1
|
Wang Y, Huang Y, Fu L, Wang X, Chen L. Evaluation of nanoplastics-induced redox imbalance in cells, larval zebrafish, and daphnia magna with a superoxide anion radical fluorescent probe. CHEMOSPHERE 2024; 356:141829. [PMID: 38548081 DOI: 10.1016/j.chemosphere.2024.141829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Nanoplastics (NPs) is a novel plastic contaminant that could be taken up by cells and lead to severe biotoxicity toxicity, NPs in cells can cause oxidant damage by inducing reactive oxygen species (ROS) production and lead to acute inflammation. As a major ROS which related to many kinds of physiological and pathological processes, superoxide anion radical (O2•-) could be utilized as a signal of oxidant damage effected by NPs exposure in vivo. To detect the toxic damage mechanism of NPs, a fluorescence probe Bcy-OTf has been developed to monitor O2•- fluctuations content in cells and aquatic organisms after exposure to NPs. The probe has a high sensitivity (LOD = 20 nM) and a rapid responsive time (within 6 min), and it has high selectivity and low cytotoxicity to analysis the levels of the endogenous O2•-. Endogenous O2•- induced by NPs in living cells, Daphnia magna and larval zebrafish were analyzed. Moreover, the results confirmed the key role of MAPK and NF-κB pathway in NPs stimulation mechanisms in cells. This study indicated that Bcy-OTf can precisely assess the fluctuations of endogenous O2•-, which has potential for applying in further analysis mechanisms of NPs biological risks.
Collapse
Affiliation(s)
- Yicheng Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Lili Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Han L, Haefner V, Yu Y, Han B, Ren H, Irmler M, Beckers J, Liu Q, Feuchtinger A, Yildirim AO, Adler H, Stoeger T. Nanoparticle-Exposure-Triggered Virus Reactivation Induces Lung Emphysema in Mice. ACS NANO 2023; 17:21056-21072. [PMID: 37856828 PMCID: PMC10655245 DOI: 10.1021/acsnano.3c04111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Nanoparticles (NPs) released from engineered materials or combustion processes as well as persistent herpesvirus infection are omnipresent and are associated with chronic lung diseases. Previously, we showed that pulmonary exposure of a single dose of soot-like carbonaceous NPs (CNPs) or fiber-shaped double-walled carbon nanotubes (DWCNTs) induced an increase of lytic virus protein expression in mouse lungs latently infected with murine γ-herpesvirus 68 (MHV-68), with a similar pattern to acute infection suggesting virus reactivation. Here we investigate the effects of a more relevant repeated NP exposure on lung disease development as well as herpesvirus reactivation mechanistically and suggest an avenue for therapeutic prevention. In the MHV-68 mouse model, progressive lung inflammation and emphysema-like injury were detected 1 week after repetitive CNP and DWCNT exposure. NPs reactivated the latent herpesvirus mainly in CD11b+ macrophages in the lungs. In vitro, in persistently MHV-68 infected bone marrow-derived macrophages, ERK1/2, JNK, and p38 MAPK were rapidly activated after CNP and DWCNT exposure, followed by viral gene expression and increased viral titer but without generating a pro-inflammatory signature. Pharmacological inhibition of p38 activation abrogated CNP- but not DWCNT-triggered virus reactivation in vitro, and inhibitor pretreatment of latently infected mice attenuated CNP-exposure-induced pulmonary MHV-68 reactivation. Our findings suggest a crucial contribution of particle-exposure-triggered herpesvirus reactivation for nanomaterial exposure or air pollution related lung emphysema development, and pharmacological p38 inhibition might serve as a protective target to alleviate air pollution related chronic lung disease exacerbations. Because of the required precondition of latent infection described here, the use of single hit models might have severe limitations when assessing the respiratory toxicity of nanoparticle exposure.
Collapse
Affiliation(s)
- Lianyong Han
- Institute
of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research
Center for Environmental Health, 85764 Neuherberg, Germany
- Member
of the German Center of Lung Research (DZL), 81377 Munich, Germany
| | - Verena Haefner
- Institute
of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research
Center for Environmental Health, 85764 Neuherberg, Germany
- Member
of the German Center of Lung Research (DZL), 81377 Munich, Germany
| | - Youjia Yu
- Department
of Forensic Medicine, Nanjing Medical University, 211166 Nanjing, Jiangsu, China
| | - Bing Han
- Laboratory
of Translational Research “Stress and Immunity”, Department
of Anesthesiology, LMU Hospital, Ludwig-Maximilians-University
Munich, 81377 Munich, Germany
| | - Hongyu Ren
- Institute
of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research
Center for Environmental Health, 85764 Neuherberg, Germany
- Member
of the German Center of Lung Research (DZL), 81377 Munich, Germany
| | - Martin Irmler
- Institute
of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute
of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center
for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Technische
Universität München, Chair
of Experimental Genetics, 80539 Munich, Germany
| | - Qiongliang Liu
- Institute
of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research
Center for Environmental Health, 85764 Neuherberg, Germany
- Member
of the German Center of Lung Research (DZL), 81377 Munich, Germany
| | - Annette Feuchtinger
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ali Oender Yildirim
- Institute
of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research
Center for Environmental Health, 85764 Neuherberg, Germany
- Institute
of Experimental Pneumology, University Hospital, Ludwig-Maximilians University, 81377 Munich, Germany
- Member
of the German Center of Lung Research (DZL), 81377 Munich, Germany
| | - Heiko Adler
- Institute
of Asthma and Allergy Prevention, Helmholtz
Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Walther Straub
Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Member
of the German Center of Lung Research (DZL), 81377 Munich, Germany
| | - Tobias Stoeger
- Institute
of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research
Center for Environmental Health, 85764 Neuherberg, Germany
- Member
of the German Center of Lung Research (DZL), 81377 Munich, Germany
| |
Collapse
|
3
|
Stabryla LM, Moncure PJ, Millstone JE, Gilbertson LM. Particle-Driven Effects at the Bacteria Interface: A Nanosilver Investigation of Particle Shape and Dose Metric. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39027-39038. [PMID: 37581368 PMCID: PMC10450641 DOI: 10.1021/acsami.3c00144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 08/16/2023]
Abstract
Design criteria for controlling engineered nanomaterial (ENM) antimicrobial performance will enable advances in medical, food production, processing and preservation, and water treatment applications. In pursuit of this goal, better resolution of how specific ENM properties, such as nanoparticle shape, influence antimicrobial activity is needed. This study probes the antimicrobial activity toward a model Gram-negative bacterium, Escherichia coli (E. coli), that results from interfacial interactions with differently shaped silver nanoparticles (AgNPs): cube-, disc-, and pseudospherical-AgNPs. The EC50 value (i.e., the concentration of AgNPs that inactivates 50% of the microbial population) for each shape is identified and presented as a function of mass, surface area, and particle number. Further, shifts in relative potency are identified from the associated dose-response curves (e.g., shifts left, to lower concentrations, indicate greater potency). When using a mass-based dose metric, the disc-AgNPs present the highest antimicrobial activity of the three shapes (EC50: 2.39 ± 0.26 μg/mL for discs, 2.99 ± 0.96 μg/mL for cubes, 116.33 ± 6.43 μg/mL for pseudospheres). When surface area and particle number are used as dose metrics, the cube-AgNPs possess the highest antimicrobial activity (EC50-surface area: 4.70 × 10-5 ± 1.51 × 10-5 m2/mL, EC50-particle: 5.97 × 109 ± 1.92 × 109 particles/mL), such that the relative trend in potency becomes cubes > discs > pseudospheres and cubes ≫ discs ⩾ pseudospheres, respectively. The results reveal that the antimicrobial potency of disc-AgNPs is sensitive to the dose metric, significantly decreasing in potency (∼5-30×) upon conversion from a mass-based concentration to surface area and particle number and influencing the conclusions drawn. The shift in relative particle potency highlights the importance of investigating various dose metrics within the experimental design and signals different particle parameters influencing shape-based antimicrobial activity. To probe shape-dependent behavior, we use a unique empirical approach where the physical and chemical properties (ligand chemistry, surface charge) of the AgNP shapes are carefully controlled, and total available surface area is equivalent across shapes as made through modifications to particle size and concentration. The results herein suggest that surface area alone does not drive antimicrobial activity as the different AgNP shapes at equivalent particle surface area yield significantly different magnitudes of antimicrobial activity (i.e., 100% inactivation for cube-AgNPs, <25% inactivation for disc- and pseudospherical-AgNPs). Further, the particle shapes studied possess different crystal facets, illuminating their potential influence on differentiating interactions between the particle surface and the microbe. Whereas surface area may partly contribute to antimicrobial activity in certain ENM shapes (i.e., disc-AgNPs in relation to the pseudospherical-AgNPs), the different magnitudes of antimicrobial activity across shape provide insight into the likely role of other particle-specific factors, such as crystal facets, driving the antimicrobial activity of other shapes (i.e., cube-AgNPs).
Collapse
Affiliation(s)
- Lisa M. Stabryla
- Department
of Civil and Environmental Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Paige J. Moncure
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E. Millstone
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Leanne M. Gilbertson
- Department
of Civil and Environmental Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Chen TL, Hsiao TC, Chuang HC, Ting YC, Wang CH. A mobile platform for characterizing on-road tailpipe emissions and toxicity of ultrafine particles under real driving Conditions. ENVIRONMENTAL RESEARCH 2023; 216:114523. [PMID: 36270534 DOI: 10.1016/j.envres.2022.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Acute exposure to fresh traffic-related air pollutants (TRAPs) can be high for road users, including motorbike drivers, cyclists, and pedestrians. However, evaluating the toxicity of fresh traffic emissions from on-road vehicles is challenging since pollution properties can change dynamically within a short distance and time. This study demonstrated a mobile platform equipped with an On-Board Diagnostic II (OBDII) system, a tailor-made portable emission measurement system, and an electrostatic air-liquid interface exposure system with human monocytic THP-1 cells to characterize on-road tailpipe emissions under real driving conditions. High number concentrations up to 106-107 # cm-3 of ultrafine particles (UFPs) were observed for a gasoline engine at the cold-start stage and a diesel engine during particulate filter regeneration. In particular, a substantial fraction of freshly emitted UFPs within the size less than 23 nm were observed and should be cautioned. The potential toxicity of fresh TRAPs was quantified by cell viability, cytotoxicity, oxidative stress, and inflammatory biomarkers. Results show that the decreased cell viability, increased lactate dehydrogenase (LDH) activity, and high oxidative stress induced by the fresh TRAPs were potentially contributed by gaseous pollutants as well as particles, especially driving with the high idling frequency. Moreover, the dominant contributor to the toxicity is different for gasoline's and diesel's TRAPs. Characterizing on-road air pollutant toxicity as well as physicochemical properties using an innovative mobile platform can fill this knowledge gap.
Collapse
Affiliation(s)
- Tse-Lun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Hua Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Boraschi D, Duschl A, Lynch I, Stoeger T. Editorial: Exploring impacts of combined exposures to particles and chemicals on immune reactions across living organisms. FRONTIERS IN TOXICOLOGY 2023; 5:1148374. [PMID: 36950145 PMCID: PMC10026952 DOI: 10.3389/ftox.2023.1148374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT CNR SZN), Shenzhen, China
- *Correspondence: Diana Boraschi,
| | - Albert Duschl
- Department of Biosciences and Medical Biology, Allergy Cancer BioNano Research Center (ACBN), Paris-Lodron Universitaet Salzburg, Salzburg, Austria
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center Munich, and Member of the German Center of Lung Research (DZL) CPC-M, Munich, Germany
| |
Collapse
|
6
|
Tschiche HR, Bierkandt FS, Creutzenberg O, Fessard V, Franz R, Greiner R, Gruber-Traub C, Haas KH, Haase A, Hartwig A, Hesse B, Hund-Rinke K, Iden P, Kromer C, Loeschner K, Mutz D, Rakow A, Rasmussen K, Rauscher H, Richter H, Schoon J, Schmid O, Som C, Spindler LM, Tovar GEM, Westerhoff P, Wohlleben W, Luch A, Laux P. Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities. NANOIMPACT 2022; 28:100416. [PMID: 35995388 DOI: 10.1016/j.impact.2022.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.
Collapse
Affiliation(s)
- Harald R Tschiche
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany.
| | - Frank S Bierkandt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Valerie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of contaminants Unit, Fougères, France
| | - Roland Franz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Carmen Gruber-Traub
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences (IAB), Food Chemistry and Toxicology, Germany
| | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany
| | | | - Charlotte Kromer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Diana Mutz
- German Federal Institute for Risk Assessment (BfR), Research Strategy and Coordination, Berlin, Germany
| | - Anastasia Rakow
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hannes Richter
- Fraunhofer IKTS - Institute for Ceramic Technologies and Systems, Hermsdorf, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Som
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Lena M Spindler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Paul Westerhoff
- Arizona State University, Tempe, AZ, United States of America
| | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
Collapse
|
7
|
Wagner DN, Odhiambo SR, Ayikukwei RM, Boor BE. High time-resolution measurements of ultrafine and fine woodsmoke aerosol number and surface area concentrations in biomass burning kitchens: A case study in Western Kenya. INDOOR AIR 2022; 32:e13132. [PMID: 36305061 PMCID: PMC9828051 DOI: 10.1111/ina.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Indoor air pollution associated with biomass combustion for cooking remains a significant environmental health challenge in rural regions of sub-Saharan Africa; however, routine monitoring of woodsmoke aerosol concentrations continues to remain sparse. There is a paucity of field data on concentrations of combustion-generated ultrafine particles, which efficiently deposit in the human respiratory system, in such environments. Field measurements of ultrafine and fine woodsmoke aerosol (diameter range: 10-2500 nm) with field-portable diffusion chargers were conducted across nine wood-burning kitchens in Nandi County, Kenya. High time-resolution measurements (1 Hz) revealed that indoor particle number (PN) and particle surface area (PSA) concentrations of ultrafine and fine woodsmoke aerosol are strongly temporally variant, reach exceedingly high levels (PN > 106 /cm3 ; PSA > 104 μm2 /cm3 ) that are seldom observed in non-biomass burning environments, are influenced by kitchen architectural features, and are moderately to poorly correlated with carbon monoxide concentrations. In five kitchens, PN concentrations remained above 105 /cm3 for more than half of the day due to frequent cooking episodes. Indoor/outdoor ratios of PN and PSA concentrations were greater than 10 in most kitchens and exceeded 100 in several kitchens. Notably, the use of metal chimneys significantly reduced indoor PN and PSA concentrations.
Collapse
Affiliation(s)
- Danielle N. Wagner
- Lyles School of Civil Engineering, Purdue UniversityWest LafayetteIndianaUSA
- Ray W. Herrick Laboratories, Center for High Performance BuildingsPurdue UniversityWest LafayetteIndianaUSA
| | | | | | - Brandon E. Boor
- Lyles School of Civil Engineering, Purdue UniversityWest LafayetteIndianaUSA
- Ray W. Herrick Laboratories, Center for High Performance BuildingsPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
8
|
Kaur K, Mohammadpour R, Ghandehari H, Reilly CA, Paine R, Kelly KE. Effect of combustion particle morphology on biological responses in a Co-culture of human lung and macrophage cells. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 284:119194. [PMID: 35937043 PMCID: PMC9348743 DOI: 10.1016/j.atmosenv.2022.119194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atmospheric aging of combustion particles alters their chemical composition and morphology. Previous studies have reported differences in toxicological responses after exposure to fresh versus aged particles, with chemical composition being the prime suspect behind the differences. However, less is known about the contribution of morphological differences in atmospherically aged particles to toxicological responses, possibly due to the difficulty in resolving the two properties (composition and morphology) that change simultaneously. This study altered the shape of lab-generated combustion particles, without affecting the chemical composition, from fractal-like to a more compact spherical shape, using a water condensation-evaporation method. The two shapes were exposed to a co-culture of human airway epithelial (A549) and differentiated human monocyte (THP-1) cells at air-liquid interface (ALI) conditions. The particles with different shapes were deposited using an electrostatic field-based ALI chamber. For the same mass dose, both shapes were internalized by cells, induced a pro-inflammatory response (IL-8 and TNFα), and enhanced CYP1A1 gene expression compared to air controls. The more compact spherical particles (representative of atmospherically aged particles) induced more early apoptosis and release of TNFα compared to the more fractal-like particles. These results suggest a contribution of morphology to the increased toxicity of aged combustion-derived particles.
Collapse
Affiliation(s)
- Kamaljeet Kaur
- Department of Chemical Engineering, University of Utah, United States
| | - Raziye Mohammadpour
- Utah Center for Nanomedicine, University of Utah, United States
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
- mRNA Center of Excellence, Sanofi, Waltham, MA, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, United States
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
- Department of Biomedical Engineering, University of Utah, United States
| | - Christopher A. Reilly
- Utah Center for Nanomedicine, University of Utah, United States
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, United States
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, University of Utah, United States
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah, United States
- Utah Center for Nanomedicine, University of Utah, United States
| |
Collapse
|
9
|
Phosphate Buffer Solubility and Oxidative Potential of Single Metals or Multielement Particles of Welding Fumes. ATMOSPHERE 2020. [DOI: 10.3390/atmos12010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To evaluate the chemical behavior and the health impact of welding fumes (WF), a complex and heterogeneous mixture of particulate metal oxides, two certified reference materials (CRMs) were tested: mild steel WF (MSWF-1) and stainless steel WF (SSWF-1). We determined their total chemical composition, their solubility, and their oxidative potential in a phosphate buffer (PB) solution under physiological conditions (pH 7.4 and 37 °C). The oxidative potential (OPDTT) of WF CRMs was evaluated using an acellular method by following the dithiothreitol (DTT) consumption rate (µmol DTT L−1 min−1). Pure metal salts present in the PB soluble fraction of the WF CRMs were tested individually at equivalent molarity to estimate their specific contribution to the total OPDTT. The metal composition of MSWF-1 consisted mainly of Fe, Zn, Mn, and Cu and the SSWF-1 composition consisted mainly of Fe, Mn, Cr, Ni, Cu, and Zn, in diminishing order. The metal PB solubility decreased from Cu (11%) to Fe (approximately 0.2%) for MSWF-1 and from Mn (9%) to Fe (<1%) for SSWF-1. The total OPDTT of SSWF-1 is 2.2 times the OPDTT of MSWF-1 due to the difference in oxidative capacity of soluble transition metals. Cu (II) and Mn (II) are the most sensitive towards DTT while Cr (VI), Fe (III), and Zn (II) are barely reactive, even at higher concentrations. The OPDTT measured for both WF CRMs extracts compare well with simulated extracts containing the main metals at their respective PB-soluble concentrations. The most soluble transition metals in the simulated extract, Mn (II) and Cu (II), were the main contributors to OPDTT in WF CRMs extracts. Mn (II), Cu (II), and Ni (II) might enhance the DTT oxidation by a redox catalytic reaction. However, summing the main individual soluble metal DTT response induces a large overestimation probably linked to modifications in the speciation of various metals when mixed. The complexation of metals with different ligands present in solution and the interaction between metals in the PB-soluble fraction are important phenomena that can influence OPDTT depletion and therefore the potential health effect of inhaled WF.
Collapse
|
10
|
Massimi L, Ristorini M, Simonetti G, Frezzini MA, Astolfi ML, Canepari S. Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115271. [PMID: 32814272 DOI: 10.1016/j.envpol.2020.115271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2',7'-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPAA, OPDCFH and OPDTT), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM10 samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPAA was particularly sensitive toward coarse particles released from the railway, OPDCFH was sensible to fine particles released from the steel plant and domestic biomass heating, and OPDTT was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy.
| | - Martina Ristorini
- Department of Bioscience and Territory, University of Molise, Pesche, IS, 86090, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Maria Agostina Frezzini
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Silvia Canepari
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| |
Collapse
|
11
|
Effect of Renewable Fuels and Intake O2 Concentration on Diesel Engine Emission Characteristics and Reactive Oxygen Species (ROS) Formation. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Renewable diesel fuels have the potential to reduce net CO2 emissions, and simultaneously decrease particulate matter (PM) emissions. This study characterized engine-out PM emissions and PM-induced reactive oxygen species (ROS) formation potential. Emissions from a modern heavy-duty diesel engine without external aftertreatment devices, and fueled with petroleum diesel, hydrotreated vegetable oil (HVO) or rapeseed methyl ester (RME) biodiesel were studied. Exhaust gas recirculation (EGR) allowed us to probe the effect of air intake O2 concentration, and thereby combustion temperature, on emissions and ROS formation potential. An increasing level of EGR (decreasing O2 concentration) resulted in a general increase of equivalent black carbon (eBC) emissions and decrease of NOx emissions. At a medium level of EGR (13% intake O2), eBC emissions were reduced for HVO and RME by 30 and 54% respectively compared to petroleum diesel. In general, substantially lower emissions of polycyclic aromatic hydrocarbons (PAHs), including nitro and oxy-PAHs, were observed for RME compared to both HVO and diesel. At low-temperature combustion (LTC, O2 < 10%), CO and hydrocarbon gas emissions increased and an increased fraction of refractory organic carbon and PAHs were found in the particle phase. These altered soot properties have implications for the design of aftertreatment systems and diesel PM measurements with optical techniques. The ROS formation potential per mass of particles increased with increasing engine O2 concentration intake. We hypothesize that this is because soot surface properties evolve with the combustion temperature and become more active as the soot matures into refractory BC, and secondly as the soot surface becomes altered by surface oxidation. At 13% intake O2, the ROS-producing ability was high and of similar magnitude per mass for all fuels. When normalizing by energy output, the lowered emissions for the renewable fuels led to a reduced ROS formation potential.
Collapse
|
12
|
Yuan X, Nie W, He Z, Yang J, Shao B, Ma X, Zhang X, Bi Z, Sun L, Liang X, Tie Y, Liu Y, Mo F, Xie D, Wei Y, Wei X. Carbon black nanoparticles induce cell necrosis through lysosomal membrane permeabilization and cause subsequent inflammatory response. Theranostics 2020; 10:4589-4605. [PMID: 32292516 PMCID: PMC7150486 DOI: 10.7150/thno.34065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 01/29/2020] [Indexed: 02/05/2023] Open
Abstract
Rationale: The adverse health effects of nano-particulate pollutants have attracted much attention in recent years. Carbon nanomaterials are recognized as risk factors for prolonged inflammatory responses and diffuse alveolar injury. Previous research indicated a central role of alveolar macrophages in the pathogenesis of particle-related lung disease, but the underlying mechanism remains largely unknown. Methods: C57BL/6 mice were intratracheally instilled with carbon black nanoparticles (CBNPs). Cell necrosis and the infiltrated neutrophils in the lungs were detected by flow cytometry. Release of mitochondria was observed with Mito Tracker and mitochondrial DNA (mtDNA) was quantified by qPCR via Taqman probes. TLR9-p38 MAPK signaling pathway was detected by Western blotting. The production of lipid chemoattractant leukotriene B4 (LTB4) in the supernatant and bronchoalveolar lavage fluid (BALF) was quantitated using an enzyme immunoassay (EIA). Results: In the present study, we found that a single instillation of CBNPs induced neutrophil influx in C57BL/6 mice as early as 4 h post-exposure following the rapid appearance of cell damage indicators in BALF at 30 min. Macrophages exposed to CBNPs showed necrotic features and were characterized by lysosome rupture, cathepsin B release, reactive oxygen species generation, and reduced intracellular ATP level. Necrosis was partly inhibited by a specific lysosomal cathepsin B inhibitor CA074 Me. Further analyses suggested that the resulting leakage of mtDNA from the necrotic cells activated neutrophils and triggered severe inflammation in vivo. Pulmonary neutrophilic inflammation induced by mtDNA was reduced in TLR9-/- mice. Additionally, mtDNA induced LTB4 production from macrophages, which may contribute to neutrophil recruitment. Conclusion: We demonstrated here that CBNPs induce acute cell necrosis through lysosomal rupture and that mtDNA released from necrotic cells functions as a key event mediating pulmonary neutrophilic inflammation. This study described a novel aspect of the pathogenesis of particle-induced inflammatory response and provided a possible therapeutic target for the regulation of inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
13
|
Hadrup N, Saber AT, Kyjovska ZO, Jacobsen NR, Vippola M, Sarlin E, Ding Y, Schmid O, Wallin H, Jensen KA, Vogel U. Pulmonary toxicity of Fe 2O 3, ZnFe 2O 4, NiFe 2O 4 and NiZnFe 4O 8 nanomaterials: Inflammation and DNA strand breaks. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103303. [PMID: 31794919 DOI: 10.1016/j.etap.2019.103303] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Exposure to metal oxide nanomaterials potentially occurs at the workplace. We investigated the toxicity of two Fe-oxides: Fe2O3 nanoparticles and nanorods; and three MFe2O4 spinels: NiZnFe4O8, ZnFe2O4, and NiFe2O4 nanoparticles. Mice were dosed 14, 43 or 128 μg by intratracheal instillation. Recovery periods were 1, 3, or 28 days. Inflammation - neutrophil influx into bronchoalveolar lavage (BAL) fluid - occurred for Fe2O3 rods (1 day), ZnFe2O4 (1, 3 days), NiFe2O4 (1, 3, 28 days), Fe2O3 (28 days) and NiZnFe4O8 (28 days). Conversion of mass-dose into specific surface-area-dose showed that inflammation correlated with deposited surface area and consequently, all these nanomaterials belong to the so-called low-solubility, low-toxicity class. Increased levels of DNA strand breaks were observed for both Fe2O3 particles and rods, in BAL cells three days post-exposure. To our knowledge, this is, besides magnetite (Fe3O4), the first study of the pulmonary toxicity of MFe2O4 spinel nanomaterials.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Anne T Saber
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Zdenka O Kyjovska
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Minnamari Vippola
- Materials Science and Environmental Engineering, Tampere University, P.O.Box 589, 33014 Tampere University, Finland.
| | - Essi Sarlin
- Materials Science and Environmental Engineering, Tampere University, P.O.Box 589, 33014 Tampere University, Finland.
| | - Yaobo Ding
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Otmar Schmid
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway.
| | - Keld A Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Department of Health Technology, Danish Technical University (DTU), DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Application of DPPH Assay for Assessment of Particulate Matter Reducing Properties. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Different acellular assays were developed to measure particulate matter’s (PM) oxidative potential (OP), a metric used to predict the ability of PM in generating oxidative stress in living organisms. However, there are still fundamental open issues regarding the complex redox equilibria among the involved species which could include reducing compounds. The aim of this study was the pilot application of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to PM in order to evaluate the presence of reducing species. The assay, commonly applied to biological matrices, was adapted to PM and showed good analytical performances. It allowed the analysis of conventional 24 h airborne PM samples with suitable sensitivity and good repeatability of the measurements. The assay was applied to seven samples representing possible PM contributes (certified urban dust NIST1648a; brake dust; Saharan dust; coke dust; calcitic soil dust; incinerator dust; and diesel particulate matter certified material NIST1650b) and to PM2.5 field filters. The same samples were also analyzed for elements. Preliminary results indicated that the assay gave a linear response and that detectable amounts of reducing species were present in PM samples. The combined application of DPPH and conventional OP assays could then permit, in the future, to gain more knowledge about the reaction and/or competition between oxidative and reducing processes.
Collapse
|
15
|
Han B, Chu C, Su X, Zhang N, Zhou L, Zhang M, Yang S, Shi L, Zhao B, Niu Y, Zhang R. N 6-methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats. Nanotoxicology 2019; 14:1-20. [PMID: 31502903 DOI: 10.1080/17435390.2019.1661041] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The pulmonary fibrosis could be caused by long-term inhalation of carbon black (CB) particles. Studies on the mechanisms of pulmonary fibrosis induced by CB are required to develop the stratagem of prevention and treatment on fibrosis. The RNA-binding protein DiGeorge syndrome critical region gene 8 (DGCR8)-dependent pri-miRNAs processing is regulated by N6-methyladenosine (m6A) modification, which targets the downstream signal pathway. However, its role in pulmonary fibrosis has not been known clearly. In the present study, rats inhaled CB at dose of 0, 5 or 30 mg/m3 for 28 days, 6 h/day, respectively. The rats inhaled CB at dose of 0 or 30 mg/m3 for 14 days, 28 days and 90 days, respectively. In vitro experiments, the normal human bronchial epithelial cell line (16HBE) was treated with CB (0, 50, 100 and 200 μg/mL) for 24 h. In vitro and vivo study, the levels of fibrosis indicators including α-SMA, vimentin, collagen-I and hydroxyproline in CB treatment groups statistically increased in dose- or time- dependent manners compared with the control. After CB treatment, PI3K-AKT-mTOR pathway was activated and regulated by miRNA-126. We found that both of m6A modifications of pri-miRNA-126 and its binding with DGCR8 were decreased after CB treatment, which resulted in the reduction of mature miRNA-126 accompanied by accumulation of unprocessed pri-miRNA-126. This work demonstrated that m6A modification of pri-miRNA-126 and its binding with DGCR8 decreases blocked miRNA-126 maturation, and then activated the PI3K/AKT/mTOR pathway, which drove the fibro genesis in the lung after CB exposure.
Collapse
Affiliation(s)
- Bin Han
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ning Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Mengyue Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Shuaishuai Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lei Shi
- Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Bo Zhao
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang, China
| | - Yujie Niu
- Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Regional Inhaled Deposited Dose of Urban Aerosols in an Eastern Mediterranean City. ATMOSPHERE 2019. [DOI: 10.3390/atmos10090530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We calculated the regional deposited dose of inhaled particulate matter based on number/mass concentrations in Amman, Jordan. The dose rate was the highest during exercising but was generally lower for females compared to males. The fine particles dose rate was 1010–1011 particles/h (101–102 µg/h). The PM10 dose rate was 49–439 µg/h for males and 36–381 µg/h for females. While resting, the PM10 deposited in the head airways was 67–77% and 8–12% in the tracheobronchial region. When exercising, the head airways received 37–44% of the PM10, whereas the tracheobronchial region received 31–35%. About 8% (exercise) and 14–16% (rest) of the PM2.5 was received in the head airways, whereas the alveolar received 74–76% (exercise) and 54–62% (rest). Extending the results for common exposure scenarios in the city revealed alarming results for service workers and police officers; they might receive PM2.5 and 220 µg/h PM10 while doing their duty on main roads adjacent to traffic. This is especially critical for a pregnant police officer. Outdoor athletic activities (e.g., jogging along main roads) are associated with high PM2.5 and PM10 dose rates (100 µg/h and ~425 µg/h, respectively).
Collapse
|
17
|
Ji J, Ganguly K, Mihai X, Sun J, Malmlöf M, Gerde P, Upadhyay S, Palmberg L. Exposure of normal and chronic bronchitis-like mucosa models to aerosolized carbon nanoparticles: comparison of pro-inflammatory oxidative stress and tissue injury/repair responses. Nanotoxicology 2019; 13:1362-1379. [PMID: 31462114 DOI: 10.1080/17435390.2019.1655600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Carbon nanoparticles (CNP) are generated by incomplete combustion of diesel engines. Several epidemiological studies associated higher susceptibility to particulate matter related adverse respiratory outcomes with preexisting conditions like chronic bronchitis (CB). Therefore, we compared the effect of CNP exposure on primary bronchial epithelial cells (PBEC) developed in air-liquid interface (ALI) models of normal versus CB-like-mucosa.PBEC cultured at ALI represented normal mucosa (PBEC-ALI). To develop CB-like-mucosa (PBEC-ALI/CB), 1 ng/ml interleukin-13 was added to the basal media of PBEC-ALI culturing. PBEC-ALI and PBEC-ALI/CB were exposed to sham or to aerosolized CNP using XposeALI® system. Protein levels of CXCL-8 and MMP-9 were measured in the basal media using ELISA. Transcript expression of pro-inflammatory (CXCL8, IL6, TNF, NFKB), oxidative stress (HMOX1, SOD3, GSTA1, GPx), tissue injury/repair (MMP9/TIMP1) and bronchial cell type markers (MUC5AC, CC10) were assessed using qRT-PCR.Increased secretion of CXCL-8 and MMP-9 markers was detected 24 h post-exposure in both PBEC-ALI and PBEC-ALI/CB with more pronounced effect in the later. Pro-inflammatory and tissue injury markers were increased at both 6 h and 24 h post-exposure in PBEC-ALI/CB. Oxidative stress markers exhibited similar responses at 6 h and 24 h post-exposure in PBEC-ALI/CB. The club cell specific marker CC10 was increased by 300 fold in PBEC-ALI/CB and 20 fold in PBEC-ALI following CNP exposure.Our data indicates an earlier and stronger reaction of pro-inflammatory, oxidative stress and tissue injury markers in PBEC-ALI/CB models compared to PBEC-ALI models following CNP exposure. The findings may provide insight into the plausible mechanisms of higher susceptibility among predisposed individuals to nanoparticle exposure.
Collapse
Affiliation(s)
- Jie Ji
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Koustav Ganguly
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xenia Mihai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jitong Sun
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Malmlöf
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Inhalation Sciences Sweden AB, Stockholm, Sweden
| | - Per Gerde
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Inhalation Sciences Sweden AB, Stockholm, Sweden
| | - Swapna Upadhyay
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
In Vivo Comparative Study on Acute and Sub-acute Biological Effects Induced by Ultrafine Particles of Different Anthropogenic Sources in BALB/c Mice. Int J Mol Sci 2019; 20:ijms20112805. [PMID: 31181746 PMCID: PMC6600162 DOI: 10.3390/ijms20112805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/02/2023] Open
Abstract
Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 μg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.
Collapse
|
19
|
Yang L, Feuchtinger A, Möller W, Ding Y, Kutschke D, Möller G, Schittny JC, Burgstaller G, Hofmann W, Stoeger T, Walch A, Schmid O. Three-Dimensional Quantitative Co-Mapping of Pulmonary Morphology and Nanoparticle Distribution with Cellular Resolution in Nondissected Murine Lungs. ACS NANO 2019; 13:1029-1041. [PMID: 30566327 DOI: 10.1021/acsnano.8b07524] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deciphering biodistribution, biokinetics, and biological effects of nanoparticles (NPs) in entire organs with cellular resolution remains largely elusive due to the lack of effective imaging tools. Here, light sheet fluorescence microscopy in combination with optical tissue clearing was validated for concomitant three-dimensional mapping of lung morphology and NP biodistribution with cellular resolution in nondissected ex vivo murine lungs. Tissue autofluorescence allowed for label-free, quantitative morphometry of the entire bronchial tree, acinar structure, and blood vessels. Co-registration of fluorescent NPs with lung morphology revealed significant differences in pulmonary NP distribution depending on the means of application (intratracheal instillation and ventilator-assisted aerosol inhalation under anesthetized conditions). Inhalation exhibited a more homogeneous NP distribution in conducting airways and acini indicated by a central-to-peripheral (C/P) NP deposition ratio of unity (0.98 ± 0.13) as compared to a 2-fold enhanced central deposition (C/P = 1.98 ± 0.37) for instillation. After inhalation most NPs were observed in the proximal part of the acini as predicted by computational fluid dynamics simulations. At cellular resolution patchy NP deposition was visualized in bronchioles and acini, but more pronounced for instillation. Excellent linearity of the fluorescence intensity-dose response curve allowed for accurate NP dosimetry and revealed ca. 5% of the inhaled aerosol was deposited in the lungs. This single-modality imaging technique allows for quantitative co-registration of tissue architecture and NP biodistribution, which could accelerate elucidation of NP biokinetics and bioactivity within intact tissues, facilitating both nanotoxicology studies and the development of nanomedicines.
Collapse
Affiliation(s)
- Lin Yang
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
- Faculty of Medicine , Technical University of Munich , Munich , 80333 , Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology , Helmholtz Zentrum München , Neuherberg , 85764 , Germany
| | - Winfried Möller
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - Yaobo Ding
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - David Kutschke
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - Gabriele Möller
- Department Genome Analysis Center , Institute of Experimental Genetics, Helmholtz Zentrum München , Neuherberg , 85764 , Germany
| | | | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - Werner Hofmann
- Department of Chemistry and Physics of Materials , University of Salzburg , Salzburg , A-5020 , Austria
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - Alex Walch
- Research Unit Analytical Pathology , Helmholtz Zentrum München , Neuherberg , 85764 , Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| |
Collapse
|
20
|
Pan Y, Ong CE, Pung YF, Chieng JY. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes – a literature-based review. Xenobiotica 2018; 49:863-876. [DOI: 10.1080/00498254.2018.1503360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Pan
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yuh Fen Pung
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Jin Yu Chieng
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
21
|
Wilson SJ, Miller MR, Newby DE. Effects of Diesel Exhaust on Cardiovascular Function and Oxidative Stress. Antioxid Redox Signal 2018; 28:819-836. [PMID: 28540736 DOI: 10.1089/ars.2017.7174] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SIGNIFICANCE Air pollution is a major global health concern with particulate matter (PM) being especially associated with increases in cardiovascular morbidity and mortality. Diesel exhaust emissions are a particularly rich source of the smallest sizes of PM ("fine" and "ultrafine") in urban environments, and it is these particles that are believed to be the most detrimental to cardiovascular health. Recent Advances: Controlled exposure studies to diesel exhaust in animals and man demonstrate alterations in blood pressure, heart rate, vascular tone, endothelial function, myocardial perfusion, thrombosis, atherogenesis, and plaque stability. Oxidative stress has emerged as a highly plausible pathobiological mechanism by which inhalation of diesel exhaust PM leads to multiple facets of cardiovascular dysfunction. CRITICAL ISSUES Diesel exhaust inhalation promotes oxidative stress in several biological compartments that can be directly associated with adverse cardiovascular effects. FUTURE DIRECTIONS Further studies with more sensitive and specific in vivo human markers of oxidative stress are required to determine if targeting oxidative stress pathways involved in the actions of diesel exhaust PM could be of therapeutic value. Antioxid. Redox Signal. 28, 819-836.
Collapse
Affiliation(s)
- Simon J Wilson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - Mark R Miller
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
22
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
23
|
Yang L, Liu G, Zheng M, Jin R, Zhao Y, Wu X, Xu Y. Pivotal Roles of Metal Oxides in the Formation of Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12329-12336. [PMID: 29027793 DOI: 10.1021/acs.est.7b03583] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants that can adversely affect human health. Although the pivotal roles of metal oxides in EPFR formation have been identified, few studies have investigated the influence of the metal oxide species, size, or concentration on the formation of EPFRs. In this study, EPFR formation from a polyaromatic hydrocarbon with chlorine and hydroxyl substituents (2,4-dichloro-1-naphthol) was investigated using electron paramagnetic resonance spectroscopy. The effect of the metal oxide on the EPFR species and its lifetime and yield were evaluated. The spectra obtained with catalysis by CuO, Al2O3, ZnO, and NiO were obviously different, indicating that different EPFRs formed. The abilities of the metal oxides to promote EPFR formation were in the order Al2O3 > ZnO > CuO > NiO, which were in accordance with the oxidizing strengths of the metal cations. A decay study showed that the generated radicals were persistent, with a maximum 1/e lifetime of 108 days on the surface of Al2O3. The radical yields were dependent on the concentration and particle size of the metal oxide. Metal oxide nanoparticles increased the EPFR concentrations more than micrometer-sized particles.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiaolin Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
24
|
Park MVDZ, Bleeker EAJ, Brand W, Cassee FR, van Elk M, Gosens I, de Jong WH, Meesters JAJ, Peijnenburg WJGM, Quik JTK, Vandebriel RJ, Sips AJAM. Considerations for Safe Innovation: The Case of Graphene. ACS NANO 2017; 11:9574-9593. [PMID: 28933820 DOI: 10.1021/acsnano.7b04120] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The terms "Safe innovation" and "Safe(r)-by-design" are currently popular in the field of nanotechnology. These terms are used to describe approaches that advocate the consideration of safety aspects already at an early stage of the innovation process of (nano)materials and nanoenabled products. Here, we investigate the possibilities of considering safety aspects during various stages of the innovation process of graphene, outlining what information is already available for assessing potential hazard, exposure, and risks. In addition, we recommend further steps to be taken by various stakeholders to promote the safe production and safe use of graphene.
Collapse
Affiliation(s)
- Margriet V D Z Park
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Eric A J Bleeker
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Walter Brand
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Flemming R Cassee
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Merel van Elk
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Ilse Gosens
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Wim H de Jong
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | | | | | - Joris T K Quik
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Rob J Vandebriel
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Adriënne J A M Sips
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
25
|
Ganguly K, Ettehadieh D, Upadhyay S, Takenaka S, Adler T, Karg E, Krombach F, Kreyling WG, Schulz H, Schmid O, Stoeger T. Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice. Part Fibre Toxicol 2017. [PMID: 28637465 PMCID: PMC5480131 DOI: 10.1186/s12989-017-0200-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardio-vascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. Methods Equivalent surface area CNP doses in the blood (30mm2 per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm2; accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [≥98 and ≥95% elemental carbon; 10 and 14 nm primary particle diameter; and 800 and 300 m2/g specific surface area] for inhalation and IAI respectively. Results Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver); aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. Conclusions Our findings indicate that extra-pulmonary effects due to CNP inhalation are dominated by indirect effects (particle-cell interactions in the lung) rather than direct effects (translocated CNPs) within the first hours after exposure. Hence, CNP translocation may not be the key event inducing early cardiovascular impairment following air pollution episodes. The considerable response detected in the aorta after CNP inhalation warrants more emphasis on this tissue in future studies. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0200-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koustav Ganguly
- Unit of Lung and Airway Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Unit of Work Environment Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Dariusch Ettehadieh
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Swapna Upadhyay
- Unit of Lung and Airway Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Shinji Takenaka
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Erwin Karg
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.,Cooperationgroup Comprehensive Molecular Analytics (CMA), Joint Mass Spectrometry Centre (JMSC), Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität, D81377, Munich, Germany
| | - Wolfgang G Kreyling
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, D85764, Munich, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.
| |
Collapse
|
26
|
Sattler C, Moritz F, Chen S, Steer B, Kutschke D, Irmler M, Beckers J, Eickelberg O, Schmitt-Kopplin P, Adler H, Stoeger T. Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part Fibre Toxicol 2017; 14:2. [PMID: 28069010 PMCID: PMC5223553 DOI: 10.1186/s12989-016-0181-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023] Open
Abstract
Background Inhalation of environmental (nano) particles (NP) as well as persistent herpesvirus-infection are potentially associated with chronic lung disease and as both are omnipresent in human society a coincidence of these two factors is highly likely. We hypothesized that NP-exposure of persistently herpesvirus-infected cells as a second hit might disrupt immune control of viral latency, provoke reactivation of latent virus and eventually lead to an inflammatory response and tissue damage. Results To test this hypothesis, we applied different NP to cells or mice latently infected with murine gammaherpesvirus 68 (MHV-68) which provides a small animal model for the study of gammaherpesvirus-pathogenesis in vitro and in vivo. In vitro, NP-exposure induced expression of the typically lytic viral gene ORF50 and production of lytic virus. In vivo, lytic viral proteins in the lung increased after intratracheal instillation with NP and elevated expression of the viral gene ORF50 could be detected in cells from bronchoalveolar lavage. Gene expression and metabolome analysis of whole lung tissue revealed patterns with striking similarities to acute infection. Likewise, NP-exposure of human cells latently infected with Epstein-Barr-Virus also induced virus production. Conclusions Our results indicate that NP-exposure of persistently herpesvirus-infected cells – murine or human – restores molecular signatures found in acute virus infection, boosts production of lytic viral proteins, and induces an inflammatory response in the lung – a combination which might finally result in tissue damage and pathological alterations. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0181-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Sattler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Franco Moritz
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit BioGeoChemistry, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Shanze Chen
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Beatrix Steer
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, D-81377, Munich, Germany.,University Hospital Grosshadern, Ludwig-Maximilians-University, D-81377, Munich, Germany.,Comprehensive Pneumology Center, Member of the German Center of Lung Research (DZL), D-81377, Munich, Germany
| | - David Kutschke
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Irmler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Johannes Beckers
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.,Technische Universität München, Chair of Experimental Genetics, D-85354, Freising, Germany
| | - Oliver Eickelberg
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit BioGeoChemistry, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, D-81377, Munich, Germany. .,University Hospital Grosshadern, Ludwig-Maximilians-University, D-81377, Munich, Germany. .,Comprehensive Pneumology Center, Member of the German Center of Lung Research (DZL), D-81377, Munich, Germany.
| | - Tobias Stoeger
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
27
|
Chen S, Yin R, Mutze K, Yu Y, Takenaka S, Königshoff M, Stoeger T. No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Part Fibre Toxicol 2016; 13:33. [PMID: 27328634 PMCID: PMC4915176 DOI: 10.1186/s12989-016-0144-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Carbonaceous nanoparticles (CNP) represent a major constituent of urban particulate air pollution, and inhalation of high CNP levels has been described to trigger a pro-inflammatory response of the lung. While several studies identified specific particle characteristics driving respiratory toxicity of low-solubility and low-toxicity particles such as CNP, the major lung cell type, which initiates and drives that response, remains still uncertain. Since alveolar macrophages (AM) are known to effectively phagocytose inhaled particles and play a crucial role for the initiation of pulmonary inflammation caused by invading microbes, we aimed to determine their role for sterile stimuli such as CNP by profiling the primary alveolar cell compartments of the lung. We exposed C57BL/6 mice to 20 μg CNP by intratracheal instillation and comprehensively investigated the expression of the underlying mediators during a time span of 3 to 72 h in three different lung cell populations: CD45- (negative) structural cells, CD45+ (positive) leukocytes, and by BAL recovered cells. Results Bronchoalveolar lavage (BAL) analysis revealed an acute inflammatory response characterized by the most prominent culmination of neutrophil granulocytes from 12 to 24 h after instillation, which declined to basal levels by day 7. As early as 3 h after CNP exposure 50 % of the AM revealed particle laden. BAL concentrations and lung gene expression profiles of TNFα, and the neutrophil chemoattractants CXCL1,-2 and-5 preceded the neutrophil recruitment and showed highest levels after 12 h of CNP exposure, pointing to a significant activation of the inflammation-evoking lung cells at this point of time. AM, isolated from lungs 3 to 12 h after CNP instillation, however, did not show a pro-inflammatory signature. On the contrary, gene expression analysis of different lung cell populations isolated 12 h after CNP instillation revealed CD45-, mainly representing alveolar epithelial type II (ATII) cells as major producer of inflammatory CXCL cytokines. Particularly by CD45- cells expressed Cxcl5 proved to be the most abundant chemokine, being 12 h after CNP exposure 24 (±11) fold induced. Conclusion Our data suggests that AM are noninvolved in the initiation of the inflammatory response. ATII cells, which induced highest CXCL levels early on, might in contrast be the driver of acute neutrophilic inflammation upon pulmonary CNP exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanze Chen
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Renfu Yin
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Youjia Yu
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Shinji Takenaka
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
28
|
Saquib Q, Siddiqui MA, Ahmed J, Al-Salim A, Ansari SM, Faisal M, Al-Khedhairy AA, Musarrat J, AlWathnani HA, Alatar AA, Al-Arifi SA. Hazards of low dose flame-retardants (BDE-47 and BDE-32): Influence on transcriptome regulation and cell death in human liver cells. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:37-49. [PMID: 26808241 DOI: 10.1016/j.jhazmat.2016.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/21/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
We have evaluated the in vitro low dose hepatotoxic effects of two flame-retardants (BDE-47 and BDE-32) in HepG2 cells. Both congeners declined the viability of cells in MTT and NRU cell viability assays. Higher level of intracellular reactive oxygen species (ROS) and dysfunction of mitochondrial membrane potential (ΔΨm) were observed in the treated cells. Comet assay data confirmed the DNA damaging potential of both congeners. BDE-47 exposure results in the appearance of subG1 apoptotic peak (30.1%) at 100 nM, while BDE-32 arrested the cells in G2/M phase. Among the set of 84 genes, BDE-47 induces downregulation of majority of mRNA transcripts, whilst BDE-32 showed differential expression of transcripts in HepG2. The ultrastructural analysis revealed mitochondrial swelling and degeneration of cristae in BDE-47 and BDE-32 treated cells. Overall our data demonstrated the hepatotoxic potential of both congeners via alteration of vital cellular pathways.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Maqsood A Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Ahmed
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Salim
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sabiha M Ansari
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; Baba Ghulam Shah Badshah University, Rajouri 185131, Jammu and Kashmir, India
| | - Hend A AlWathnani
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud A Al-Arifi
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Vranic S, Gosens I, Jacobsen NR, Jensen KA, Bokkers B, Kermanizadeh A, Stone V, Baeza-Squiban A, Cassee FR, Tran L, Boland S. Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO 2 nanoparticles. Arch Toxicol 2016; 91:353-363. [PMID: 26872950 DOI: 10.1007/s00204-016-1673-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NP) have a tendency to agglomerate after dispersion in physiological media, which can be prevented by the addition of serum. This may however result in modification of the toxic potential of particles due to the formation of protein corona. Our study aimed to analyze the role of serum that is added to improve the dispersion of 10 nm TiO2 NPs on in vitro and in vivo effects following the exposure via the respiratory route. We characterized NP size, surface charge, sedimentation rate, the presence of protein corona and the oxidant-generating capacity after NP dispersion in the presence/absence of serum. The effect of serum on NP internalization, cytotoxicity and pro-inflammatory responses was assessed in a human pulmonary cell line, NCI-H292. Serum in the dispersion medium led to a slower sedimentation, but an enhanced cellular uptake of TiO2 NPs. Despite this greater uptake, the pro-inflammatory response in NCI-H292 cells was lower after serum supplementation (used either as a dispersant or as a cell culture additive), which may be due to a reduced intrinsic oxidative potential of TiO2 NPs. Interestingly, serum could be added 2 h after the NP treatment without affecting the pro-inflammatory response. We also determined the acute pulmonary and hepatic toxicity in vivo 24 h after intratracheal instillation of TiO2 NPs in C57BL/6N mice. The use of serum resulted in an underestimation of the local acute inflammatory response in the lung, while a systemic response on glutathione reduction remained unaffected. In conclusion, serum as a dispersion agent for TiO2 NPs can lead to an underestimation of the acute pro-inflammatory response in vitro and in vivo. To avoid potential unwanted effects of dispersants and medium components, we recommend that the protocol of NM preparation should be thoroughly tested, and reflect as close as possible realistic exposure conditions.
Collapse
Affiliation(s)
- Sandra Vranic
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France.,Nanomedicine Lab, Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Upper Brook Street, Manchester, M13 9PT, UK
| | - Ilse Gosens
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nicklas Raun Jacobsen
- Danish Centre for Nanosafety, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Keld A Jensen
- Danish Centre for Nanosafety, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Ali Kermanizadeh
- School of Life Sciences, Heriot-Watt University, John Muir building, Edinburgh, UK.,Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Vicki Stone
- School of Life Sciences, Heriot-Watt University, John Muir building, Edinburgh, UK
| | - Armelle Baeza-Squiban
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France
| | - Flemming R Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Sonja Boland
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France.
| |
Collapse
|
30
|
Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Arch Toxicol 2016; 90:3029-3044. [DOI: 10.1007/s00204-016-1659-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
31
|
Pedata P, Stoeger T, Zimmermann R, Peters A, Oberdörster G, D'Anna A. "Are we forgetting the smallest, sub 10 nm combustion generated particles?". Part Fibre Toxicol 2015; 12:34. [PMID: 26521024 PMCID: PMC4628326 DOI: 10.1186/s12989-015-0107-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022] Open
Abstract
Although mass emissions of combustion-generated particulate matter have been substantially reduced by new combustion technology, there is still a great concern about the emissions of huge numbers of sub-10 nm particles with insignificant mass. These particles have up to orders of magnitude higher surface area to mass ratios compared to larger particles, have surfaces covered with adsorbed volatile and semi-volatile organic species or even are constituted by such species. Currently there is only very little information available on exposure and related health effects specific for smaller particles and first evidences for long-term health effects has only been recently published. However, the fact that these nanoparticles are not easily measured at the exhausts and in the atmosphere and that their biological activity is obscure does not mean that we can overlook them. There is an urgent need to develop i) reliable methods to measure sub-10 nm particles at the exhaust and in the atmosphere and ii) a robust correlation between the chemical structure of the molecules making up combustion-generated nanoparticles and health burden of new combustion technologies. Our attention has to turn to this new class of combustion-generated nanoparticles, which might be the future major constituents of air pollution.
Collapse
Affiliation(s)
- Paola Pedata
- Department of Experimental Medicine - Section of Hygiene, Occupational Medicine and Forensic Medicine - School of Medicine, Second University of Naples, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| | - Ralf Zimmermann
- Comprehensive Molecular Analytics/Joint Mass Spectrometry Centre, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany. .,Analytical Chemistry/Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr-Lorenzweg 1, 18051, Rostock, Germany.
| | - Annette Peters
- Institut of Epidemiology II, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Günter Oberdörster
- Department of Environmental Medicine, Emeritus of Toxicology, University of Rochester, Rochester, 14642, NY, USA.
| | - Andrea D'Anna
- Department of Chemical, Material and Industrial Production Engineering, University of Naples "Federico II", P. Tecchio 80, 80125, Naples, Italy.
| |
Collapse
|
32
|
Gilmour MI, Kim YH, Hays MD. Comparative chemistry and toxicity of diesel and biomass combustion emissions. Anal Bioanal Chem 2015; 407:5869-75. [DOI: 10.1007/s00216-015-8797-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/12/2023]
|
33
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
34
|
Upadhyay S, Stoeger T, George L, Schladweiler MC, Kodavanti U, Ganguly K, Schulz H. Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats. Part Fibre Toxicol 2014; 11:36. [PMID: 25442699 PMCID: PMC4410795 DOI: 10.1186/s12989-014-0036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023] Open
Abstract
Background Studies provide compelling evidences for particulate matter (PM) associated cardiovascular health effects. Elderly individuals, particularly those with preexisting conditions like hypertension are regarded to be vulnerable. Experimental data are warranted to reveal the molecular pathomechanism of PM related cardiovascular impairments among aged/predisposed individuals. Thus we investigated the cardiovascular effects of ultrafine carbon particles (UfCP) on aged (12–13 months) spontaneously hypertensive rats (SHRs) and compared the findings with our pervious study on adult SHRs (6–7 months) to identify age related predisposition events in cardiovascular compromised elderly individuals. Methods Aged SHRs were inhalation exposed to UfCP for 24 h (~180 μg/m3) followed by radio-telemetric assessment for blood pressure (BP) and heart rate (HR). Bronchoalveolar lavage (BAL) fluid cell differentials, interleukin 6 (IL-6) and other proinflammatory cytokines; serum C-reactive protein (CRP) and haptoglobin (HPT); and plasma fibrinogen were measured. Transcript levels of hemeoxygenase 1 (HO-1), endothelin 1 (ET1), endothelin receptors A, B (ETA, ETB), tissue factor (TF), and plasminogen activator inhibitor-1 (PAI-1) were measured in the lung and heart to assess oxidative stress, endothelial dysfunction and coagulation cascade. Result UfCP exposed aged SHRs exhibited increased BP (4.4%) and HR (6.3%) on 1st recovery day paralleled by a 58% increase of neutrophils and 25% increase of IL-6 in the BAL fluid. Simultaneously higher CRP, HPT and fibrinogen levels in exposed SHRs indicate systemic inflammation. HO-1, ET1, ET-A, ET-B, TF and PAI-1 were induced by 1.5-2.0 folds in lungs of aged SHRs on 1st recovery day. However, in UfCP exposed adult SHRs these markers were up-regulated (2.5-6 fold) on 3rd recovery day in lung without detectable pulmonary/systemic inflammation. Conclusions The UfCP induced pulmonary and systemic inflammation in aged SHRs is associated with oxidative stress, endothelial dysfunction and disturbed coagulatory hemostasis. UfCP exposure increased BP and HR in aged SHRs rats which was associated with lung inflammation, and increased expression of inflammatory, vasoconstriction and coagulation markers as well as systemic changes in biomarkers of thrombosis in aged SHRs. Our study provides further evidence for potential molecular mechanisms explaining the increased risk of particle mediated cardiac health effects in cardiovascular compromised elderly individuals.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India.
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India.
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, NC, 27711, USA.
| | - Urmila Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, NC, 27711, USA.
| | - Koustav Ganguly
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,SRM Research Institute, SRM University, Chennai, 603203, India.
| | - Holger Schulz
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg/München, Germany.
| |
Collapse
|
35
|
Larson JK, Carvan MJ, Hutz RJ. Engineered nanomaterials: an emerging class of novel endocrine disruptors. Biol Reprod 2014; 91:20. [PMID: 24899576 DOI: 10.1095/biolreprod.113.116244] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Over the past decade, engineered nanomaterials (ENMs) have garnered great attention for their potentially beneficial applications in medicine, industry, and consumer products due to their advantageous physicochemical properties and inherent size. However, studies have shown that these sophisticated molecules can initiate toxicity at the subcellular, cellular, and/or tissue/organ level in diverse experimental models. Investigators have also demonstrated that, upon exposure to ENMs, the physicochemical properties that are exploited for public benefit may mediate adverse endocrine-disrupting effects on several endpoints of mammalian reproductive physiology (e.g., steroidogenesis, spermatogenesis, pregnancy). Elucidating these complex interactions within reproductive cells and tissues will significantly advance our understanding of ENMs as an emerging class of novel endocrine disruptors and reproductive toxicants. Herein we reviewed the recent developments in reproductive nanotoxicology and identified the gaps in our knowledge that may serve as future research directions to foster continued advancement in this evolving field of study.
Collapse
Affiliation(s)
- Jeremy K Larson
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin Children's Environmental Health Sciences Core Center at the University of Wisconsin-Milwaukee and Children's Research Institute, Milwaukee, Wisconsin
| | - Michael J Carvan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin Children's Environmental Health Sciences Core Center at the University of Wisconsin-Milwaukee and Children's Research Institute, Milwaukee, Wisconsin School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Reinhold J Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin Children's Environmental Health Sciences Core Center at the University of Wisconsin-Milwaukee and Children's Research Institute, Milwaukee, Wisconsin School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| |
Collapse
|
36
|
Geiser M, Stoeger T, Casaulta M, Chen S, Semmler-Behnke M, Bolle I, Takenaka S, Kreyling WG, Schulz H. Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Part Fibre Toxicol 2014; 11:19. [PMID: 24758489 PMCID: PMC4008490 DOI: 10.1186/1743-8977-11-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/15/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. METHODS Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. RESULTS Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. CONCLUSIONS Despite lacking alterations in lung deposition and biokinetics of inhaled NP, and absence of significant differences in lung function, higher uptake of NP by alveolar epithelial cells and prolonged, acute inflammatory responses to NP exposure indicate a moderately increased susceptibility of lungs to adverse effects of inhaled NP in Cftr mutant mice and provides potential mechanisms for the increased susceptibility of CF patients to air pollution.
Collapse
Affiliation(s)
- Marianne Geiser
- Institute of Anatomy, Medical Faculty, University of Bern, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Onoda A, Umezawa M, Takeda K, Ihara T, Sugamata M. Effects of maternal exposure to ultrafine carbon black on brain perivascular macrophages and surrounding astrocytes in offspring mice. PLoS One 2014; 9:e94336. [PMID: 24722459 PMCID: PMC3983141 DOI: 10.1371/journal.pone.0094336] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 11/18/2022] Open
Abstract
Perivascular macrophages (PVMs) constitute a subpopulation of resident macrophages in the central nervous system (CNS). They are located at the blood-brain barrier and can contribute to maintenance of brain functions in both health and disease conditions. PVMs have been shown to respond to particle substances administered during the prenatal period, which may alter their phenotype over a long period. We aimed to investigate the effects of maternal exposure to ultrafine carbon black (UfCB) on PVMs and astrocytes close to the blood vessels in offspring mice. Pregnant mice were exposed to UfCB suspension by intranasal instillation on gestational days 5 and 9. Brains were collected from their offspring at 6 and 12 weeks after birth. PVM and astrocyte phenotypes were examined by Periodic Acid Schiff (PAS) staining, transmission electron microscopy and PAS-glial fibrillary acidic protein (GFAP) double staining. PVM granules were found to be enlarged and the number of PAS-positive PVMs was decreased in UfCB-exposed offspring. These results suggested that in offspring, “normal” PVMs decreased in a wide area of the CNS through maternal UfCB exposure. The increase in astrocytic GFAP expression level was closely related to the enlargement of granules in the attached PVMs in offspring. Honeycomb-like structures in some PVM granules and swelling of astrocytic end-foot were observed under electron microscopy in the UfCB group. The phenotypic changes in PVMs and astrocytes indicate that maternal UfCB exposure may result in changes to brain blood vessels and be associated with increased risk of dysfunction and disorder in the offspring brain.
Collapse
Affiliation(s)
- Atsuto Onoda
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Department of Pathology, Tochigi Institute of Clinical Pathology, Nogi, Tochigi, Japan
- * E-mail:
| | - Masakazu Umezawa
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Ken Takeda
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Tomomi Ihara
- Department of Pathology, Tochigi Institute of Clinical Pathology, Nogi, Tochigi, Japan
| | - Masao Sugamata
- Department of Pathology, Tochigi Institute of Clinical Pathology, Nogi, Tochigi, Japan
| |
Collapse
|
38
|
|
39
|
Saquib Q, Al-Khedhairy AA, Ahmad J, Siddiqui MA, Dwivedi S, Khan ST, Musarrat J. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol 2013; 273:289-97. [PMID: 24035972 DOI: 10.1016/j.taap.2013.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/19/2022]
Abstract
The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe2O4-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe2O4-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48h of ZnFe2O4-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT(2) Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p<0.01) population of ZnFe2O4-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe2O4-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe2O4-NPs induced cellular and genetic damage.
Collapse
Affiliation(s)
- Quaiser Saquib
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
40
|
Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, Raftis J, Shah A, Shaw CA, Newby DE. Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond) 2013; 8:403-23. [PMID: 23477334 DOI: 10.2217/nnm.13.16] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles (NPs) are tiny particles with a diameter of less than 100 nm. Traffic exhaust is a major source of combustion-derived NPs (CDNPs), which represent a significant component in urban air pollution. Epidemiological, panel and controlled human chamber studies clearly demonstrate that exposure to CDNPs is associated with multiple adverse cardiovascular effects in both healthy individuals and those with pre-existing cardiovascular disease. NPs are also manufactured from a large range of materials for industrial use in a vast array of products including for use as novel imaging agents for medical use. There is currently little information available on the impacts of manufactured NPs in humans, but experimental studies demonstrate similarities to the detrimental cardiovascular actions of CDNPs. This review describes the evidence for these cardiovascular effects and attempts to resolve the paradox between the adverse effects of the unintentional exposure of CDNPs and the intentional delivery of manufactured NPs for medical purposes.
Collapse
Affiliation(s)
- Ken Donaldson
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shang Y, Zhu T, Lenz AG, Frankenberger B, Tian F, Chen C, Stoeger T. Reduced in vitro toxicity of fine particulate matter collected during the 2008 Summer Olympic Games in Beijing: the roles of chemical and biological components. Toxicol In Vitro 2013; 27:2084-93. [PMID: 23962744 DOI: 10.1016/j.tiv.2013.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Beijing has implemented systematic air pollution control legislation to reduce particulate emissions and improve air quality during the 2008 Summer Olympics, but whether the toxicity of fine fraction of particles (PM(2.5)) would be changed remains unclear. In present study we compared in vitro biological responses of PM(2.5) collected before and during the Olympics and tried to reveal possible correlations between its chemical components and toxicological mechanism(s). We measured cytotoxicity, cytokines/chemokines, and related gene expressions in murine alveolar macrophages, MH-S, after treated with 20 PM(2.5) samples. Significant, dose-dependent effects on cell viability, cytokine/chemokine release and mRNA expressions were observed. The cytotoxicity caused at equal mass concentration of PM(2.5) was notably reduced (p<0.05) by control measures, and significant association was found for viability and elemental zinc in PM(2.5). Endotoxin content in PM(2.5) correlated with all of the eight detected cytokines/chemokines; elemental and organic carbon correlated with four; arsenic and chromium correlated with six and three, respectively; iron and barium showed associations with two; nickel, magnesium, potassium, and calcium showed associations with one. PM(2.5) toxicity in Beijing was substantially dependent on its chemical components, and lowering the levels of specific components in PM(2.5) during the 2008 Olympics resulted in reduced biological responses.
Collapse
Affiliation(s)
- Yu Shang
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Gosens I, Mathijssen LEAM, Bokkers BGH, Muijser H, Cassee FR. Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology 2013; 8:643-53. [PMID: 23768316 DOI: 10.3109/17435390.2013.815814] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There are many uncertainties regarding the hazard of nanosized particles compared to the bulk material of the parent chemical. Here, the authors assess the comparative hazard of two nanoscale (NM-211 and NM-212) and one microscale (NM-213) cerium oxide materials in 28-day inhalation toxicity studies in rats (according to Organisation for Economic Co-operation and Development technical guidelines). All three materials gave rise to a dose-dependent pulmonary inflammation and lung cell damage but without gross pathological changes immediately after exposure. Following NM-211 and NM-212 exposure, epithelial cell injury was observed in the recovery groups. There was no evidence of systemic inflammation or other haematological changes following exposure of any of the three particle types. The comparative hazard was quantified by application of the benchmark concentration approach. The relative toxicity was explored in terms of three exposure metrics. When exposure levels were expressed as mass concentration, nanosized NM-211 was the most potent material, whereas when expression levels were based on surface area concentration, micro-sized NM-213 material induced the greatest extent of pulmonary inflammation/damage. Particles were equipotent based on particle number concentrations. In conclusion, similar pulmonary toxicity profiles including inflammation are observed for all three materials with little quantitative differences. Systemic effects were virtually absent. There is little evidence for a dominant predicting exposure metric for the observed effects.
Collapse
Affiliation(s)
- Ilse Gosens
- National Institute of Public Health and the Environment , Bilthoven , The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Tian F, Habel NC, Yin R, Hirn S, Banerjee A, Ercal N, Takenaka S, Estrada G, Kostarelos K, Kreyling W, Stoeger T. Pulmonary DWCNT exposure causes sustained local and low-level systemic inflammatory changes in mice. Eur J Pharm Biopharm 2013; 84:412-20. [DOI: 10.1016/j.ejpb.2013.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 03/02/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
|
44
|
Pedata P, Bergamasco N, D’Anna A, Minutolo P, Servillo L, Sannolo N, Balestrieri ML. Apoptotic and proinflammatory effect of combustion-generated organic nanoparticles in endothelial cells. Toxicol Lett 2013; 219:307-14. [DOI: 10.1016/j.toxlet.2013.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 10/27/2022]
|
45
|
Gerloff K, Pereira DI, Faria N, Boots AW, Kolling J, Förster I, Albrecht C, Powell JJ, Schins RP. Influence of simulated gastrointestinal conditions on particle-induced cytotoxicity and interleukin-8 regulation in differentiated and undifferentiated Caco-2 cells. Nanotoxicology 2013; 7:353-66. [PMID: 22394261 PMCID: PMC3499597 DOI: 10.3109/17435390.2012.662249] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Novel aspects of engineered nanoparticles offer many advantages for optimising food products and packaging. However, their potential hazards in the gastrointestinal tract require further investigation. We evaluated the toxic and inflammatory potential of two types of particles that might become increasingly relevant to the food industry, namely SiO₂ and ZnO. The materials were characterised for their morphology, oxidant generation and hydrodynamic behaviour. Cytotoxicity and interleukin-8 mRNA and protein expression were evaluated in human intestinal Caco-2 cells. Particle pretreatment under simulated gastric and intestinal pH conditions resulted in reduced acellular ROS formation but did not influence cytotoxicity (WST-1 assay) or IL-8 expression. However, the differentiation status of the cells markedly determined the cytotoxic potency of the particles. Further research is needed to determine the in vivo relevance of our current observations regarding the role of particle aggregation and the stage of intestinal epithelial cell differentiation in determining the hazards of ingested particles.
Collapse
Affiliation(s)
- Kirsten Gerloff
- Particle Research, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute and the University of Queensland, Mater Health Services, South Brisbane, QLD, Australia
| | - Dora I.A. Pereira
- Biomineral Research Group, MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Nuno Faria
- Biomineral Research Group, MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Agnes W. Boots
- Particle Research, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Julia Kolling
- Particle Research, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Irmgard Förster
- Molecular Immunology, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Catrin Albrecht
- Particle Research, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jonathan J. Powell
- Biomineral Research Group, MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Roel P.F. Schins
- Particle Research, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
46
|
Liu R, Rallo R, Weissleder R, Tassa C, Shaw S, Cohen Y. Nano-SAR development for bioactivity of nanoparticles with considerations of decision boundaries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1842-1852. [PMID: 23423856 DOI: 10.1002/smll.201201903] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/29/2012] [Indexed: 06/01/2023]
Abstract
The development of classification nano-structure-activity Relationships (nano-SARs) of nanoparticle (NP) bioactivity is presented with the aim of demonstrating the integration of multiparametric toxicity/bioactivity assays to arrive at statistically meaningful class definitions (i.e., bioactivity/inactivity endpoints), as well as the implications of nano-SAR applicability domains and decision boundaries. Nano-SARs are constructed based on a dataset of 44 iron oxide core nanoparticles (NPs), used in molecular imaging and nano-sensing, containing bioactivity profiles for four cell types and four different assays. Class definitions are developed on the basis of 'hit' (i.e., significant bioactivity) identification analysis and self-organizing map based consensus clustering; these class definitions enable construction of nano-SARs of a high classification accuracy (>78%) with different NP descriptor combinations that include primary size, spin-lattice and spin-spin relaxivities, and zeta potentials. Analysis of the nano-SAR performance for different class definitions suggests that H4 (i.e., class with at least four hits) is a reasonable endpoint (from a 'regulatory' viewpoint) for keeping the level of false negatives (i.e., incorrect labeling of bioactive NPs as inactive) low. The establishment of a quantitative nano-SAR applicability domain is demonstrated, making use of a probability density with the H4 class definition and naive Bayesian classifier (NBC) model (with spin-lattice relaxivity and zeta potential as descriptors). Decision boundaries are determined for the above H4/NBC nano-SAR for different acceptance levels of false negative to false positive predictions, illustrating a practical approach that may assist in regulatory decision making with a consideration of reducing the likelihood of identifying bioactive NPs as being inactive.
Collapse
Affiliation(s)
- Rong Liu
- Center for the Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hsieh SF, Bello D, Schmidt DF, Pal AK, Stella A, Isaacs JA, Rogers EJ. Mapping the biological oxidative damage of engineered nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1853-1865. [PMID: 23423873 DOI: 10.1002/smll.201201995] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/28/2012] [Indexed: 06/01/2023]
Abstract
Novel engineered nanomaterials (ENMs) are being introduced into the market rapidly with little understanding of their potential toxicity. Each ENM is a complex combination of diverse sizes, surface chemistries, crystallinity, and metal impurities. Variability in physicochemical properties is poorly understood but is critically important in revealing adverse effects of ENMs. A need also exists for discovering broad relationships between variations in these physicochemical parameters and toxicological endpoints of interest. Biological oxidative damage (BOD) has been recognized as a key mechanism of nanotoxicity. An assortment of 138 ENMs representing major classes are evaluated for BOD elicited (net decrease in the antioxidant capacity of ENM-exposed human blood serum, as compare to unexposed serum) using the 'Ferric Reducing Ability of Serum' (FRAS) assay. This robust and high-throughput approach has the ability to determine the co-effects which multiple physicochemical characteristics impart on oxidative potential, and subsequently to identify and quantify the influence of individual factors. FRAS BOD approach demonstrated the potential for preliminary evaluation of potential toxicity of ENMs, mapping the within- and between-class variability of ENMs, ranking the potential toxicity by material class, and prioritizing the ENMs for further toxicity evaluation and risk assessment.
Collapse
Affiliation(s)
- Shu-Feng Hsieh
- Center for High-rate Nanomanufacturing, Department of Clinical Laboratory and Nutritional Sciences, School of Health and Environment, University of Massachusetts, Lowell, MA 01854, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. BIOMED RESEARCH INTERNATIONAL 2013; 2013:652632. [PMID: 23484138 PMCID: PMC3581099 DOI: 10.1155/2013/652632] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/23/2012] [Indexed: 11/18/2022]
Abstract
The biological effects of inhalable nanoparticles have been widely studied in vitro with pulmonary cells cultured under submerged and air-liquid interface (ALI) conditions. Submerged exposures are experimentally simpler, but ALI exposures are physiologically more realistic and hence potentially biologically more meaningful. In this study, we investigated the cellular response of human alveolar epithelial-like cells (A549) to airborne agglomerates of zinc oxide (ZnO) nanoparticles at the ALI, compared it to the response under submerged culture conditions, and provided a quantitative comparison with the literature data on different types of particles and cells. For ZnO nanoparticle doses of 0.7 and 2.5 μg ZnO/cm2 (or 0.09 and 0.33 cm2 ZnO/cm2), cell viability was not mitigated and no significant effects on the transcript levels of oxidative stress markers (HMOX1, SOD-2 and GCS) were observed. However, the transcript levels of proinflammatory markers (IL-8, IL-6, and GM-CSF) were induced to higher levels under ALI conditions. This is consistent with the literature data and it suggests that in vitro toxicity screening of nanoparticles with ALI cell culture systems may produce less false negative results than screening with submerged cell cultures. However, the database is currently too scarce to draw a definite conclusion on this issue.
Collapse
|
49
|
Kaiser JP, Zuin S, Wick P. Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 442:282-289. [PMID: 23178832 DOI: 10.1016/j.scitotenv.2012.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 05/28/2023]
Abstract
Many paints for indoor and outdoor applications contain biocides and additives for protection against microbial, physical and chemical deterioration. The biocides should remain active as long as they are incorporated in the paint. Protection against microbial colonization should last at least a decade. Once the biocides are released they should degrade within a short time so that no accumulation in the environment can occur. The paint industry is not only focusing their research in producing better paint formulations with degradable biocides: they also consider using nanomaterials, such as nanosilver, nanocopper, nanozinc oxide, photocatalytic-active nanotitanium dioxide and nanosilica dioxide as additives for the protection of paints, against microbial degradation and physical and chemical deterioration. In the future nanomaterials should replace biodegradable biocides and improve the paint properties as well as impede colonization by microorganisms. At the time there is no guarantee that the nanomaterials in paints and façades will fulfill their task in the long run, since there are no long term studies available. From nanosilver doped paints it is known that silver is easily washed out by rain. Photocatalytic active nanotitanium dioxide adsorbs ultra violet light (UV-light) and generates hydroxyl radicals, which not only inhibit microbial growth but can also initiate or accelerate the photocatalytic degradation of the paint matrix. Thus at this time it is still unknown if it makes sense to incorporate nanomaterials into paints. Intensive research and development are still needed in order to find the answers.
Collapse
Affiliation(s)
- Jean-Pierre Kaiser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Materials-Biology Interactions Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| | | | | |
Collapse
|
50
|
Li J, Li L, Liu X, Li R, Yang X. Single-wall carbon nanotube-induced airway hyperresponsiveness in rats and a postulated mechanism of action. RSC Adv 2013. [DOI: 10.1039/c3ra44168g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|