1
|
Leuthner TC, Zhang S, Kohrn BF, Stapleton HM, Baugh LR. Structure-specific variation in per- and polyfluoroalkyl substances toxicity among genetically diverse Caenorhabditis elegans strains. Toxicol Sci 2025; 205:205-219. [PMID: 39985174 PMCID: PMC12038255 DOI: 10.1093/toxsci/kfaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are in 99% of humans and are associated with a range of adverse health outcomes. It is impossible to test the >14,500 structurally diverse "forever chemicals" for safety, therefore improved assays to quantify structure-activity relationships are needed. Here, we determined the toxicity of a structurally distinct set of PFAS in 12 genetically diverse strains of the genetic model system Caenorhabditis elegans. Dose-response curves for perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), perfluoroalkyl sulfonic acids (PFOS and PFBS), perfluoroalkyl sulfonamides (PFOSA and PFBSA), fluoroether carboxylic acids (GenX and PFMOAA), fluoroether sulfonic acid (PFEESA), and fluorotelomers (6:2 FTCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and 11 genetically diverse wild strains. Body length was quantified after 48 h of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). PFAS toxicity ranged by 3 orders of magnitude. Long-chain PFAS had greater toxicity than short-chain. Fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation resulted in variation in susceptibility among 12 strains to almost all chemicals. Different C. elegans strains varied in susceptibility to different PFAS, which suggests distinct molecular responses to specific structural attributes. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful approach that can be used to investigate mechanisms of toxicity which may identify potentially susceptible individuals or populations and predict toxicity of untested PFAS to inform regulatory policies and improve human and environmental health.
Collapse
Affiliation(s)
- Tess C Leuthner
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, United States
| |
Collapse
|
2
|
D’Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian N, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. Blood 2025; 145:765-783. [PMID: 39541586 PMCID: PMC11863713 DOI: 10.1182/blood.2024026109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. However, the genetic underpinnings of RBC metabolic heterogeneity and extravascular hemolysis at population scale are incompletely understood. On the basis of the breeding of 8 founder strains with extreme genetic diversity, the Jackson Laboratory diversity outbred population can capture the impact of genetic heterogeneity in like manner to population-based studies. RBCs from 350 outbred mice, either fresh or stored for 7 days, were tested for posttransfusion recovery, as well as metabolomics and lipidomics analyses. Metabolite and lipid quantitative trait loci (QTL) mapped >400 gene-metabolite associations, which we collated into an online interactive portal. Relevant to RBC storage, we identified a QTL hotspot on chromosome 1, mapping on the region coding for the ferrireductase 6-transmembrane epithelial antigen of the prostate 3 (Steap3), a transcriptional target to p53. Steap3 regulated posttransfusion recovery, contributing to a ferroptosis-like process of lipid peroxidation, as validated via genetic manipulation in mice. Translational validation of murine findings in humans, STEAP3 polymorphisms were associated with RBC iron content, lipid peroxidation, and in vitro hemolysis in 13 091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. QTL analyses in humans identified a network of gene products (fatty acid desaturases 1 and 2, epoxide hydrolase 2, lysophosphatidylcholine acetyl-transferase 3, solute carrier family 22 member 16, glucose 6-phosphate dehydrogenase, very long chain fatty acid elongase, and phospholipase A2 group VI) associated with altered levels of oxylipins. These polymorphisms were prevalent in donors of African descent and were linked to allele frequency of hemolysis-linked polymorphisms for Steap3 or p53. These genetic variants were also associated with lower hemoglobin increments in thousands of single-unit transfusion recipients from the vein-to-vein database.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, ME
- RTI International, Research Triangle Park, NC
| | - Ariel Hay
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | | | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | | | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO
| | - Steven Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Victoria, BC, Canada
| | | | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | | | - Brent R. Stockwell
- Department of Biological Sciences, Department of Chemistry, and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | | | - James C. Zimring
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
3
|
Simon NM, Kim Y, Gribnau J, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes. Heredity (Edinb) 2024; 133:308-316. [PMID: 39164520 PMCID: PMC11527988 DOI: 10.1038/s41437-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
Affiliation(s)
- Noah M Simon
- Biology of Aging Doctoral Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yujin Kim
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Rotterdam, PO Box 2040, CA, 3000, Netherlands
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Simon NM, Kim Y, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis -regulatory evolution at translation genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549406. [PMID: 37503246 PMCID: PMC10370129 DOI: 10.1101/2023.07.18.549406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis -regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
|
5
|
D'Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian NH, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598512. [PMID: 38915523 PMCID: PMC11195277 DOI: 10.1101/2024.06.11.598512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation. Steap3 polymorphisms were associated with RBC iron content, in vitro hemolysis, and in vivo extravascular hemolysis both in mice and 13,091 blood donors from the Recipient Epidemiology and Donor evaluation Study. Using metabolite Quantitative Trait Loci analyses, we identified a network of gene products (FADS1/2, EPHX2 and LPCAT3) - enriched in donors of African descent - associated with oxylipin metabolism in stored human RBCs and related to Steap3 or its transcriptional regulator, the tumor protein TP53. Genetic variants were associated with lower in vivo hemolysis in thousands of single-unit transfusion recipients. Highlights Steap3 regulates lipid peroxidation and extravascular hemolysis in 350 diversity outbred miceSteap3 SNPs are linked to RBC iron, hemolysis, vesiculation in 13,091 blood donorsmQTL analyses of oxylipins identified ferroptosis-related gene products FADS1/2, EPHX2, LPCAT3Ferroptosis markers are linked to hemoglobin increments in transfusion recipients. Graphical abstract
Collapse
|
6
|
Glenn RA, Do SC, Guruvayurappan K, Corrigan EK, Santini L, Medina-Cano D, Singer S, Cho H, Liu J, Broman K, Czechanski A, Reinholdt L, Koche R, Furuta Y, Kunz M, Vierbuchen T. A PLURIPOTENT STEM CELL PLATFORM FOR IN VITRO SYSTEMS GENETICS STUDIES OF MOUSE DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597758. [PMID: 38895226 PMCID: PMC11185710 DOI: 10.1101/2024.06.06.597758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells -- EpiSCs) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation. Using pooled in vitro fertilization, we generate and characterize a genetic reference panel of Diversity Outbred PSCs (n = 230). Finally, we demonstrate the feasibility of pooled culture of Diversity Outbred EpiSCs as "cell villages", which can facilitate the differentiation of large numbers of EpiSC lines for forward genetic screens. These data can complement and inform similar efforts within the stem cell biology and human genetics communities to model the impact of natural genetic variation on phenotypic variation and disease-risk.
Collapse
Affiliation(s)
- Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Stephanie C. Do
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA and Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Santini
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Singer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyein Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jing Liu
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI USA
| | | | | | - Richard Koche
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasuhide Furuta
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meik Kunz
- The Bioinformatics CRO, Sanford Florida, 32771 USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Leuthner TC, Zhang S, Kohrn BF, Stapleton HM, Baugh LR. Structure-specific variation in per- and polyfluoroalkyl substances toxicity among genetically diverse Caenorhabditis elegans strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596269. [PMID: 38854041 PMCID: PMC11160736 DOI: 10.1101/2024.05.29.596269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background There are >14,500 structurally diverse per- and polyfluoroalkyl substances (PFAS). Despite knowledge that these "forever chemicals" are in 99% of humans, mechanisms of toxicity and adverse health effects are incompletely known. Furthermore, the contribution of genetic variation to PFAS susceptibility and health consequences is unknown. Objectives We determined the toxicity of a structurally distinct set of PFAS in twelve genetically diverse strains of the genetic model system Caenorhabditis elegans. Methods Dose-response curves for four perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), two perfluoroalkyl sulfonic acids (PFOS and PFBS), two perfluoroalkyl sulfonamides (PFOSA and PFBSA), two fluoroether carboxylic acids (GenX and PFMOAA), one fluoroether sulfonic acid (PFEESA), and two fluorotelomers (6:2 FCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and eleven genetically diverse wild strains. Body length was quantified by image analysis at each dose after 48 hr of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). Results There was a significant range in toxicity among PFAS: PFOSA > PFBSA ≈ PFOS ≈ PFNA > PFOA > GenX ≈ PFEESA > PFBS ≈ PFPeA ≈ PFBA. Long-chain PFAS had greater toxicity than short-chain, and fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation explained variation in susceptibility to PFBSA, PFOS, PFBA, PFOA, GenX, PFEESA, PFPeA, and PFBA. There was significant variation in toxicity among C. elegans strains due to chain length, functional group, and between legacy and emerging PFAS. Conclusion C. elegans respond to legacy and emerging PFAS of diverse structures, and this depends on specific structures and genetic variation. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful New Approach Methodology (NAM) to investigate structure-activity relationships and mechanisms of toxicity which may inform regulation of other PFAS to improve human and environmental health.
Collapse
Affiliation(s)
- Tess C. Leuthner
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, North Carolina, USA
| |
Collapse
|
8
|
O’Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Unraveling the genetics of arsenic toxicity with cellular morphology QTL. PLoS Genet 2024; 20:e1011248. [PMID: 38662777 PMCID: PMC11075906 DOI: 10.1371/journal.pgen.1011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O’Connor
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- RTI International, Research Triangle Park, Durham, North Carolina, United States of America
| | - Whitney Martin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Timothy Stodola
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Brian R. Hoffman
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
O'Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Cell morphology QTL reveal gene by environment interactions in a genetically diverse cell population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567597. [PMID: 38014303 PMCID: PMC10680806 DOI: 10.1101/2023.11.18.567597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening as they offer power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O'Connor
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Gregory R Keele
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- RTI International, RTP, NC 27709, USA
| | | | | | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | - Laura G Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
10
|
Dave A, Park EJ, Pezzuto JM. Multi-Organ Nutrigenomic Effects of Dietary Grapes in a Mouse Model. Antioxidants (Basel) 2023; 12:1821. [PMID: 37891900 PMCID: PMC10604885 DOI: 10.3390/antiox12101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
As a whole food, the potential health benefits of table grapes have been widely studied. Some individual constituents have garnered great attention, particularly resveratrol, but normal quantities in the diet are meniscal. On the other hand, the grape contains hundreds of compounds, many of which have antioxidant potential. Nonetheless, the achievement of serum or tissue concentrations of grape antioxidants sufficient to mediate a direct quenching effect is not likely, which supports the idea of biological responses being mediated by an indirect catalytic-type response. We demonstrate herein with Hsd:ICR (CD-1® Outbred, 18-24 g, 3-4 weeks old, female) mice that supplementation of a semi-synthetic diet with a grape surrogate, equivalent to the human consumption of 2.5 servings per day for 12 months, modulates gene expression in the liver, kidney, colon, and ovary. As might be expected when sampling changes in a pool of over 35,000 genes, there are numerous functional implications. Analysis of some specific differentially expressed genes suggests the potential of grape consumption to bolster metabolic detoxification and regulation of reactive oxygen species in the liver, cellular metabolism, and anti-inflammatory activity in the ovary and kidney. In the colon, the data suggest anti-inflammatory activity, suppression of mitochondrial dysfunction, and maintaining homeostasis. Pathway analysis reveals a combination of up- and down-regulation in the target tissues, primarily up-regulated in the kidney and down-regulated in the ovary. More broadly, based on these data, it seems logical to conclude that grape consumption leads to modulation of gene expression throughout the body, the consequence of which may help to explain the broad array of activities demonstrated in diverse tissues such as the brain, heart, eye, bladder, and colon. In addition, this work further supports the profound impact of nutrigenomics on mammalian phenotypic expression.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Department of Pharmaceutical and Administrative Science, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| |
Collapse
|
11
|
Antoniou EE, Rooseboom M, Kocabas NA, North CM, Zeegers MP. Micronuclei in human peripheral blood and bone marrow as genotoxicity markers: A systematic review and meta-analysis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503689. [PMID: 37770146 DOI: 10.1016/j.mrgentox.2023.503689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Can human peripheral blood cells be used as a surrogate for bone marrow cells, in evaluating the genotoxic effects of stressors? We searched the Pubmed/Medline and PubChem databases to identify publications relevant to this question. Micronucleus formation was the genotoxicity endpoint. Three publications comparing exposed vs. non-exposed individuals are included in this analysis; the exposures were to ethylene oxide or ionising radiation (atomic bomb, thorotrast, or radioiodine therapy). Information was extracted on the types of exposure, the numbers of participants, and the micronucleus frequencies. Relative differences (odds ratios) and absolute differences (risk differences) in the numbers of micronuclei between exposed and non-exposed persons were calculated separately for individual cell types (peripheral blood and bone marrow). Random effects meta-analyses for the relative differences in cell abnormalities were performed. The results showed very small differences in the frequencies of micronuclei between exposed and non-exposed individuals, as measured in either peripheral blood or bone marrow cell populations, on both absolute and relative scales. No definite conclusion concerning the relative sensitivities of bone marrow and peripheral blood cells can be made, based on these publications.
Collapse
Affiliation(s)
| | | | | | - Colin M North
- ExxonMobil Biomedical Sciences, 1545 US Highway 22 East, Annandale, NJ 08801, USA
| | - Maurice P Zeegers
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands; MBP Holding, Heerlen, the Netherlands
| |
Collapse
|
12
|
Keele GR. Which mouse multiparental population is right for your study? The Collaborative Cross inbred strains, their F1 hybrids, or the Diversity Outbred population. G3 (BETHESDA, MD.) 2023; 13:jkad027. [PMID: 36735601 PMCID: PMC10085760 DOI: 10.1093/g3journal/jkad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Multiparental populations (MPPs) encompass greater genetic diversity than traditional experimental crosses of two inbred strains, enabling broader surveys of genetic variation underlying complex traits. Two such mouse MPPs are the Collaborative Cross (CC) inbred panel and the Diversity Outbred (DO) population, which are descended from the same eight inbred strains. Additionally, the F1 intercrosses of CC strains (CC-RIX) have been used and enable study designs with replicate outbred mice. Genetic analyses commonly used by researchers to investigate complex traits in these populations include characterizing how heritable a trait is, i.e. its heritability, and mapping its underlying genetic loci, i.e. its quantitative trait loci (QTLs). Here we evaluate the relative merits of these populations for these tasks through simulation, as well as provide recommendations for performing the quantitative genetic analyses. We find that sample populations that include replicate animals, as possible with the CC and CC-RIX, provide more efficient and precise estimates of heritability. We report QTL mapping power curves for the CC, CC-RIX, and DO across a range of QTL effect sizes and polygenic backgrounds for samples of 174 and 500 mice. The utility of replicate animals in the CC and CC-RIX for mapping QTLs rapidly decreased as traits became more polygenic. Only large sample populations of 500 DO mice were well-powered to detect smaller effect loci (7.5-10%) for highly complex traits (80% polygenic background). All results were generated with our R package musppr, which we developed to simulate data from these MPPs and evaluate genetic analyses from user-provided genotypes.
Collapse
Affiliation(s)
- Gregory R Keele
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
13
|
Xenakis JG, Douillet C, Bell TA, Hock P, Farrington J, Liu T, Murphy CEY, Saraswatula A, Shaw GD, Nativio G, Shi Q, Venkatratnam A, Zou F, Fry RC, Stýblo M, Pardo-Manuel de Villena F. An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice. Mamm Genome 2022; 33:575-589. [PMID: 35819478 PMCID: PMC9761582 DOI: 10.1007/s00335-022-09957-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
Abstract
Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for [Formula: see text]-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice's ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.
Collapse
Affiliation(s)
- James G Xenakis
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy A Bell
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pablo Hock
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Farrington
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caroline E Y Murphy
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Avani Saraswatula
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ginger D Shaw
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gustavo Nativio
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Ouellette AR, Hadad N, Deighan A, Robinson L, O'Connell K, Freund A, Churchill GA, Kaczorowski CC. Life-long dietary restrictions have negligible or damaging effects on late-life cognitive performance: A key role for genetics in outcomes. Neurobiol Aging 2022; 118:108-116. [PMID: 35914473 PMCID: PMC9583241 DOI: 10.1016/j.neurobiolaging.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022]
Abstract
Several studies report that caloric restriction (CR) or intermittent fasting (IF) can improve cognition, while others report limited or no cognitive benefits. Here, we compare the effects of 20% CR, 40% CR, 1-day IF, and 2-day IF feeding paradigms to ad libitum controls on Y-maze working memory (WM) and contextual fear memory (CFM) in a large population of Diversity Outbred mice that model the genetic diversity of humans. While CR and IF interventions improve lifespan, we observed no enhancement of working memory or CFM in mice on these feeding paradigms, and report 40% CR to be damaging to recall of CFM. Using Quantitative Trait Loci mapping, we identified the gene Slc16a7 to be associated with CFM outcomes in aged mice on lifespan promoting feeding paradigms. Limited utility of dieting and fasting on memory in mice that recapitulate genetic diversity in the human population highlights the need for anti-aging therapeutics that promote cognitive function, with the neuronal monocarboxylate transporter MCT2 encoded by Slc16a7 highlighted as novel target.
Collapse
Affiliation(s)
- Andrew R Ouellette
- The University of Maine, Graduate School of Biomedical Science and Engineering, Orono ME, USA; The Jackson Laboratory, Bar Harbor ME, USA
| | | | | | | | | | - Adam Freund
- Calico Life Sciences LLC, San Francisco CA, USA
| | | | - Catherine C Kaczorowski
- The University of Maine, Graduate School of Biomedical Science and Engineering, Orono ME, USA; The Jackson Laboratory, Bar Harbor ME, USA.
| |
Collapse
|
15
|
Devlin R, Roberts E. Building a healthy mouse model ecosystem to interrogate cancer biology. Dis Model Mech 2022; 15:276587. [PMID: 36098988 PMCID: PMC9509886 DOI: 10.1242/dmm.049795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In a recent study, Sargent et al. characterise several novel Rag1-/- mouse strains and demonstrate that genetic background strongly influences xenograft development and phenotype. Here, we discuss this work within the broader context of cancer mouse modelling. We argue that new technologies will enable insights into how specific models align with human disease states and that this knowledge can be used to develop a diverse ecosystem of complementary mouse models of cancer. By utilising these diverse, well-characterised models to provide multiple perspectives on specific cancers, it should be possible to reduce the inappropriate attrition of sound hypotheses while protecting against false positives. Furthermore, careful re-introduction of biological variation, be that through outbred populations, environmental diversity or including animals of both sexes, can ensure that results are more broadly applicable and are less impacted by particular traits of homogeneous experimental populations. Thus, careful characterisation and judicious use of an array of mouse models provides an opportunity to address some of the issues surrounding both the reproducibility and translatability crises often referenced in pre-clinical cancer research.
Collapse
Affiliation(s)
- Ryan Devlin
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow G61 1BD, UK
| | - Ed Roberts
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
16
|
Vincent M, Gerdes Gyuricza I, Keele GR, Gatti DM, Keller MP, Broman KW, Churchill GA. QTLViewer: an interactive webtool for genetic analysis in the Collaborative Cross and Diversity Outbred mouse populations. G3 (BETHESDA, MD.) 2022; 12:jkac146. [PMID: 35703938 PMCID: PMC9339332 DOI: 10.1093/g3journal/jkac146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/28/2022] [Indexed: 01/10/2023]
Abstract
The Collaborative Cross and the Diversity Outbred mouse populations are related multiparental populations, derived from the same 8 isogenic founder strains. They carry >50 M known genetic variants, which makes them ideal tools for mapping genetic loci that regulate phenotypes, including physiological and molecular traits. Mapping quantitative trait loci requires statistical and computational training, which can present a barrier to access for some researchers. The QTLViewer software allows users to graphically explore Collaborative Cross and Diversity Outbred quantitative trait locus mapping and related analyses performed through the R/qtl2 package. Additionally, the QTLViewer website serves as a repository for published Collaborative Cross and Diversity Outbred studies, increasing the accessibility of these genetic resources to the broader scientific community.
Collapse
Affiliation(s)
| | | | | | | | - Mark P Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706-1544, USA
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53706-1544, USA
| | | |
Collapse
|
17
|
Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul Toxicol Pharmacol 2022; 132:105197. [DOI: 10.1016/j.yrtph.2022.105197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
|
18
|
Oyeniyi EA, Sorgi CA, Gardinassi LG, Azevedo LF, Adeyemi JA, Omotoso OT, Faccioli LH, Greggi Antunes LM, Barbosa F. Phospholipids modifications, genotoxic and anticholinesterase effects of pepper fruit (Dennettia tripetala G. Baker) extract in Swiss mice. Food Chem Toxicol 2022; 165:113189. [PMID: 35636641 DOI: 10.1016/j.fct.2022.113189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
The toxicity of D. tripetala fruit extract to mice was investigated using data obtained from lipidomic analyses, comet and Acetylcholinesterase (AChE) assays. Mice (n = 8) were exposed for 30 days via oral gavage to vehicle (5% Tween 80) (negative control), D. tripetala extract (100, 200 and 400 mg/kg) and 40 mg/kg methyl methanesulfonate (MMS) (positive control). The profile of compounds in the fruit extract was analyzed using gas chromatography-mass spectrometry. Out of the total of 32 compounds identified, considerable amount of established insecticidal compounds such as 2-phenylnitroethane, cis-vaccenic acid, linalool and linoleic acid were detected. Fruit extract did not induce DNA damage relative to negative control. Percentage gain in body weights differed significantly across the four weeks. Significantly highest and lowest brain AChE activity was observed in animals exposed to 200 and 400 mg/kg D. tripetala, respectively. Fruit extract modulated the brain phospholipid profile due to significant fold changes of 48 lipid species out of the total of 280 lipid species. High number of differentially expressed phosphatidylcholine (PC) species and significant levels of phosphatidylethanolamine (PE) at 400 mg/kg suggests that activation of inflammation and methylation pathways are the most plausible mechanisms of D. tripetala toxicity to mouse brain tissue.
Collapse
Affiliation(s)
- Emmanuel Ayobami Oyeniyi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil; Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria; Department of Zoology and Environmental Biology, Faculty of Sciences, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria.
| | - Carlos Arterio Sorgi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lara Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Joseph Adewuyi Adeyemi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil; Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Olumuyiwa Temitope Omotoso
- Department of Zoology and Environmental Biology, Faculty of Sciences, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Lucia Helena Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lusania Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
19
|
Waidyanatha S, Black SR, Witt KL, Fennell TR, Swartz C, Recio L, Watson SL, Patel P, Fernando RA, Rider CV. The common indoor air pollutant α-pinene is metabolized to a genotoxic metabolite α-pinene oxide. Xenobiotica 2022; 52:301-311. [PMID: 35473450 DOI: 10.1080/00498254.2022.2070047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. α-Pinene caused a concentration-responsive increase in bladder hyperplasia and decrease in sperm counts in rodents following inhalation exposure. Additionally, it formed a prospective reactive metabolite, α-pinene oxide.2. To provide human relevant context for data generated in animal models and explore potential mechanism, we undertook studies to investigate the metabolism of α-pinene to α-pinene oxide and mutagenicity of α-pinene and α-pinene oxide.3. α-Pinene oxide was formed in rat and human microsomes and hepatocytes with some species differences. Based on area under the concentration versus time curves, the formation of α-pinene oxide was up to 4-fold higher in rats than in humans.4. While rat microsomes cleared α-pinene oxide faster than human microsomes, the clearance of α-pinene oxide in hepatocytes was similar between species.5. α-Pinene was not mutagenic with or without induced rat liver S9 in Salmonella typhimurium or Escherichia coli when tested up to 10,000 μg/plate while α-pinene oxide was mutagenic at ≥25 μg/plate.6. α-Pinene was metabolized to α-pinene oxide under the conditions of the bacterial mutation assay although the concentration was approximately 3-fold lower than the lowest α-pinene oxide concentration that was positive in the assay, potentially explaining the lack of mutagenicity observed with α-pinene.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Carol Swartz
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | | | - Purvi Patel
- RTI International, Research Triangle Park, NC, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Boysen G, Rusyn I, Chiu WA, Wright FA. Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice. Regul Toxicol Pharmacol 2022; 132:105171. [DOI: 10.1016/j.yrtph.2022.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
21
|
Janssen LMF, Ghosh M, Lemaire F, Michael Pollard K, Hoet PHM. Exposure to silicates and systemic autoimmune-related outcomes in rodents: a systematic review. Part Fibre Toxicol 2022; 19:4. [PMID: 34996462 PMCID: PMC8739508 DOI: 10.1186/s12989-021-00439-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/30/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Autoimmunity can result from the interplay between genetic background and effects of environmental and/or occupational exposure to hazardous materials. Several compounds, including silica dust, have been linked with systemic autoimmunity and systemic autoimmune diseases, based on epidemiological evidence. For asbestos, a strong link with systemic autoimmune diseases does not yet exist, however, several studies have documented features of autoimmunity following asbestos exposure. Even so, human studies are limited in their ability to identify and examine isolated exposures, making it difficult to demonstrate causation or to assess pathogenic mechanisms. Therefore, this systematic review examines the existing animal evidence regarding autoimmunity and exposure to silicates (silica and asbestos). METHODS PubMed and EMBASE were systematically searched for peer-reviewed studies examining systemic autoimmune disease-related outcomes after silicate exposure in rodents. Literature databases were searched up to September 2021 for studies written in English and where the full text was available. Search strings were established based on a PECO (Population, Exposure, Comparator, Outcome) format. After title, abstract, and full-text screening, thirty-four studies were identified for further analysis. Quality assessment through ToxR tool and qualitative analysis of the results was performed. RESULTS Although there was significant heterogeneity in the included studies in terms of exposure protocol and genetic background of the rodent models used, it was noted that both genetic background and exposure to silicates [(crystalline) silica and asbestos] are highly relevant to the development of (sub-) clinical systemic autoimmune disease. CONCLUSION Parallels were observed between the findings from the animal (this review) and human (epidemiological) studies, arguing that experimental animal models are valuable tools for examining exacerbation or development of autoimmune disease after silicate exposure. However, genetic background and synergism between exposures should be considered in future studies.
Collapse
Affiliation(s)
- Lisa M F Janssen
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Manosij Ghosh
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Frauke Lemaire
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - K Michael Pollard
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - Peter H M Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Matthews BJ, Melia T, Waxman DJ. Harnessing natural variation to identify cis regulators of sex-biased gene expression in a multi-strain mouse liver model. PLoS Genet 2021; 17:e1009588. [PMID: 34752452 PMCID: PMC8664386 DOI: 10.1371/journal.pgen.1009588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/10/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in gene expression are widespread in the liver, where many autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57BL/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose their sex-biased expression in CAST/EiJ mouse liver. To elucidate the observed strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of the sex differences in expression between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-dependent gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs apparently lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.
Collapse
Affiliation(s)
- Bryan J. Matthews
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Tisha Melia
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Keele GR, Zhang T, Pham DT, Vincent M, Bell TA, Hock P, Shaw GD, Paulo JA, Munger SC, Pardo-Manuel de Villena F, Ferris MT, Gygi SP, Churchill GA. Regulation of protein abundance in genetically diverse mouse populations. CELL GENOMICS 2021; 1:100003. [PMID: 36212994 PMCID: PMC9536773 DOI: 10.1016/j.xgen.2021.100003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Genetically diverse mouse populations are powerful tools for characterizing the regulation of the proteome and its relationship to whole-organism phenotypes. We used mass spectrometry to profile and quantify the abundance of 6,798 proteins in liver tissue from mice of both sexes across 58 Collaborative Cross (CC) inbred strains. We previously collected liver proteomics data from the related Diversity Outbred (DO) mice and their founder strains. We show concordance across the proteomics datasets despite being generated from separate experiments, allowing comparative analysis. We map protein abundance quantitative trait loci (pQTLs), identifying 1,087 local and 285 distal in the CC mice and 1,706 local and 414 distal in the DO mice. We find that regulatory effects on individual proteins are conserved across the mouse populations, in particular for local genetic variation and sex differences. In comparison, proteins that form complexes are often co-regulated, displaying varying genetic architectures, and overall show lower heritability and map fewer pQTLs. We have made this resource publicly available to enable quantitative analyses of the regulation of the proteome.
Collapse
Affiliation(s)
| | - Tian Zhang
- Harvard Medical School, Boston, MA 02115, USA
| | - Duy T. Pham
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
24
|
Keenan BT, Galante RJ, Lian J, Zhang L, Guo X, Veatch OJ, Chesler EJ, O'Brien WT, Svenson KL, Churchill GA, Pack AI. The dihydropyrimidine dehydrogenase gene contributes to heritable differences in sleep in mice. Curr Biol 2021; 31:5238-5248.e7. [PMID: 34653361 DOI: 10.1016/j.cub.2021.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022]
Abstract
Many aspects of sleep are heritable, but only a few sleep-regulating genes have been reported. Here, we leverage mouse models to identify and confirm a previously unreported gene affecting sleep duration-dihydropyrimidine dehydrogenase (Dpyd). Using activity patterns to quantify sleep in 325 Diversity Outbred (DO) mice-a population with high genetic and phenotypic heterogeneity-a linkage peak for total sleep in the active lights off period was identified on chromosome 3 (LOD score = 7.14). Mice with the PWK/PhJ ancestral haplotype at this location demonstrated markedly reduced sleep. Among the genes within the linkage region, available RNA sequencing data in an independent sample of DO mice supported a highly significant expression quantitative trait locus for Dpyd, wherein reduced expression was associated with the PWK/PhJ allele. Validation studies were performed using activity monitoring and EEG/EMG recording in Collaborative Cross mouse strains with and without the PWK/PhJ haplotype at this location, as well as EEG and EMG recording of sleep and wake in Dpyd knockout mice and wild-type littermate controls. Mice lacking Dpyd had 78.4 min less sleep during the lights-off period than wild-type mice (p = 0.007; Cohen's d = -0.94). There was no difference in other measured behaviors in knockout mice, including assays evaluating cognitive-, social-, and affective-disorder-related behaviors. Dpyd encodes the rate-limiting enzyme in the metabolic pathway that catabolizes uracil and thymidine to β-alanine, an inhibitory neurotransmitter. Thus, data support β-alanine as a neurotransmitter that promotes sleep in mice.
Collapse
Affiliation(s)
- Brendan T Keenan
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Raymond J Galante
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jie Lian
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lin Zhang
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Guo
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Olivia J Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - W Timothy O'Brien
- Neurobehavior Testing Core, Institute for Translational and Therapeutic Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Russell JT, Zhou Y, Weinstock GM, Bubier JA. The Gut Microbiome and Substance Use Disorder. Front Neurosci 2021; 15:725500. [PMID: 34531718 PMCID: PMC8439419 DOI: 10.3389/fnins.2021.725500] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 01/15/2023] Open
Abstract
Substance use disorders (SUDs) remain a significant public health challenge, affecting tens of millions of individuals worldwide each year. Often comorbid with other psychiatric disorders, SUD can be poly-drug and involve several different substances including cocaine, opiates, nicotine, and alcohol. SUD has a strong genetic component. Much of SUD research has focused on the neurologic and genetic facets of consumption behavior. There is now interest in the role of the gut microbiome in the pathogenesis of SUD. In this review, we summarize current animal and clinical evidence that the gut microbiome is involved in SUD, then address the underlying mechanisms by which the gut microbiome interacts with SUD through metabolomic, immune, neurological, and epigenetic mechanisms. Lastly, we discuss methods using various inbred and outbred mice models to gain an integrative understanding of the microbiome and host genetic controls in SUD.
Collapse
Affiliation(s)
- Jordan T Russell
- School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Yanjiao Zhou
- School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | |
Collapse
|
26
|
Que E, James KL, Coffey AR, Smallwood TL, Albright J, Huda MN, Pomp D, Sethupathy P, Bennett BJ. Genetic architecture modulates diet-induced hepatic mRNA and miRNA expression profiles in Diversity Outbred mice. Genetics 2021; 218:6321522. [PMID: 34849860 PMCID: PMC8757298 DOI: 10.1093/genetics/iyab068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/27/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to ∼25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting variants. Finally, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility
Collapse
Affiliation(s)
- Excel Que
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA 95616, USA.,Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Kristen L James
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Alisha R Coffey
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 28081, USA
| | - Tangi L Smallwood
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 28081, USA
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - M Nazmul Huda
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA 95616, USA.,Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Brian J Bennett
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA 95616, USA.,Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
Keenan BT, Webster JC, Wiemken AS, Lavi-Romer N, Nguyen T, Svenson KL, Galante RJ, Churchill GA, Pickup S, Pack AI, Schwab RJ. Heritability of fat distributions in male mice from the founder strains of the Diversity Outbred mouse population. G3-GENES GENOMES GENETICS 2021; 11:6171186. [PMID: 33720343 PMCID: PMC8104956 DOI: 10.1093/g3journal/jkab079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Specific fat distributions are risk factors for complex diseases, including coronary heart disease and obstructive sleep apnea. To demonstrate the utility of high-diversity mouse models for elucidating genetic associations, we describe the phenotyping and heritability of fat distributions within the five classical inbred and three wild-derived founder mouse strains of the Collaborative Cross and Diversity Outbred mice. Measurements of subcutaneous and internal fat volumes in the abdomen, thorax and neck, and fat volumes in the tongue and pericardium were obtained using magnetic resonance imaging in male mice from the A/J (n = 12), C57BL/6J (n = 17), 129S1/SvlmJ (n = 12), NOD/LtJ (n = 14), NZO/HILtJ (n = 12), CAST/EiJ (n = 14), PWK/PhJ (n = 12), and WSB/EiJ (n = 15) strains. Phenotypes were compared across strains using analysis of variance and heritability estimated as the proportion of phenotypic variability attributable to strain. Heritability ranged from 44 to 91% across traits, including >70% heritability of tongue fat. A majority of heritability estimates remained significant controlling for body weight, suggesting genetic influences independent of general obesity. Principal components analysis supports genetic influences on overall obesity and specific to increased pericardial and intra-neck fat. Thus, among the founder strains of the Collaborative Cross and Diversity Outbred mice, we observed significant heritability of subcutaneous and internal fat volumes in the neck, thorax and abdomen, pericardial fat volume and tongue fat volume, consistent with genetic architecture playing an important role in explaining trait variability. Findings pave the way for studies utilizing high-diversity mouse models to identify genes affecting fat distributions and, in turn, influencing risk for associated complex disorders.
Collapse
Affiliation(s)
- Brendan T Keenan
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeanette C Webster
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew S Wiemken
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nir Lavi-Romer
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Teresa Nguyen
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Raymond J Galante
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J Schwab
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Gordon-Larsen P, French JE, Moustaid-Moussa N, Voruganti VS, Mayer-Davis EJ, Bizon CA, Cheng Z, Stewart DA, Easterbrook JW, Shaikh SR. Synergizing Mouse and Human Studies to Understand the Heterogeneity of Obesity. Adv Nutr 2021; 12:2023-2034. [PMID: 33885739 PMCID: PMC8483969 DOI: 10.1093/advances/nmab040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is routinely considered as a single disease state, which drives a "one-size-fits-all" approach to treatment. We recently convened the first annual University of North Carolina Interdisciplinary Nutrition Sciences Symposium to discuss the heterogeneity of obesity and the need for translational science to advance understanding of this heterogeneity. The symposium aimed to advance scientific rigor in translational studies from animal to human models with the goal of identifying underlying mechanisms and treatments. In this review, we discuss fundamental gaps in knowledge of the heterogeneity of obesity ranging from cellular to population perspectives. We also advocate approaches to overcoming limitations in the field. Examples include the use of contemporary mouse genetic reference population models such as the Collaborative Cross and Diversity Outbred mice that effectively model human genetic diversity and the use of translational models that integrate -omics and computational approaches from pre-clinical to clinical models of obesity. Finally, we suggest best scientific practices to ensure strong rigor that will allow investigators to delineate the sources of heterogeneity in the population with obesity. Collectively, we propose that it is critical to think of obesity as a heterogeneous disease with complex mechanisms and etiologies, requiring unique prevention and treatment strategies tailored to the individual.
Collapse
Affiliation(s)
| | - John E French
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Naima Moustaid-Moussa
- Obesity Research Institute and Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Venkata S Voruganti
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Bizon
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, NC, USA
| | - Zhiyong Cheng
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Delisha A Stewart
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - John W Easterbrook
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
29
|
Keenan BT, Galante RJ, Lian J, Simecek P, Gatti DM, Zhang L, Lim DC, Svenson KL, Churchill GA, Pack AI. High-throughput sleep phenotyping produces robust and heritable traits in Diversity Outbred mice and their founder strains. Sleep 2021; 43:5740842. [PMID: 32074270 DOI: 10.1093/sleep/zsz278] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES This study describes high-throughput phenotyping strategies for sleep and circadian behavior in mice, including examinations of robustness, reliability, and heritability among Diversity Outbred (DO) mice and their eight founder strains. METHODS We performed high-throughput sleep and circadian phenotyping in male mice from the DO population (n = 338) and their eight founder strains: A/J (n = 6), C57BL/6J (n = 14), 129S1/SvlmJ (n = 6), NOD/LtJ (n = 6), NZO/H1LtJ (n = 6), CAST/EiJ (n = 8), PWK/PhJ (n = 8), and WSB/EiJ (n = 6). Using infrared beam break systems, we defined sleep as at least 40 s of continuous inactivity and quantified sleep-wake amounts and bout characteristics. We developed assays to measure sleep latency in a new environment and during a modified Murine Multiple Sleep Latency Test, and estimated circadian period from wheel-running experiments. For each trait, broad-sense heritability (proportion of variability explained by all genetic factors) was derived in founder strains, while narrow-sense heritability (proportion of variability explained by additive genetic effects) was calculated in DO mice. RESULTS Phenotypes were robust to different inactivity durations to define sleep. Differences across founder strains and moderate/high broad-sense heritability were observed for most traits. There was large phenotypic variability among DO mice, and phenotypes were reliable, although estimates of heritability were lower than in founder mice. This likely reflects important nonadditive genetic effects. CONCLUSIONS A high-throughput phenotyping strategy in mice, based primarily on monitoring of activity patterns, provides reliable and heritable estimates of sleep and circadian traits. This approach is suitable for discovery analyses in DO mice, where genetic factors explain some proportion of phenotypic variation.
Collapse
Affiliation(s)
- Brendan T Keenan
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Raymond J Galante
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jie Lian
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Petr Simecek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Jackson Laboratory, Bar Harbor, ME
| | | | - Lin Zhang
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Diane C Lim
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Rithidech KN, Jangiam W, Tungjai M, Reungpatthanaphong P, Gordon C, Honikel L. Early- and late-occurring damage in bone marrow cells of male CBA/Ca mice exposed whole-body to 1 GeV/n 48Ti ions. Int J Radiat Biol 2021; 97:517-528. [PMID: 33591845 DOI: 10.1080/09553002.2021.1884312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine the early- and late-occurring damage in the bone marrow (BM) and peripheral blood cells of male CBA/Ca mice after exposure to 0, 0.1, 0.25, or 0.5 Gy of 1 GeV/n titanium (48Ti) ions (one type of space radiation). METHOD We used the mouse in vivo blood-erythrocyte micronucleus (MN) assay for evaluating the cytogenetic effects of various doses of 1 GeV/n 48Ti ions. The MN assay was coupled with the characterization of epigenetic alterations (the levels of global 5-methylcytosine and 5-hydroxymethylcytosine) in DNA samples isolated from BM cells. These analyses were performed in samples collected at an early time-point (1 week) and a late time-point (6 months) post-irradiation. RESULTS Our results showed that 48Ti ions induced genomic instability in exposed mice. Significant dose-dependent loss of global 5-hydroxymethylcytosine was found but there were no changes in global 5-methylcytosine levels. CONCLUSION Since persistent genomic instability and loss of global 5-hydroxymethylcytosine are linked to cancer, our findings suggest that exposure to 48Ti ions may pose health risks.
Collapse
Affiliation(s)
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Paiboon Reungpatthanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - Chris Gordon
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
31
|
Melia T, Waxman DJ. Genetic factors contributing to extensive variability of sex-specific hepatic gene expression in Diversity Outbred mice. PLoS One 2020; 15:e0242665. [PMID: 33264334 PMCID: PMC7710091 DOI: 10.1371/journal.pone.0242665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Sex-specific transcription characterizes hundreds of genes in mouse liver, many implicated in sex-differential drug and lipid metabolism and disease susceptibility. While the regulation of liver sex differences by growth hormone-activated STAT5 is well established, little is known about autosomal genetic factors regulating the sex-specific liver transcriptome. Here we show, using genotyping and expression data from a large population of Diversity Outbred mice, that genetic factors work in tandem with growth hormone to control the individual variability of hundreds of sex-biased genes, including many long non-coding RNA genes. Significant associations between single nucleotide polymorphisms and sex-specific gene expression were identified as expression quantitative trait loci (eQTLs), many of which showed strong sex-dependent associations. Remarkably, autosomal genetic modifiers of sex-specific genes were found to account for more than 200 instances of gain or loss of sex-specificity across eight Diversity Outbred mouse founder strains. Sex-biased STAT5 binding sites and open chromatin regions with strain-specific variants were significantly enriched at eQTL regions regulating correspondingly sex-specific genes, supporting the proposed functional regulatory nature of the eQTL regions identified. Binding of the male-biased, growth hormone-regulated repressor BCL6 was most highly enriched at trans-eQTL regions controlling female-specific genes. Co-regulated gene clusters defined by overlapping eQTLs included sets of highly correlated genes from different chromosomes, further supporting trans-eQTL action. These findings elucidate how an unexpectedly large number of autosomal factors work in tandem with growth hormone signaling pathways to regulate the individual variability associated with sex differences in liver metabolism and disease.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Tavolara TE, Niazi MKK, Ginese M, Piedra-Mora C, Gatti DM, Beamer G, Gurcan MN. Automatic discovery of clinically interpretable imaging biomarkers for Mycobacterium tuberculosis supersusceptibility using deep learning. EBioMedicine 2020; 62:103094. [PMID: 33166789 PMCID: PMC7658666 DOI: 10.1016/j.ebiom.2020.103094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Identifying which individuals will develop tuberculosis (TB) remains an unresolved problem due to few animal models and computational approaches that effectively address its heterogeneity. To meet these shortcomings, we show that Diversity Outbred (DO) mice reflect human-like genetic diversity and develop human-like lung granulomas when infected with Mycobacterium tuberculosis (M.tb) . METHODS Following M.tb infection, a "supersusceptible" phenotype develops in approximately one-third of DO mice characterized by rapid morbidity and mortality within 8 weeks. These supersusceptible DO mice develop lung granulomas patterns akin to humans. This led us to utilize deep learning to identify supersusceptibility from hematoxylin & eosin (H&E) lung tissue sections utilizing only clinical outcomes (supersusceptible or not-supersusceptible) as labels. FINDINGS The proposed machine learning model diagnosed supersusceptibility with high accuracy (91.50 ± 4.68%) compared to two expert pathologists using H&E stained lung sections (94.95% and 94.58%). Two non-experts used the imaging biomarker to diagnose supersusceptibility with high accuracy (88.25% and 87.95%) and agreement (96.00%). A board-certified veterinary pathologist (GB) examined the imaging biomarker and determined the model was making diagnostic decisions using a form of granuloma necrosis (karyorrhectic and pyknotic nuclear debris). This was corroborated by one other board-certified veterinary pathologist. Finally, the imaging biomarker was quantified, providing a novel means to convert visual patterns within granulomas to data suitable for statistical analyses. IMPLICATIONS Overall, our results have translatable implication to improve our understanding of TB and also to the broader field of computational pathology in which clinical outcomes alone can drive automatic identification of interpretable imaging biomarkers, knowledge discovery, and validation of existing clinical biomarkers. FUNDING National Institutes of Health and American Lung Association.
Collapse
Affiliation(s)
- Thomas E Tavolara
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States
| | - M Khalid Khan Niazi
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States.
| | - Melanie Ginese
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Cesar Piedra-Mora
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Daniel M Gatti
- The College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, United States
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Metin N Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States
| |
Collapse
|
33
|
Modes of action considerations in threshold expectations for health effects of benzene. Toxicol Lett 2020; 334:78-86. [DOI: 10.1016/j.toxlet.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023]
|
34
|
Schnatter AR, Rooseboom M, Kocabas NA, North CM, Dalzell A, Twisk J, Faulhammer F, Rushton E, Boogaard PJ, Ostapenkaite V, Williams SD. Derivation of an occupational exposure limit for benzene using epidemiological study quality assessment tools. Toxicol Lett 2020; 334:117-144. [PMID: 32497562 DOI: 10.1016/j.toxlet.2020.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/04/2023]
Abstract
This paper derives an occupational exposure limit for benzene using quality assessed data. Seventy-seven genotoxicity and 36 haematotoxicity studies in workers were scored for study quality with an adapted tool based on that of Vlaanderen et al., 2008 (Environ Health. Perspect. 116 1700-5). These endpoints were selected as they are the most sensitive and relevant to the proposed mode of action (MOA) and protecting against these will protect against benzene carcinogenicity. Lowest and No- Adverse Effect Concentrations (LOAECs and NOAECs) were derived from the highest quality studies (i.e. those ranked in the top tertile or top half) and further assessed as being "more certain" or "less certain". Several sensitivity analyses were conducted to assess whether alternative "high quality" constructs affected conclusions. The lowest haematotoxicity LOAECs showed effects near 2 ppm (8 h TWA), and no effects at 0.59 ppm. For genotoxicity, studies also showed effects near 2 ppm and showed no effects at about 0.69 ppm. Several sensitivity analyses supported these observations. These data define a benzene LOAEC of 2 ppm (8 h TWA) and a NOAEC of 0.5 ppm (8 h TWA). Allowing for possible subclinical effects in bone marrow not apparent in studies of peripheral blood endpoints, an OEL of 0.25 ppm (8 h TWA) is proposed.
Collapse
Affiliation(s)
| | | | | | - Colin M North
- ExxonMobil Biomedical Sciences, Inc, Annandale, NJ, USA
| | | | - Johannes Twisk
- Dow Chemical International Pvt. Ltd, Terneuzen, the Netherlands
| | | | - Erik Rushton
- Basell Service Company B.V., Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
35
|
Que E, James KL, Coffey AR, Smallwood TL, Albright J, Huda MN, Pomp D, Sethupathy P, Bennett BJ. Genetic Architecture Modulates Diet-Induced Hepatic mRNA and miRNA Expression Profiles in Diversity Outbred Mice. Genetics 2020; 216:241-259. [PMID: 32763908 PMCID: PMC7463293 DOI: 10.1534/genetics.120.303481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to ∼25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting variants. Lastly, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility.
Collapse
Affiliation(s)
- Excel Que
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, California 95616
- Department of Nutrition, University of California, Davis, California
| | - Kristen L James
- Department of Nutrition, University of California, Davis, California
| | - Alisha R Coffey
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina
| | - Tangi L Smallwood
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - M Nazmul Huda
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, California 95616
- Department of Nutrition, University of California, Davis, California
| | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Brian J Bennett
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, California 95616
- Department of Nutrition, University of California, Davis, California
| |
Collapse
|
36
|
Wei WZ, Gibson HM, Jacob JB, Frelinger JA, Berzofsky JA, Maeng H, Dyson G, Reyes JD, Pilon-Thomas S, Ratner S, Wei KC. Diversity Outbred Mice Reveal the Quantitative Trait Locus and Regulatory Cells of HER2 Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:1554-1563. [PMID: 32796024 DOI: 10.4049/jimmunol.2000466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/11/2020] [Indexed: 01/14/2023]
Abstract
The genetic basis and mechanisms of disparate antitumor immune response was investigated in Diversity Outbred (DO) F1 mice that express human HER2. DO mouse stock samples nearly the entire genetic repertoire of the species. We crossed DO mice with syngeneic HER2 transgenic mice to study the genetics of an anti-self HER2 response in a healthy outbred population. Anti-HER2 IgG was induced by Ad/E2TM or naked pE2TM, both encoding HER2 extracellular and transmembrane domains. The response of DO F1 HER2 transgenic mice was remarkably variable. Still, immune sera inhibited HER2+ SKBR3 cell survival in a dose-dependent fashion. Using DO quantitative trait locus (QTL) analysis, we mapped the QTL that influences both total IgG and IgG2(a/b/c) Ab response to either Ad/E2TM or pE2TM. QTL from these four datasets identified a region in chromosome 17 that was responsible for regulating the response. A/J and NOD segments of genes in this region drove elevated HER2 Ig levels. This region is rich in MHC-IB genes, several of which interact with inhibitory receptors of NK cells. (B6xA/J)F1 and (B6xNOD)F1 HER2 transgenic mice received Ad/E2TM after NK cell depletion, and they produced less HER2 IgG, demonstrating positive regulatory function of NK cells. Depletion of regulatory T cells enhanced response. Using DO QTL analysis, we show that MHC-IB reactive NK cells exert positive influence on the immunity, countering negative regulation by regulatory T cells. This new, to our knowledge, DO F1 platform is a powerful tool for revealing novel immune regulatory mechanisms and for testing new interventional strategies.
Collapse
Affiliation(s)
- Wei-Zen Wei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201;
| | - Heather M Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Jennifer B Jacob
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Jeffrey A Frelinger
- Valley Fever Center of Excellence, Department of Immunobiology, University of Arizona, Tucson, AZ 85724
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892; and
| | - Hoyoung Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892; and
| | - Gregory Dyson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Joyce D Reyes
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Stuart Ratner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Kuang-Chung Wei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| |
Collapse
|
37
|
Dissecting the Genetic Architecture of Cystatin C in Diversity Outbred Mice. G3-GENES GENOMES GENETICS 2020; 10:2529-2541. [PMID: 32467129 PMCID: PMC7341122 DOI: 10.1534/g3.120.401275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma concentration of Cystatin C (CysC) level is a biomarker of glomerular filtration rate in the kidney. We use a Systems Genetics approach to investigate the genetic determinants of plasma CysC concentration. To do so we perform Quantitative Trait Loci (QTL) and expression QTL (eQTL) analysis of 120 Diversity Outbred (DO) female mice, 56 weeks of age. We performed network analysis of kidney gene expression to determine if the gene modules with common functions are associated with kidney biomarkers of chronic kidney diseases. Our data demonstrates that plasma concentrations and kidney mRNA levels of CysC are associated with genetic variation and are transcriptionally coregulated by immune genes. Specifically, Type-I interferon signaling genes are coexpressed with Cst3 mRNA levels and associated with CysC concentrations in plasma. Our findings demonstrate the complex control of CysC by genetic polymorphisms and inflammatory pathways.
Collapse
|
38
|
Katz DC, Aponte JD, Liu W, Green RM, Mayeux JM, Pollard KM, Pomp D, Munger SC, Murray SA, Roseman CC, Percival CJ, Cheverud J, Marcucio RS, Hallgrímsson B. Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS One 2020; 15:e0233377. [PMID: 32502155 PMCID: PMC7274373 DOI: 10.1371/journal.pone.0233377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The biology of how faces are built and come to differ from one another is complex. Discovering normal variants that contribute to differences in facial morphology is one key to untangling this complexity, with important implications for medicine and evolutionary biology. This study maps quantitative trait loci (QTL) for skeletal facial shape using Diversity Outbred (DO) mice. The DO is a randomly outcrossed population with high heterozygosity that captures the allelic diversity of eight inbred mouse lines from three subspecies. The study uses a sample of 1147 DO animals (the largest sample yet employed for a shape QTL study in mouse), each characterized by 22 three-dimensional landmarks, 56,885 autosomal and X-chromosome markers, and sex and age classifiers. We identified 37 facial shape QTL across 20 shape principal components (PCs) using a mixed effects regression that accounts for kinship among observations. The QTL include some previously identified intervals as well as new regions that expand the list of potential targets for future experimental study. Three QTL characterized shape associations with size (allometry). Median support interval size was 3.5 Mb. Narrowing additional analysis to QTL for the five largest magnitude shape PCs, we found significant overrepresentation of genes with known roles in growth, skeletal and facial development, and sensory organ development. For most intervals, one or more of these genes lies within 0.25 Mb of the QTL's peak. QTL effect sizes were small, with none explaining more than 0.5% of facial shape variation. Thus, our results are consistent with a model of facial diversity that is influenced by key genes in skeletal and facial development and, simultaneously, is highly polygenic.
Collapse
Affiliation(s)
- David C. Katz
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - J. David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Wei Liu
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Rebecca M. Green
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Jessica M. Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - K. Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Daniel Pomp
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Charles C. Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, NY, United States of America
| | - James Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|
39
|
Li A, Sun Y, Wang T, Wang K, Wang T, Liu W, Li K, Au WW, Wang Z, Xia ZL. Effects of Micronucleus Frequencies and Mitochondrial DNA Copy Numbers among Benzene-Exposed Workers in China. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:355-360. [PMID: 31899575 DOI: 10.1002/em.22354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
To provide a more comprehensive understanding of genotoxic effects from benzene exposure, its effects on induction of mitochondrial DNA copy number (MtDNAcn) and of micronucleus (MN) were investigated using peripheral blood from workers in China. Changes in mtDNAcn and MN were determined using quantitative real-time polymerase chain reaction (PCR) and cytokinesis-block micronucleus assays (CBMN), respectively, in 58 control and 174 benzene-exposed workers in Shanghai, China. Among the exposed workers, relative mtDNAcn increased and then decreased with increasing doses of benzene exposure. Significant and dose-dependent increase in MN frequencies were observed among the different exposure groups. In addition, the relative mtDNAcn were significantly associated with the MN frequencies in the low-level exposure group (P = 0.046), but not in the high dose groups. Therefore, the mechanisms for induction of MtDNAcn and MN by benzene may be similar from exposure to low doses but different from high doses. Similar increase of MN frequencies and MtDNAcn may be due to oxidative stress induced by benzene at low concentrations, while higher concentrations may start to initiate the cell death pathway. The pathway may be associated with excessive MtDNAcn which can initiate apoptosis while MN can continue to be induced. However, the differential mechanisms need to be investigated because they may represent different levels of risk for different health consequences. On the other hand, our data indicate that induction of MtDNAcn may be a sensitive genotoxic biomarker for workers with exposure to low dose of benzene. Environ. Mol. Mutagen. 61:355-360, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anqi Li
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Yuan Sun
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Tongshuai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Kan Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Tuanwei Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Wuzhong Liu
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Keyong Li
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Tirgu Mures, Romania and University of Texas Medical Branch, Galveston, TX
| | - Zubing Wang
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| |
Collapse
|
40
|
Luijten M, Ball NS, Dearfield KL, Gollapudi BB, Johnson GE, Madia F, Peel L, Pfuhler S, Settivari RS, ter Burg W, White PA, van Benthem J. Utility of a next generation framework for assessment of genomic damage: A case study using the industrial chemical benzene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:94-113. [PMID: 31709603 PMCID: PMC6972600 DOI: 10.1002/em.22346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 05/22/2023]
Abstract
We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well-studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94-113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | | | | | | | - George E. Johnson
- Swansea University Medical School, Swansea UniversitySwanseaUnited Kingdom
| | - Federica Madia
- European Commission, Joint Research Centre (JRC)IspraItaly
| | - Lauren Peel
- Health and Environmental Sciences InstituteWashingtonDistrict of Columbia
| | | | | | - Wouter ter Burg
- Centre for Safety of Substances and ProductsNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Paul A. White
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Jan van Benthem
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| |
Collapse
|
41
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
42
|
Axelrad DA, Setzer RW, Bateson TF, DeVito M, Dzubow RC, Fitzpatrick JW, Frame AM, Hogan KA, Houck K, Stewart M. Methods for evaluating variability in human health dose-response characterization. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2019; 25:1-24. [PMID: 31404325 PMCID: PMC6688638 DOI: 10.1080/10807039.2019.1615828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 05/21/2023]
Abstract
The Reference Dose (RfD) and Reference Concentration (RfC) are human health reference values (RfVs) representing exposure concentrations at or below which there is presumed to be little risk of adverse effects in the general human population. The 2009 National Research Council report Science and Decisions recommended redefining RfVs as "a risk-specific dose (for example, the dose associated with a 1 in 100,000 risk of a particular end point)." Distributions representing variability in human response to environmental contaminant exposures are critical for deriving risk-specific doses. Existing distributions estimating the extent of human toxicokinetic and toxicodynamic variability are based largely on controlled human exposure studies of pharmaceuticals. New data and methods have been developed that are designed to improve estimation of the quantitative variability in human response to environmental chemical exposures. Categories of research with potential to provide new database useful for developing updated human variability distributions include controlled human experiments, human epidemiology, animal models of genetic variability, in vitro estimates of toxicodynamic variability, and in vitro-based models of toxicokinetic variability. In vitro approaches, with further development including studies of different cell types and endpoints, and approaches to incorporate non-genetic sources of variability, appear to provide the greatest opportunity for substantial near-term advances.
Collapse
Affiliation(s)
- Daniel A. Axelrad
- Office of Policy, U.S. Environmental Protection Agency, Washington, DC, USA
| | - R. Woodrow Setzer
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas F. Bateson
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Michael DeVito
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, NC, USA
| | - Rebecca C. Dzubow
- Office of Children’s Health Protection, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Julie W. Fitzpatrick
- Office of the Science Advisor, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Alicia M. Frame
- Office of Land and Emergency Management, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Karen A. Hogan
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Keith Houck
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael Stewart
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
43
|
Youlten SE, Baldock PA. Using mouse genetics to understand human skeletal disease. Bone 2019; 126:27-36. [PMID: 30776501 DOI: 10.1016/j.bone.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Technological advances have enabled the study of the human genome in incredible detail with relative ease. However, our ability to interpret the functional significance of the millions of genetic variants present within each individual is limited. As a result, the confident assignment of disease-causing variant calls remains a significant challenge. Here we explore how mouse genetics can help address this deficit in functional genomic understanding. Underpinned by marked genetic correspondence, skeletal biology shows inter-species similarities which provide important opportunities to use data from mouse models to direct research into the genetic basis of skeletal pathophysiology. In this article we outline critical resources that may be used to establish genotype/phenotype relationships in skeletal tissue, identify genes with established skeletal effects and define the transcriptome of critical skeletal cell types. Finally, we outline how these mouse resources might be utilized to progress from a list of human sequence variants toward plausible gene candidates that contribute to skeletal disease.
Collapse
Affiliation(s)
- Scott E Youlten
- Division of Bone Biology, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2010, Australia.
| | - Paul A Baldock
- Division of Bone Biology, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2010, Australia; University of Notre Dame Australia, Sydney, NSW, 2010, Australia
| |
Collapse
|
44
|
Dunn AR, O'Connell KMS, Kaczorowski CC. Gene-by-environment interactions in Alzheimer's disease and Parkinson's disease. Neurosci Biobehav Rev 2019; 103:73-80. [PMID: 31207254 PMCID: PMC6700747 DOI: 10.1016/j.neubiorev.2019.06.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
Diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) arise from complex interactions of genetic and environmental factors, with genetic variants regulating individual responses to environmental exposures (i.e. gene-by-environment interactions). Identifying gene-by-environment interactions will be critical to fully understanding disease mechanisms and developing personalized therapeutics, though these interactions are still poorly understood and largely under-studied. Candidate gene approaches have shown that known disease risk variants often regulate response to environmental factors. However, recent improvements in exposome- and genome-wide association and interaction studies in humans and mice are enabling discovery of novel genetic variants and pathways that predict response to a variety of environmental factors. Here, we highlight recent approaches and ongoing developments in human and rodent studies to identify genetic modulators of environmental factors using AD and PD as exemplars. Identifying gene-by-environment interactions in disease will be critical to developing personalized intervention strategies and will pave the way for precision medicine.
Collapse
Affiliation(s)
- Amy R Dunn
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | | | | |
Collapse
|
45
|
Hwang CS, Smith LC, Wenthur CJ, Ellis B, Zhou B, Janda KD. Heroin vaccine: Using titer, affinity, and antinociception as metrics when examining sex and strain differences. Vaccine 2019; 37:4155-4163. [PMID: 31176539 DOI: 10.1016/j.vaccine.2019.05.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023]
Abstract
Anti-drug vaccines have potential as new interventions against substance use disorder (SUD). However, given the challenges seen with inter-individual variability in SUD vaccine trials to date, new interventions should ensure a robust immune response and safety profile among a diverse population. This requires accounting for sex and heritable genetic differences in response to both abused substances as well as the vaccination itself. To test response variability to our heroin-tetanus toxoid (Her-TT) immunoconjugate vaccine, we vaccinated male and female mice from several mouse strains including Swiss Webster (SW), BALB/c, and Jackson diversity mice (J:DO). Previous studies with vaccinated male SW mice demonstrated a rare hypersensitivity resulting in mice rapidly expiring with exposure to a low dose of heroin. Our results indicate that this response is limited to only male SW mice, and not to any other strain or female SW mice. Our data suggest that this hypersensitivity is not the result of an overactive cytokine or IgE response. Vaccination was similarly effective among the sexes for each strain and against repeated heroin challenge. Inbred BALB/c and J:DO mice were found to have the best vaccine response against heroin in antinociception behavioral assay. These results highlight the importance of incorporating both male and female subjects, along with different strains to mimic diverse human populations, as new SUD vaccines are being tested.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren C Smith
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Cody J Wenthur
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Beverly Ellis
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kim D Janda
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
46
|
Saul MC, Philip VM, Reinholdt LG, Chesler EJ. High-Diversity Mouse Populations for Complex Traits. Trends Genet 2019; 35:501-514. [PMID: 31133439 DOI: 10.1016/j.tig.2019.04.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Contemporary mouse genetic reference populations are a powerful platform to discover complex disease mechanisms. Advanced high-diversity mouse populations include the Collaborative Cross (CC) strains, Diversity Outbred (DO) stock, and their isogenic founder strains. When used in systems genetics and integrative genomics analyses, these populations efficiently harnesses known genetic variation for precise and contextualized identification of complex disease mechanisms. Extensive genetic, genomic, and phenotypic data are already available for these high-diversity mouse populations and a growing suite of data analysis tools have been developed to support research on diverse mice. This integrated resource can be used to discover and evaluate disease mechanisms relevant across species.
Collapse
Affiliation(s)
- Michael C Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | -
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA; UNC Chapel Hill, Chapel Hill, NC, USA; SUNY Binghamton, Binghamton, NY, USA; Pittsburgh University, Pittsburgh, PA, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA.
| |
Collapse
|
47
|
Wakefield CB, Yumol JL, Sacco SM, Sullivan PJ, Comelli EM, Ward WE. Bone structure is largely unchanged in growing male CD-1 mice fed lower levels of vitamin D and calcium than in the AIN-93G diet. Bone Rep 2019; 10:100191. [PMID: 30656199 PMCID: PMC6324019 DOI: 10.1016/j.bonr.2018.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 11/15/2022] Open
Abstract
Background Calcium (Ca) and vitamin D (vit D) in the AIN-93G diet may be higher than required for healthy bone development, and mask the potential benefit of a dietary intervention. Objective The objective was to determine if lower levels of Ca and vit D than is present in the AIN-93G diet supports bone development in growing male CD-1 mice. Methods Weanling male CD-1 mice were randomized to modified AIN-93G diets containing either 100 (Trial 1) or 400 (Trial 2) IU vit D/kg diet within one of two or three Ca levels (0.35, 0.30, or 0.25% Ca diet in Trial 1 or 0.35% or 0.25% in Trial 2) or the AIN-93G diet (1000 IU/kg vit D and 0.5% Ca) from weaning to 4 months of age (n = 13–15/group). At 2 and 4 months of age, BMD and structural properties of the tibia were analyzed in vivo. Structure of lumbar vertebra 4 (L4) and mandible, and femur strength were assessed ex vivo at age 4 months. Results There were no differences in tibia, L4, and mandible structure between the AIN-93G diet and the 0.35% Ca groups at either vit D level. A few structure outcomes were compromised with the 0.25 and/or 0.3% Ca diets but there were no differences in femur biomechanical strength compared to AIN-93G group in either Trial. Conclusion At 400 or 100 IU vit D/kg diet, Ca can be lowered to 0.35% without detriment to BMD or bone structure while bone strength is not altered at lower Ca (0.25%) compared to CD-1 mice fed AIN-93G diet. Because of genetic variation in CD-1 mice among different breeding facilities, results in CD-1 mice from other facilities may differ from the present study.
Collapse
Key Words
- AIN-93G
- BMD, bone mineral density
- BV/TV, percent bone volume
- Bone mineral density
- Bone structure
- Ca, calcium
- Calcium
- Conn.D, connectivity density
- Ct.Ar/Tt.Ar, cortical area fraction
- Ct.Th, cortical thickness
- DA, degree anisotropy
- Ec.Pm, endocortical perimeter
- Ecc., eccentricity
- L4, lumbar vertebra 4
- Ma.Ar, medullary area
- Ps.Pm, periosteal perimeter
- ROI, region of interest
- Rodent diet
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- Vitamin D
- vit D, vitamin D
- μCT, micro-computed tomography
Collapse
Affiliation(s)
| | - Jenalyn L. Yumol
- Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Sandra M. Sacco
- Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | | | - Elena M. Comelli
- Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, Ontario, Canada
| | - Wendy E. Ward
- Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Health Sciences, Brock University, St. Catharines, Ontario, Canada
- Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Corresponding author at: Department of Kinesiology, Faculty of Applied Health Science, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
48
|
Peng BJ, Hsueh WT, Fülöp F, Yang SC. Platinum-catalyzed selective N-allylation of 2,3-disubstituted indoles with allylic acetates in water. NEW J CHEM 2019. [DOI: 10.1039/c8nj05051a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we have demonstrated that the platinum-catalyzed selective N-allylation of 2,3-disubstituted indoles proceeds in water.
Collapse
Affiliation(s)
- Bai-Jing Peng
- School of Pharmacy
- College of Pharmacy
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| | - Wen-Ting Hsueh
- School of Pharmacy
- College of Pharmacy
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| | - Shyh-Chyun Yang
- School of Pharmacy
- College of Pharmacy
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| |
Collapse
|
49
|
Filonov D, Tice R, Luo R, Grotegut C, Van Kanegan MJ, Ludlow JW, Il'yasova D, Kinev A. Initial Assessment of Variability of Responses to Toxicants in Donor-Specific Endothelial Colony Forming Cells. Front Public Health 2018; 6:369. [PMID: 30622937 PMCID: PMC6308159 DOI: 10.3389/fpubh.2018.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
There is increased interest in using high throughput in vitro assays to characterize human population variability in response to toxicants and drugs. Utilizing primary human endothelial colony-forming cells (ECFCs) isolated from blood would be highly useful for this purpose because these cells are involved in neonatal and adult vasculogenesis. We characterized the cytotoxicity of four known toxic chemicals (NaAsO2, CdCl2, tributyltin [TBT], and menadione) and their four relatively nontoxic counterparts (Na2HAsO4, ZnCl2, SnCl2, and phytonadione, respectively) in eight ECFC clones representing four neonatal donors (2 male and 2 female donors, 2 clones per donor). ECFCs were exposed to 9 concentrations of each chemical in duplicate; cell viability was evaluated 48 h later using the fluorescent vital dye fluorescent dye 5-Carboxyfluorescein Diacetate (CFDA), yielding concentration-effect curves from each experiment. Technical (day-to-day) variability of the assay, assessed from three independent experiments, was low: p-values for the differences of results were 0.74 and 0.64 for the comparison of day 2 vs. day 1 and day 3 vs. day 1, respectively. The statistical analysis used to compare the entire concentration-effect curves has revealed significant differences in levels of cytotoxicity induced by the toxic and relatively nontoxic chemical counterparts, demonstrating that donor-specific ECFCs can clearly differentiate between these two groups of chemicals. Partitioning of the total variance in the nested design assessed the contributions of between-clone and between-donor variability for different levels of cytotoxicity. Individual ECFC clones demonstrated highly reproducible responses to the chemicals. The most toxic chemical was TBT, followed by NaAsO2, CdCl2, and Menadione. Nontoxic counterparts exhibited low cytotoxicity at the higher end of concentration ranges tested. Low variability was observed between ECFC clones obtained from the same donor or different donors for CdCl2, NaAsO2, and TBT, but for menadione, the between-donor variability was much greater than the between-clone variability. The low between-clone variability indicates that an ECFC clone may represent an individual donor in cell-based assays, although this finding must be confirmed using a larger number of donors. Such confirmation would demonstrate that an in vitro ECFC-based testing platform can be used to characterize the inter-individual variability of neonatal ECFCs exposed to drugs and/or environmental toxicants.
Collapse
Affiliation(s)
| | - Raymond Tice
- Creative Scientist, Inc.Durham, NC, United States
| | - Ruiyan Luo
- School of Public Health, Georgia State University, Atlanta, GA, United States
| | - Chad Grotegut
- Duke University Medical Center, Durham, NC, United States
| | | | | | - Dora Il'yasova
- School of Public Health, Georgia State University, Atlanta, GA, United States
| | | |
Collapse
|
50
|
Amin MM, Rafiei N, Poursafa P, Ebrahimpour K, Mozafarian N, Shoshtari-Yeganeh B, Hashemi M, Kelishadi R. Association of benzene exposure with insulin resistance, SOD, and MDA as markers of oxidative stress in children and adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34046-34052. [PMID: 30280344 DOI: 10.1007/s11356-018-3354-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/26/2018] [Indexed: 05/10/2023]
Abstract
Benzene is a ubiquitous environmental pollutant with various health effects. It is reported that benzene exposure might be associated with insulin resistance in elderly adults. The aim of this study is to investigate the association between urinary benzene metabolite, trans, trans-muconic acid (t,t-ma) and markers of oxidative stress and insulin resistance in children and adolescents. This cross-sectional study was conducted in 2017 among 86 children and adolescents, aged 6-18 years, living in Isfahan, Iran. t,t-ma was measured as urinary benzene metabolite and homeostasis model assessment (HOMA-IR) was determined as an index of insulin resistance. Moreover, malondialdehyde (MDA) and superoxide dismutase (SOD) were assessed as oxidative stress markers. We found significant association between insulin resistance, fasting blood glucose, and fasting blood insulin with t,t-ma (p values = 0.002, 0.03, and 0.001, respectively). Results of this study indicate that benzene metabolite in higher concentrations in comparison with lower concentrations is associated with increased risk of insulin resistance. Moreover, after adjustment for age, sex, and household passive smoking, statistically significant increase were documented in SOD and MDA (4.49- and 3.54-fold, respectively) in intermediate levels of t,t-ma vs. low levels of t,t-ma (p values = 0.01 and 0.034, respectively). To the best of our knowledge, this is the first study in its kind in the pediatric age group. It showed that benzene exposures, even in environmental levels, might be associated with insulin resistance and oxidative stress in children and adolescents. Further longitudinal studies are necessary to assess the clinical impacts of this finding.
Collapse
Affiliation(s)
- Mohammad Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Rafiei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Parinaz Poursafa
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Mozafarian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Hashemi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|