of the databases (Google Scholar, Web of Science, Scopus, and PubMed) with no restrictions according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines until December 2022. We performed a random-effects model to compute the pooled rate ratio (RR) of mortality with 95 % confidence intervals (CI). The Office of Health Assessment and Translation (OHAT) risk of bias rating tool was prepared to assess the quality of the individual study. The registration number in PROSPERO was CRD42023423212. We found a 16 % (95 % CI: 0.7 %, 24 %) increase in all-cause, 25 % (95 % CI: 14 %, 37 %) increase in cardiovascular, and 18 % (95 % CI: 13 %, 22 %) increase in respiratory mortality per 10 μg/m3 increment in dust exposure. Furthermore, the RRs per 10 μg/m3 increment in PM10-2.5 were 1.046 (95 % CI: 1.019, 1.072)¸ 1.085 (95 % CI: 1.045, 1.0124), and 1.089 (95 % CI: 0.939, 1.24) for all-cause, cardiovascular, and respiratory mortality, respectively. PM10 during dust days significantly increased the all-cause (1.013, 95 % CI: 1.007, 1.018) cardiovascular mortality risk (1.014, 95 % CI: 1.009, 1.02). We also found significant evidence for all-cause, cardiovascular, and respiratory mortality among females and the elderly age group due to dust particle (PM10-2.5 and PM10) exposure. Our results provided significant evidence about high concentrations of PM10-2.5 and PM10 during dust storm events related to mortality risk.
Collapse
Affiliation(s)
- Nasrin Pouri
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Behrooz Karimi
- Department of Environmental Health Engineering, Arak University of Medical Sciences, Arak, Iran.
| | - Ali Kolivand
- Department of Environmental Health Engineering, Arak University of Medical Sciences, Arak, Iran
| | - Seyed Hamed Mirhoseini
- Department of Environmental Health Engineering, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
30
|
Zeng J, Lin G, Dong H, Li M, Ruan H, Yang J. Association Between Nitrogen Dioxide Pollution and Cause-Specific Mortality in China: Cross-Sectional Time Series Study. JMIR Public Health Surveill 2024; 10:e44648. [PMID: 38315528 PMCID: PMC10877496 DOI: 10.2196/44648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/18/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Nitrogen dioxide (NO2) has been frequently linked to a range of diseases and associated with high rates of mortality and morbidity worldwide. However, there is limited evidence regarding the risk of NO2 on a spectrum of causes of mortality. Moreover, adjustment for potential confounders in NO2 analysis has been insufficient, and the spatial resolution of exposure assessment has been limited. OBJECTIVE This study aimed to quantitatively assess the relationship between short-term NO2 exposure and death from a range of causes by adjusting for potential confounders in Guangzhou, China, and determine the modifying effect of gender and age. METHODS A time series study was conducted on 413,703 deaths that occurred in Guangzhou during the period of 2010 to 2018. The causes of death were classified into 10 categories and 26 subcategories. We utilized a generalized additive model with quasi-Poisson regression analysis using a natural cubic splines function with lag structure of 0 to 4 days to estimate the potential lag effect of NO2 on cause-specific mortality. We estimated the percentage change in cause-specific mortality rates per 10 μg/m3 increase in NO2 levels. We stratified meteorological factors such as temperature, humidity, wind speed, and air pressure into high and low levels with the median as the critical value and analyzed the effects of NO2 on various death-causing diseases at those high and low levels. To further identify potentially vulnerable subpopulations, we analyzed groups stratified by gender and age. RESULTS A significant association existed between NO2 exposure and deaths from multiple causes. Each 10 μg/m3 increment in NO2 density at a lag of 0 to 4 days increased the risks of all-cause mortality by 1.73% (95% CI 1.36%-2.09%) and mortality due to nonaccidental causes, cardiovascular disease, respiratory disease, endocrine disease, and neoplasms by 1.75% (95% CI 1.38%-2.12%), 2.06% (95% CI 1.54%-2.59%), 2.32% (95% CI 1.51%-3.13%), 2.40% (95% CI 0.84%-3.98%), and 1.18% (95% CI 0.59%-1.78%), respectively. Among the 26 subcategories, mortality risk was associated with 16, including intentional self-harm, hypertensive disease, and ischemic stroke disease. Relatively higher effect estimates of NO2 on mortality existed for low levels of temperature, relative humidity, wind speed, and air pressure than with high levels, except a relatively higher effect estimate was present for endocrine disease at a high air pressure level. Most of the differences between subgroups were not statistically significant. The effect estimates for NO2 were similar by gender. There were significant differences between the age groups for mortality due to all causes, nonaccidental causes, and cardiovascular disease. CONCLUSIONS Short-term NO2 exposure may increase the risk of mortality due to a spectrum of causes, especially in potentially vulnerable populations. These findings may be important for predicting and modifying guidelines for NO2 exposure in China.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Internet Medical Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guozhen Lin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hang Dong
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Honglian Ruan
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Liu S, Ho HC. Effects of socioeconomic status and greenspace on respiratory emergency department visits under short-term temperature variations: An age-stratified case time-series study. Soc Sci Med 2024; 343:116613. [PMID: 38290398 DOI: 10.1016/j.socscimed.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/07/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Neighborhood socioeconomic status (SES) and greenspace can affect respiratory health. However, it is unclear whether effects of neighborhood SES and greenspace on respiratory health still exist regardless of temperature variations. METHODS This paper conducted a two-stage, age-stratified case time-series study. The first goal is to examine the associations between two temperature metrics (daily mean temperature [DMT] and diurnal temperature range [DTR]) and respiratory emergency department (ED) visits among four age groups in New York City. The second goal is to evaluate whether neighborhood SES and greenspace would be determinants of respiratory ED visits independent from temperature varying factors. A distributed lag nonlinear model was applied on ED data from 135 zip codes (October 2016 - February 2020). RESULTS Our first-stage analysis indicated that older adults aged 65+ had higher risk of ED visits (RR=2.78, 95% eCI: 2.41, 3.22; with 7 days of lag) on days with low DMT (-10°C), followed by adults aged 18-64 (RR=2.48, 95% eCI: 2.32, 2.65), children and youth aged 5-17 (RR=1.38, 95% eCI: 1.24, 1.53), and young children aged 0-4 (RR=1.04, 95% eCI: 0.96, 1.13). However, no excess respiratory ED visits were observed on days with high DMT (30°C). Higher DTR was associated with higher risk, with children and youth more susceptible when DTR was high (DTR 20°C; RR=5.70, 95% eCI: 3.42, 9.49; with 7 days of lag). The second-stage analysis indicated neighborhood SES and greenspace had significant associations with respiratory ED visits regardless of temperature variations. Specifically, Higher income and greenspace exposure were negatively associated with ED visits among all age groups. CONCLUSIONS Neighborhood SES and greenspace could affect respiratory morbidity regardless of weather conditions. Daily temperature variations accelerated the short-term risk among population subgroups under different weather conditions (e.g., higher risk of days with low DMT among older adults, higher risk of days with high DTR among children and youth aged 5-17), which could create co-effects with neighborhood SES and greenspace on respiratory health.
Collapse
Affiliation(s)
- Shengjie Liu
- Spatial Sciences Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, United States of America; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America.
| | - Hung Chak Ho
- Department of Public and International Affairs, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
32
|
Chen H, Zhao Y, Wang M, Wang G, Liu J, Liu H, Yang B, Shan H, Wang L, Shi Y, Li H, Han C. Associations between short-term exposure to ambient PM 2.5 and incident cases of cardiovascular disease in Yantai, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1124-1135. [PMID: 37092899 DOI: 10.1080/09603123.2023.2202899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
There are limited studies investigating the association between short-term exposure to PM2.5 and incident cardiovascular disease (CVD) cases in China. This study aims to examine the short-term effects of PM2.5 on the incidence of cardiovascular diseases. A combination of Poisson-distribution generalized linear model and distributed lag non-linear model was used to examine the association between short-term exposure to PM2.5 and incident cases of CVD. The results revealed that per 10 µg/m3 increment of PM2.5 would increase the incident CVD cases by 0.147% (Relative Risk: 1.00147, 95% Confidence Interval: 1.00008-1.00286) at a lag of 2 days. The stratified analyses showed higher effects risk in females, older residents (aged 60-75 years), and acute myocardial infarction group (p-value for difference <0.05). This study indicates that short-term exposure to PM2.5 may increase the risk of CVD and highlights the necessity for a higher air quality standard in Yantai, China.
Collapse
Affiliation(s)
- Haotian Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Yang Zhao
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Digital Health and Stroke Program, The George Institute for Global Health, Beijing, China
| | - Maobo Wang
- Department of Prevention and Treatment of Chronic Noncommunicable Diseases, Yantai Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Guangcheng Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Junyan Liu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Haiyun Liu
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Baoshun Yang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Haifeng Shan
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Luyang Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Yukun Shi
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Hongyu Li
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
33
|
Pang L, Jiang M, Sui X, Dou Y, Yu W, Huxley R, Saldiva P, Hu J, Schikowski T, Krafft T, Gao P, Zhao Y, Zhao H, Zhao Q, Chen ZJ. Association of PM 2.5 mass and its components with ovarian reserve in a northern peninsular province, China: The critical exposure period and components. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132735. [PMID: 37832436 DOI: 10.1016/j.jhazmat.2023.132735] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND A possible role of PM2.5 components on ovarian reserve has not been adequately unexplored. OBJECTIVE To evaluate the association between PM2.5 components and women' ovarian reserve over critical exposure periods in northern China, where the level of air pollution is among the nation's highest. METHODS We included 15,102 women with serum anti-Müllerian hormone (AMH) measurements from the Center for Reproductive Medicine of Shandong University during 2015-2019. Concentrations of PM2.5 and its five major components (0.1° × 0.1°), including sulfate, nitrate, ammonium, organic matter, and black carbon, were assigned to each residential address. Multivariable linear mixed effect models combined with constituent-residual models were performed to estimate the effect sizes of essential components over six short- to long-term exposure periods. RESULTS The strength of association was stronger during the process from primary to small antral follicle compared with other longer windows. For every interquartile range increase in PM2.5 mass was associated with - 8.7% (95%CI: -12.3%, -4.9%) change in AMH and the effect size was greatest for sulfate. Women with the lower level of attained education and those living inland were more susceptible compared with other population subgroups. CONCLUSION Exposure to specific components of air pollution during critical exposure windows is associated with a decline in ovarian reserve. These data add to the growing body of evidence that environmental factors have adverse effects on reproductive health, particularly for vulnerable population subgroups.
Collapse
Affiliation(s)
- Lihong Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mingdong Jiang
- Dezhou Center for Disease Control and Prevention, Dezhou, Shandong 253000, China
| | - Xinlei Sui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Wenhao Yu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Rachel Huxley
- Faculty of Health, Deakin University, Melbourne 3000, Australia
| | - Paulo Saldiva
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo 01000, Brazil
| | - Jingmei Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Thomas Krafft
- Department of Health, Ethics & Society, Care and Public Health Research Institute CAPHRI, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6211, the Netherlands
| | - Panjun Gao
- Department of Health, Ethics & Society, Care and Public Health Research Institute CAPHRI, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6211, the Netherlands
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China.
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Faculty of Health, Deakin University, Melbourne 3000, Australia.
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| |
Collapse
|
34
|
Tajudin MABA, Kubo R, Ng CFS, Hashizume M, Seposo X, Kim Y, Nishikawa H, Takano H, Ueda K. The effect modification of PM 2.5 and ozone on the short-term associations between temperature and mortality across the urban areas of Japan. Environ Health Prev Med 2024; 29:57. [PMID: 39462582 PMCID: PMC11524749 DOI: 10.1265/ehpm.24-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The acute effects of temperature and air pollution on mortality are well-known environmental factors that have been receiving more recognition lately. However, the health effects resulting from the interaction of air pollution and temperature remain uncertain, particularly in cities with low levels of pollution. This study aims to examine the modification effects of particulate matter with a diameter of 2.5 µm or less (PM2.5) and ozone (O3) on the association between temperature and mortality. METHODS We collected the daily number of all-cause, cardiovascular, and respiratory mortality from 20 major cities in Japan from 2012-2018. We obtained meteorological data from the Japan Meteorological Agency and air pollution data from the National Institute for Environmental Studies. We conducted analyses using a quasi-Poisson regression model with a distributed lag non-linear model for temperature in each city and subsequently performed a random-effects meta-analysis to derive average estimates. RESULTS We found that high levels of O3 might positively modify the mortality risk of heat exposure, especially for cardiovascular diseases. Subgroups such as the elderly and females were susceptible. We did not observe consistent evidence of effect modification by PM2.5, including effect modification on cold by both pollutants. CONCLUSION PM2.5 and O3 may positively modify the short-term association between heat and mortality in the urban areas of Japan. These results highlight the need for public health policies and interventions to address the collective impacts of both temperature and air pollution.
Collapse
Affiliation(s)
| | - Ryusei Kubo
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Masahiro Hashizume
- Department of Global Health Policy, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Xerxes Seposo
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Ateneo Center for Research and Innovation, Ateneo School of Medicine and Public Health, Ateneo de Manila University, Pasig, Philippines
| | - Yoonhee Kim
- Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Nishikawa
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Yu J, Chen C, Wang C, Liu L, Chen H, Li H, Liu Y, Kuang X. Serum PCDD/F levels in metropolitan populations living near a municipal solid waste incinerator in Eastern China. CHEMOSPHERE 2024; 346:140549. [PMID: 37890788 DOI: 10.1016/j.chemosphere.2023.140549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Ambient exposure to polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) is suspected to cause adverse human health outcomes. Herein, serum samples from 40 residents in the neighborhood of a municipal solid waste incinerator (MSWI) in the metropolitan area were measured for PCDD/Fs. The mean toxic equivalent (TEQ) concentration of total PCDD/Fs in human serum samples was 16.8 pg TEQ/g lipid. Serum PCDD/F levels were significantly higher in residents adjacent to the MSWI than in those from areas far from the emission source (p < 0.01). In addition, there were no significant associations between serum PCDD/Fs levels and factors, such as gender, age, and BMI in donors. For non-occupationally exposed populations, OCDD and 1,2,3,7,8-PeCDD in serum are available as indicators of total PCDD/Fs and total TEQ, respectively. The atmospheric PCDD/Fs levels were within a relatively low range in areas upwind and downwind of the MSWI. The results of the principal component analysis showed a distinct difference in PCDD/F congener patterns between air and serum samples, suggesting inhalation exposure could have a limited influence on the human body burden. Our findings will deepen the current knowledge of endogenous PCDD/F exposure in urban populations, and also facilitate public health protection strategies near MSWIs.
Collapse
Affiliation(s)
- Jun Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Chao Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lvye Liu
- SEP Analytical (Shanghai) Co., Ltd. Shanghai 201100, PR China
| | - Hong Chen
- Yangpu Hospital Affiliated to Tongji University, Shanghai, 200090, PR China
| | - Hui Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Yongdi Liu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xingya Kuang
- Yangpu Hospital Affiliated to Tongji University, Shanghai, 200090, PR China.
| |
Collapse
|
36
|
Zhao Q, Wang Y. The effect of haze pollution on rural-to-urban migrants' long-term residence intentions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5896-5911. [PMID: 38129727 DOI: 10.1007/s11356-023-31557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Severe haze pollution in China threatens human health, and its negative effect hampers rural-to-urban migrants' settlement intentions in destination cities. Using the 2017 China Migrants Dynamic Survey Data (CMDS), the satellite data of PM2.5, and city-level data, this study investigates the impact of haze pollution on rural migrants, long-term residence intentions in Chinese context with IV-probit model, and mediating effect model. Overall, we find an inverted U-shaped relationship between the level of haze pollutants and rural migrants' long-term settlement intentions. Robustness check using multi-measures and thermal inversion as the instrumental variable supports this conclusion. The mediating effect model shows haze pollution plays its role through two opposite mechanisms: signal effect and health effect. When the size of signal effect is larger than health effect, rural migrants are inclined to settle down in their host cities; otherwise, they show lower settlement willingness. The turning point appears when PM2.5 concentration reaches 38.5 μg/m3; migrants have the highest long-term residence intentions. Currently, the national average PM2.5 concentration is 40.98 μg/m3, indicating that China is at the stage where the health effect of haze pollution holds a dominant position. Haze pollution has heterogeneous impacts on migrants' residence intentions. From the individual level, the younger generation, female, and higher-educated migrants have a higher tolerance for polluted air. From the city level, migrants who work in the city with 5 to 10 million dwellers have the highest long-term residence intention and are less sensitive to haze pollution. Thus, we propose stringent environmental regulations and more inclined public service policies to migrants.
Collapse
Affiliation(s)
- Qingjun Zhao
- College of Economics and Management, Huzhou College, Huzhou, 313000, China
| | - Yue Wang
- Institute of Agricultural Economics and Development, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
37
|
Qu R, Sun B, Jiang J, An Z, Li J, Wu H, Wu W, Song J. Short-term ozone exposure and serum neural damage biomarkers in healthy elderly adults: Evidence from a panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167209. [PMID: 37730053 DOI: 10.1016/j.scitotenv.2023.167209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Although converging lines of research have pointed to the adverse neural effects of air pollution, evidence linking ozone (O3) and neural damage remains limited. OBJECTIVES To investigate the subclinical neural effects of short-term ozone (O3) exposure in elderly adults. METHODS A panel of healthy elderly individuals was recruited, and five repeated measurements were conducted from December 2018 to April 2019 in Xinxiang, China. Serum neural damage biomarkers, including brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B) were measured at each follow-up session. Personal O3 exposure levels were calculated based on outdoor monitoring and sampling times. A linear mixed-effects model was adopted to quantify the acute effect of O3 on serum neural damage biomarkers. Stratification analysis based on sex, education level, physical activity, and glutathione S-transferases (GST) gene polymorphism analysis was performed to explore their potential modifying effects. RESULTS A total of 34 healthy volunteers aged 63.7 ± 5.7 y were enlisted and completed the study. The concentration of the daily maximum 8-h average O3 (O3-8h) ranged from 19.5 to 160.5 μg/m3 during the study period. Regression analysis showed that short-term O3 exposure was associated positively with serum concentrations of neural damage biomarkers. A 10 μg/m3 increase in O3-8h exposure was associated with an increment of 74 % (95 % CI:1 %-146 %) and 197 % (95 % CI:39 %-356 %) in BDNF (lag 2 d) and NfL (lag 1 d), respectively. The stratification results suggest that males, people with lower education levels, lower physical activity, and GST theta 1 (GSTT1)-sufficient genotype might be marginally more vulnerable. CONCLUSIONS This study provides new evidence for the neural damage risk posed by O3 exposure, even at relatively low concentrations, which, therefore, requires that stringent air quality standards be developed and implemented.
Collapse
Affiliation(s)
- Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
38
|
Lin X, Cai M, Tan K, Liu E, Wang X, Song C, Wei J, Lin H, Pan J. Ambient particulate matter and in-hospital case fatality of acute myocardial infarction: A multi-province cross-sectional study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115731. [PMID: 38007949 DOI: 10.1016/j.ecoenv.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The acute myocardial infarction (AMI) outcomes have been extensively linked with ambient particulate matter (PM). However, whether a smaller particle has greater impact and the consequent attributable burden associated with PM of different sizes remain unclear. We conducted a multi-province cross-sectional study among AMI patients using the inpatient discharge datasets from four Chinese provinces (Shanxi, Sichuan, Guangxi, and Guangdong) from 2014 to 2019. Ambient PM exposure for each patient was assessed using the ChinaHighAirPollutants dataset. We employed the mixed-effects logistic regression models to evaluate the association of PM of different sizes (PM1, PM2.5, PM10) on in-hospital case fatality. The potential reducible fractions in in-hospital case fatality were estimated through counterfactual analyses. Of 177,749 participants, 125,501 (70.6 %) were male and the in-hospital case fatality rate was 4.9%. For short-term (7-day average) exposure, the odds ratios (ORs) for PM1, PM2.5, and PM10 (per 10 µg/m3) were 1.052 (95 % confidence interval [CI], 1.032-1.071), 1.026 (95 % CI, 1.014-1.037), and 1.016 (95% CI, 1.008-1.024), respectively. The estimated ORs for long-term exposure (annual average) were 1.303 (95 % CI, 1.252-1.356) for PM1, 1.209 (95 % CI, 1.178-1.241) for PM2.5, 1.157 (95 % CI, 1.134-1.181) for PM10. Short-term exposure to PM1 showed the highest potential reducible fraction (8.5 %, 95 % CI, 5.0-11.7 %), followed by PM2.5 and PM10, while the greatest potential reducible fraction of long-term exposure was observed in PM10 (30.9 %, 95 % CI, 27.2-34.4%), followed by PM2.5 and PM1. In summary, PM with smaller size had a more pronounced impact on in-hospital AMI case fatality, with PM1 exhibiting greater effects than PM2.5 and PM10. Substantial health benefits for AMI patients could be achieved by mitigating ambient PM exposure.
Collapse
Affiliation(s)
- Xiaojun Lin
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Kun Tan
- Health Information Center of Sichuan Province, No. 39, Wangjiaguai Street, Chengdu, Sichuan 610041, China
| | - Echu Liu
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Xiuli Wang
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Chao Song
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China.
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; China Center for South Asian Studies, Sichuan University, No.24 South Section I, Yihuan Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
39
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Saengsawang P, Phosri A. Effects of the lockdown measure amid COVID-19 pandemic on outpatient department visits associated with air pollution reduction in Thailand. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7861-7876. [PMID: 37490145 DOI: 10.1007/s10653-023-01694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
We investigated the effects of COVID-19 lockdown on air quality and its consequences health and economic benefits in Thailand. The conditional Poisson regression model was applied to examine the association between air pollution and outpatient department (OPD) visits in each province and pooled the province-specific estimates using the random-effects meta-analysis to derive the national estimates. We then applied a random forest model with meteorological normalization approach to predict the concentration of air pollutants by means of business as usual during the lockdown period (April 3-May 3) in 2020 and further calculated the changes in the number of OPD visits and their consequent expenditure attributable to air pollution reduction using the obtained risk function performed earlier. The number of cardiovascular OPD visits attributed to PM10, PM2.5 and NO2 decreased by 4,414 (95% CI 982, 8,401), 4,040 (95% CI 326, 7,770), and 13,917 (95% CI 1,675, 27,278) cases, respectively, leading to reduced medical expenditure by 14,7180.21, 13,4708.31, and 46,4025.04 USD, respectively. The number of respiratory OPD visits attributed to PM10, PM2.5, NO2, and O3 reduction decreased by 2,298 (95% CI 1,223, 3,375), 2,056 (95% CI 740, 3,252), 3,326 (95% CI 542, 6,295), and 1,160 (95% CI 5,26, 1,804) cases, respectively, where the consequent medical expenditure was reduced by 76,618.48, 68,566.36, 11,0908.31, and 38,685.50 USD, respectively. Finding from this study showed that air quality during the lockdown period in Thailand was improved, contributing to the reduction of cardiovascular and respiratory OPD visits, and consequent medical service costs attributable to air pollution.
Collapse
Affiliation(s)
- Phubet Saengsawang
- Department of Community Health, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Arthit Phosri
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, 4th Floor, 2nd Building, Bangkok, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.
| |
Collapse
|
41
|
Hou K, Xu X. Ambient temperatures associated with reduced cognitive function in older adults in China. Sci Rep 2023; 13:17414. [PMID: 37833389 PMCID: PMC10575877 DOI: 10.1038/s41598-023-44776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023] Open
Abstract
The cognitive function status of older adults determines the social function and living quality of older adults, which is related to the healthy development and stability of the society. However, the impact of high or low ambient temperature on cognitive function in older adults remains unclear. Based on data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), we comprehensively assessed the impact of ambient temperature on the cognitive function of older adults in this study. The findings exhibited that for each 1 °C ascent in monthly temperature of high temperature, the examination score of global cognitive function of older adults decreased by 0.48 (95% CI 0.21-0.74), which was greater than that of 0.14 (95% CI 0.06-0.25) for each 1 °C reduction in low temperature. Overall, the detrimental effect of high temperature on cognitive function in older adults was more significant than that of low temperature, including on the five sub-cognitive functions involved. Our research provides vital technical guidance and reference for the health protection and prevention of cognitive function of older adults in specific external environmental conditions under the current climatic variation and temperature rise.
Collapse
Affiliation(s)
- Kun Hou
- School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Xia Xu
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, 210029, China
| |
Collapse
|
42
|
Pan W, Wang M, Hu Y, Lian Z, Cheng H, Qin JJ, Wan J. The association between outdoor air pollution and body mass index, central obesity, and visceral adiposity index among middle-aged and elderly adults: a nationwide study in China. Front Endocrinol (Lausanne) 2023; 14:1221325. [PMID: 37876545 PMCID: PMC10593432 DOI: 10.3389/fendo.2023.1221325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 10/26/2023] Open
Abstract
Background Previous animal studies have suggested that air pollution (AP) exposure may be a potential risk factor for obesity; however, there is limited epidemiological evidence available to describe the association of obesity with AP exposure. Methods A retrospective cross-sectional study was conducted on 11,766 participants across mainland China in 2015. Obesity was assessed using body mass index (BMI), waist circumference (WC), and visceral adiposity index (VAI). The space-time extremely randomized tree (STET) model was used to estimate the concentration of air pollutants, including SO2, NO2, O3, PM1, PM2.5, and PM10, matched to participants' residential addresses. Logistic regression models were employed to estimate the associations of obesity with outdoor AP exposure. Further stratified analysis was conducted to evaluate whether sociodemographics or lifestyles modified the effects. Results Increased AP exposure was statistically associated with increased odds of obesity. The odds ratio (ORs) and 95% confidence interval (CI) of BMI-defined obesity were 1.21 (1.17, 1.26) for SO2, 1.33 (1.26, 1.40) for NO2, 1.15 (1.10, 1.21) for O3, 1.38 (1.29, 1.48) for PM1, 1.19 (1.15, 1.22) for PM2.5, and 1.11 (1.09, 1.13) for PM10 per 10 μg/m3 increase in concentration. Similar results were found for central obesity. Stratified analyses suggested that elderly participants experienced more adverse effects from all 6 air pollutants than middle-aged participants. Furthermore, notable multiplicative interactions were found between O3 exposure and females as well as second-hand smokers in BMI-defined obesity. Conclusions This study suggested that outdoor AP exposure had a significant association with the risk of obesity in the middle-aged and elderly Chinese population. Elderly individuals and women may be more vulnerable to AP exposure.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yingying Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengqi Lian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Haonan Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Shen W, Li X, Fang Q, Li G, Xiao W, Wu Y, Liu J, Hu W, Lu H, Huang F. The impact of ambient air pollutants on childhood respiratory system disease and the resulting disease burden: a time-series study. Int Arch Occup Environ Health 2023; 96:1087-1100. [PMID: 37338586 DOI: 10.1007/s00420-023-01991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE The effects of air pollution on human health have long been a hot topic of research. For respiratory diseases, a large number of studies have proved that air pollution is one of the main causes. The purpose of this study was to investigate the risk of hospitalization of children with respiratory system diseases (CRSD) caused by six pollutants (PM2.5, PM10, NO2, SO2, CO, and O3) in Hefei City, and further calculate the disease burden. METHOD In the first stage, the generalized additive models were combined with the distributed lag non-linear models to evaluate the impact of air pollution on the inpatients for CRSD in Hefei. In the second stage, this study used the cost-of-illness approach to calculate the attributable number of hospitalizations and the extra disease burden. RESULT Overall, all the six kinds of pollutants had the strongest effects on CRSD inpatients within lag10 days. SO2 and CO caused the highest and lowest harm, respectively, and the RR values were SO2 (lag0-5): 1.1 20 (1.053, 1.191), and CO (lag0-6): 1.002 (1.001, 1.003). During the study period (January 1, 2014 to December 30, 2020), the 7-year cumulative burden of disease was 36.19 million CNY under the WHO air pollution standards. CONCLUSION In general, we found that six air pollutants were risk factors for CRSD in Hefei City, and create a huge burden of disease.
Collapse
Affiliation(s)
- Wenbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Xue Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Qingfeng Fang
- Department of Infectious Diseases, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Wei Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Yueyang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Wenlei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
44
|
Zhao JW, Wang XQ, Li ZH, Mao YC, Zhang S, Huang K, Hu CY, Zhang XJ, Kan XH. Effect of gaseous pollutant and greenness exposure on mortality during treatment of newly treated tuberculosis patients: a provincial population-based cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98195-98210. [PMID: 37608175 DOI: 10.1007/s11356-023-29256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/05/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Previous studies addressing the impact of environmental factors on TB prognosis are scarce, with only some studies examining the effect of particulate pollutants on TB mortality. Moreover, few studies have evaluated the effects of multiple gaseous pollutants and greenness exposures on newly treated TB patients on a large population scale. METHODS Through the Centers for Disease Control and Prevention, data were collected from January 1, 2015 to December 31, 2020 for newly treated TB patients in Anhui Province, China. Data on gaseous pollutants sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone were collected through the National Earth System Science Data Center of China. Normalized vegetation index data were obtained through NASA. The Cox proportional risk model was also applied to calculate the hazard ratios of SO2, NO2, CO, O3, and NDVI with 95% confidence intervals for mortality among newly treated TB patients. RESULTS Multifactorial Cox regression analysis showed that for every 0.10 μg/m3 increase in SO2, the risk of death among newly treated TB patients increased by 13.2% (HR = 1.132, 95% CI: 1.045-1.1.225), for every 10 μg/m3 increase in NO2, the risk of death among newly treated TB patients increased by 11.4%, and for each 0.1 mg/m3 increase in CO, the risk of death among newly treated TB patients increased by 5.8%. For each 0.1 increase in NDVI 250m-buffer and 500m-buffer, the risk of death among newly treated TB patients decreased by 8.5% and 6.4%, respectively. The effect of gaseous pollutants on mortality decreased progressively with elevated greenness exposure when greenness exposure was grouped from low to high. CONCLUSION Gaseous pollutants are a risk factor during the treatment of newly treated TB patients and greenness exposure is a protective factor. Higher greenness exposure reduces the risk of death due to exposure to gaseous pollutants.
Collapse
Affiliation(s)
- Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin-Qiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yi-Cheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Sun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Hong Kan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Anhui Chest Hospital, 397 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
45
|
Pei Z, Wu M, Zhu W, Pang Y, Niu Y, Zhang R, Zhang H. Associations of long-term exposure to air pollution with prevalence of pulmonary nodules: A cross-sectional study in Shijiazhuang, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115311. [PMID: 37531926 DOI: 10.1016/j.ecoenv.2023.115311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
A complete understanding of the associations of ambient air pollution with prevalence of pulmonary nodule is lacking. We aimed to investigate the associations of ambient air pollutants with prevalence of pulmonary nodule. A total of 9991 health examination participants was enrolled and 3166 was elected in the final in Shijiazhuang between April 1st, 2018, and December 31st, 2018. 107 participants were diagnosed in pulmonary nodule while 3059 participants were diagnosed in non-pulmonary (named control). The individual exposure of participants was evaluation by Empirical Bayesian Kriging model according to their residential or work addresses. The pulmonary nodules were found and diagnosed by health examination through chest x-ray detection. Our results suggested that there were positive associations between prevalence of pulmonary nodules and PM2.5 (OR = 1.06, 95% CI: 1.02, 1.11) as well as O3 (OR = 1.49, 95% CI: 1.35, 1.66) levels. The platelet count (PLT) acted as the mediator of pulmonary nodules related with the PM2.5 exposure, while the neutrophil-to-lymphocyte ratio (NLR) as well as platelet-to-lymphocyte ratio (PLR) were the mediators of pulmonary nodules related with the O3 exposure. This study suggests that long-term exposure to PM2.5 and O3 may significantly associated with prevalence of pulmonary nodules, and the above associations are mediated by PLT, NLR and PLR.
Collapse
Affiliation(s)
- Zijie Pei
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenyuan Zhu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Helin Zhang
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
46
|
Bui LT, Nguyen NHT, Nguyen PH. Chronic and acute health effects of PM 2.5 exposure and the basis of pollution control targets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79937-79959. [PMID: 37291347 DOI: 10.1007/s11356-023-27936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Ho Chi Minh City (HCMC) is changing and expanding quickly, leading to environmental consequences that seriously threaten human health. PM2.5 pollution is one of the main causes of premature death. In this context, studies have evaluated strategies to control and reduce air pollution; such pollution-control measures need to be economically justified. The objective of this study was to assess the socio-economic damage caused by exposure to the current pollution scenario, taking 2019 as the base year. A methodology for calculating and evaluating the economic and environmental benefits of air pollution reduction was implemented. This study aimed to simultaneously evaluate the impacts of both short-term (acute) and long-term (chronic) PM2.5 pollution exposure on human health, providing a comprehensive overview of economic losses attributable to such pollution. Spatial partitioning (inner-city and suburban) on health risks of PM2.5 and detailed construction of health impact maps by age group and sex on a spatial resolution grid (3.0 km × 3.0 km) was performed. The calculation results show that the economic loss from premature deaths due to short-term exposure (approximately 38.86 trillion VND) is higher than that from long-term exposure (approximately 14.89 trillion VND). As the government of HCMC has been developing control and mitigation solutions for the Air Quality Action Plan towards short- and medium-term goals in 2030, focusing mainly on PM2.5, the results of this study will help policymakers develop a roadmap to reduce the impact of PM2.5 during 2025-2030.
Collapse
Affiliation(s)
- Long Ta Bui
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | - Nhi Hoang Tuyet Nguyen
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Phong Hoang Nguyen
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
47
|
Yuan Y, Wang K, Sun HZ, Zhan Y, Yang Z, Hu K, Zhang Y. Excess mortality associated with high ozone exposure: A national cohort study in China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100241. [PMID: 36761466 PMCID: PMC9905662 DOI: 10.1016/j.ese.2023.100241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 05/24/2023]
Abstract
Emerging epidemiological studies suggest that long-term ozone (O3) exposure may increase the risk of mortality, while pre-existing evidence is mixed and has been generated predominantly in North America and Europe. In this study, we investigated the impact of long-term O3 exposure on all-cause mortality in a national cohort in China. A dynamic cohort of 20882 participants aged ≥40 years was recruited between 2011 and 2018 from four waves of the China Health and Retirement Longitudinal Study. A Cox proportional hazard regression model with time-varying exposures on an annual scale was used to estimate the mortality risk associated with warm-season (April-September) O3 exposure. The annual average level of participant exposure to warm-season O3 concentrations was 100 μg m-3 (range: 61-142 μg m-3). An increase of 10 μg m-3 in O3 was associated with a hazard ratio (HR) of 1.18 (95% confidence interval [CI]: 1.13-1.23) for all-cause mortality. Compared with the first exposure quartile of O3, HRs of mortality associated with the second, third, and highest exposure quartiles were 1.09 (95% CI: 0.95-1.25), 1.02 (95% CI: 0.88-1.19), and 1.56 (95% CI: 1.34-1.82), respectively. A J-shaped concentration-response association was observed, revealing a non-significant increase in risk below a concentration of approximately 110 μg m-3. Low-temperature-exposure residents had a higher risk of mortality associated with long-term O3 exposure. This study expands current epidemiological evidence from China and reveals that high-concentration O3 exposure curtails the long-term survival of middle-aged and older adults.
Collapse
Affiliation(s)
- Yang Yuan
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Haitong Zhe Sun
- Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kejia Hu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
48
|
Zhang R, Li Y, Bi P, Wu S, Peng Z, Meng Y, Wang Y, Wang S, Huang Y, Liang J, Wu J. Seasonal associations between air pollutants and influenza in 10 cities of southern China. Int J Hyg Environ Health 2023; 252:114200. [PMID: 37329817 DOI: 10.1016/j.ijheh.2023.114200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Few studies have explored the associations between air pollutants and influenza across seasons, especially at large scales. This study aimed to evaluate seasons' modifying effects on associations between air pollutants and influenza from 10 cities of southern China. Through scientific evidence, it provides mitigation and adaptation strategies with practical guidelines to local health authorities and environmental protection agencies. Daily influenza incidence, meteorological, and air pollutants data from 2016 to 2019 were collected. Quasi-Poisson regression with a distributed lag nonlinear model was used to evaluate city-specific air pollutants and influenza associations. Meta-analysis was used to pool site-specific estimates. Attributable fractions (AFs) of influenza incidence due to pollutants were calculated. Stratified analyses were conducted by season, sex, and age. Overall, the cumulative relative risk (CRR) of influenza incidence for a 10-unit increase in PM2.5, PM10, SO2, NO2, and CO was 1.45 (95% CI: 1.25, 1.68), 1.53 (95% CI: 1.29, 1.81), 1.87 (95% CI: 1.40, 2.48), 1.74 (95% CI: 1.49, 2.03), and 1.19 (95% CI: 1.04, 1.36), respectively. Children aged 0-17 were more sensitive to air pollutants in spring and winter. PM10 had greater effect on influenza than PM2.5 in autumn, winter, and overall, lesser in spring. The overall AF due to PM2.5, PM10, SO2, NO2, and CO was 4.46% (95% eCI: 2.43%, 6.43%), 5.03% (95% eCI: 2.33%, 7.56%), 5.36% (95% eCI: 3.12%, 7.58%), 24.88% (95% eCI: 18.02%, 31.67%), and 23.22% (95% eCI: 17.56%, 28.61%), respectively. AF due to O3 was 10.00% (95% eCI: 4.76%, 14.95%) and 3.65% (95% eCI: 0.50%, 6.59%) in spring and summer, respectively. The seasonal variations in the associations between air pollutants and influenza in southern China would provide evidence to service providers for tailored intervention, especially for vulnerable populations.
Collapse
Affiliation(s)
- Rui Zhang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yonghong Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Bi
- School of Public Health, The University of Adelaide, South Australia, Australia
| | - Siyuan Wu
- Sprott School of Business, Carleton University, Ottawa Ontario, Canada
| | - Zhibin Peng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujie Meng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Songwang Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yushu Huang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Liang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Wu
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
49
|
Shi H, Chen L, Zhang S, Li R, Wu Y, Zou H, Wang C, Cai M, Lin H. Dynamic association of ambient air pollution with incidence and mortality of pulmonary hypertension: A multistate trajectory analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115126. [PMID: 37315366 PMCID: PMC10443233 DOI: 10.1016/j.ecoenv.2023.115126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND There is little evidence regarding the association between ambient air pollution and incidence and the mortality of pulmonary hypertension (PH). METHODS We included 494,750 participants at baseline in the UK Biobank study. Exposures to PM2.5, PM10, NO2, and NOx were estimated at geocoded participants' residential addresses, utilizing pollution data provided by UK Department for Environment, Food and Rural Affairs (DEFRA). The outcomes were the incidence and mortality of PH. We used multivariate multistate models to investigate the impacts of various ambient air pollutants on both incidence and mortality of PH. RESULTS During a median follow-up of 11.75 years, 2517 participants developed incident PH, and 696 died. We observed that all ambient air pollutants were associated with increased incidence of PH with different magnitudes, with adjusted hazard ratios (HRs) [95% confidence intervals (95% CIs)] for each interquartile range (IQR) increase of 1.73 (1.65, 1.81) for PM2.5, 1.70 (1.63, 1.78) for PM10, 1.42 (1.37, 1.48) for NO2, and 1.35 (1.31, 1.40) for NOx. Furthermore, PM2.5, PM10, NO2 and NO2 influenced the transition from PH to death, and the corresponding HRs (95% CIs) were 1.35 (1.25, 1.45), 1.31 (1.21, 1.41), 1.28 (1.20, 1.37) and 1.24 (1.17, 1.32), respectively. CONCLUSION The results of our study indicate that exposure to various ambient air pollutants might play key but differential roles in both the incidence and mortality of PH.
Collapse
Affiliation(s)
- Hui Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongtao Zou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
50
|
Zhou L, Wang Y, Wang Q, Ding Z, Jin H, Zhang T, Zhu B. The interactive effects of extreme temperatures and PM 2.5 pollution on mortalities in Jiangsu Province, China. Sci Rep 2023; 13:9479. [PMID: 37301905 PMCID: PMC10257702 DOI: 10.1038/s41598-023-36635-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Exposure to extreme temperatures or fine particles is associated with adverse health outcomes but their interactive effects remain unclear. We aimed to explore the interactions of extreme temperatures and PM2.5 pollution on mortalities. Based on the daily mortality data collected during 2015-2019 in Jiangsu Province, China, we conducted generalized linear models with distributed lag non-linear model to estimate the regional-level effects of cold/hot extremes and PM2.5 pollution. The relative excess risk due to interaction (RERI) was evaluated to represent the interaction. The relative risks (RRs) and cumulative relative risks (CRRs) of total and cause-specific mortalities associated with hot extremes were significantly stronger (p < 0.05) than those related to cold extremes across Jiangsu. We identified significantly higher interactions between hot extremes and PM2.5 pollution, with the RERI range of 0.00-1.15. The interactions peaked on ischaemic heart disease (RERI = 1.13 [95%CI: 0.85, 1.41]) in middle Jiangsu. For respiratory mortality, RERIs were higher in females and the less educated. The interaction pattern remained consistent when defining the extremes/pollution with different thresholds. This study provides a comprehensive picture of the interactions between extreme temperatures and PM2.5 pollution on total and cause-specific mortalities. The projected interactions call for public health actions to face the twin challenges, especially the co-appearance of hot extremes and PM pollution.
Collapse
Affiliation(s)
- Lian Zhou
- Center for Disease Control and Prevention of Jiangsu Province, Nanjing, 210009, China
| | - Yuning Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing, 210009, China.
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Qingqing Wang
- Center for Disease Control and Prevention of Jiangsu Province, Nanjing, 210009, China
| | - Zhen Ding
- Center for Disease Control and Prevention of Jiangsu Province, Nanjing, 210009, China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, Fairfax, VA, 22030, USA.
| | - Baoli Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|