1
|
Holcomb DA, Quist AJL, Engel LS. Exposure to industrial hog and poultry operations and urinary tract infections in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158749. [PMID: 36108846 PMCID: PMC9613609 DOI: 10.1016/j.scitotenv.2022.158749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
An increasing share of urinary tract infections (UTIs) are caused by extraintestinal pathogenic Escherichia coli (ExPEC) lineages that have also been identified in poultry and hogs with high genetic similarity to human clinical isolates. We investigated industrial food animal production as a source of uropathogen transmission by examining relationships of hog and poultry density with emergency department (ED) visits for UTIs in North Carolina (NC). ED visits for UTI in 2016-2019 were identified by ICD-10 code from NC's ZIP code-level syndromic surveillance system and livestock counts were obtained from permit data and aerial imagery. We calculated separate hog and poultry spatial densities (animals/km2) by Census block with a 5 km buffer on the block perimeter and weighted by block population to estimate mean ZIP code densities. Associations between livestock density and UTI incidence were estimated using a reparameterized Besag-York-Mollié (BYM2) model with ZIP code population offsets to account for spatial autocorrelation. We excluded metropolitan and offshore ZIP codes and assessed effect measure modification by calendar year, ZIP code rurality, and patient sex, age, race/ethnicity, and health insurance status. In single-animal models, hog exposure was associated with increased UTI incidence (rate ratio [RR]: 1.21, 95 % CI: 1.07-1.37 in the highest hog-density tertile), but poultry exposure was associated with reduced UTI rates (RR: 0.86, 95 % CI: 0.81-0.91). However, the reference group for single-animal poultry models included ZIP codes with only hogs, which had some of the highest UTI rates; when compared with ZIP codes without any hogs or poultry, there was no association between poultry exposure and UTI incidence. Hog exposure was associated with increased UTI incidence in areas that also had medium to high poultry density, but not in areas with low poultry density, suggesting that intense hog production may contribute to increased UTI incidence in neighboring communities.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arbor J L Quist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Quist AJL, Holcomb DA, Fliss MD, Delamater PL, Richardson DB, Engel LS. Exposure to industrial hog operations and gastrointestinal illness in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154823. [PMID: 35341848 PMCID: PMC9133154 DOI: 10.1016/j.scitotenv.2022.154823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
With 9 million hogs, North Carolina (NC) is the second leading hog producer in the United States. Most hogs are housed at concentrated animal feeding operations (CAFOs), where millions of tons of hog waste can pollute air and water with fecal pathogens that can cause diarrhea, vomiting, and/or nausea (known as acute gastrointestinal illness (AGI)). We used NC's ZIP code-level emergency department (ED) data to calculate rates of AGI ED visits (2016-2019) and swine permit data to estimate hog exposure. Case exposure was estimated as the inverse distances from each hog CAFO to census block centroids, weighting with Gaussian decay and by manure amount per CAFO, then aggregated to ZIP code using population weights. We compared ZIP codes in the upper quartile of hog exposure ("high hog exposed") to those without hog exposure. Using inverse probability of treatment weighting, we created a control with similar demographics to the high hog exposed population and calculated rate ratios using quasi-Poisson models. We examined effect measure modification of rurality and race using adjusted models. In high hog exposed areas compared to areas without hog exposure, we observed a 11% increase (95% CI: 1.06, 1.17) in AGI rate and 21% increase specifically in rural areas (95% CI: 0.98, 1.43). When restricted to rural areas, we found an increased AGI rate among American Indian (RR = 4.29, 95% CI: 3.69, 4.88) and Black (RR = 1.45, 95% CI: 0.98, 1.91) residents. The association was stronger during the week after heavy rain (RR = 1.41, 95% CI: 1.19, 1.62) and in areas with both poultry and swine CAFOs (RR = 1.52, 95% CI: 1.48, 1.57). Residing near CAFOs may increase rates of AGI ED visits. Hog CAFOs are disproportionally built near rural Black and American Indian communities in NC and are associated with increased AGI most strongly in these populations.
Collapse
Affiliation(s)
- Arbor J L Quist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mike Dolan Fliss
- Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Paul L Delamater
- Department of Geography, University of North Carolina, Chapel Hill, NC 27514, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Wang W, Wei X, Wu L, Shang X, Cheng F, Li B, Zhou X, Zhang J. The occurrence of antibiotic resistance genes in the microbiota of yak, beef and dairy cattle characterized by a metagenomic approach. J Antibiot (Tokyo) 2021; 74:508-518. [PMID: 34103703 PMCID: PMC8313426 DOI: 10.1038/s41429-021-00425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/13/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Drug resistance has been partly driven by the overuse of antimicrobials in agricultural animal feed. Better understanding of antibiotic resistance in bovine gut is needed to assess its potential effects based on metagenomic approach and analysis. In this study, we collected 40 fecal samples to explore drug resistance derived from antibiotic use in the bacterial community by an analysis of the diversities and differences of antibiotic-resistant genes (ARGs) in the gut microbiota from yak, beef, and dairy cattle. Overall, 1688 genes were annotated, including 734 ARG subtypes. The ARGs were related to tetracyclines, quinolones, β-lactam, and aminoglycosides, in accordance with the antibiotics widely used in the clinic for humans or animals. The emergence, prevalence, and differences in resistance genes in the intestines of yaks, beef, and dairy cattle may be caused by the selective pressure of different feeding patterns, where yaks were raised without antibiotics for growth promotion. In addition, the abundance of ARGs in yak was lower than in beef and dairy cattle, whereas the abundance of integron, a kind of mobile genetic elements (MGEs) was higher in yaks than those in beef and dairy cattle. Furthermore, the results of this study could provide the basis for a comprehensive profile of various ARGs among yak, beef, and dairy cattle in future.
Collapse
Affiliation(s)
- Weiwei Wang
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Xiaojuan Wei
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Lingyu Wu
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Xiaofei Shang
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Fusheng Cheng
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Bing Li
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Xuzheng Zhou
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Jiyu Zhang
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| |
Collapse
|
4
|
Molecular characterization of methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from human milk samples in Brazil. Braz J Microbiol 2020; 51:1813-1817. [PMID: 32822004 DOI: 10.1007/s42770-020-00367-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Human milk is the best nutrient for infants. The donor human milk is stored in a milk bank before pasteurization. However, the human milk is not sterile and could be colonized with different types of bacteria. Many studies have shown S. aureus to be the most prevalent potential pathogen detected in human milk. This study characterized 22 methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from raw human milk for the presence of virulence genes and agr type. Moreover, the genotypic as identified characterization was realized. The presence of virulence genes sei, seg, sec, seh, and etb was identified in resistant and sensitive strains. We observed the predominance of agr type II. The presence of SCCmec IV (67%, 4/6) and V (33%, 2/6) characterized resistant strains as CA-MRSA. Endemic lineages detected (ST1635/CC5-t002, ST5/CC5-t002, ST72/CC5-t126, ST1/CC1-t127, ST45/CC45-t065, and ST398/t1451) could be related to epidemic clones, such as USA800/ST5, USA700/ST72, USA400/ST1, USA600/ST45, and ST398. This study made it possible to understand the characteristics of virulence and clonality of some strains that circulate in breast milk in our region. The discovery of human milk colonization by MSSA and MRSA strains with molecular characteristics similar to infectious clones spread globally demonstrates the importance of monitoring strains that can spread and cause serious infections.
Collapse
|
5
|
Smiley Evans T, Shi Z, Boots M, Liu W, Olival KJ, Xiao X, Vandewoude S, Brown H, Chen JL, Civitello DJ, Escobar L, Grohn Y, Li H, Lips K, Liu Q, Lu J, Martínez-López B, Shi J, Shi X, Xu B, Yuan L, Zhu G, Getz WM. Synergistic China-US Ecological Research is Essential for Global Emerging Infectious Disease Preparedness. ECOHEALTH 2020; 17:160-173. [PMID: 32016718 PMCID: PMC7088356 DOI: 10.1007/s10393-020-01471-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 05/14/2023]
Abstract
The risk of a zoonotic pandemic disease threatens hundreds of millions of people. Emerging infectious diseases also threaten livestock and wildlife populations around the world and can lead to devastating economic damages. China and the USA-due to their unparalleled resources, widespread engagement in activities driving emerging infectious diseases and national as well as geopolitical imperatives to contribute to global health security-play an essential role in our understanding of pandemic threats. Critical to efforts to mitigate risk is building upon existing investments in global capacity to develop training and research focused on the ecological factors driving infectious disease spillover from animals to humans. International cooperation, particularly between China and the USA, is essential to fully engage the resources and scientific strengths necessary to add this ecological emphasis to the pandemic preparedness strategy. Here, we review the world's current state of emerging infectious disease preparedness, the ecological and evolutionary knowledge needed to anticipate disease emergence, the roles that China and the USA currently play as sources and solutions to mitigating risk, and the next steps needed to better protect the global community from zoonotic disease.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Zhengli Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Michael Boots
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA.
| | - Wenjun Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing, China
| | | | - Xiangming Xiao
- Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK, USA
| | | | - Heidi Brown
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Luis Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Yrjo Grohn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Karen Lips
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Qiyoung Liu
- Department of Vector Biology and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiahai Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | - Jishu Shi
- Laboratory of Vaccine Immunology, US-China Center for Animal Health, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Xiaolu Shi
- Department of Microbiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Biao Xu
- School of Public Health, Fudan University, Shanghai, China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wayne M Getz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA.
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
6
|
Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2020; 17:203-218. [PMID: 30737488 DOI: 10.1038/s41579-018-0147-4] [Citation(s) in RCA: 1140] [Impact Index Per Article: 228.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful modern pathogens. The same organism that lives as a commensal and is transmitted in both health-care and community settings is also a leading cause of bacteraemia, endocarditis, skin and soft tissue infections, bone and joint infections and hospital-acquired infections. Genetically diverse, the epidemiology of MRSA is primarily characterized by the serial emergence of epidemic strains. Although its incidence has recently declined in some regions, MRSA still poses a formidable clinical threat, with persistently high morbidity and mortality. Successful treatment remains challenging and requires the evaluation of both novel antimicrobials and adjunctive aspects of care, such as infectious disease consultation, echocardiography and source control. In this Review, we provide an overview of basic and clinical MRSA research and summarize the expansive body of literature on the epidemiology, transmission, genetic diversity, evolution, surveillance and treatment of MRSA.
Collapse
|
7
|
Lam Y, Fry JP, Nachman KE. Applying an environmental public health lens to the industrialization of food animal production in ten low- and middle-income countries. Global Health 2019; 15:40. [PMID: 31196114 PMCID: PMC6567672 DOI: 10.1186/s12992-019-0479-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Background Industrial food animal production (IFAP) is characterized by dense animal housing, high throughput, specialization, vertical integration, and corporate consolidation. Research in high-income countries has documented impacts on public health, the environment, and animal welfare. IFAP is proliferating in some low- and middle-income countries (LMICs), where increased consumption of animal-source foods has occurred alongside rising incomes and efforts to address undernutrition. However, in these countries IFAP’s negative externalities could be amplified by inadequate infrastructure and resources to document issues and implement controls. Methods Using UN FAOSTAT data, we selected ten LMICs where food animal production is expanding and assessed patterns of IFAP growth. We conducted a mixed methods review to explore factors affecting growth, evidence of impacts, and information gaps; we searched several databases for sources in English, Spanish, and Portuguese. Data were extracted from 450+ sources, comprising peer-reviewed literature, government documents, NGO reports, and news articles. Results In the selected LMICs, not only has livestock production increased, but the nature of expansion appears to have involved industrialized methods, to varying extents based on species and location. Expansion was promoted in some countries by explicit government policies. Animal densities, corporate structure, and pharmaceutical reliance in some areas mirrored conditions found in high-income countries. There were many reported weaknesses in regulation and capacity for enforcement surrounding production and animal welfare. Global trade increasingly influences movement of and access to inputs such as feed. There was a nascent, compelling body of scientific literature documenting IFAP’s negative environmental and public health externalities in some countries. Conclusions LMICs may be attracted to IFAP for economic development and food security, as well as the potential for increasing access to animal-source foods and the role these foods can play in alleviating undernutrition. IFAP, however, is resource intensive. Industrialized production methods likely result in serious negative public health, environmental, and animal welfare impacts in LMICs. To our knowledge, this is the first systematic effort to assess IFAP trends through an environmental public health lens for a relatively large group of LMICs. It contributes to the literature by outlining urgent research priorities aimed at informing national and international decisions about the future of food animal production and efforts to tackle global undernutrition.
Collapse
Affiliation(s)
- Yukyan Lam
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA
| | - Jillian P Fry
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA.,Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.,Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Keeve E Nachman
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA. .,Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA. .,Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., W7007, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Xiong W, Sun Y, Zeng Z. Antimicrobial use and antimicrobial resistance in food animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18377-18384. [PMID: 29802609 DOI: 10.1007/s11356-018-1852-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobials have been widely used in food animals for growth promotion since the 1950s. Antimicrobial resistance emerges in animal production settings and frequently spreads to humans through the food chain and direct contact. There have been international efforts to restrict or ban antimicrobials used for both humans and animals. Denmark has taken positive strides in the development of a comprehensive database DANMAP to track antimicrobial usage and resistance. Although food animals are sources of antimicrobial resistance, there is little evidence that antimicrobial resistance originates from food animals. This review comprehensively introduces the history and trends of antimicrobial use, the emergence and spread of antimicrobial resistance in food animals provides suggestions to tackle the problems of the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| | - Zhenling Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Schinasi LH, Auchincloss AH, Forrest CB, Diez Roux AV. Using electronic health record data for environmental and place based population health research: a systematic review. Ann Epidemiol 2018; 28:493-502. [PMID: 29628285 DOI: 10.1016/j.annepidem.2018.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE We conducted a systematic review of literature published on January 2000-May 2017 that spatially linked electronic health record (EHR) data with environmental information for population health research. METHODS We abstracted information on the environmental and health outcome variables and the methods and data sources used. RESULTS The automated search yielded 669 articles; 128 articles are included in the full review. The number of articles increased by publication year; the majority (80%) were from the United States, and the mean sample size was approximately 160,000. Most articles used cross-sectional (44%) or longitudinal (40%) designs. Common outcomes were health care utilization (32%), cardiometabolic conditions/obesity (23%), and asthma/respiratory conditions (10%). Common environmental variables were sociodemographic measures (42%), proximity to medical facilities (15%), and built environment and land use (13%). The most common spatial identifiers were administrative units (59%), such as census tracts. Residential addresses were also commonly used to assign point locations, or to calculate distances or buffer areas. CONCLUSIONS Future research should include more detailed descriptions of methods used to geocode addresses, focus on a broader array of health outcomes, and describe linkage methods. Studies should also explore using longitudinal residential address histories to evaluate associations between time-varying environmental variables and health outcomes.
Collapse
Affiliation(s)
- Leah H Schinasi
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA; Urban Health Collaborative, Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA.
| | - Amy H Auchincloss
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA; Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA
| | | | - Ana V Diez Roux
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA; Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA
| |
Collapse
|
10
|
Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, van Belkum A, Asadollahi K, Dadashi M, Darban-Sarokhalil D. Distribution of the Most Prevalent Spa Types among Clinical Isolates of Methicillin-Resistant and -Susceptible Staphylococcus aureus around the World: A Review. Front Microbiol 2018; 9:163. [PMID: 29487578 PMCID: PMC5816571 DOI: 10.3389/fmicb.2018.00163] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Background:Staphylococcus aureus, a leading cause of community-acquired and nosocomial infections, remains a major health problem worldwide. Molecular typing methods, such as spa typing, are vital for the control and, when typing can be made more timely, prevention of S. aureus spread around healthcare settings. The current study aims to review the literature to report the most common clinical spa types around the world, which is important for epidemiological surveys and nosocomial infection control policies. Methods: A search via PubMed, Google Scholar, Web of Science, Embase, the Cochrane library, and Scopus was conducted for original articles reporting the most prevalent spa types among S. aureus isolates. The search terms were “Staphylococcus aureus, spa typing.” Results: The most prevalent spa types were t032, t008 and t002 in Europe; t037 and t002 in Asia; t008, t002, and t242 in America; t037, t084, and t064 in Africa; and t020 in Australia. In Europe, all the isolates related to spa type t032 were MRSA. In addition, spa type t037 in Africa and t037and t437 in Australia also consisted exclusively of MRSA isolates. Given the fact that more than 95% of the papers we studied originated in the past decade there was no option to study the dynamics of regional clone emergence. Conclusion: This review documents the presence of the most prevalent spa types in countries, continents and worldwide and shows big local differences in clonal distribution.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Nodeh Farahani
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaii
- Department of Microbiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Sajjad Khoramrooz
- Department of Microbiology, Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Alex van Belkum
- Data Analytics Unit, bioMérieux 3, La Balme Les Grottes, France
| | - Khairollah Asadollahi
- Department of Social Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Faculty of Medicine, Biotechnology and Medicinal Plants Researches Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoud Dadashi
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Beresin GA, Wright JM, Rice GE, Jagai JS. Swine exposure and methicillin-resistant Staphylococcus aureus infection among hospitalized patients with skin and soft tissue infections in Illinois: A ZIP code-level analysis. ENVIRONMENTAL RESEARCH 2017; 159:46-60. [PMID: 28772149 PMCID: PMC5862075 DOI: 10.1016/j.envres.2017.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA), a bacterial pathogen, is a predominant cause of skin and soft tissue infections (SSTI) in the United States. Swine-production facilities have been recognized as potential environmental reservoirs of MRSA. To better understand how swine production may contribute to MRSA infection, we evaluated the association between MRSA infection among SSTI inpatients and exposure measures derived from national swine inventory data. METHODS Based on adjusted odds ratios from logistic regression models, we evaluated the association between swine exposure metrics and MRSA infections among all Illinois inpatient hospitalizations for SSTI from January 2008 through July 2011. We also assessed if swine exposures had greater association with suspected community-onset MRSA (CO-MRSA) compared to suspected hospital-onset MRSA (HO-MRSA). Exposures were estimated using the Farm Location and Agricultural Production Simulator, generating the number of farms with greater than 1000 swine per residential ZIP code and the residential ZIP code-level swine density (swine/km2). RESULTS For every increase in 100 swine/km2 within a residential ZIP code, the adjusted OR (aOR) for MRSA infection was 1.36 (95% CI: 1.28-1.45). For every additional large farm (i.e., >1000 swine) per ZIP code, the aOR for MRSA infection was 1.06 (95% CI: 1.04-1.07). The aOR for ZIP codes with any large farms compared to those with no large farms was 1.24 (95% CI: 1.19-1.29). We saw no evidence of an increased association for CO-MRSA compared to HO-MRSA with either continuous exposure metric (aORs=0.99), and observed inconsistent results across exposure categories. CONCLUSIONS These publicly-available, ecological exposure data demonstrated positive associations between swine exposure measures and individual-level MRSA infections among SSTI inpatients. Though it is difficult to draw definitive conclusions due to limitations of the data, these findings suggest that the risk of MRSA may increase based on indirect environmental exposure to swine production. Future research can address measurement error related to these data by improving exposure assessment precision, increased specification of MRSA strain, and better characterization of specific environmental exposure pathways.
Collapse
Affiliation(s)
- Glennon A Beresin
- Association of Schools and Programs of Public Health Environmental Health Fellowship hosted by Environmental Protection Agency: 1900 M Street NW, Suite 710, Washington, DC 20036, United States.
| | - J Michael Wright
- US Environmental Protection Agency, National Center for Environmental Assessment, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Glenn E Rice
- US Environmental Protection Agency, National Center for Environmental Assessment, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States
| | | |
Collapse
|
12
|
Smit LAM, Heederik D. Impacts of Intensive Livestock Production on Human Health in Densely Populated Regions. GEOHEALTH 2017; 1:272-277. [PMID: 32158992 PMCID: PMC7007140 DOI: 10.1002/2017gh000103] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/01/2017] [Indexed: 05/07/2023]
Abstract
In several regions worldwide, the presence of livestock in close proximity to residential areas raises questions about public health implications. The rapid expansion of large-scale livestock farms, increasingly interwoven with urbanized areas, and its potential impact on neighboring residents' health has hardly been accompanied by any research. The current situation in densely populated livestock farming areas could be regarded as a "natural experiment." Most scientific and public health initiatives have focused on emerging zoonoses and antimicrobial resistance as potential health threats. In this commentary, we emphasize the importance of respiratory health effects of noninfectious air pollutant emissions from livestock farms.
Collapse
Affiliation(s)
- Lidwien A. M. Smit
- Institute for Risk Assessment Sciences (IRAS)Utrecht UniversityUtrechtNetherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences (IRAS)Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
13
|
Nachman KE, Lam J, Schinasi LH, Smith TC, Feingold BJ, Casey JA. O'Connor et al. systematic review regarding animal feeding operations and public health: critical flaws may compromise conclusions. Syst Rev 2017; 6:179. [PMID: 28859697 PMCID: PMC5580209 DOI: 10.1186/s13643-017-0575-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022] Open
Abstract
In this comment, we summarize several scientific concerns with the recently published systematic review from O'Connor and colleagues that examined the relationship between proximity to animal-feeding operations and health of individuals in nearby communities. The authors utilized a bias tool not designed for environmental health research, erroneously excluded important studies, and incorrectly interpreted others. As a result, the conclusions drawn in the review misrepresent the evidence from the published literature, limiting its value to policymakers, researchers, and the public.
Collapse
Affiliation(s)
- Keeve E Nachman
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA.
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Suite W7010-E, Baltimore, MD, 21205, USA.
- Johns Hopkins Risk Sciences and Public Policy Institute, Baltimore, MD, USA.
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Juleen Lam
- Program on Reproductive Health and the Environment, Department of OB/GYN & RS, University of California, San Francisco, CA, USA
| | - Leah H Schinasi
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
- Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Tara C Smith
- Department of Epidemiology, University of Iowa College of Public Health, 145N. Riverside Drive, Iowa City, IA, USA
- Center for Emerging Infectious Diseases, University of Iowa College of Public Health, Coralville, IA, USA
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public Health, Kent State University, Kent, OH, USA
| | - Beth J Feingold
- Department of Environmental Health Sciences, University at Albany School of Public Health, State University of New York, Rensselaer, NY, USA
| | - Joan A Casey
- School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
14
|
Becker K, Ballhausen B, Kahl BC, Köck R. The clinical impact of livestock-associated methicillin-resistant Staphylococcus aureus of the clonal complex 398 for humans. Vet Microbiol 2017; 200:33-38. [DOI: 10.1016/j.vetmic.2015.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/12/2015] [Indexed: 11/30/2022]
|
15
|
Prospective multicenter surveillance identifies Staphylococcus aureus infections caused by livestock-associated strains in an agricultural state. Diagn Microbiol Infect Dis 2016; 85:360-366. [PMID: 27198741 DOI: 10.1016/j.diagmicrobio.2016.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
Abstract
We conducted a surveillance study to investigate the epidemiology of Staphylococcus aureus infections in Iowa, using a convenience sample. Diagnostic laboratories submitted 20 S. aureus isolates per month for a 20-month period between 2011 and 2013. Of the 2226 isolates analyzed, 73.6% were methicillin-resistant S. aureus (MRSA) and 26.4% were methicillin-susceptible S. aureus (MSSA). S. aureus infections in 25 patients (1%) were caused by ST398- and ST9-associated strain types, and appeared to be a common occurrence in areas of the state with the highest numbers of hogs and hog farms. Twenty nine (5.1%) of MSSA isolates and 10 (40.0%) livestock-associated strains were multi-drug resistant.
Collapse
|
16
|
Leibler JH, Jordan JA, Brownstein K, Lander L, Price LB, Perry MJ. Staphylococcus aureus Nasal Carriage among Beefpacking Workers in a Midwestern United States Slaughterhouse. PLoS One 2016; 11:e0148789. [PMID: 26866374 PMCID: PMC4750916 DOI: 10.1371/journal.pone.0148789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022] Open
Abstract
Occupational contact with livestock is an established risk factor for exposure to livestock-associated methicillin-resistant Staphylococcus aureus (MRSA), particularly among industrial swine workers. While S. aureus is known to infect cattle, livestock-associated S. aureus carriage among workers in the beef production chain has received limited attention. Beefpacking workers, who slaughter, butcher and process cattle, have intensified exposure to potentially infectious animal materials and may be at risk of livestock-associated S. aureus exposure. We conducted a cross-sectional study of beefpacking workers (n = 137) at an industrial slaughterhouse in the Midwestern United States to evaluate prevalence and characteristics of S. aureus nasal colonization, specifically the absence of the scn gene to identify putative association with livestock, antibiotic susceptibility, presence of Panton-Valentin leukocidin (PVL) genes lukS-PV and lukF-PV, and spa type. Overall prevalence of S. aureus nasal carriage was 27.0%. No workers carried livestock-associated MRSA. Methicillin-sensitive S. aureus isolates (MSSA) recovered from five workers (3.6%) lacked the scn gene and were considered putative livestock-associated S. aureus (pLA-SA). Among pLA-SA isolates, spa types t338, t748, t1476 and t2379 were identified. To our knowledge, these spa types have not previously been identified as associated with livestock. Prevalence of human-adapted MRSA carriage in workers was 3.6%. MRSA isolates were identified as spa types t002, t008 and t024, and four of five MRSA isolates were PVL-positive. To date, this is the first study to indicate that industrial beefpacking workers in the United States may be exposed to livestock-associated S. aureus, notably MSSA, and to spa types not previously identified in livestock and livestock workers. Occupational exposure to livestock-associated S. aureus in the beef production chain requires further epidemiologic investigation.
Collapse
Affiliation(s)
- Jessica H. Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Jeanne A. Jordan
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, United States of America
| | - Kirsten Brownstein
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, United States of America
| | - Lina Lander
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lance B. Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, United States of America
- Division of Pathogen Genomics, the Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
17
|
Casey JA, Kim BF, Larsen J, Price LB, Nachman KE. Industrial Food Animal Production and Community Health. Curr Environ Health Rep 2016; 2:259-71. [PMID: 26231503 DOI: 10.1007/s40572-015-0061-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Industrial food animal production (IFAP) is a source of environmental microbial and chemical hazards. A growing body of literature suggests that populations living near these operations and manure-applied crop fields are at elevated risk for several health outcomes. We reviewed the literature published since 2000 and identified four health outcomes consistently and positively associated with living near IFAP: respiratory outcomes, methicillin-resistant Staphylococcus aureus (MRSA), Q fever, and stress/mood. We found moderate evidence of an association of IFAP with quality of life and limited evidence of an association with cognitive impairment, Clostridium difficile, Enterococcus, birth outcomes, and hypertension. Distance-based exposure metrics were used by 17/33 studies reviewed. Future work should investigate exposure through drinking water and must improve exposure assessment with direct environmental sampling, modeling, and high-resolution DNA typing methods. Investigators should not limit study to high-profile pathogens like MRSA but include a broader range of pathogens, as well as other disease outcomes.
Collapse
Affiliation(s)
- Joan A Casey
- Robert Wood Johnson Foundation Health and Society Scholars Program, UC San Francisco and UC Berkeley, 50 University Hall, Room 583, Berkeley, CA, 94720-7360, USA,
| | | | | | | | | |
Collapse
|
18
|
Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide Epidemiology and Antibiotic Resistance of Staphylococcus aureus. Curr Top Microbiol Immunol 2016; 409:21-56. [PMID: 27025380 DOI: 10.1007/82_2016_3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is an important human pathogen, responsible for infections in the community and the healthcare setting. Although much of the attention is focused on the methicillin-resistant "variant" MRSA, the methicillin-susceptible counterpart (MSSA) remains a prime species in infections. The epidemiology of S. aureus, especially of MRSA, showed a rapid evolution in the last years. After representing a typical nosocomial multidrug-resistant pathogen, MRSA has recently emerged in the community and among farmed animals thanks to its ability to evolve and adapt to different settings. Global surveillance has shown that MRSA represents a problem in all continents and countries where studies have been carried out, determining an increase in mortality and the need to use last-resource expensive antibiotics. S. aureus can easily acquire resistance to antibiotics and MRSA is characteristically multidrug resistant. Resistance to vancomycin, the principal anti-MRSA antibiotic is rare, although isolates with decreased susceptibility are recovered in many areas. Resistance to the more recently introduced antibiotics, linezolid and daptomycin, has emerged; however, they remain substantially active against the large majority of MSSA and MRSA. Newer antistaphylococcal drugs have been developed, but since their clinical use has been very limited so far, little is known about the emergence of resistance. Molecular typing techniques have allowed to identify the major successful clones and lineages of MSSA and MRSA, including high-risk clones, and to trace their diffusion. In the face of a continuously evolving scenario, this review depicts the most common clones circulating in different geographical areas and in different settings at present. Since the evolution of S. aureus will continue, it is important to maintain the attention on the epidemiology of S. aureus in the future with a global view.
Collapse
Affiliation(s)
- Monica Monaco
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Fernanda Pimentel de Araujo
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Melania Cruciani
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Eliana M Coccia
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Annalisa Pantosti
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
19
|
Abstract
The global crisis of antibiotic resistance has reached a point where, if action is not taken, human medicine will enter a postantibiotic world and simple injuries could once again be life threatening. New antibiotics are needed urgently, but better use of existing agents is just as important. More appropriate use of antibiotics in medicine is vital, but the extensive use of antibiotics outside medical settings is often overlooked. Antibiotics are commonly used in animal husbandry, bee-keeping, fish farming and other forms of aquaculture, ethanol production, horticulture, antifouling paints, food preservation, and domestically. This provides multiple opportunities for the selection and spread of antibiotic-resistant bacteria. Given the current crisis, it is vital that the nonmedical use of antibiotics is critically examined and that any nonessential use halted.
Collapse
Affiliation(s)
- Richard William Meek
- Institute of Microbiology and Infection, University Of Birmingham, Birmingham, United Kingdom
| | - Hrushi Vyas
- Institute of Microbiology and Infection, University Of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
20
|
Eko KE, Forshey BM, Carrel M, Schweizer ML, Perencevich EN, Smith TC. Molecular characterization of methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization and infection isolates in a Veterans Affairs hospital. Antimicrob Resist Infect Control 2015; 4:10. [PMID: 25838886 PMCID: PMC4383227 DOI: 10.1186/s13756-015-0048-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/13/2015] [Indexed: 12/11/2022] Open
Abstract
Background Nasal colonization with methicillin-resistant Staphylococcus aureus (MRSA) is associated with increased infection risk, yet colonization and infection isolates are rarely compared within the same study. The objectives of this study were to compare colonization and infection isolates from a Veterans Administration hospital in Iowa, and to determine the prevalence of livestock-associated MRSA (LA-MRSA) colonization and infection in a state with high livestock density. Methods All patients with available MRSA isolates collected through routine nasal screening (73%; n = 397) and from infections (27%; n = 148) between December 2010 and August 2012 were included and tested for spa type and presence of PVL and mecA genes. Clinical isolates were tested for antibiotic resistance patterns. Paired colonization and infection isolates were compared for genetic and phenotypic congruity. Results The most common spa types were t002 (and other CC5-associated strains; 65%) and t008 (and other CC8-associated strains; 20%). No classic LA-MRSA spa types were identified. CC5-associated strains were less likely to be associated with infections (22%; 77/353) compared with CC8-associated strains (49%; 53/109). MRSA colonization was more common among patients with infections (71%) compared with the general screening population (7%). In most cases (82%; 28/34), paired colonization and infection isolates were genetically and phenotypically indistinguishable. Conclusions Our data demonstrate a direct link between antecedent nasal colonization and subsequent MRSA infection. Further, our data indicate variability in colonization and infection efficiency among MRSA genotypes, which points to the need to define the molecular determinants underlying emergence of S. aureus strains in the community and nosocomial setting.
Collapse
Affiliation(s)
- Kalyani E Eko
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52246 USA
| | - Brett M Forshey
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52246 USA
| | - Margaret Carrel
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52246 USA ; Department of Geographical & Sustainability Sciences, University of Iowa, Iowa City, IA 52242 USA
| | - Marin L Schweizer
- Center for Comprehensive Access & Delivery Research and Evaluation (CADRE), Iowa City VA Health Care System, Iowa City, IA 52246 USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52246 USA
| | - Eli N Perencevich
- Center for Comprehensive Access & Delivery Research and Evaluation (CADRE), Iowa City VA Health Care System, Iowa City, IA 52246 USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52246 USA
| | - Tara C Smith
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52246 USA ; Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public Health, Kent State University, Kent, OH 44242 USA
| |
Collapse
|
21
|
Casey JA, Schwartz BS. Identifying livestock-associated methicillin-resistant staphylococcus aureus in the United States--reply. JAMA Intern Med 2014; 174:825. [PMID: 24799014 PMCID: PMC4370224 DOI: 10.1001/jamainternmed.2014.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Joan A Casey
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland3Johns Hopkins Center for a Livable Future, Baltimore, Maryland
| | - Brian S Schwartz
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland4Johns Hopkins School of Medicine, Baltimore
| |
Collapse
|