1
|
Choi JE, Choi EJ, Lee S, Park B, Lee HA, Hong YS, Ha E, Kim HS, Park H. Relationship of urinary bisphenol A in childhood on thyroid hormone function in adolescents: a cohort study. PLoS One 2025; 20:e0322658. [PMID: 40403006 PMCID: PMC12097550 DOI: 10.1371/journal.pone.0322658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/25/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a type of endocrine-disrupting chemical utilized in the production of plastics like epoxy resins and polycarbonate polymers. BPA exhibits weak estrogenic and potent anti-androgenic effects, and prior research has linked it to disturbances in thyroid function. This study aims to assess the potential association between early childhood exposure to urinary bisphenol A and thyroid hormone levels in pubertal children from Korea. METHODS Participants were drawn from the Ewha Birth and Growth Cohort Study, encompassing individuals who visited Ewha Women's Mokdong Hospital between 2001 and 2005. The concentration of urinary BPA was repeatedly measured for each subject at ages 3-5 years and 7-9 years. Serum levels of free triiothyronine (T3), free thyroxine (T4), and thyroid-stimulating hormone (TSH) were measured at ages 10-12 years in a subgroup of 128 out of 164 subjects who had undergone repeated BPA concentration measurements. We utilized the SAS program to analyze possible links between childhood exposure to BPA and thyroid hormone function in adolescence. Additionally, we explored how exposure to BPA during two specific periods influenced changes in thyroid hormone levels. RESULTS The study observed that urinary BPA levels at ages 3-5 years were not notably linked to thyroid hormone levels in adolescents aged 10-12 years. However, BPA levels at ages 7-9 years were significantly associated with free T3 levels in girls aged 10-12 years. Conversely, exposure to BPA did not result in significant differences in thyroid hormone levels among boys. The study did not find statistically significant connections between levels of urinary BPA and the other thyroid hormones, specifically TSH and free T4. There was a significant decrease in the concentration of free T3 in girls with higher BPA concentrations. CONCLUSIONS BPA exposure in childhood affects thyroid function in adolescent girls. This relationship may contribute to an increased prevalence of thyroid disorders in adolescents due to environmental influences.
Collapse
Affiliation(s)
- Jung Eun Choi
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul Hospital, Seoul, Republic of Korea
| | - Eun Jeong Choi
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Seonhwa Lee
- National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Bohyun Park
- National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Hye Ah Lee
- Clinical Trial Center, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Young Sun Hong
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eunhee Ha
- Department of Occupational and Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Hae Soon Kim
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul Hospital, Seoul, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Celar Šturm D, Režen T, Jančar N, Virant-Klun I. Bisphenol a Disrupts Steroidogenesis and Induces Apoptosis in Human Granulosa Cells Cultured In Vitro. Int J Mol Sci 2025; 26:4081. [PMID: 40362320 PMCID: PMC12071243 DOI: 10.3390/ijms26094081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Bisphenol A (BPA) is a common synthetic chemical compound classified as an endocrine disruptor. It affects multiple physiological systems in the body, including the female reproductive system, particularly granulosa cells (GCs) in the ovaries, where steroidogenesis occurs. This study investigated the impact of various BPA concentrations (environmentally relevant concentrations of 0.001 µM and 0.1 µM and toxicological concentration of 100 µM) and exposure times (24 and 72 h) on cell viability and counts and in vitro production of estradiol and progesterone in human GCs collected from waste follicular fluid of IVF patients. Gene expression analysis of 182 genes associated with steroidogenesis and apoptosis was performed in GCs using PCR arrays, followed by protein expression analysis by Western blot. Our results demonstrate that after longer BPA exposure (72 h), a higher concentration of BPA (100 µM) negatively affects the cellular viability and counts and significantly alters steroid hormone biosynthesis in vitro, leading to reduced concentrations of estradiol and progesterone in the culture medium. We found that all BPA concentrations altered the expression of different steroidogenesis- and apoptosis-related genes in GCs. At 0.001 μM, BPA exposure decreased the expression of TRIM25, UGT2B15, CASP3, and RPS6KA3 genes and increased the expression of NR6A1 and PPID genes. At 0.1 μM, BPA increased the expression of AR, HSD3B1, BID, IKBKG, and PPID genes while reducing the expression of TRIM25 and CASP3 genes. At the highest concentration of 100 μM, BPA upregulated the expression of AR, GPER30, BID, IKBKG, and PPID genes and downregulated the expression of FOXO1 and UGT2B15 genes. These results highlight BPA's concentration-specific effects on steroidogenesis and apoptosis and show its potential to compromise GC function, with possible negative implications for female fertility and ovarian health, even at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dominika Celar Šturm
- Clinical Research Centre, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Nina Jančar
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Ma X, Shao Q, Huang S, Zhang W, Liu H, Jiayi X, Zhao X, Li P, Shao D, Bu Y, Weng D. Bisphenol B Exposure Promotes Melanoma Progression via Dysregulation of Lipid Metabolism in C57BL/6J Mice. ENVIRONMENTAL TOXICOLOGY 2025; 40:563-573. [PMID: 39575877 DOI: 10.1002/tox.24441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 03/18/2025]
Abstract
The increasing incidence of cancer underscore the necessity of investigating contributors such as endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA). Although BPA's risks are well-documented, comprehensive studies on its substitutes, such as bisphenol B (BPB), are limited. Dysregulated lipid metabolism is a hallmark of cancer progression. Our previous work demonstrated that BPA and bisphenol S (BPS) disrupt lipid metabolism via the peroxisome proliferator-activated receptor γ (PPARγ) pathway. We hence hypothesized that BPB might similarly perturb lipid metabolism and promote tumor growth. BPB's impact on lipid metabolism was investigated in vitro and in vivo using B16 melanoma cancer cells. Our findings indicate BPB exposure significantly increased lipid metabolism in B16 cells, enhancing cell proliferation and migration, and promoting tumor development in mice. Utilizing siRNA transfection or chemical inhibitor, we found that stearoyl-CoA desaturase-1 (SCD1), a key enzyme in lipid synthesis pathway, was required for BPB-induced lipid accumulation and cancer cell migration. Docking analysis revealed BPB may activate gene expression related to lipid metabolism and angiogenesis by interacting with PPARγ and hypoxia-inducible factor-1α (HIF-1α). This study illuminates BPB's potential role in advancing melanoma through lipid metabolism manipulation, highlighting the need for further research into the safety of BPA substitutes and their impact on cancer development.
Collapse
Affiliation(s)
- Xuening Ma
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Qianchao Shao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Shuxian Huang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Weigao Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Hu Liu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Xu Jiayi
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Xunan Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Peiqi Li
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Da Shao
- Research Center of Translational Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - YuanQing Bu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Nanjing, China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
4
|
Sabry R, Gallo JF, Rooney C, Scandlan OLM, Davis OS, Amin S, Faghih M, Karnis M, Neal MS, Favetta LA. Genetic and Epigenetic Profiles of Polycystic Ovarian Syndrome and In Vitro Bisphenol Exposure in a Human Granulosa Cell Model. Biomedicines 2024; 12:237. [PMID: 38275408 PMCID: PMC10813104 DOI: 10.3390/biomedicines12010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Higher levels of bisphenols are found in granulosa cells of women with polycystic ovary syndrome (PCOS), posing the question: Is bisphenol exposure linked to PCOS pathophysiology? Human granulosa cells were obtained from women with and without PCOS, and genes and microRNAs associated with PCOS were investigated. The first phase compared healthy women and those with PCOS, revealing distinct patterns: PCOS subjects had lower 11β-HSD1 (p = 0.0217) and CYP11A1 (p = 0.0114) levels and elevated miR-21 expression (p = 0.02535), elucidating the molecular landscape of PCOS, and emphasizing key players in its pathogenesis. The second phase focused on healthy women, examining the impact of bisphenols (BPA, BPS, BPF) on the same genes. Results revealed alterations in gene expression profiles, with BPS exposure increasing 11β-HSD1 (p = 0.02821) and miR-21 (p = 0.01515) expression, with the latest mirroring patterns in women with PCOS. BPA exposure led to elevated androgen receptor (AR) expression (p = 0.0298), while BPF exposure was associated with higher levels of miR-155. Of particular interest was the parallel epigenetic expression profile between BPS and PCOS, suggesting a potential link. These results contribute valuable insights into the nuanced impact of bisphenol exposure on granulosa cell genes, allowing the study to speculate potential shared mechanisms with the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Reem Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Jenna F. Gallo
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
| | - Charlie Rooney
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Olivia L. M. Scandlan
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Ola S. Davis
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Shilpa Amin
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mehrnoosh Faghih
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Karnis
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael S. Neal
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| |
Collapse
|
5
|
Huang S. A novel strategy for the study on molecular mechanism of prostate injury induced by 4,4'-sulfonyldiphenol based on network toxicology analysis. J Appl Toxicol 2024; 44:28-40. [PMID: 37340727 DOI: 10.1002/jat.4506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
The study aimed to investigate the underlying molecular mechanisms of prostate injury induced by 4,4'-sulfonyldiphenol (BPS) exposure and propose a novel research strategy to systematically explore the molecular mechanisms of toxicant-induced adverse health effects. By utilizing the ChEMBL, STITCH, and GeneCards databases, a total of 208 potential targets associated with BPS exposure and prostate injury were identified. Through screening the potential target network in the STRING database and Cytoscape software, we determined 21 core targets including AKT1, EGFR, and MAPK3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses conducted through the DAVID database illustrated that the potential targets of BPS in prostatic toxicity were primarily enriched in cancer signaling pathways and calcium signaling pathways. These findings suggest that BPS may actively participate in the occurrence and development of prostate inflammation, prostatic hyperplasia, prostate cancer, and other aspects of prostate injury by regulating prostate cancer cell apoptosis and proliferation, activating inflammatory signaling pathways, and modulating prostate adipocytes and fibroblasts. This research provides a theoretical basis for understanding the molecular mechanism of underlying BPS-induced prostatic toxicity and establishes a foundation for the prevention and treatment of prostatic diseases associated with exposure to plastic products containing BPS and certain BPS-overwhelmed environments.
Collapse
Affiliation(s)
- Shujun Huang
- West China Medical Center, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Degirmencioglu Gok D, Tuygar Okutucu F, Ozturk N, Ceyhun HA. Association of bisphenol A with cognitive functions and functionality in adult attention deficit hyperactivity disorder. J Psychiatr Res 2024; 169:64-72. [PMID: 38000186 DOI: 10.1016/j.jpsychires.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to attention-deficit/hyperactivity disorder (ADHD) symptoms, but the effects on cognitive functions and functionality in adult ADHD have not been investigated. We investigated the associations between serum BPA with cognitive functions and functionality in adult ADHD patients. METHODS The levels of BPA were measured in 45 adult ADHD patients and 45 well-matched healty controls. The relationship between plastic exposure and BPA was also evaluated. Stroop test and Wisconsin Card Sorting Test were applied for neurocognitive evaluation and participants were compared in basic cognitive functions including planning, organization, abstraction, problem solving, strategy development, set shifting, cognitive flexibility, variants of attention, information processing speed, the ability to change perceptual setup and response under interference. Sheehan disability scale was applied for functionality. The association of BPA with test scores was analyzed statistically. RESULTS Serum BPA levels in adult ADHD patients were found to be significantly higher than in healthy controls. There was no relationship between plastic exposure and BPA levels. BPA levels showed a significant effect on functionality in terms of work field. There were significant differences between the groups in terms of cognitive functions. However, no significant correlation was found between BPA levels and cognitive functions. CONCLUSIONS BPA is associated with ADHD and affects functionality in the field of work, but larger-scale further studies are needed for its effect on cognitive functions.
Collapse
Affiliation(s)
| | | | - Nurinnisa Ozturk
- Department of Biochemistry, Ataturk University Medical Faculty, Erzurum, Turkey.
| | - Hacer Akgul Ceyhun
- Department of Psychiatry, Ataturk University Medical Faculty, Erzurum, Turkey.
| |
Collapse
|
7
|
Talari K, Ganji SK, Tiruveedula RR. Gas chromatography-mass spectrometric determination of bisphenol residues by dispersive solid phase extraction followed by activated carbon spheres cleanup from fish feed samples. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023:14690667231174446. [PMID: 37186780 DOI: 10.1177/14690667231174446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bisphenols are known endocrine disruptors commonly utilized in food packaging and storage materials, which frequently come into touch with multiple food products packed in them. The bisphenols in fish feed and other feed materials for aquatic organisms are harmful. The consumption of such marine foods is hazardous. Hence, the feed of aquatic products needs to be verified for the presence of bisphenols. The present study was focused on developing and validating a rapid, selective, and sensitive method to quantify 11 bisphenols from the fish feed with dispersive solid-phase extraction, which was cleaned by an optimized amount of activated carbon spheres and silylated by N,O-bis(trimethylsilyl)trifluoro acetamide and analyzed by gas chromatography-mass spectrometry. The new method was rigorously tested and verified after carefully tuning various parameters affecting analyte recovery. Limit of detection (LOD) were set at 0.5-5 ng/g and limit of quantification (LOQ) at 1-10 ng/g, respectively, resulting in 95-114% recoveries. Interday and intraday precisions in terms of relative standard deviation were found to be less than 11%. The proposed approach was effectively applied in floating and sinking fish feeds. The obtained results showed that higher concentration of bisphenol A, followed by bisphenol TMC, and bisphenol M at a concentration of 256.10, 159.01, and 168.82 ng/g in floating feed and 88.04, 200.79, and 98.03 ng/g in sinking feed samples, respectively.
Collapse
Affiliation(s)
- Kalpana Talari
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
- Department of Chemistry, Government College for Women (A), Guntur, Andhra Pradesh, India
| | - Sai Krishna Ganji
- Centre for Mass Spectrometry, Analytical and Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | |
Collapse
|
8
|
Repeated exposure to 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) accelerates ligand-independent activation of estrogen receptors in long-term estradiol-deprived MCF-7 cells. Toxicol Lett 2023; 378:31-38. [PMID: 36863540 DOI: 10.1016/j.toxlet.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
It was previously identified that there may be an active metabolite of bisphenol A (BPA), 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP). An in vitro system was developed to detect MBP toxicity to the Michigan Cancer Foundation-7 (MCF-7) cells that had been repeatedly exposed to a low dose of the metabolite. MBP profoundly activated estrogen receptor (ER)-dependent transcription as a ligand, with an EC50 of 2.8 nM. Women are continuously exposed to numerous estrogenic environmental chemicals; but their susceptibility to these chemicals may be significantly altered after menopause. Long-term estrogen-deprived (LTED) cells, which display ligand-independent ER activation, are a postmenopausal breast cancer model derived from MCF-7 cells. In this study, we investigated the estrogenic effects of MBP on LTED cells in a repeated exposure in vitro model. The results suggest that i) nanomolar levels of MBP reciprocally disrupt the balanced expression of ERα and ERβ proteins, leading to the dominant expression of ERβ, ii) MBP stimulates ERs-mediated transcription without acting as an ERβ ligand, and iii) MBP utilizes mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling to evoke its estrogenic action. Moreover, the repeated exposure strategy was effective for detecting low-dose estrogenic-like effects caused by MBP in LTED cells.
Collapse
|
9
|
Malala Irugal Bandaralage S, Ignacio Bertucci J, Park B, Green D, Brinkmann M, Masse A, Crump D, Basu N, Hogan N, Hecker M. Maternal Transfer and Apical and Physiological Effects of Dietary Hexabromocyclododecane Exposure in Parental Fathead Minnows (Pimephales promelas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:143-153. [PMID: 36282020 DOI: 10.1002/etc.5506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hexabromocyclododecane (HBCD) is a persistent organic pollutant that has been characterized as an endocrine disruptor, undergoes maternal transfer, and hinders development and growth in oviparous organisms. The present study examined the apical effects of dietary HBCD (11.5, 36.4, 106 mg/kg, wet wt) on adult fathead minnow exposed for 49 days and the subsequent accumulation and maternal transfer kinetics in adult tissue and eggs, respectively. Exposed adults displayed a significant increase in egg production in the medium treatment group, but no other significant effects were noted. Maternal transfer of dietary HBCD had a similar egg-to-muscle ratios (EMR) in the low and medium treatment groups (1.65 and 1.27 [wet wt], respectively). However, the high treatment group deviated from other treatments with an EMR of 4.2 (wet wt), potentially due to differences in total lipid content in food and/or reaching diffusion/lipid saturation limits in adult tissue, resulting in lower accumulation in the adult muscle tissue. A positive correlation was observed between egg HBCD concentration and time of exposure, which indicates that maternal transfer of HBCD is of concern in fish, and further studies should be conducted to fully elucidate the potential adverse effects that may be observed in the early life stage of oviparous organisms. Environ Toxicol Chem 2023;42:143-153. © 2022 SETAC.
Collapse
Affiliation(s)
- Susari Malala Irugal Bandaralage
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Spanish Institute of Oceanography, Oceanographic Centre of Vigo, Vigo, Spain
| | - Juan Ignacio Bertucci
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Spanish Institute of Oceanography, Oceanographic Centre of Vigo, Vigo, Spain
| | - Brad Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anita Masse
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Lapp HE, Margolis AE, Champagne FA. Impact of a bisphenol A, F, and S mixture and maternal care on the brain transcriptome of rat dams and pups. Neurotoxicology 2022; 93:22-36. [PMID: 36041667 PMCID: PMC9985957 DOI: 10.1016/j.neuro.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023]
Abstract
Products containing BPA structural analog replacements have increased in response to growing public concern over adverse effects of BPA. Although humans are regularly exposed to a mixture of bisphenols, few studies have examined effects of prenatal exposure to BPA alternatives or bisphenol mixtures. In the present study, we investigate the effect of exposure to an environmentally-relevant, low-dose (150 ug/kg body weight per day) mixture of BPA, BPS, and BPF during gestation on the brain transcriptome in Long-Evans pups and dams using Tag RNA-sequencing. We also examined the association between dam licking and grooming, which also has enduring effects on pup neural development, and the transcriptomes. Associations between licking and grooming and the transcriptome were region-specific, with the hypothalamus having the greatest number of differentially expressed genes associated with licking and grooming in both dams and pups. Prenatal bisphenol exposure also had region-specific effects on gene expression and pup gene expression was affected more robustly than dam gene expression. In dams, the prelimbic cortex had the greatest number of differentially expressed genes associated with prenatal bisphenol exposure. Prenatal bisphenol exposure changed the expression of over 2000 genes in pups, with the majority being from the pup amygdala. We used Gene Set Enrichment Analysis (GSEA) to asses enrichment of gene ontology biological processes for each region. Top GSEA terms were diverse and varied by brain region and included processes known to have strong associations with steroid hormone regulation, cilium-related terms, metabolic/biosynthetic process terms, and immune terms. Finally, hypothesis-driven analysis of genes related to estrogen response, parental behavior, and epigenetic regulation of gene expression revealed region-specific expression associated with licking and grooming and bisphenol exposure that were distinct in dams and pups. These data highlight the effects of bisphenols on multiple physiological process that are highly dependent on timing of exposure (prenatal vs. adulthood) and brain region, and reiterate the contributions of multiple environmental and experiential factors in shaping the brain.
Collapse
Affiliation(s)
- H E Lapp
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keaton St, Austin, TX 78712, USA.
| | - A E Margolis
- Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - F A Champagne
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keaton St, Austin, TX 78712, USA
| |
Collapse
|
11
|
Hirao-Suzuki M. Mechanisms of Cancer Malignancy Elicited by Environmental Chemicals: Analysis Focusing on Cadmium and Bisphenol A. YAKUGAKU ZASSHI 2022; 142:1161-1168. [DOI: 10.1248/yakushi.22-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Merii MH, Fardoun MM, El-Asmar K, Khalil MI, Eid A, Dhaini HR. Effect of BPA on CYP450s expression, and nicotine modulation, in fetal rat brain. Neurotoxicol Teratol 2022; 92:107095. [DOI: 10.1016/j.ntt.2022.107095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
13
|
Cohen A, Popowitz J, Delbridge-Perry M, Rowe CJ, Connaughton VP. The Role of Estrogen and Thyroid Hormones in Zebrafish Visual System Function. Front Pharmacol 2022; 13:837687. [PMID: 35295340 PMCID: PMC8918846 DOI: 10.3389/fphar.2022.837687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Visual system development is a highly complex process involving coordination of environmental cues, cell pathways, and integration of functional circuits. Consequently, a change to any step, due to a mutation or chemical exposure, can lead to deleterious consequences. One class of chemicals known to have both overt and subtle effects on the visual system is endocrine disrupting compounds (EDCs). EDCs are environmental contaminants which alter hormonal signaling by either preventing compound synthesis or binding to postsynaptic receptors. Interestingly, recent work has identified neuronal and sensory systems, particularly vision, as targets for EDCs. In particular, estrogenic and thyroidogenic signaling have been identified as critical modulators of proper visual system development and function. Here, we summarize and review this work, from our lab and others, focusing on behavioral, physiological, and molecular data collected in zebrafish. We also discuss different exposure regimes used, including long-lasting effects of developmental exposure. Overall, zebrafish are a model of choice to examine the impact of EDCs and other compounds targeting estrogen and thyroid signaling and the consequences of exposure in visual system development and function.
Collapse
Affiliation(s)
- Annastelle Cohen
- Department of Biology, American University, Washington, DC, WA, United States
| | - Jeremy Popowitz
- Department of Biology, American University, Washington, DC, WA, United States
| | | | - Cassie J. Rowe
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States,*Correspondence: Victoria P. Connaughton,
| |
Collapse
|
14
|
The Crowded Uterine Horn Mouse Model for Examining Postnatal Metabolic Consequences of Intrauterine Growth Restriction vs. Macrosomia in Siblings. Metabolites 2022; 12:metabo12020102. [PMID: 35208177 PMCID: PMC8880550 DOI: 10.3390/metabo12020102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Differential placental blood flow and nutrient transport can lead to both intrauterine growth restriction (IUGR) and macrosomia. Both conditions can lead to adult obesity and other conditions clustered as metabolic syndrome. We previously showed that pregnant hemi-ovariectomized mice have a crowded uterine horn, resulting in siblings whose birth weights differ by over 100% due to differential blood flow based on uterine position. We used this crowded uterus model to compare IUGR and macrosomic male mice and also identified IUGR males with rapid (IUGR-R) and low (IUGR-L) postweaning weight gain. At week 12 IUGR-R males were heavier than IUGR-L males and did not differ from macrosomic males. Rapid growth in IUGR-R males led to glucose intolerance compared to IUGR-L males and down-regulation of adipocyte signaling pathways for fat digestion and absorption and type II diabetes. Macrosomia led to increased fat mass and altered adipocyte size distribution compared to IUGR males, and down-regulation of signaling pathways for carbohydrate and fat digestion and absorption relative to IUGR-R. Clustering analysis of gonadal fat transcriptomes indicated more similarities than differences between IUGR-R and macrosomic males compared to IUGR-L males. Our findings suggest two pathways to adult metabolic disease: macrosomia and IUGR with rapid postweaning growth rate.
Collapse
|
15
|
Koutaki D, Paltoglou G, Vourdoumpa A, Charmandari E. The Impact of Bisphenol A on Thyroid Function in Neonates and Children: A Systematic Review of the Literature. Nutrients 2021; 14:nu14010168. [PMID: 35011041 PMCID: PMC8746969 DOI: 10.3390/nu14010168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/23/2023] Open
Abstract
Background: Bisphenol A (BPA) is an endocrine-disrupting chemical widely used in plastic products that may have an adverse effect on several physiologic functions in children. The aim of this systematic review is to summarize the current knowledge of the impact of BPA concentrations on thyroid function in neonates, children, and adolescents. Methods: A systematic search of Medline, Scopus, Clinical Trials.gov, Cochrane Central Register of Controlled Trials CENTRAL, and Google Scholar databases according to PRISMA guidelines was performed. Only case–control, cross-sectional, and cohort studies that assessed the relationship between Bisphenol A and thyroid function in neonates and children aged <18 years were included. Initially, 102 articles were assessed, which were restricted to 73 articles after exclusion of duplicates. A total of 73 articles were assessed by two independent researchers based on the title/abstract and the predetermined inclusion and exclusion criteria. According to the eligibility criteria, 18 full-text articles were selected for further assessment. Finally, 12 full-text articles were included in the present systematic review. Results: The presented studies offer data that suggest a negative correlation of BPA concentrations with TSH in children, a gender-specific manner of action, and a potential effect on proper neurodevelopment. However, the results are inconclusive with respect to specific thyroid hormone concentrations and the effect on thyroid autoimmunity. Conclusion: The potential negative effect of BPA in the developing thyroid gland of children that may affect proper neurodevelopment, suggesting the need to focus future research on designing studies that elucidate the underlying mechanisms and the effects of BPA in thyroid function in early life.
Collapse
Affiliation(s)
- Diamanto Koutaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
16
|
Hirao-Suzuki M. Estrogen Receptor β as a Possible Double-Edged Sword Molecule in Breast Cancer: A Mechanism of Alteration of Its Role by Exposure to Endocrine-Disrupting Chemicals. Biol Pharm Bull 2021; 44:1594-1597. [PMID: 34719637 DOI: 10.1248/bpb.b21-00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen is essential for the growth and development of mammary glands and its signaling is associated with breast cancer growth. Estrogen can exert physiological actions via estrogen receptors α/β (ERα/β). There is experimental evidence suggesting that in ERα/β-positive breast cancer, ERα promotes tumor cell proliferation and ERβ inhibits ERα-mediated transcriptional activity, resulting in abrogation of cell growth. Therefore, ERβ is attracting attention as a potential tumor suppressor, and as a biomarker and therapeutic target in the ERα/β-positive breast cancer. Based on this information, we have hypothesized that some endocrine-disrupting chemicals (EDCs) that can perturb the balance between ERα and ERβ expression levels in breast cancer cells might have effects on the breast cancer proliferation (i.e., down-regulation of the α-type of ER). We have recently reported that 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A, in ERα/β-positive human breast cancer significantly down-regulates ERα expression, yet stimulates cell proliferation through the activation of ERβ-mediated transcription. These results support our hypothesis by demonstrating that exposure to MBP altered the functional role of ERβ in breast cancer cells from suppressor to promoter. In contrast, some EDCs, such as Δ9-tetrahydrocannabinol and bisphenol AF, can exhibit anti-estrogenic effects through up-regulation of ERβ expression without affecting the ERα expression levels. However, there is no consensus on the correlation between ERβ expression levels and clinical prognosis, which might be due to differences in exposed chemicals. Therefore, elucidating the exposure effects of EDCs can reveal the reason for inconsistent functional role of ERβ in ERα/β-positive breast cancer.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
17
|
Hirao-Suzuki M, Nagase K, Suemori T, Tsutsumi K, Shigemori E, Tanaka M, Takiguchi M, Sugihara N, Yoshihara S, Takeda S. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) Targets Estrogen Receptor β, to Evoke the Resistance of Human Breast Cancer MCF-7 Cells to G-1, an Agonist for G Protein-Coupled Estrogen Receptor 1. Biol Pharm Bull 2021; 44:1524-1529. [PMID: 34602561 DOI: 10.1248/bpb.b21-00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA) has been shown to induce the activation of nuclear estrogen receptor α/β (ERα/β) in both in vitro and in vivo settings. We originally obtained a 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a possible active metabolite of BPA, strongly activating the ERs-mediated transcription in MCF-7 cells with an EC50 of 2.8 nM (i.e., BPA's EC50 = 519 nM). Environmental estrogens can also target G protein-coupled estrogen receptor 1 (GPER1), a membrane-type ER. However, the effects of BPA/MBP on GPER1, have not yet been fully resolved. In this study, we used MCF-7, a ERα/ERβ/GPER1-positive human breast cancer cell line, as a model to investigate the effects of the exposure to BPA or MBP. Our results revealed that at concentrations below 1 nM MBP, but not BPA, downregulates the expression of GPER1 mRNA via upregulated ERβ, and the MCF-7 cells pre-treated with MBP display resistance to GPER1 agonist G-1-mediated anti-proliferative effects. Because GPER1 can act as a tumor suppressor in several types of cancer including breast cancer, the importance of MBP-mediated decrease in GPER1 expression in breast cancer cells is discussed.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Keita Nagase
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Tatsuya Suemori
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Kana Tsutsumi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Egao Shigemori
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Michitaka Tanaka
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Shin'ichi Yoshihara
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Shuso Takeda
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
18
|
Wang K, Huang D, Zhou P, Su X, Yang R, Shao C, Wu J. BPA-induced prostatic hyperplasia in vitro is correlated with the unbalanced gene expression of AR and ER in the epithelium and stroma. Toxicol Ind Health 2021; 37:585-593. [PMID: 34486460 DOI: 10.1177/07482337211042986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a typical environmental endocrine disruptor (EED), bisphenol A (BPA) can induce pathological hyperplasia of the prostatic epithelium and stroma. This study concentrates mainly on the effect and underlying mechanisms of BPA on prostatic hyperplasia, which is based on the culture of primary human prostate epithelial cells (HPEpiC) and human prostate fibroblasts (HPrF). In an effect to screen the optimal pro-survival BPA levels, HPEpiC and HPrF were, respectively, exposed to concentration gradients of BPA (10-12 M-10-4 M) solution diluted with two corresponding medium and incubated for 72 h at 37°C. CCK-8 assay showed that 10-9 M-10-5 M BPA could facilitate the proliferation of HPEpiC, while similar proliferative effect of HPrF only needed 10-11 M-10-7 M BPA. HPrF were more sensitive to BPA than HPEpiC. The qualification of PCNA gene expression measured using quantitative real-time polymerase chain reaction (qRT-PCR) also mirrored the BPA-induced cell proliferation. Additionally, our results considered that androgen receptor (AR), estrogen receptor (ERα, ERβ), and NFKB1 gene expressions exhibited up-regulation in HPEpiC treated with 10-9 M BPA for 72 h. However, in HPrF, the identical BPA treatment could activate ERα, ERβ, and NFKB1 gene expressions and down-regulated the expression of AR levels. It is further confirmed that low-dose BPA can indeed promote the proliferation of human prostate cells in vitro, and the mechanisms of BPA for prostatic epithelial and stromal hyperplasia may not be consistent.
Collapse
Affiliation(s)
- Kaiyue Wang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Dongyan Huang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Ping Zhou
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Xin Su
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Rongfu Yang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Congcong Shao
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jianhui Wu
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
19
|
Wang Y, Aimuzi R, Nian M, Zhang Y, Luo K, Zhang J. Bisphenol A substitutes and sex hormones in children and adolescents. CHEMOSPHERE 2021; 278:130396. [PMID: 33819883 DOI: 10.1016/j.chemosphere.2021.130396] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as bisphenol A (BPA) substitutes in consumer products. Little is known about the effects of BPA substitutes on reproductive endocrine function in children and adolescents. Thus, we conducted a cross-sectional study to examine the associations of BPA, BPF, and BPS with sex steroid hormones among 6-19-year old participants. Included were 1317 participants with information on BPA, BPF, BPS, and serum sex hormones [total testosterone (TT), estradiol (E2), and sex hormone binding globulin (SHBG)]. Multiple linear regression accounting for complex survey design was used to assess the association between bisphenols and sex hormones by sex-age groups. Exposure-response (ER) relationships were examined via restricted cubic splines. Significant association with BPF or BPS was sporadic, but BPA presented inverse association with the free androgen index (FAI, calculated as the ratio of TT to SHBG) and E2 and positive association with SHBG and TT/E2 in female adolescents. Further exploration of ER relationships showed that BPA (P for non-linearity = 0.03), BPF (P for non-linearity = 0.005), and BPS (P for non-linearity = 0.08) had a U-shaped relationship with FAI among female adolescents. Additionally, an inverse U-shaped curve was observed for BPA (P for non-linearity = 0.03), BPS (P for non-linearity = 0.01), and BPF (P for non-linearity = 0.01) with SHBG. The associations were virtually nonsignificant among males. Our study demonstrated that BPS and BPF may possess similar endocrine interrupting abilities as BPA.
Collapse
Affiliation(s)
- Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092, China
| | - Ruxianguli Aimuzi
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yu Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
20
|
Niu Y, Zhu M, Dong M, Li J, Li Y, Xiong Y, Liu P, Qin Z. Bisphenols disrupt thyroid hormone (TH) signaling in the brain and affect TH-dependent brain development in Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105902. [PMID: 34218114 DOI: 10.1016/j.aquatox.2021.105902] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
There is concern about adverse effects of thyroid hormone (TH) disrupting chemicals on TH-dependent brain development. Bisphenol A (BPA) and its analogues, such as bisphenol F (BPF), are known to have the potential to interfere with TH signaling, but whether they affect TH-dependent brain development is not yet well documented. Here, we conducted the T3-induced Xenopus laevis metamorphosis assay, a model for studying TH signaling disruption, to investigate the effects of BPA and BPF (10-1000 nM) on TH signaling in brains and subsequent brain development. While 48-hr treatment with 1 nM T3 dramatically upregulated TH-response gene expression in X. laevis brains at stage 52, 1000 and/or 100 nM BPA also caused significant transcriptional up-regulation of certain TH-response genes, whereas BPF had slighter effects, suggesting limited TH signaling disrupting activity of BPF in brains relative to BPA at the lack of TH. In the presence of 1 nM T3, 1000 and/or 100 nM of BPF as well as BPA antagonized T3-induced TH-response gene expression, whereas lower concentrations agonized T3 actions on certain TH-response genes, displaying an apparently biphasic effect on TH signaling. After 96 h exposure, T3 induced brain morphological remodeling coupled with cell proliferation and neuronal differentiation, whereas both BPA and BPF generally antagonized T3-induced changes in a concentration-dependent manner, with weak or no effects of bisphenol exposure alone. Overall, all results show that BPA and BPF interfered with TH signaling in Xenopus brains, especially in the presence of TH, and subsequently affected TH-dependent brain development. Given the evolutionary conservation of TH-dependent brain development among vertebrates, our findings from X. laevis warrant further studies to reveal potential influences of bisphenols on TH-dependent brain development in higher vertebrates.
Collapse
Affiliation(s)
- Yue Niu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyan Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071000, China.
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Sharin T, Gyasi H, Williams KL, Crump D, O'Brien JM. Effects of two Bisphenol A replacement compounds, 1,7-bis (4-hydroxyphenylthio)-3,5-dioxaheptane and Bisphenol AF, on development and mRNA expression in chicken embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112140. [PMID: 33730607 DOI: 10.1016/j.ecoenv.2021.112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Concerns about the estrogenic properties of Bisphenol A (BPA) have led to increased efforts to find BPA replacements. 1,7-bis(4-Hydroxyphenylthio)-3,5-dioxaheptane (DD-70) and 4,4'-(hexafluoroisopropylidene) diphenol (bisphenol AF, BPAF) are two potential chemical substitutes for BPA; however, toxicity data for these chemicals in avian species are limited. To determine effects on avian embryonic viability, development, and hepatic mRNA expression at two distinct developmental periods (mid-incubation [day 11] and term [day 20]), two egg injection studies were performed. Test chemicals were injected into the air cell of unincubated, fertilized chicken eggs at concentrations ranging from 0-88.2 µg/g for DD-70 and 0-114 µg/g egg for BPAF. Embryonic concentrations of DD-70 and BPAF decreased at mid-incubation and term compared to injected concentrations suggesting embryonic metabolism. Exposure to DD-70 (40.9 and 88.2 µg/g) and BPAF (114 µg/g) significantly decreased embryonic viability at mid-incubation. Exposure to DD-70 (88.2 µg/g) decreased embryo mass and increased gallbladder mass, while 114 µg/g BPAF resulted in increased gallbladder mass in term embryos. Expression of hepatic genes related to xenobiotic metabolism, lipid homeostasis, and response to estrogen were altered at both developmental stages. Given the importance of identifying suitable BPA replacements, the present study provides novel, whole animal avian toxicological data for two replacement compounds, DD-70 and BPAF. DATA AVAILABILITY: Data, associated metadata, and calculation tools are available from the corresponding author (doug.crump@canada.ca).
Collapse
Affiliation(s)
- Tasnia Sharin
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Helina Gyasi
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kim L Williams
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada.
| | - Jason M O'Brien
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
22
|
Hall JM, Korach KS. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:191-235. [PMID: 34452687 DOI: 10.1016/bs.apha.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.
Collapse
Affiliation(s)
- Julianne M Hall
- Quinnipiac University Frank H. Netter MD School of Medicine, Hamden, CT, United States.
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
23
|
Crowley-Perry M, Barberio AJ, Zeino J, Winston ER, Connaughton VP. Zebrafish Optomotor Response and Morphology Are Altered by Transient, Developmental Exposure to Bisphenol-A. J Dev Biol 2021; 9:jdb9020014. [PMID: 33918232 PMCID: PMC8167563 DOI: 10.3390/jdb9020014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Estrogen-specific endocrine disrupting compounds (EDCs) are potent modulators of neural and visual development and common environmental contaminants. Using zebrafish, we examined the long-term impact of abnormal estrogenic signaling by testing the effects of acute, early exposure to bisphenol-A (BPA), a weak estrogen agonist, on later visually guided behaviors. Zebrafish aged 24 h postfertilization (hpf), 72 hpf, and 7 days postfertilization (dpf) were exposed to 0.001 μM or 0.1 μM BPA for 24 h, and then allowed to recover for 1 or 2 weeks. Morphology and optomotor responses (OMRs) were assessed after 1 and 2 weeks of recovery for 24 hpf and 72 hpf exposure groups; 7 dpf exposure groups were additionally assessed immediately after exposure. Increased notochord length was seen in 0.001 μM exposed larvae and decreased in 0.1 μM exposed larvae across all age groups. Positive OMR was significantly increased at 1 and 2 weeks post-exposure in larvae exposed to 0.1 μM BPA when they were 72 hpf or 7 dpf, while positive OMR was increased after 2 weeks of recovery in larvae exposed to 0.001 μM BPA at 72 hpf. A time-delayed increase in eye diameter occurred in both BPA treatment groups at 72 hpf exposure; while a transient increase occurred in 7 dpf larvae exposed to 0.1 μM BPA. Overall, short-term developmental exposure to environmentally relevant BPA levels caused concentration- and age-dependent effects on zebrafish visual anatomy and function.
Collapse
Affiliation(s)
- Mikayla Crowley-Perry
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Angelo J. Barberio
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Jude Zeino
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Erica R. Winston
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Victoria P. Connaughton
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
- Correspondence: ; Tel.: +1-202-885-2188
| |
Collapse
|
24
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
25
|
Wissam Z. Levels of BPA in makdous, a traditional Syrian food, using solid-phase extraction followed by HPLC. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000419094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
27
|
Baskin L, Sinclair A, Derpinghaus A, Cao M, Li Y, Overland M, Aksel S, Cunha GR. Estrogens and development of the mouse and human external genitalia. Differentiation 2020; 118:82-106. [PMID: 33092894 DOI: 10.1016/j.diff.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023]
Abstract
The Jost hypothesis states that androgens are necessary for normal development of the male external genitalia. In this review, we explore the complementary hypothesis that estrogens can elicit abnormal development of male external genitalia. Herein, we review available data in both humans and mice on the deleterious effects of estrogen on external genitalia development, especially during the "window of susceptibility" to exogenous estrogens. The male and female developing external genitalia in both the human and mouse express ESR1 and ESR2, along with the androgen receptor (AR). Human clinical data suggests that exogenous estrogens can adversely affect normal penile and urethral development, resulting in hypospadias. Experimental mouse data also strongly supports the idea that exogenous estrogens cause penile and urethral defects. Despite key differences, estrogen-induced hypospadias in the mouse displays certain morphogenetic homologies to human hypospadias, including disruption of urethral fusion and preputial abnormalities. Timing of estrogenic exposure, or the "window of susceptibility," is an important consideration when examining malformations of the external genitalia in both humans and mice. In addition to a review of normal human and mouse external genital development, this article aims to review the present data on the role of estrogens in normal and abnormal development of the mouse and human internal and external genitalia. Based on the current literature for both species, we conclude that estrogen-dependent processes may play a role in abnormal genital development.
Collapse
Affiliation(s)
- Laurence Baskin
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA.
| | - Adriane Sinclair
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Amber Derpinghaus
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Mei Cao
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Yi Li
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Maya Overland
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Sena Aksel
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Gerald R Cunha
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| |
Collapse
|
28
|
Wu S, Huang D, Su X, Yan H, Ma A, Li L, Wu J, Sun Z. The prostaglandin synthases, COX-2 and L-PGDS, mediate prostate hyperplasia induced by low-dose bisphenol A. Sci Rep 2020; 10:13108. [PMID: 32753632 PMCID: PMC7403327 DOI: 10.1038/s41598-020-69809-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
This study aimed to identify prostaglandin synthases (PGS) that mediate bisphenol A (BPA)-induced prostatic hyperplasia and explore their underlying mechanisms. In an in vivo study, male adult Sprague–Dawley rats were treated with different concentrations of BPA (10, 30, 90, or 270 μg/kg, i.g., daily), or with vehicle for 4 weeks. Results revealed that low-dose BPA induced prostatic hyperplasia with increased PCNA/TUNEL ratio. It significantly upregulated the expression of cyclooxygenase-2 (COX-2) and NF-κB in the dorsolateral prostate (P < 0.05) and the expression of lipocalin-type prostaglandin D synthase (L-PGDS) in ventral prostate (P < 0.05). The level of estradiol (E2)/testosterone (T) and expression of androgen receptor (AR) and estrogen receptor α (ERα) were also altered. In vitro studies showed that low-dose BPA (0.1–10 nM) promoted the proliferation of human prostate fibroblasts and epithelial cells, and significantly upregulated the expression of COX-2 and L-PGDS in the cells. The two types of cell proliferation induced by BPA were inhibited by COX-2 inhibitor (NS398) and L-PGDS inhibitor (AT56), with increased apoptosis level. These findings suggested that COX-2 and L-PGDS could mediate low-dose BPA-induced prostatic hyperplasia through pathways involved in cell proliferation and apoptosis, which might be related to the functions of ERα and AR. The role of COX-2/NF-κB pathway in dorsolateral prostate requires further research.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Pharmacy School of Fudan University, Shanghai, 201203, China.,National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Dongyan Huang
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Xin Su
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Han Yan
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Aicui Ma
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Lei Li
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Jianhui Wu
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China. .,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China. .,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China.
| | - Zuyue Sun
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| |
Collapse
|
29
|
Patil JG, Norazmi-Lokman NH, Kwan TN. Reproductive viability of paradoxically masculinised Gambusia holbrooki generated following diethylstilbestrol (DES) treatment. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110468. [PMID: 32710933 DOI: 10.1016/j.cbpb.2020.110468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/01/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
Hormonal sex reversal can produce monosex fish stocks and provide insights into their gamity and reproductive physiology. However, paradoxical effects have been reported in several fish species that remain largely ignored as anomalies, particularly those of masculinisation. As a first step, this study examined reproductive viability of paradoxically masculinised Gambusia holbrooki produced following oral administration (20-100 mg/kg feed) of a feminizing hormone diethylstilbestrol (DES). Contrary to expectation, all treatment groups produced 100% male populations. Survival, mating behaviour, gamete production, breeding output as well as expression of anti-Mullerian hormone (amh), ovarian (cyp19a1a) and brain (cyp19a1b) aromatase of masculinised fish were also examined. Survival (≤ 54.1 ± 7.3%) at termination of DES treatment was significantly lower compared with controls (88.6 ± 4.3%) but remained unaffected post treatment. Gonopodium thrusting frequency (33 ± 9.8 per 10 min) was not significantly different to untreated males just as sperm abundance (3.9 ± 1.5 × 108/male) and their motility (88.6 ± 29.1%). Importantly, paradoxically masculinised fish mated with virgin females and produced clutch sizes (22 ± 4) and progeny survival (87.0 ± %) that were comparable to that of untreated males. Masculinised testes showed high amh and low cyp19a1a expression, a pattern resembling those of untreated males. Production of paradoxically sex-reversed males with a capability to produce viable offspring has not been reported previously in this or other fish species. The outcomes support a feed-back regulation of oestrogenic pathways in this viviparous fish and could be useful for ecological applications such as controlling invasive fish populations.
Collapse
Affiliation(s)
- Jawahar G Patil
- Fisheries and Aquaculture Centre, IMAS, University of Tasmania, Australia; Inland Fisheries Service Tasmania, Australia.
| | - Nor Hakim Norazmi-Lokman
- Fisheries and Aquaculture Centre, IMAS, University of Tasmania, Australia; Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, Malaysia
| | - Tzu Nin Kwan
- Fisheries and Aquaculture Centre, IMAS, University of Tasmania, Australia
| |
Collapse
|
30
|
Taylor JA, Jones MB, Besch-Williford CL, Berendzen AF, Ricke WA, vom Saal FS. Interactive Effects of Perinatal BPA or DES and Adult Testosterone and Estradiol Exposure on Adult Urethral Obstruction and Bladder, Kidney, and Prostate Pathology in Male Mice. Int J Mol Sci 2020; 21:ijms21113902. [PMID: 32486162 PMCID: PMC7313472 DOI: 10.3390/ijms21113902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Obstructive voiding disorder (OVD) occurs during aging in men and is often, but not always, associated with increased prostate size, due to benign prostatic hyperplasia (BPH), prostatitis, or prostate cancer. Estrogens are known to impact the development of both OVD and prostate diseases, either during early urogenital tract development in fetal–neonatal life or later in adulthood. To examine the potential interaction between developmental and adult estrogen exposure on the adult urogenital tract, male CD-1 mice were perinatally exposed to bisphenol A (BPA), diethylstilbestrol (DES) as a positive control, or vehicle negative control, and in adulthood were treated for 4 months with Silastic capsules containing testosterone and estradiol (T+E2) or empty capsules. Animals exposed to BPA or DES during perinatal development were more likely than negative controls to have urine flow/kidney problems and enlarged bladders, as well as enlarged prostates. OVD in adult T+E2-treated perinatal BPA and DES animals was associated with dorsal prostate hyperplasia and prostatitis. The results demonstrate a relationship between elevated exogenous estrogen levels during urogenital system development and elevated estradiol in adulthood and OVD in male mice. These findings support the two-hit hypothesis for the development of OVD and prostate diseases.
Collapse
Affiliation(s)
- Julia A. Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
| | - Maren Bell Jones
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
| | | | - Ashley F. Berendzen
- Biomolecular Imaging Center, Harry S Truman VA Hospital and University of Missouri, Columbia, MO 65211, USA;
| | - William A. Ricke
- George M. O’Brien Center of Research Excellence, Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
| | - Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
- Correspondence: ; Tel.: +1-(573)-356-9621
| |
Collapse
|
31
|
Wu S, Huang D, Su X, Yan H, Wu J, Sun Z. Oral exposure to low-dose bisphenol A induces hyperplasia of dorsolateral prostate and upregulates EGFR expression in adult Sprague-Dawley rats. Toxicol Ind Health 2020; 35:647-659. [PMID: 31771501 DOI: 10.1177/0748233719885565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate is sensitive to endocrine hormone level, and the synergetic effect of estrogen and androgen is critical in prostate growth. The change of signal pathways caused by the imbalance of estrogen and androgen might function in the occurrence of prostate diseases. As a well-known endocrine disruptor compound, bisphenol A (BPA) can disturb the normal function of endocrine hormone and affect prostate development. This study aims to investigate effects of BPA on the dorsolateral prostate (DLP) and the related gene expression of the tissue in adult Sprague-Dawley (SD) rats and to explore the mechanism for the effect of low-dose BPA on DLP hyperplasia. Three-month-old male SD rats were treated with BPA (10.0, 30.0, or 90.0 µg (kg.day)-1, gavage) or vehicle (gavage) for 4 weeks. BPA significantly increased the DLP weight, the DLP organ coefficient, and the prostate epithelium height (p < 0.01) of rats dose-dependently. Microarray analysis and quantitative real-time polymerase chain reaction showed that BPA significantly upregulated the transcriptional levels of some genes, including pituitary tumor transforming gene 1, epidermal growth factor, Sh3kbp1, and Pcna. Furthermore, the expression of PCNA (p < 0.01), androgen receptor (p < 0.01), and EGF receptor (EGFR) (p < 0.001) in DLP was increased significantly by BPA treatment, and the expression of estrogen receptor alpha was also upregulated. The findings evidenced that low-dose BPA could induce DLP hyperplasia in adult rats, and the upregulated EGF/EGFR pathway that was responsive to estrogen and androgen might play an essential role in the DLP hyperplasia induced by low-dose BPA.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Pharmacy School of Fudan University, Shanghai, China.,National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Dongyan Huang
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Xin Su
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China
| | - Han Yan
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Jianhui Wu
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Zuyue Sun
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| |
Collapse
|
32
|
Catalytic Properties of Microporous Zeolite Catalysts in Synthesis of Isosorbide from Sorbitol by Dehydration. Catalysts 2020. [DOI: 10.3390/catal10020148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As bisphenol A has been found to cause hormonal disturbances, the natural biomaterial isosorbide is emerging as a substitute. In this study, a method for isosorbide synthesis from sorbitol was proposed by dehydration under high temperature and high pressure reaction. Microporous zeolites and Amberlyst 35 solid acids with various acid strengths and pore characteristics were applied as catalysts. In the synthesis of isosorbide from sorbitol, the acidity of the catalyst was the main factor. MOR and MFI zeolite catalysts with high acid strength and small pore size showed low conversion of sorbitol and low yield of isosorbide. On the other hand, the conversion of sorbitol was high in BEA zeolite with moderate acid strength. Amberlyst 35 solid acid catalysts showed a relatively high conversion of sorbitol, but low yield of isosorbide. The Amberlyst 35 solid acid catalyst without micropores did not show any inhibitory effects on the production of by-products. However, in the BEA zeolite catalyst, which has a relatively large pore structure compared with the MOR and MFI zeolites, the formation of by-products was suppressed in the pores, thereby improving the yield of isosorbide.
Collapse
|
33
|
Uchtmann KS, Taylor JA, Timms BG, Stahlhut RW, Ricke EA, Ellersieck MR, Vom Saal FS, Ricke WA. Fetal bisphenol A and ethinylestradiol exposure alters male rat urogenital tract morphology at birth: Confirmation of prior low-dose findings in CLARITY-BPA. Reprod Toxicol 2020; 91:131-141. [PMID: 31756437 PMCID: PMC7339120 DOI: 10.1016/j.reprotox.2019.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA) is a contaminant in virtually all Americans. To examine BPA's adverse effects, the FDA-NCTR, NIEHS, and 14 groups of academic scientists formed a consortium: CLARITY-BPA. The purpose of our study was to investigate the effects of a wide range of doses of BPA on fetal development of the NCTR CD-SD male rat urogenital sinus (UGS). Pregnant rats were administered BPA or positive control ethinylestradiol (EE2) daily, via oral gavage, from gestational day 6 through parturition. Tissues were collected on postnatal day 1 and the UGS was analyzed using computer-assisted 3-D reconstruction. Importantly, only low doses of BPA, as well as EE2, significantly changed birth weight and UGS morphology, including an increased size of the colliculus and decreased size of the urethra, consistent with prior reported BPA and EE2 effects. Our findings provide further evidence that BPA mediates nonmonotonic developmental effects on the fetal urogenital sinus.
Collapse
Affiliation(s)
- Kristen S Uchtmann
- Department of Urology, University of Wisconsin, Madison, WI 53705 USA; George M. O'Brien Center of Research Excellence, University of Wisconsin, Madison, WI 53705 USA
| | - Julia A Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Barry G Timms
- Division of Basic Biological Sciences, University of South Dakota, Vermillion, SD 57069 USA
| | - Richard W Stahlhut
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Emily A Ricke
- Department of Urology, University of Wisconsin, Madison, WI 53705 USA; George M. O'Brien Center of Research Excellence, University of Wisconsin, Madison, WI 53705 USA
| | - Mark R Ellersieck
- Department of Statistics, University of Missouri, Columbia, MO 65211 USA
| | | | - William A Ricke
- Department of Urology, University of Wisconsin, Madison, WI 53705 USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705 USA; Molecular & Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705 USA; George M. O'Brien Center of Research Excellence, University of Wisconsin, Madison, WI 53705 USA.
| |
Collapse
|
34
|
Mahamuni D, Shrinithivihahshini N. Inferring Bisphenol-A influences on estrogen-mediated signalling in estrogen and androgen receptors: an in silico approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Bhandari RK, Taylor JA, Sommerfeld-Sager J, Tillitt DE, Ricke WA, vom Saal FS. Estrogen receptor 1 expression and methylation of Esr1 promoter in mouse fetal prostate mesenchymal cells induced by gestational exposure to bisphenol A or ethinylestradiol. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz012. [PMID: 31463084 PMCID: PMC6705189 DOI: 10.1093/eep/dvz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 05/02/2023]
Abstract
Fetal/neonatal environmental estrogen exposures alter developmental programing of the prostate gland causing onset of diseases later in life. We have previously shown in vitro that exposures to 17β-estradiol (E2) and the endocrine disrupting chemical bisphenol A, at concentrations relevant to human exposure, cause an elevation of estrogen receptor α (Esr1) mRNA in primary cultures of fetal mouse prostate mesenchymal cells; a similar result was observed in the fetal rat urogenital sinus. Effects of these chemicals on prostate mesenchyme in vivo are not well understood. Here we show effects in mice of fetal exposure to the estrogenic drug in mixed oral contraceptives, 17α-ethinylestradiol (EE2), at a concentration of EE2 encountered by human embryos/fetuses whose mothers become pregnant while on EE2-containing oral contraceptives, or bisphenol A at a concentration relevant to exposures observed in human fetuses in vivo. Expression of Esr1 was elevated by bisphenol A or EE2 exposures, which decreased the global expression of DNA methyltransferase 3A (Dnmt3a), while methylation of Esr1 promoter was significantly increased. These results show that exposures to the environmental estrogen bisphenol A and drug EE2 cause transcriptional and epigenetic alterations to expression of estrogen receptors in developing prostate mesenchyme in vivo.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- United States Geological Survey Columbia Environmental Research Center, Columbia, MO, USA
- Correspondence address. Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA. Tel: +1-336-256-0493; Fax: +1-336-334-5839; E-mail:
| | - Julia A Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | | - Donald E Tillitt
- United States Geological Survey Columbia Environmental Research Center, Columbia, MO, USA
| | - William A Ricke
- Department of Urology, Molecular Environmental Toxicology Program, George M. O’Brien Center of Research Excellence, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
36
|
Birla H, Keswani C, Rai SN, Singh SS, Zahra W, Dilnashin H, Rathore AS, Singh SP. Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:9. [PMID: 31064381 PMCID: PMC6503545 DOI: 10.1186/s12993-019-0160-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a major endocrine disruptor and a xenobiotic compound is used abundantly in the production of polycarbonate plastics and epoxy resins. Human exposure to this compound is primarily via its leaching from the protective internal epoxy resin coatings of containers into the food and beverages. In addition, the plastics used in dental prostheses and sealants also contain considerable amount of BPA and have a high risk of human exposure. Since it is a well-known endocrine disruptor and closely mimics the molecular structure of human estrogen thereby impairing learning and memory. Withania somnifera (Ws), commonly known as Ashwagandha is known for its varied therapeutic uses in Ayurvedic system of medicine. The present study was undertaken to demonstrate the impairment induced by BPA on the spatial learning, working memory and its alleviation by Ws in Swiss albino mice. The study was conducted on thirty Swiss albino mice, randomly distributed among three groups: control, BPA and BPA + Ws. The behavioral recovery after treatment with Ws was investigated using the Y-maize and Morris water maize test. Whereas, for the estimation of recovery of NMDA receptor which is related to learning and memory in hippocampus region by western blot and immunohistochemistry. Furthermore, the oxidative stress and antioxidant level was assessed by biochemical tests like MDA, SOD and catalase. RESULTS The study revealed that administration of Ws alleviated the behavioral deficits induced by BPA. Alongside, Ws treatment reinstated the number of NMDA receptors in hippocampus region and showed anti-oxidative property while ameliorating the endogenous anti-oxidant level in the brain. CONCLUSION These findings suggest that Ws significantly ameliorates the level of BPA intoxicated oxidative stress thereby potentially treating cognitive dysfunction which acts as the primary symptom in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
37
|
Hirao-Suzuki M, Takeda S, Okuda K, Takiguchi M, Yoshihara S. Repeated Exposure to 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an Active Metabolite of Bisphenol A, Aggressively Stimulates Breast Cancer Cell Growth in an Estrogen Receptor β (ER β)-Dependent Manner. Mol Pharmacol 2019; 95:260-268. [PMID: 30552153 DOI: 10.1124/mol.118.114124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA), recognized as an endocrine disruptor, is thought to exert its activity through a mechanism involving the activation of estrogen receptors (ERs) α/β However, a major problem is that very high concentrations of BPA are required (i.e., those in excess of environmental levels) for effective activation of ERα/β-mediated transcriptional activities in vitro, despite the BPA-induced estrogenic effects observed in vivo. To elucidate the causal reasons, we successfully identified a BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which exhibits highly potent estrogenic activity both in vivo and in vitro. We have focused on the biologic relationship between breast tumor promotion and MBP/BPA, because BPA is considered to be a human carcinogen owing to its breast tumor-promoting properties. In general, humans are exposed to many endocrine disruptors, including BPA. In the present study, we used the ERα/β-positive human breast cancer cell line MCF-7 as an experimental model to investigate the effects of repeated exposure to BPA/MBP at concentrations found in the environment on the expression of ERα/β and to determine the particular ER subtype involved. We demonstrated that repeated exposure to MBP, but not to BPA, significantly downregulated ERα protein expression and stimulated the proliferation of MCF-7 cells through the activation of ERβ-mediated signaling.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| | - Katsuhiro Okuda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| | - Shin'ichi Yoshihara
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| |
Collapse
|
38
|
Hafezi SA, Abdel-Rahman WM. The Endocrine Disruptor Bisphenol A (BPA) Exerts a Wide Range of Effects in Carcinogenesis and Response to Therapy. Curr Mol Pharmacol 2019; 12:230-238. [PMID: 30848227 PMCID: PMC6864600 DOI: 10.2174/1874467212666190306164507] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a synthetic plasticizer that is commonly used in the production of polycarbonate plastics and epoxy resins. Human exposure occurs when BPA migrates from food and beverage containers into the contents when heated or even under normal conditions of use. BPA exerts endocrine disruptor action due to its weak binding affinity for the estrogen receptors ERα and ERβ. BPA exerts other effects by activating the membrane receptor GPER (GPR30) and/or other receptors such as the estrogen-related receptors (ERRs). OBJECTIVE This review summarizes emerging data on BPA and cancer. These include data linking exposure to BPA with an increased risk of hormone-related cancers such as those of the ovary, breast, prostate, and even colon cancer. BPA can also induce resistance to various chemotherapeutics such as doxorubicin, cisplatin, and vinblastine in vitro. The development of chemoresistance to available therapeutics is an emerging significant aspect of BPA toxicity because it worsens the prognosis of many tumors. CONCLUSION Recent findings support a causal role of BPA at low levels in the development of cancers and in dictating their response to cytotoxic therapy. Accurate knowledge and consideration of these issues would be highly beneficial to cancer prevention and management.
Collapse
Affiliation(s)
| | - Wael M. Abdel-Rahman
- Address correspondence to this author at the Department of Medical Laboratory Sciences, College of Health Sciences and SIMR, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Tel: +97165057556;
Fax: +97165057515; E-mail:
| |
Collapse
|
39
|
Martínez R, Esteve-Codina A, Herrero-Nogareda L, Ortiz-Villanueva E, Barata C, Tauler R, Raldúa D, Piña B, Navarro-Martín L. Dose-dependent transcriptomic responses of zebrafish eleutheroembryos to Bisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:988-997. [PMID: 30248606 DOI: 10.1016/j.envpol.2018.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Despite the abundant literature on the adverse effects of Bisphenol A (BPA) as endocrine disruptor, its toxicity mechanisms are still poorly understood. We present here a study of its effects on the zebrafish eleutheroembryo transcriptome at concentrations ranging from 0.1 to 4 mg L-1, this latter representing the lowest observed effect concentration (LOEC) found in our study at three different macroscopical endpoints (survival, hatching and swim bladder inflation). Multivariate data analysis methods identified both monotonic and bi-phasic patterns of dose-dependent responses. Functional analyses of genes affected by BPA exposure suggest an interaction of BPA with different signaling pathways, being the estrogenic and retinoid receptors two likely targets. In addition, we identified an apparently unrelated inhibitory effect on, among others, visual function genes. We interpret our data as the result of a sum of underlying, independent molecular mechanisms occurring simultaneously at the exposed animals, well below the macroscopic LOEC, but related to at least some of the observed morphological alterations, particularly in eye size and yolk sac resorption. Our data supports the idea that the physiological effects of BPA cannot be only explained by its rather weak interaction with the estrogen receptor, and that multivariate analyses are required to analyze the effects of toxicants like BPA, which interact with different cellular targets producing complex phenotypes.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya, 08007, Spain.
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalunya, 08003, Spain.
| | - Laia Herrero-Nogareda
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Elena Ortiz-Villanueva
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Romà Tauler
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
40
|
Speidel JT, Xu M, Abdel-Rahman SZ. Bisphenol A (BPA) and bisphenol S (BPS) alter the promoter activity of the ABCB1 gene encoding P-glycoprotein in the human placenta in a haplotype-dependent manner. Toxicol Appl Pharmacol 2018; 359:47-54. [PMID: 30240697 PMCID: PMC6196727 DOI: 10.1016/j.taap.2018.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Exposure to bisphenols (BPA and BPS) during pregnancy can significantly affect fetal development and increase risk of adverse health consequences, however the underlying mechanisms are not fully elucidated. In human placenta, the efflux transporter P-glycoprotein (P-gp), encoded by the ABCB1 gene, extrudes its substrates from the trophoblasts back into the maternal circulation. Alterations in levels of placental P-gp could therefore significantly affect fetal exposure to xenobiotics that are P-gp substrates. The ABCB1 promoter contains many single nucleotide polymorphisms (SNPs). In the genome, SNPs are not arrayed as independent variants but as combinations forming defined haplotypes. Recently, we determined the haplotype sequences encompassing the ABCB1 promoter SNPs and found that promoter haplotypes differentially affect ABCB1 promoter activity. Here we investigate the effect of BPA and BPS on ABCB1 promoter activity by testing the hypothesis that BPA and BPS exposure affect ABCB1 promoter activity in a haplotype-dependent manner. Our data indicate that acute exposure to 50 nM BPA induced a significant haplotype-dependent increase in ABCB1 promoter activity (P < .05). However, acute exposure to 0.5 nM BPS induced a significant decrease (P < .05) in promoter activity that was haplotype-dependent. Chronic exposure to BPA and BPS individually (5 nM and 0.3 nM, respectively) or as a mixture (5 nM BPA:1.5 nM BPS) induced significant haplotype-dependent increases (P < .01) in ABCB1 promoter activity. Our data indicate that BPA and BPS significantly alter ABCB1 promoter activity in a haplotype- and exposure type- dependent manners. Such alteration could significantly impact placental P-gp levels and alter fetal exposure to many therapeutic and environmental xenobiotics.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/drug effects
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adult
- Benzhydryl Compounds/toxicity
- Cell Line
- Endocrine Disruptors/toxicity
- Female
- Fetal Development
- Gene Expression Regulation/drug effects
- Haplotypes
- Humans
- Phenols/pharmacology
- Phenols/toxicity
- Placenta/drug effects
- Placenta/metabolism
- Polymorphism, Single Nucleotide
- Pregnancy
- Promoter Regions, Genetic/drug effects
- Sulfones/pharmacology
Collapse
Affiliation(s)
- Jordan T Speidel
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Obstetrics and Gynecology, Maternal-fetal Pharmacology and Biodevelopment Laboratories, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Meixiang Xu
- Department of Obstetrics and Gynecology, Maternal-fetal Pharmacology and Biodevelopment Laboratories, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, Maternal-fetal Pharmacology and Biodevelopment Laboratories, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
41
|
da Silva MM, Xavier LLF, Gonçalves CFL, Santos-Silva AP, Paiva-Melo FD, de Freitas ML, Fortunato RS, Miranda-Alves L, Ferreira ACF. Bisphenol A increases hydrogen peroxide generation by thyrocytes both in vivo and in vitro. Endocr Connect 2018; 7:1196-1207. [PMID: 30352396 PMCID: PMC6215800 DOI: 10.1530/ec-18-0348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H2O2 generation remains elusive. H2O2 is a reactive oxygen species (ROS), which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both in vivo and in vitro on H2O2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H2O2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10-9 M BPA and evaluated Nis and Duox mRNA levels, besides H2O2 generation. Similar to that found in vivo, BPA treatment also led to increased H2O2 generation in PCCL3. Nis mRNA levels were reduced and Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to N-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.
Collapse
Affiliation(s)
- Maurício Martins da Silva
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Lueni Lopes Felix Xavier
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carlos Frederico Lima Gonçalves
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Santos-Silva
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- NUMPEXCampus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Francisca Diana Paiva-Melo
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mariana Lopes de Freitas
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo Soares Fortunato
- Laboratory of Molecular RadiobiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leandro Miranda-Alves
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea Claudia Freitas Ferreira
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- NUMPEXCampus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
42
|
Müller SG, Jardim NS, Quines CB, Nogueira CW. Diphenyl diselenide regulates Nrf2/Keap-1 signaling pathway and counteracts hepatic oxidative stress induced by bisphenol A in male mice. ENVIRONMENTAL RESEARCH 2018; 164:280-287. [PMID: 29554619 DOI: 10.1016/j.envres.2018.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) is a chemical toxicant that has deleterious effects on human. BPA causes oxidative stress in tissues, including the liver. Diphenyl diselenide (PhSe)2 improves the antioxidant response via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein (keap 1) pathway in macrophage cells. In the present study, we investigated whether (PhSe)2 counteracts hepatic oxidative stress induced by BPA in male and female Swiss mice. Three-week-old mice received by the intragastric (i.g.) route BPA (5 mg/kg) from 21st to 60th postnatal day (PND). At PND 61, the mice were treated with (PhSe)2 (1 mg/kg, i.g.) for seven days. Parameters of hepatic damage and oxidative stress were determined in male and female mice. The results show that BPA increased the activity of aspartate aminotransferase in female mice, and in male mice the activity of alanine aminotranseferase was increased. Male and female mice had an increase in fat mass accumulation. Male mice showed an increase in hepatic oxidative damage of proteins and a decrease in non-enzymatic (ascorbic acid and non-protein thiol) and enzymatic (superoxide dismutase) defenses, which are consistent with oxidative stress status. Male mice were more susceptible than female mice to hepatic oxidative stress induced by BPA. BPA decreased Nrf2/Keap1 protein content in male mice. (PhSe)2 reduced hepatic oxidative stress induced by BPA in male mice. Our results demonstrate that male mice were more susceptible to hepatic oxidative stress induced by BPA than female mice. (PhSe)2 regulated Nrf2/Keap-1 signaling pathway and countered hepatic oxidative stress induced by BPA in male mice.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Natália S Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
43
|
Nemati M, Nofozi S, Ahmadi S, Monajjemzadeh F. Quality Control of the Migration of Bisphenol a from Plastic Packaging into Iranian Brands of Food Grade Oils. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
44
|
Cord Blood Bisphenol A Levels and Reproductive and Thyroid Hormone Levels of Neonates: The Hokkaido Study on Environment and Children's Health. Epidemiology 2018; 28 Suppl 1:S3-S9. [PMID: 29028670 DOI: 10.1097/ede.0000000000000716] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is widely used and BPA exposure is nearly ubiquitous in developed countries. While animal studies have indicated adverse health effects of prenatal BPA exposure including reproductive dysfunction and thyroid function disruption possibly in a sex-specific manner, findings from epidemiologic studies have not been enough to prove these adverse effects. Given very limited research on human, the aim of this study was to investigate associations between cord blood BPA levels and reproductive and thyroid hormone levels of neonates and whether associations differed by neonate sex. METHODS The study population included 514 participants of the Hokkaido study recruited from 2002 to 2005 at one hospital in Sapporo, Japan. The BPA level in cord blood was determined by ID-LC/MS/MS, and the limit of quantification was 0.040 ng/ml. We measured nine types of reproductive hormone levels in cord blood, and thyroid hormone levels were obtained from neonate mass screening test data. There were 283 subjects, who had both BPA and hormone levels measurements, included for the final analyses. RESULTS The geometric mean of cord blood BPA was 0.051 ng/ml. After adjustment, BPA level was negatively associated with prolactin (PRL) (β = -0.38). There was an interaction between infant sex and BPA levels on PRL; a weak negative association was found in boys (β = -0.12), whereas a weak positive association was found in girls (β = 0.14). BPA level showed weak positive association with testosterone, estradiol, and progesterone levels in boys. No association was found between BPA and thyroid hormone levels. CONCLUSIONS Our findings suggested that fetal BPA levels might be associated with changes in certain reproductive hormone levels of neonates in a sex-specific manner, though further investigations are necessary.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Global industrialization has increased population exposure to environmental toxins. A global decline in sperm quality over the last few decades raises questions about the adverse impact of environmental toxins on male reproductive health. RECENT FINDINGS Multiple animal- and human-based studies on exposure to environmental toxins suggest a negative impact on semen quality, in terms of sperm concentration, motility, and/or morphology. These toxins may exert estrogenic and/or anti-androgenic effects, which in turn alter the hypothalamic-pituitary-gonadal axis (HPGA), induce sperm DNA damage, or cause sperm epigenetic changes. This chapter will discuss the most recent literature about the most common environmental toxins and their impact on spermatogenesis and its consequences on male fertility. Understanding the presence and underlying mechanism of these toxins will help us preserve the integrity of the male reproduction system and formulate better regulations against their indiscriminate use.
Collapse
Affiliation(s)
- Mahmoud Mima
- University of Illinois at Chicago, 820 S. Wood St., Suite 515 CSN, Chicago, IL, 60612, USA
| | - David Greenwald
- University of Illinois at Chicago, 820 S. Wood St., Suite 515 CSN, Chicago, IL, 60612, USA
| | - Samuel Ohlander
- University of Illinois at Chicago, 820 S. Wood St., Suite 515 CSN, Chicago, IL, 60612, USA.
| |
Collapse
|
46
|
MacKay H, Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm Behav 2018; 101:59-67. [PMID: 29104009 DOI: 10.1016/j.yhbeh.2017.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
Bisphenol-A (BPA) is a well-known endocrine disrupting compound (EDC), capable of affecting the normal function and development of the reproductive system, brain, adipose tissue, and more. In spite of these diverse and well characterized effects, there is often comparatively little known about the molecular mechanisms which bring them about. BPA has traditionally been regarded as a primarily estrogenic EDC, and this perspective is often what guides research into the effects of BPA. However, emerging data from in-vitro and in-silico models show that BPA binds with a significant number of hormone receptors, including a number of nuclear and membrane-bound estrogen receptors, androgen receptors, as well as the thyroid hormone receptor, glucocorticoid receptor, and PPARγ. With this increased diversity of receptor targets, it may be possible to explain some of the more puzzling aspects of BPA pharmacology, including its non-monotonic dose-response curve, as well as experimental results which disagree with estrogenic positive controls. This paper reviews the receptors for which BPA has a known interaction, and discusses the implications of taking these receptors into account when studying the disruptive effects of BPA on growth and development.
Collapse
Affiliation(s)
- Harry MacKay
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Childrens Nutrition Research Center, Houston, TX, USA.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
47
|
Gonçalves GD, Semprebon SC, Biazi BI, Mantovani MS, Fernandes GSA. Bisphenol A reduces testosterone production in TM3 Leydig cells independently of its effects on cell death and mitochondrial membrane potential. Reprod Toxicol 2018; 76:26-34. [DOI: 10.1016/j.reprotox.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022]
|
48
|
Huang DY, Zheng CC, Pan Q, Wu SS, Su X, Li L, Wu JH, Sun ZY. Oral exposure of low-dose bisphenol A promotes proliferation of dorsolateral prostate and induces epithelial-mesenchymal transition in aged rats. Sci Rep 2018; 8:490. [PMID: 29323181 PMCID: PMC5764998 DOI: 10.1038/s41598-017-18869-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor compound reported to have prostate toxicity. This study aimed to assess the effect of BPA on the proliferation of dorsolateral prostate (DLP) and the expression of epithelial-mesenchymal transition (EMT)-related genes in aged rats. Male aged SD rats were treated with BPA (10.0, 30.0, and 90.0 µg/kg i.g., daily) or vehicle (i.g., daily) for 3 months. Treatment with BPA resulted in increased the expression of PCNA, DLP weight and DLP epithelial height compared with the control group (P < 0.01); such effects were more obvious at higher BPA doses. 90 µg/kg BPA significantly increased the estrogen to androgen ratio (P < 0.05). The EMT chip showed the BPA induced upregulation of vimentin, Snail, Twist1, and transforming growth factor beta 1, as well as the downregulation of E-cadherin in the DLP. Immunohistochemical data showed that the expression of vimentin, estrogen receptor subtypes, and androgen receptor increased and the expression of E-cadherin decreased in 30 and 90 µg/kg BPA groups. It was concluded that environmental exposure to low doses of BPA might promote the proliferation of DLP in aged rats by increasing the estrogen to androgen ratio and inducing EMT.
Collapse
Affiliation(s)
- Dong-Yan Huang
- National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
- Reproductive and developmental research institute of Fudan university, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Cheng-Cheng Zheng
- National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
- Fudan University, Shanghai, 200433, China
| | - Qi Pan
- National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
- Reproductive and developmental research institute of Fudan university, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Shuang-Shuang Wu
- National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
- Fudan University, Shanghai, 200433, China
| | - Xin Su
- National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
- Reproductive and developmental research institute of Fudan university, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Lei Li
- National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
- Reproductive and developmental research institute of Fudan university, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Jian-Hui Wu
- National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.
- Reproductive and developmental research institute of Fudan university, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.
| | - Zu-Yue Sun
- National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
- Reproductive and developmental research institute of Fudan university, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| |
Collapse
|
49
|
Martinez-Pinto J, Piquer B, Tiszavari M, Lara H. Neonatal exposure to estradiol valerate reprograms the rat ovary androgen receptor and anti-Müllerian hormone to a polycystic ovary phenotype. Reprod Toxicol 2018; 75:127-135. [DOI: 10.1016/j.reprotox.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 01/29/2023]
|
50
|
Maternal methyl donor supplementation during gestation counteracts bisphenol A–induced oxidative stress in sows and offspring. Nutrition 2018; 45:76-84. [DOI: 10.1016/j.nut.2017.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/28/2017] [Accepted: 03/30/2017] [Indexed: 01/14/2023]
|