1
|
Goh SG, Radu S, Haryani Y, Epeng L, Nor-Khaizura MAR, Abdul-Mutalib NA, Hasan H. High prevalence of antibiotic-resistant Escherichia coli harbouring extended-spectrum beta-lactamase (ESBL) in raw chicken meat sold at retail in Klang Valley, Malaysia. FEMS Microbiol Lett 2025; 372:fnaf039. [PMID: 40199743 DOI: 10.1093/femsle/fnaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025] Open
Abstract
Chicken is the most widely consumed meat in Malaysia as it is abundant, provides good nutrient and taste, and available at an affordable price. However, it is known to harbour various foodborne pathogens including faecal microorganism, Escherichia coli. There are various routes and factors that can cause contamination of E. coli in chicken. Furthermore, numerous reports have shown that over the past decades, the trends of antimicrobial resistance among foodborne pathogens have been increasing rapidly. Therefore, the present work aimed to assess the prevalence of E. coli contamination by examining various contributing factors and its antibiotic resistance in raw chicken meat sold in Klang Valley, Malaysia. Results showed that 74% of the samples were contaminated with E. coli with wet markets showing higher prevalence (17%) of E. coli than in hypermarkets. Univariate analysis within the same risk factor showed that packaging process, storage temperature, and antibiotics had significant effects on the prevalence of E. coli (∼ 6.097 log CFU/g). The E. coli loads were significantly influenced by market type and storage temperature as validated by Mann-Whitney tests. All E. coli isolates displayed multiple antibiotic resistance (MAR) index ranging from 0.33 to 1.00, and 35 E. coli isolates showed the highest MAR index (1.00), being resistant to 12 antibiotics. Furthermore, 90% of E. coli isolates contained extended-spectrum beta-lactamase genotypes that can subvert potent antibiotic, beta-lactam. The findings from the present work would help reduce the risk of foodborne illnesses by identifying the risk factors associated with E. coli prevalence in chicken and provide the basis to revise guidelines on antibiotic use in livestock to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Sur Guat Goh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yuli Haryani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau, Indonesia
| | - Lee Epeng
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Azira Abdul-Mutalib
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Islam MA, Bose P, Rahman MZ, Muktaruzzaman M, Sultana P, Ahamed T, Khatun MM. A review of antimicrobial usage practice in livestock and poultry production and its consequences on human and animal health. J Adv Vet Anim Res 2024; 11:675-685. [PMID: 39605760 PMCID: PMC11590583 DOI: 10.5455/javar.2024.k817] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/27/2024] [Accepted: 06/02/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobials are employed in the control of contagious illnesses in humans and animals and are also utilized as growth enhancers in livestock and poultry. Improper application of antibiotics results in the development of multi-drug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), colistin-resistant, extended-spectrum beta-lactamase (ESBL)-producing E. coli, and fluoroquinolone-resistant Salmonella. Transmission of MDR bacteria happens among animals, from human to animal, and vice versa, resulting in treatment failure, increased treatment cost, and high morality. In this article, we analyzed the recent publications of the current antimicrobial application practices in livestock and poultry farms and the development of antimicrobial resistant (AMR) bacteria in livestock and poultry and its adverse effects on human and animal health using PubMed, Google Scholar, and Google. Citations from published articles were also analyzed. Several drug-resistant bacteria, including MRSA, VRSA, colistin-resistant strains, ESBL-producing E. coli, and fluoroquinolone-resistant Salmonella, have emerged due to heavy antibiotic application in cattle and poultry, according to the analysis. Transmission happens between people and animals as well as throughout the production chain, which raises the chance of failure of antibiotic therapy and fatality. To stop the proliferation of drug-resistant bacteria, it is important to ensure the proper use of antibiotics in livestock and poultry. Especially in developing nations, strict control and implementation of antimicrobial rules are necessary. To successfully address antimicrobial resistance and lessen dependency on antibiotics, alternative disease management strategies in livestock and poultry must be developed.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Palash Bose
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Zaminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Muhammad Muktaruzzaman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Papia Sultana
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanvir Ahamed
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst Minara Khatun
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
3
|
Pereira A, Sidjabat HE, Davis S, Vong da Silva PG, Alves A, Dos Santos C, Jong JBDC, da Conceição F, Felipe NDJ, Ximenes A, Nunes J, Fária IDR, Lopes I, Barnes TS, McKenzie J, Oakley T, Francis JR, Yan J, Ting S. Prevalence of Antimicrobial Resistance in Escherichia coli and Salmonella Species Isolates from Chickens in Live Bird Markets and Boot Swabs from Layer Farms in Timor-Leste. Antibiotics (Basel) 2024; 13:120. [PMID: 38391506 PMCID: PMC10885974 DOI: 10.3390/antibiotics13020120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid emergence of antimicrobial resistance is a global concern, and high levels of resistance have been detected in chicken populations worldwide. The purpose of this study was to determine the prevalence of antimicrobial resistance in Escherichia coli and Salmonella spp. isolated from healthy chickens in Timor-Leste. Through a cross-sectional study, cloacal swabs and boot swabs were collected from 25 live bird markets and two layer farms respectively. E. coli and Salmonella spp. from these samples were tested for susceptibility to six antimicrobials using a disk diffusion test, and a subset was tested for susceptibility to 27 antimicrobials using broth-based microdilution. E. coli and Salmonella spp. isolates showed the highest resistance towards either tetracycline or ampicillin on the disk diffusion test. E. coli from layer farms (odds ratio:5.2; 95%CI 2.0-13.1) and broilers (odds ratio:18.1; 95%CI 5.3-61.2) were more likely to be multi-drug resistant than those from local chickens. Based on the broth-based microdilution test, resistance to antimicrobials in the Timor-Leste Antimicrobial Guidelines for humans were low, except for resistance to ciprofloxacin in Salmonella spp. (47.1%). Colistin resistance in E. coli was 6.6%. Although this study shows that antimicrobial resistance in chickens was generally low in Timor-Leste, there should be ongoing monitoring in commercial chickens as industry growth might be accompanied with increased antimicrobial use.
Collapse
Affiliation(s)
- Abrao Pereira
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Hanna E Sidjabat
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Steven Davis
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Paulo Gabriel Vong da Silva
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Amalia Alves
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Cristibela Dos Santos
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Joanita Bendita da Costa Jong
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Felisiano da Conceição
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Natalino de Jesus Felipe
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Augusta Ximenes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Junilia Nunes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Isménia do Rosário Fária
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Isabel Lopes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | | | - Joanna McKenzie
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Tessa Oakley
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Joshua R Francis
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Jennifer Yan
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Shawn Ting
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| |
Collapse
|
4
|
Yamaguchi T, Yokota M, Jinnai M, Minh DTN, Hoang ON, Le Thi H, Thanh PN, Hoang Hoai P, Nguyen Do P, Van CD, Motooka D, Nakamura S, Kawahara R, Kumeda Y, Hase A, Nakayama T. Detection of chromosome-mediated bla NDM-1-carrying Aeromonas spp. in the intestinal contents of fresh water river fish in Ho Chi Minh City, Vietnam. MARINE POLLUTION BULLETIN 2024; 198:115812. [PMID: 38043208 DOI: 10.1016/j.marpolbul.2023.115812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
The spread of antibiotic-resistant bacteria is a global problem that should be addressed through the perspective of the "one health" concept. The purpose of this study was to determine the contamination rate of antibiotic-resistant Aeromonas spp. in fresh water river fish purchased from a fish market in Vietnam. We then defined the pattern of antibiotic resistance to assess antibiotic-resistant contamination. Antibiotic-resistant Aeromonas spp. were detected in the intestinal contents of 32 of 80 fish. blaNDM-1 was detected in seven strains. Extended-spectrum β-lactamase and AmpC β-lactamase-related genes were detected in 28 strains, including blaCTX-M-55, blaCTX-M-15, blaCTX-M-1, and blaDHA,blaFOX, and blaMOX. The blaNDM-1 detected in the seven Aeromonas spp. strains were found chromosomally. This finding suggests that the blaNDM gene is stable in the natural environment and may spread widely into animals and humans via Aeromonas spp. with a transposon. Our results suggest the importance of continuing to monitor carbapenemase genes in Aeromonas spp. to evaluate the possibility that they may spread in other Enterobacterales, and to elucidate the mechanism of spread.
Collapse
Affiliation(s)
| | - Masaharu Yokota
- Division of Microbiology Osaka Institute of Public Health, Osaka, Japan
| | - Michio Jinnai
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | - Hien Le Thi
- Institute of Public Health, Ho Chi Minh City, Viet Nam
| | | | | | | | | | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryuji Kawahara
- Division of Microbiology Osaka Institute of Public Health, Osaka, Japan
| | | | | | - Tatsuya Nakayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
5
|
Malik H, Singh R, Kaur S, Dhaka P, Bedi JS, Gill JPS, Gongal G. Review of antibiotic use and resistance in food animal production in WHO South-East Asia Region. J Infect Public Health 2023; 16 Suppl 1:172-182. [PMID: 37977981 DOI: 10.1016/j.jiph.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance is an emerging global threat to public health. The resistant bacteria in food animals can be transferred to humans through the food chain. Limited information on antimicrobial usage and resistance in food animals is available in Southeast Asia due to inadequate monitoring or surveillance systems. A literature review was conducted on antimicrobial use and resistance in food animal production in Southeast Asia for the period 2011-2020, to assess the scope and extent of antibiotic use and resistance. The countries included in the study were Bangladesh, Bhutan, Democratic People's Republic of Korea, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, Thailand and Timor-Leste. The information was categorised by country, production type and findings regarding antibiotic use and resistance. A total of 108 publications were included in the review. Results showed widespread use of critically and highly important antibiotics in livestock, poultry and aquacultured fish and their products. To curb the growing threat of antibiotic resistance, Southeast Asian countries need to strengthen surveillance and regulatory controls of antimicrobial use in food animal production through "One Health" approach.
Collapse
Affiliation(s)
- Hina Malik
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Randhir Singh
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Simranpreet Kaur
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Pankaj Dhaka
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasbir Singh Bedi
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - J P S Gill
- Directorate of Research, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Gyanendra Gongal
- World Health Organization, Regional Office for South-East Asia, New Delhi 110002, India.
| |
Collapse
|
6
|
Hibbard R, Chapot L, Yusuf H, Ariyanto KB, Maulana KY, Febriyani W, Cameron A, Vergne T, Faverjon C, Paul MC. "It's a habit. They've been doing it for decades and they feel good and safe.": A qualitative study of barriers and opportunities to changing antimicrobial use in the Indonesian poultry sector. PLoS One 2023; 18:e0291556. [PMID: 37747889 PMCID: PMC10519599 DOI: 10.1371/journal.pone.0291556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Interventions to change antimicrobial use (AMU) practices can help mitigate the risk of antimicrobial resistance (AMR) development. However, changing AMU practices can be challenging due to the complex nature of the factors influencing AMU-related behaviours. This study used a qualitative approach to explore the factors that influenced decision-making on AMU by farmers and other actors in the Indonesian poultry sector. Thirty-five semi-structured interviews were conducted with farmers, technical services staff from the private sector, and representatives of associations, universities, and international organisations in Central Java, West Java, and East Java. Thematic analysis identified three patterns of influence on AMU: how farmers used information to make AMU-related decisions, the importance of farmers' social and advisory networks, and the motivations driving changes in AMU behaviours. Key barriers identified included a lack of shared understanding around when to use antibiotics, financial pressures in the poultry sector, and a lack of engagement with government veterinary services. Potential opportunities identified included high farmer awareness of AMU, identification of private sector actors and peer networks as the stakeholders with established relationships of trust with farmers, and the importance of farmers' conceptions of good farming practices, which could be engaged with to improve AMU practices.
Collapse
Affiliation(s)
- Rebecca Hibbard
- Ausvet Europe, Lyon, France
- INRAE, IHAP, ENVT, Université de Toulouse, Toulouse, France
| | - Lorraine Chapot
- Ausvet Europe, Lyon, France
- INRAE, IHAP, ENVT, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gunjan, Vidic J, Manzano M, Raj VS, Pandey RP, Chang CM. Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in Italy and Thailand. One Health 2023; 16:100477. [PMID: 36593979 PMCID: PMC9803827 DOI: 10.1016/j.onehlt.2022.100477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was β-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.
Collapse
Affiliation(s)
- Gunjan
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Marisa Manzano
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, Taoyuan City 33302, Taiwan, ROC
| |
Collapse
|
8
|
Ha HTA, Nguyen PTL, Hung TTM, Tuan LA, Thuy BT, Lien THM, Thai PD, Thanh NH, Bich VTN, Anh TH, Hanh NTH, Minh NT, Thanh DP, Mai SNT, The HC, Trung NV, Thu NH, Duong TN, Anh DD, Ngoc PT, Bañuls AL, Choisy M, van Doorn HR, Suzuki M, Hoang TH. Prevalence and Associated Factors of optrA-Positive- Enterococcus faecalis in Different Reservoirs around Farms in Vietnam. Antibiotics (Basel) 2023; 12:954. [PMID: 37370273 PMCID: PMC10294904 DOI: 10.3390/antibiotics12060954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Linezolid is an antibiotic of last resort for the treatment of infections caused by Gram-positive bacteria, including vancomycin-resistant enterococci. Enterococcus faecalis, a member of enterococci, is a significant pathogen in nosocomial infections. E. faecalis resistance to linezolid is frequently related to the presence of optrA, which is often co-carried with fex, phenicol exporter genes, and erm genes encoding macrolide resistance. Therefore, the common use of antibiotics in veterinary might promote the occurrence of optrA in livestock settings. This is a cross-sectional study aiming to investigate the prevalence of optrA positive E. faecalis (OPEfs) in 6 reservoirs in farms in Ha Nam province, Vietnam, and its associated factors and to explore genetic relationships of OPEfs isolates. Among 639 collected samples, the prevalence of OPEfs was highest in flies, 46.8% (51/109), followed by chickens 37.3% (72/193), dogs 33.3% (17/51), humans 18.7% (26/139), wastewater 16.4% (11/67) and pigs 11.3%, (14/80). The total feeding area and total livestock unit of the farm were associated with the presence of OPEfs in chickens, flies, and wastewater. Among 186 OPEfs strains, 86% were resistant to linezolid. The presence of optrA was also related to the resistant phenotype against linezolid and levofloxacin of E. faecalis isolates. Close genotypic relationships identified by Pulsed Field Gel Electrophoresis between OPEfs isolates recovered from flies and other reservoirs including chickens, pigs, dogs, and wastewater suggested the role of flies in the transmission of antibiotic-resistant pathogens. These results provided warnings of linezolid resistance although it is not used in livestock.
Collapse
Affiliation(s)
- Hoang Thi An Ha
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
- Department of Microbiology, Vinh Medical University, Vinh 431000, Vietnam
| | - Phuong Thi Lan Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Tran Thi Mai Hung
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Le Anh Tuan
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Bui Thanh Thuy
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Tran Hoang My Lien
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Pham Duy Thai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Nguyen Ha Thanh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Vu Thi Ngoc Bich
- Oxford University Clinical Research Unit, Hanoi 100000, Vietnam; (V.T.N.B.); (H.R.v.D.)
| | - Tran Hai Anh
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
| | - Ngo Thi Hong Hanh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Nguyen Thi Minh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Duy Pham Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Si-Nguyen T. Mai
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Nguyen Vu Trung
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | | | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Pham Thi Ngoc
- National Institute of Veterinary Research, Hanoi 100000, Vietnam;
| | - Anne-Laure Bañuls
- MIVEGEC (IRD-CNRS-Université de Montpellier), LMI DRISA, Centre IRD, 34394 Montpellier, France;
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi 100000, Vietnam; (V.T.N.B.); (H.R.v.D.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - Masato Suzuki
- National Institute of Infectious Diseases, Tokyo 162-0052, Japan;
| | - Tran Huy Hoang
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| |
Collapse
|
9
|
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front Cell Infect Microbiol 2023; 12:1065796. [PMID: 36726644 PMCID: PMC9884834 DOI: 10.3389/fcimb.2022.1065796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.
Collapse
Affiliation(s)
| | | | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
10
|
Phu DH, Wongtawan T, Truong DB, Van Cuong N, Carrique-Mas J, Thomrongsuwannakij T. A systematic review and meta-analysis of integrated studies on antimicrobial resistance in Vietnam, with a focus on Enterobacteriaceae, from a One Health perspective. One Health 2022; 15:100465. [PMID: 36561710 PMCID: PMC9767812 DOI: 10.1016/j.onehlt.2022.100465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Vietnam is a low- and middle-income country (LMIC), a primary food producer, and an antimicrobial resistance (AMR) hotspot. AMR is recognized as a One Health challenge since it may transfer between humans, animals and the environment. This study aimed to apply systematic review and meta-analysis to investigate the phenotypic profiles and correlations of antimicrobial-resistant Enterobacteriaceae across three compartments: humans, animals and the environment in Vietnam. A total of 89 articles found in PubMed, Science Direct, and Google Scholar databases were retrieved for qualitative synthesis. E. coli and non-typhoidal Salmonella (NTS) were the most common bacterial species in studies of all compartments (60/89 studies). Among antimicrobials classified as critically important, the resistance levels were observed to be highest to quinolones, 3rd generation of cephalosporins, penicillins, and aminoglycosides. Of 89 studies, 55 articles reported the resistance prevalence of E. coli and NTS in healthy humans, animals and the environment against ciprofloxacin, ceftazidime, ampicillin, gentamicin, sulfamethoxazole-trimethoprim, chloramphenicol was used for meta-analysis. The pooled prevalence was found highest in E. coli against ampicillin 84.0% (95% CI 73.0-91.0%) and sulfamethoxazole-trimethoprim 66.0% (95% CI 56.0-75.0%) while in NTS they were 34.0% (95% CI 24.0-46.0%), 33.0% (95% CI 25.0-42.0%), respectively. There were no significant differences in the pooled prevalence of E. coli and NTS to these antimicrobials across healthy humans, animals and the environment, except for ceftazidime-resistant E. coli (χ2 = 8.29, p = 0.02), chloramphenicol-resistant E.coli (χ2 = 9.65, p < 0.01) and chloramphenicol-resistant NTS (χ2 = 7.51, p = 0.02). Findings from the multiple meta-regression models indicated that the AMR levels in E. coli (β = 1.887, p < 0.001) and the North (β = 0.798, p = 0.047) had a higher fraction of AMR than NTS and other regions of Vietnam. The outcomes of this study play an important role as the baseline information for further investigation and follow-up intervention strategies to tackle AMR in Vietnam, and more generally, can be adapted to other LMICs.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand,Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Dinh Bao Truong
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Viet Nam,Ausvet PTY LTD, Bruce ACT 2617, Canberra, Australia
| | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Viet Nam
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand,Corresponding author at: Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
11
|
Noenchat P, Nhoonoi C, Srithong T, Lertpiriyasakulkit S, Sornplang P. Prevalence and multidrug resistance of Enterococcus species isolated from chickens at slaughterhouses in Nakhon Ratchasima Province, Thailand. Vet World 2022; 15:2535-2542. [PMID: 36590124 PMCID: PMC9798055 DOI: 10.14202/vetworld.2022.2535-2542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
Background and Aim Enterococcus is a commensal bacteria found in humans and animals, which can cause human nosocomial infections. One of the most contaminated enterococcal sources is poultry meat. Therefore, this study estimated the prevalence and antimicrobial resistance (AMR) profile of Enterococcus from chickens and their meat products at local slaughterhouses in Nakhon Ratchasima Province, Thailand. Materials and Methods From January 2021 to March 2022, 558 samples from 279 cloacal swabs and breast meat were collected from 31 local slaughterhouses in the area. Then, the samples were screened for Enterococcus using modified de Man, Rogosa, and Sharpe agar. Next, selected Gram-positive, catalase-negative, and cocci-shaped colonies were investigated for enterococcal confirmation using Enterococcosel Agar (EA). We also cultivated the samples directly on EA. However, the disk diffusion method was used to investigate positive Enterococcus resistance profiles to 16 antimicrobial agents. Finally, selected phenotypic multidrug-resistant (MDR) Enterococcus isolates were further assessed to identify AMR genes by polymerase chain reaction. Results Investigations showed that the prevalence of Enterococcus isolates from the chicken cloacal swabs and meat samples were 29.75% (83/279) and 28.32% (78/279), respectively. Most Enterococcus positive isolates were resistant to colistin, followed by cefoxitin, cephalexin, and streptomycin. These isolates also showed a prevalence of MDR species (65.22%; 105/161) and 66 patterns. Furthermore, selected MDR Enterococcus (MDRE) from cloacal swabs and breast meat were positive for the resistant extended-spectrum beta-lactamase TEM genes at 71.43% (20/28) and 78.26% (18/23), respectively, whereas other AMR genes detected in the selected MDR enterococci from the cloacal swabs and breast meat were beta-lactamase TEM (bla TEM [0%, 1.96%]), Class 1 integrase (intI1 [14.28%, 0%]), colistin (mrc-1 [3.57%, 0%]), and vancomycin (vanA [14.28%, 0%]). Conclusion This study indicated that phenotypic MDRE correlated with extended-spectrum beta-lactamase TEM gene presence, leading to an AMR reservoir that can be transferred to other bacteria.
Collapse
Affiliation(s)
- Pattarakitti Noenchat
- Sakon Nakhon Provincial Livestock Office, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Sakon Nakhon 47000, Thailand
| | - Chawakorn Nhoonoi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanawan Srithong
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sujeeporn Lertpiriyasakulkit
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pairat Sornplang
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand,Corresponding author: Pairat Sornplang, e-mail: Co-authors: PN: , CN: , TS: , SL:
| |
Collapse
|
12
|
Azabo R, Dulle F, Mshana SE, Matee M, Kimera S. Antimicrobial use in cattle and poultry production on occurrence of multidrug resistant Escherichia coli. A systematic review with focus on sub-Saharan Africa. Front Vet Sci 2022; 9:1000457. [PMID: 36353252 PMCID: PMC9637661 DOI: 10.3389/fvets.2022.1000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial use in livestock production has been linked to antimicrobial resistance (AMR) worldwide; however, optimization of their use has been considered an important strategy in dealing with it. The aims of this study were as follows: (a) to assess the literature on antimicrobial usage (practices, frequency, class, type) in cattle and poultry production with regard to resistance in Escherichia coli (E. coli) including multidrug resistance (MDR) (b) summarize evidence for quantitative (volumes of active antimicrobial ingredients) and quality (identify and quantify active ingredient) and (c) to identify data gaps. Peer reviewed literature search was conducted by querying two online databases: PubMed and Google scholar from November 15, 2018 to February 2019. The inclusion criteria for eligibility were articles: published in English between 2008 and 2018, including poultry (chicken) or cattle or both, E. coli bacteria of choice, antimicrobial use on farms, quantitative data and quality of antimicrobial used. Microsoft Excel was used for data extraction and Rayyan software for eligibility studies. The search retrieved 1,446 probable articles including those from the reference list of significant papers, of which twenty-four articles remained on full text review with more than a third of the studies being conducted in Nigeria. Farm surveys and antimicrobial sales were identified as the main sources of data and the mean quantities of antimicrobials based on sales data were 23,234, 41,280.87, and 1,538,443 kg of the active ingredient in Nigeria, Zambia and South Africa, respectively. One study from Cameroon determined the quantities of active ingredients based on dose metrics while another study still from Cameroon mentioned the quality of antimicrobials. Tetracyclines, beta-lactams/aminoglycosides and fluoroquinolones were the most common classes of antimicrobials (antibiotics) used. Our review reveals a dearth of information in Sub- Saharan Africa on the quantity and quality of veterinary drugs and yet they play a role in the overall picture of antimicrobial resistance. This finding gives an opportunity in the area of focus for future research as far as resistance and multidrug resistance are concerned in food producing animals.
Collapse
Affiliation(s)
- Rogers Azabo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- National Livestock Resources Research Institute, Kampala, Uganda
- Southern African Centre for Infectious Disease Surveillance (SACIDS) Foundation for One Health Sokoine University of Agriculture, Morogoro, Tanzania
| | - Frankwell Dulle
- Department of Knowledge Management, Sokoine National Agricultural Library, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Mecky Matee
- Department of Knowledge Management, Sokoine National Agricultural Library, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sharadhuli Kimera
- Department of Knowledge Management, Sokoine National Agricultural Library, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Veterinary Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
13
|
Rajendiran S, Veloo Y, Thahir SSA, Shaharudin R. Resistance towards Critically Important Antimicrobials among Enterococcus faecalis and E. faecium in Poultry Farm Environments in Selangor, Malaysia. Antibiotics (Basel) 2022; 11:antibiotics11081118. [PMID: 36009987 PMCID: PMC9405032 DOI: 10.3390/antibiotics11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistant (MDR) enterococci pose significant public health challenges. However, the extent of resistance in the environment is less explored. This study aimed to determine the antibiotic resistance in a poultry farm environment. Eighty enterococcal isolates recovered from the soil and effluent water of 28 poultry farms in Selangor state were included in the study for further bacterial identification and antibiotic susceptibility testing using a VITEK 2 system. Data were analyzed using Statistical Package for Social Science (SPSS) version 27. The resistance rate and MDR of enterococcal isolates were reported. Out of 80 isolates recovered, 72 (90%) exhibited resistance to at least one antibiotic, with 50 isolates (62.5%) being found to be MDR. All linezolid-resistant enterococci (LRE) exhibit MDR, which constituted 40% of resistance among all the isolates recovered from poultry environment. Since linezolid is listed as critically important antibiotics for clinical use by the World Health Organization (WHO), the higher resistance towards it and other critically important antibiotic for human use is a serious concern. Hence, relevant agencies need to investigate the use of clinically important antimicrobials in poultry farms paying special attention towards linezolid or any other antibiotics that can facilitate the development of LRE.
Collapse
|
14
|
Chah JM, Nwankwo SC, Uddin IO, Chah KF. Knowledge and practices regarding antibiotic use among small-scale poultry farmers in Enugu State, Nigeria. Heliyon 2022; 8:e09342. [PMID: 35520608 PMCID: PMC9062671 DOI: 10.1016/j.heliyon.2022.e09342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study examined the knowledge and practices regarding antibiotic use among small-scale poultry farmers in Enugu State, Nigeria. A multistage sampling technique was employed to select 88 poultry farmers. The interview schedule was used for data collection. Respondents' indices of knowledge of antibiotic use (KABU), antibiotic resistance (KABR) and antibiotic use practices (PABU) were determined. Binary logistic regression was performed to ascertain the effect of socio-demographics of respondents, knowledge of antibiotic use and knowledge of antibiotic resistance on the likelihood that farmers use antibiotics inappropriately. All poultry farmers studied used antibiotics for growth promotion, disease prevention, and treatment. The mean index of KABU was 0.54 with 48 % of the respondents having good KABU while the mean index of KABR was 0.65 and 70.5 % of the farmers had good KABR. The farmers' mean index of PABU was 0.47 and 83 % of them used antibiotics inappropriately. Farmers with good KABU (OR = 4.2; 95% CI = 1.030-17.222) and KABR (OR = 4.5; 95% CI = 1.258-15.791) were more likely to misuse antibiotics than those with poor knowledge. Antibiotics are routinely, and on many occasions inappropriately, used in small-scale poultry production in Enugu State, Nigeria. Antibiotics are valuable agents whose efficacy can only be preserved if they are handled with care. Training small-scale farmers will allow them to improve their knowledge and practices regarding antibiotic use.
Collapse
Affiliation(s)
- Jane M. Chah
- Department of Agricultural Extension, University of Nigeria Nsukka, Nigeria
| | - Sandra C. Nwankwo
- Department of Agricultural Extension, University of Nigeria Nsukka, Nigeria
| | - Irenonsen O. Uddin
- Department of Agricultural Economics and Extension, Ambrose Alli University, Ekpoma, Nigeria
| | - Kennedy F. Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria Nsukka, Nigeria
| |
Collapse
|
15
|
de Mesquita Souza Saraiva M, Lim K, do Monte DFM, Givisiez PEN, Alves LBR, de Freitas Neto OC, Kariuki S, Júnior AB, de Oliveira CJB, Gebreyes WA. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz J Microbiol 2022; 53:465-486. [PMID: 34775576 PMCID: PMC8590523 DOI: 10.1007/s42770-021-00635-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) remains a major global public health crisis. The food animal industry will face escalating challenges to increase productivity while minimizing AMR, since the global demand for animal protein has been continuously increasing and food animals play a key role in the global food supply, particularly broiler chickens. As chicken products are sources of low-cost, high-quality protein, poultry production is an important economic driver for livelihood and survival in developed and developing regions. The globalization of the food supply, markedly in the poultry industry, is aligned to the globalization of the whole modern society, with an unprecedented exchange of goods and services, and transit of human populations among regions and countries. Considering the increasing threat posed by AMR, human civilization is faced with a complex, multifaceted problem compromising its future. Actions to mitigate antimicrobial resistance are needed in all sectors of the society at the human, animal, and environmental levels. This review discusses the problems associated with antimicrobial resistance in the globalized food chain, using the poultry sector as a model. We cover critical aspects of the emergence and dissemination of antimicrobial resistance in the poultry industry and their implications to public health in a global perspective. Finally, we provide current insights using the multidisciplinary One Health approach to mitigate AMR at the human-animal-environment interface.
Collapse
Affiliation(s)
- Mauro de Mesquita Souza Saraiva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Kelvin Lim
- Veterinary Health Management Branch, National Parks Board, 6 Perahu Road, Singapore, Singapore
| | - Daniel Farias Marinho do Monte
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Patrícia Emília Naves Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Lucas Bocchini Rodrigues Alves
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | | | - Samuel Kariuki
- Kenya Medical Research Institute, Nairobi, Kenya
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Angelo Berchieri Júnior
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Wondwossen Abebe Gebreyes
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Dávalos-Almeyda M, Guerrero A, Medina G, Dávila-Barclay A, Salvatierra G, Calderón M, Gilman RH, Tsukayama P. Antibiotic Use and Resistance Knowledge Assessment of Personnel on Chicken Farms with High Levels of Antimicrobial Resistance: A Cross-Sectional Survey in Ica, Peru. Antibiotics (Basel) 2022; 11:antibiotics11020190. [PMID: 35203794 PMCID: PMC8868202 DOI: 10.3390/antibiotics11020190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Poultry farming represents Peru’s primary food animal production industry, where antimicrobial growth promoters are still commonly used, exerting selective pressure on intestinal microbial populations. Consumption and direct animal-to-human transmission have been reported, and farmworkers are at high risk of colonization with resistant bacteria. We conducted a cross-sectional survey among 54 farmworkers to understand their current antimicrobial resistance (AMR) awareness in Ica, Peru. To gain insight into the potential work-related risk of exposure to bacteria, we also measured the AMR rates in Escherichia coli isolated among 50 broiler chickens. Farmworkers were unaware of antimicrobial resistance (31.5%) or antibiotic resistance (16.7%) terms. Almost two-thirds (61%) consumed antibiotics during the previous month, and only 42.6% received a prescription from a healthcare professional. A total of 107 E. coli chicken isolates were obtained, showing a high frequency of multidrug-resistant (89.7%) and extended-spectrum beta-lactamase (ESBL) production (71.9%). Among ESBL-producer isolates, 84.4% carried the blaCTX-M gene. Results identified gaps in knowledge that reflect the need for interventions to increase antimicrobial awareness among poultry farmworkers. The high AMR rates among E. coli isolates highlight the need to reduce antimicrobial use in poultry farms. Our findings reveal a critical need for effective policy development and antimicrobial stewardship interventions in poultry production in Ica, Peru.
Collapse
Affiliation(s)
- María Dávalos-Almeyda
- School of Veterinary Medicine, Universidad Nacional San Luis Gonzaga, Ica 11004, Peru; (M.D.-A.); (A.G.); (G.M.)
| | - Agustín Guerrero
- School of Veterinary Medicine, Universidad Nacional San Luis Gonzaga, Ica 11004, Peru; (M.D.-A.); (A.G.); (G.M.)
| | - Germán Medina
- School of Veterinary Medicine, Universidad Nacional San Luis Gonzaga, Ica 11004, Peru; (M.D.-A.); (A.G.); (G.M.)
| | - Alejandra Dávila-Barclay
- Microbial Genomics Laboratory, Department of Cellular and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.D.-B.); (G.S.)
| | - Guillermo Salvatierra
- Microbial Genomics Laboratory, Department of Cellular and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.D.-B.); (G.S.)
| | - Maritza Calderón
- Infectious Diseases Research Laboratories, Department of Cellular and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Robert H. Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Pablo Tsukayama
- Microbial Genomics Laboratory, Department of Cellular and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.D.-B.); (G.S.)
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Saffron Walden CB10 1RQ, UK
- Correspondence:
| |
Collapse
|
17
|
Geta K, Kibret M. Knowledge, attitudes and practices of animal farm owners/workers on antibiotic use and resistance in Amhara region, north western Ethiopia. Sci Rep 2021; 11:21211. [PMID: 34707158 PMCID: PMC8551280 DOI: 10.1038/s41598-021-00617-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Inappropriate use of antibiotics in animal and human plays a role in the emergence and spread of bacteria resistant to antibiotics which threatens human health significantly. Although extensive use of these antibiotics could contribute to the development of drug resistance, information on the knowledge, attitude and practice of antimicrobial resistance and use among animal farm owners/workers in north western Ethiopia is rare. The objective of the present study was to assess knowledge, attitude and practice of animal farm owner/workers towards antibiotic resistance and use in Amhara regional state north western Ethiopia. A cross sectional study was conducted in selected cities of Amhara regional state from January to February, 2020. Data was collected from 91 participants using structured questionnaire and analyzed using SPSSS version 23. The results showed that 96.7% of respondents gave antibiotics to treat their livestock from different sources. Most of the respondents bought their antibiotics from private pharmacies without prescription and the most frequently mentioned antibiotics used to treat animal diseases was tetracycline (76.9%), followed by ampicillin (72.5%). Although, 90.1% of the animal farm owners heard about antibiotics and antibiotic resistance from different sources, they did not know the factors contributing to the transmission of resistant bacteria to humans and the impact of antibiotic resistance on human and animals' health. Using the mean score 4.44 ± 0.15 as the cut-off, half of the animal farm owners/workers had good knowledge about antimicrobial resistance and use. 52.5% of animal farm owners/workers had positive attitudes towards wise antibiotic use and resistance with a mean score of 28.4 ± 0.5. However, 52.75% participants had poor practice with the mean score of practice 4.95 ± 0.17. Better knowledge, positive attitudes and better practices on antibiotic use and resistance were associated with farm owners/workers who engaged in higher education. Although poor awareness on antimicrobial resistance was perceived by 76.9% of respondents as very important factors that contribute to increasing antibiotic resistance, increasing the use of complementary treatments was perceived by the majority of respondents as very important strategies that contribute to reduce antibiotic use and resistance. The current study disclosed that there is low level of awareness among animal farm owners about the correct use of antibiotics and resistance. It is necessary to raise awareness, develop and implement interventions to reduce antimicrobial use and antibiotic resistance in the study area.
Collapse
Affiliation(s)
- Kindu Geta
- Department of Biology, Faculty of Natural and Computational Sciences, Debre Tabor University, Debre Tabor, Ethiopia, P.O.Box 272.
| | - Mulugeta Kibret
- Department of Biology, Science College, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
18
|
Di KN, Pham DT, Tee TS, Binh QA, Nguyen TC. Antibiotic usage and resistance in animal production in Vietnam: a review of existing literature. Trop Anim Health Prod 2021; 53:340. [PMID: 34089130 DOI: 10.1007/s11250-021-02780-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/23/2021] [Indexed: 01/21/2023]
Abstract
Inappropriate use of antibiotics in animal production system is one of the major factors leading to the antibiotic resistance (ABR) development. In Vietnam, the ABR situation is crucial as antibiotics have been used indiscriminately for disease prevention and as growth promoters in animals. Thus, a thorough understanding on the ABR in veterinary settings would be beneficial to the Vietnam public health authority in formulating timely interventions. This review aimed to provide information on the current status of antibiotic usage in animal husbandry in Vietnam, identified gaps in research, and suggested possible solutions to tackle ABR. To this end, data on ABR in animals were extracted from 3 major electronic databases (PubMed, Web of Science, and ScienceDirect) in the period of January 2013-December 2020. The review findings were reported according to PRISMA, which highlighted the emergence and persistence of ABR in bacterial isolates, including Escherichia coli, Enterococcus spp., and Salmonella species, obtained from pigs and poultry. The lack of awareness of Vietnamese farmers on the antibiotic utilization guidelines was one of the main causes driving the animal ABR. Hence, this paper calls for interventions to restrict antibiotics use in food-producing animals by national action plan and antibiotics control programs. Additionally, studies to evaluate knowledge, attitude, and practice (KAP) of the community are required to promote rational use of antibiotics in all sectors.
Collapse
Affiliation(s)
- Khanh Nguyen Di
- Department of Academic Affairs - Testing, Dong Nai Technology University, Nguyen Khuyen Street, Trang Dai Ward, Bien Hoa City, Dong Nai, 810000, Vietnam. .,Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam.
| | - Tay Sun Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Quach An Binh
- Department of Academic Affairs - Testing, Dong Nai Technology University, Nguyen Khuyen Street, Trang Dai Ward, Bien Hoa City, Dong Nai, 810000, Vietnam
| | - Thanh Cong Nguyen
- Faculty of Applied Science and Health, Dong Nai Technology University, Nguyen Khuyen Street, Trang Dai Ward, Bien Hoa City, Dong Nai, 810000, Vietnam
| |
Collapse
|
19
|
Kim MH, Moon DC, Kim SJ, Mechesso AF, Song HJ, Kang HY, Choi JH, Yoon SS, Lim SK. Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019. Microorganisms 2021; 9:microorganisms9050925. [PMID: 33925822 PMCID: PMC8144984 DOI: 10.3390/microorganisms9050925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal commensal bacteria are considered good indicators for monitoring antimicrobial resistance. We investigated the antimicrobial resistance profiles and resistance trends of Enterococcus faecium and Enterococcus faecalis isolated from food animals in Korea between 2010 and 2019. E. faecium and E. faecalis, isolated from chickens and pigs, respectively, presented a relatively high resistance rate to most of the tested antimicrobials. We observed high ciprofloxacin (67.9%), tetracycline (61.7%), erythromycin (59.5%), and tylosin (53.0%) resistance in E. faecium isolated from chickens. Similarly, more than half of the E. faecalis isolates from pigs and chickens were resistant to erythromycin, tetracycline and tylosin. Notably, we observed ampicillin, daptomycin, tigecycline and linezolid resistance in a relatively small proportion of enterococcal isolates. Additionally, the enterococcal strains exhibited an increasing but fluctuating resistance trend (p < 0.05) to some of the tested antimicrobials including daptomycin and/or linezolid. E. faecalis showed higher Multidrug resistance (MDR) rates than E. faecium in cattle (19.7% vs. 8.6%, respectively) and pigs (63.6% vs. 15.6%, respectively), whereas a comparable MDR rate (≈60.0%) was noted in E. faecium and E. faecalis isolated from chickens. Collectively, the presence of antimicrobial-resistant Enterococcus in food animals poses a potential risk to public health.
Collapse
|
20
|
Manishimwe R, Moncada PM, Musanayire V, Shyaka A, Scott HM, Loneragan GH. Antibiotic-Resistant Escherichia coli and Salmonella from the Feces of Food Animals in the East Province of Rwanda. Animals (Basel) 2021; 11:1013. [PMID: 33916794 PMCID: PMC8067188 DOI: 10.3390/ani11041013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
In Rwanda, information on antibiotic resistance in food animals is scarce. This study was conducted to detect and phenotypically characterize antibiotic-resistant Escherichia coli and Salmonella in feces of cattle, goats, pigs, and poultry in the East province of Rwanda. We isolated non-type-specific (NTS) E. coli and Salmonella using plain culture media. In addition, we used MacConkey agar media supplemented with cefotaxime at 1.0 μg/mL and ciprofloxacin at 0.5 μg/mL to increase the probability of detecting E. coli with low susceptibility to third-generation cephalosporins and quinolones, respectively. Antibiotic susceptibility testing was performed using the disk diffusion test. Among 540 NTS E. coli isolates, resistance to tetracycline was the most frequently observed (35.6%), followed by resistance to ampicillin (19.6%) and streptomycin (16.5%). Percentages of NTS E. coli resistant to all three antibiotics and percentages of multidrug-resistant strains were higher in isolates from poultry. All isolated Salmonella were susceptible to all antibiotics. The sample-level prevalence for resistance to third-generation cephalosporins was estimated at 35.6% with all third-generation cephalosporin-resistant E. coli, expressing an extended-spectrum beta-lactamase phenotype. The sample-level prevalence for quinolone resistance was estimated at 48.3%. These results provided a baseline for future research and the development of integrated surveillance initiatives.
Collapse
Affiliation(s)
- Rosine Manishimwe
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79415, USA;
- Department of Veterinary Medicine, University of Rwanda, Nyagatare 56, Rwanda;
| | - Paola M. Moncada
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79415, USA;
| | - Vestine Musanayire
- Rwanda Veterinary Service Department, Rwanda Agriculture and Animal Resources Development Board, Ministry of Agriculture, Kigali 5016, Rwanda;
| | - Anselme Shyaka
- Department of Veterinary Medicine, University of Rwanda, Nyagatare 56, Rwanda;
| | - H. Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA;
| | - Guy H. Loneragan
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA;
| |
Collapse
|
21
|
Elmi SA, Simons D, Elton L, Haider N, Abdel Hamid MM, Shuaib YA, Khan MA, Othman I, Kock R, Osman AY. Identification of Risk Factors Associated with Resistant Escherichia coli Isolates from Poultry Farms in the East Coast of Peninsular Malaysia: A Cross Sectional Study. Antibiotics (Basel) 2021; 10:antibiotics10020117. [PMID: 33530462 PMCID: PMC7912622 DOI: 10.3390/antibiotics10020117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is of concern to global health security worldwide. We aimed to identify the prevalence, resistance patterns, and risk factors associated with Escherichia coli (E. coli) resistance from poultry farms in Kelantan, Terengganu, and Pahang states of east coast peninsular Malaysia. Between 8 February 2019 and 23 February 2020, a total of 371 samples (cloacal swabs = 259; faecal = 84; Sewage = 14, Tap water = 14) were collected. Characteristics of the sampled farms including management type, biosecurity, and history of disease were obtained using semi-structured questionnaire. Presumptive E. coli isolates were identified based on colony morphology with subsequent biochemical and PCR confirmation. Susceptibility of isolates was tested against a panel of 12 antimicrobials and interpreted alongside risk factor data obtained from the surveys. We isolated 717 E. coli samples from poultry and environmental samples. Our findings revealed that cloacal (17.8%, 46/259), faecal (22.6%, 19/84), sewage (14.3%, 2/14) and tap water (7.1%, 1/14) were significantly (p < 0.003) resistant to at least three classes of antimicrobials. Resistance to tetracycline class were predominantly observed in faecal samples (69%, 58/84), followed by cloacal (64.1%, 166/259), sewage (35.7%, 5/14), and tap water (7.1%, 1/84), respectively. Sewage water (OR = 7.22, 95% CI = 0.95–151.21) had significant association with antimicrobial resistance (AMR) acquisition. Multivariate regression analysis identified that the risk factors including sewage samples (OR = 7.43, 95% CI = 0.96–156.87) and farm size are leading drivers of E. coli antimicrobial resistance in the participating states of east coast peninsular Malaysia. We observed that the resistance patterns of E. coli isolates against 12 panel antimicrobials are generally similar in all selected states of east coast peninsular Malaysia. The highest prevalence of resistance was recorded in tetracycline (91.2%), oxytetracycline (89.1%), sulfamethoxazole/trimethoprim (73.1%), doxycycline (63%), and sulfamethoxazole (63%). A close association between different risk factors and the high prevalence of antimicrobial-resistant E. coli strains reflects increased exposure to resistant bacteria and suggests a concern over rising misuse of veterinary antimicrobials that may contribute to the future threat of emergence of multidrug-resistant pathogen isolates. Public health interventions to limit antimicrobial resistance need to be tailored to local poultry farm practices that affect bacterial transmission.
Collapse
Affiliation(s)
- Sharifo Ali Elmi
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia; (S.A.E.); (M.A.K.)
| | - David Simons
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK; (D.S.); (N.H.); (R.K.)
| | - Linzy Elton
- Centre for Clinical Microbiology, University College London, London NW3 2PF, UK;
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK; (D.S.); (N.H.); (R.K.)
| | | | - Yassir Adam Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Hilat Kuku, Khartoum North 13321, Sudan;
| | - Mohd Azam Khan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia; (S.A.E.); (M.A.K.)
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Selangor 47500, Malaysia;
| | - Richard Kock
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK; (D.S.); (N.H.); (R.K.)
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK; (D.S.); (N.H.); (R.K.)
- Correspondence: ; Tel.: +44-742-404-9130
| |
Collapse
|
22
|
Huy HL, Koizumi N, Nuradji H, Susanti, Noor SM, Dharmayanti NI, Haga T, Hirayama K, Miura K. Antimicrobial resistance in Escherichia coli isolated from brown rats and house shrews in markets, Bogor, Indonesia. J Vet Med Sci 2021; 83:531-534. [PMID: 33473051 PMCID: PMC8025418 DOI: 10.1292/jvms.20-0558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The prevalence of antimicrobial resistance (AMR) in small mammals dwelling in the city was used as an indicator of AMR bacteria in the environment. We captured
87 small mammals (79 brown rats and 8 house shrews) in four markets, Bogor, Indonesia in October 2019, and we obtained 20 AMR Escherichia coli
(E. coil) from 18 brown rats and two house shrews. Of these, eight isolates were determined to be multi-drug resistant (MDR) E.
coli, suggesting the potential contamination of AMR E. coli in the markets in Bogor, Indonesia, and that mammals, including humans,
are at risk of infection with AMR E. coli from environment.
Collapse
Affiliation(s)
- Hoang Le Huy
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Harimurti Nuradji
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Susanti
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Susan M Noor
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Nlp Indi Dharmayanti
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Takeshi Haga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhiro Hirayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kozue Miura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
23
|
Hosain MZ, Kabir SML, Kamal MM. Antimicrobial uses for livestock production in developing countries. Vet World 2021; 14:210-221. [PMID: 33642806 PMCID: PMC7896880 DOI: 10.14202/vetworld.2021.210-221] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial is an indispensable part of veterinary medicine used for the treatment and control of diseases as well as a growth promoter in livestock production. Frequent use of antimicrobials in veterinary practices may lead to the residue in animal originated products and creates some potential problems for human health. The presence of antimicrobial residues in animal originated foods may induce serious health problems such as allergic reaction, antimicrobial resistance (AMR), and lead to carcinogenic and mutagenic effects in the human body. The misuse or abuse of antibiotics in human medicine is thought to be a principal cause of AMR but some antimicrobial-resistant bacteria and their resistant genes originating from animals are also responsible for developing AMR. However, the residual effect of antimicrobials in feed and food products of animal origin is undeniable. In developing countries, the community is unaware of this residual effect due to lack of proper information about antibiotic usage, AMR surveillance, and residue monitoring system. It is imperative to reveal the current situation of antimicrobial use in livestock production and its impacts on public health. Moreover, the safety levels of animal feeds and food products of animal origin must be strictly monitored and public awareness should be developed against the indiscriminate use of antimicrobial in animal production. Therefore, the current review summarizes the literature on antimicrobial use in livestock production and its hazardous residual impacts on the human body in developing countries.
Collapse
Affiliation(s)
- Md. Zahangir Hosain
- Quality Control Laboratory, Department of Livestock Services, Savar, Dhaka-1343, Bangladesh
| | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md. Mostofa Kamal
- Quality Control Laboratory, Department of Livestock Services, Savar, Dhaka-1343, Bangladesh
| |
Collapse
|
24
|
Gibson JS, Wai H, Oo SSML, Hmwe EMM, Wai SS, Htun LL, Lim HP, Latt ZM, Henning J. Antimicrobials use and resistance on integrated poultry-fish farming systems in the Ayeyarwady Delta of Myanmar. Sci Rep 2020; 10:16149. [PMID: 32999333 PMCID: PMC7528085 DOI: 10.1038/s41598-020-73076-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Antimicrobials are used to support livestock health and productivity, but might pose a risk for the development of antimicrobial resistance; in particular, when multiple livestock species are raised together in production systems. On integrated chicken-fish farms, chickens are raised over fish ponds and poultry faeces is excreted into the ponds. We investigated antimicrobial usage and the antimicrobial susceptibility of Escherichia coli cultured from poultry faeces on 301 integrated farms in Ayeyarwady Delta of Myanmar. Antimicrobials were used by 92.4% of farmers for chickens, but they were not applied to fish. The most common antimicrobials used were Octamix (amoxicillin and colistin sulfate) on 28.4%, enrofloxacin on 21.0% and amoxicillin on 16% of farms. Overall, 83.1% (152/183) of the E. coli were resistant to at least one antimicrobial. The highest level of resistance was to amoxicillin (54.6%), tetracycline (39.9%), sulfamethoxazole/trimethoprim (35.5%) and enrofloxacin (34.4%). Multidrug resistance was identified in 42.4% of isolates. In general, we found similar levels of antimicrobial resistance in non-users of antimicrobials as in users of antimicrobials for more commonly applied antimicrobials. Overall, antimicrobial resistance was lower in chickens on these integrated farms in Myanmar, compared to poultry farms in other countries of South East and East Asia.
Collapse
Affiliation(s)
- Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.
| | - Honey Wai
- University of Veterinary Science, Yezin, Myanmar
| | | | | | - Soe Soe Wai
- University of Veterinary Science, Yezin, Myanmar
| | - Lat Lat Htun
- University of Veterinary Science, Yezin, Myanmar
| | - Hwee Ping Lim
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Zin Min Latt
- Livestock Breeding and Veterinary Department, Nay Pyi Taw, Myanmar
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
25
|
Meena B, Anburajan L, Varma KS, Vinithkumar NV, Kirubagaran R, Dharani G. A multiplex PCR kit for the detection of three major virulent genes in Enterococcus faecalis. J Microbiol Methods 2020; 177:106061. [PMID: 32950564 DOI: 10.1016/j.mimet.2020.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022]
Abstract
A multiplex PCR kit that detects three major virulence genes, gelE, hyl and asaI, in Enterococcus faecalis was developed. Analyses of the available sequences of three major virulence genes and designed primers allowed us to develop the three-gene, multiplex PCR protocol that maintained the specificity of each primer pair. The resulting three amplicon bands for gelE, hyl and asaI were even and distinct with product sizes of 213, 273 and 713 bp, respectively. The multiplex PCR procedure was validated with a total of 243 E. faecalis strains that included 02 ATCC strains, 109 isolates from marine samples (sediment, water and sea foods), 22 isolates from cattle fodder, 79 isolates fresh water samples and 31 isolates from nosocomial samples. Specificity of the kit was indicated by amplification of only three major virulent genes gelE, hyl and asaI without any nonspecific bands. Tests for the limit of detection revealed that amplified genes from the sample with a minimum of 104 CFU/g or CFU/mL (10 cells/reaction) of E. faecalis and lower cell load samples, after a 3 h enrichment in NIOT-E. faecalis enrichment medium at 37 °C, a sensitivity level of 10 CFU/g or CFU/mL was achieved.
Collapse
Affiliation(s)
- Balakrishnan Meena
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, Andaman and Nicobar Islands, India.
| | - Lawrance Anburajan
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, Andaman and Nicobar Islands, India.
| | | | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Ramalingam Kirubagaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai 600100, India
| | - Gopal Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai 600100, India
| |
Collapse
|
26
|
Song HJ, Moon DC, Mechesso AF, Kang HY, Kim MH, Choi JH, Kim SJ, Yoon SS, Lim SK. Resistance Profiling and Molecular Characterization of Extended-Spectrum/Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli Isolated from Healthy Broiler Chickens in South Korea. Microorganisms 2020; 8:E1434. [PMID: 32962074 PMCID: PMC7564670 DOI: 10.3390/microorganisms8091434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
We aimed to identify and characterize extended-spectrum β-lactamase (ESBL)-and/or plasmid-mediated AmpC β-lactamase (pAmpC)-producing Escherichia coli isolated from healthy broiler chickens slaughtered for human consumption in Korea. A total of 332 E. coli isolates were identified from 339 cloacal swabs in 2019. More than 90% of the isolates were resistant to multiple antimicrobials. ESBL/pAmpC-production was noted in 14% (46/332) of the isolates. Six of the CTX-M-β-lactamase-producing isolates were found to co-harbor at least one plasmid-mediated quinolone resistance gene. We observed the co-existence of blaCMY-2 and mcr-1 genes in the same isolate for the first time in Korea. Phylogenetic analysis demonstrated that the majority of blaCMY-2-carrying isolates belonged to subgroup D. Conjugation confirmed the transferability of blaCTX-M and blaCMY-2 genes, as well as non-β-lactam resistance traits from 60.9% (28/46) of the ESBL/pAmpC-producing isolates to a recipient E. coli J53. The ISECP, IS903, and orf477 elements were detected in the upstream or downstream regions. The blaCTX-M and blaCMY-2 genes mainly belonged to the IncI1, IncHI2, and/or IncFII plasmids. Additionally, the majority of ESBL/pAmpC-producing isolates exhibited heterogeneous PFGE profiles. This study showed that healthy chickens act as reservoirs of ESBL/pAmpC-producing E. coli that can potentially be transmitted to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (H.-J.S.); (D.C.M.); (A.F.M.); (H.Y.K.); (M.H.K.); (J.-H.C.); (S.-J.K.); (S.-S.Y.)
| |
Collapse
|
27
|
Chotinantakul K, Chansiw N, Okada S. Biofilm formation and transfer of a streptomycin resistance gene in enterococci from fermented pork. J Glob Antimicrob Resist 2020; 22:434-440. [PMID: 32339850 DOI: 10.1016/j.jgar.2020.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Multidrug-resistant (MDR) enterococci are found extensively in food samples. This study characterized the phenotypic virulence factors and the ability of horizontal gene transfer of a streptomycin resistance gene among enterococci isolated from fermented pork. METHODS Thirty-six MDR enterococci were subjected to screening of gelatinase, biofilm formation at various temperatures (4 °C, 25 °C and 37 °C), clumping ability and conjugation. RESULTS All gelatinase-positive and clumping-positive strains were Enterococcus faecalis (41.7% and 38.9%, respectively). None of Enterococcus faecium and Enterococcus hirae demonstrated both phenotypes. Moderate and strong biofilm formations were found mostly at optimal temperatures in all the three species tested. However, moderate and weak biofilm formations could be found in 52.8% at 4 °C. No association was observed between biofilm formation and asa1, efaA, gelE and esp genes. Surprisingly, our data revealed evidence of the streptomycin resistance gene (aadE) being transferred among meat E. faecalis isolates as characterized by the pheromone-clumping response. CONCLUSIONS Here we report the co-existence of some virulence factors and MDR enterococci from fermented pork. Our data demonstrated for the first time that the aadE gene could be transferred via conjugation among enterococci isolated from meat, contributing to streptomycin resistance. This study highlights the importance of horizontal gene transfer within the food chain reservoir and that transfer to humans might be possible, causing harm or untreatable diseases.
Collapse
Affiliation(s)
| | - Nittaya Chansiw
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection & Graduate School of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
28
|
Akpınar Kankaya D, Tuncer Y. Antibiotic resistance in vancomycin‐resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Engineering Faculty of Engineering Süleyman Demirel University Isparta Turkey
- Department of Food Technology Gelendost Vocational School Isparta Uygulamalı Bilimler University Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
29
|
Coyne L, Patrick I, Arief R, Benigno C, Kalpravidh W, McGrane J, Schoonman L, Harja Sukarno A, Rushton J. The Costs, Benefits and Human Behaviours for Antimicrobial Use in Small Commercial Broiler Chicken Systems in Indonesia. Antibiotics (Basel) 2020; 9:antibiotics9040154. [PMID: 32244693 PMCID: PMC7235826 DOI: 10.3390/antibiotics9040154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/20/2023] Open
Abstract
There are growing concerns over the threat to human health from the unregulated use of antimicrobials in livestock. Broiler production is of great economic and social importance in Indonesia. This study used a structured questionnaire approach to explore the human behaviours and economic drivers associated with antimicrobial use in small commercial broiler systems in Indonesia (n = 509). The study showed that antimicrobial use was high with farmers easily able to access antimicrobials through local animal medicine, however, it was difficult for farmers to access veterinary advice on responsible antimicrobial use. The most significant finding was that the relative cost of antimicrobials was low, and farmers observed improvements in productivity rates from routine antimicrobial administration. However, farmers seldom kept detailed records on farm productivity or economic costs; this is a hurdle to undertaking a more detailed economic analysis of antimicrobial use. There is a need for further research on the cost-effectiveness of alternative methods of preventing disease and ensuring that feasible alternatives are easily available. Farm-level economics and securing the food supply chain need to be central to any future policy interventions to reduce antimicrobial use in broiler systems in Indonesia and this observation is relevant at a regional and global level.
Collapse
Affiliation(s)
- Lucy Coyne
- Epidemiology and Population Health, University of Liverpool, Neston CH64 7TE, UK; (I.P.); (J.R.)
- Correspondence: ; Tel.: +44-1517946036
| | - Ian Patrick
- Epidemiology and Population Health, University of Liverpool, Neston CH64 7TE, UK; (I.P.); (J.R.)
- Agricultural and Resource Economic Consulting Services, Armidale, NSW 2350, Australia
| | - Riana Arief
- Center for Indonesian Veterinary Analytical Studies, Bogor 16310, Indonesia;
| | - Carolyn Benigno
- Regional Food and Agriculture Organization (FAO) Office for Asia and the Pacific, Bangkok 10200, Thailand; (C.B.); (W.K.)
| | - Wantanee Kalpravidh
- Regional Food and Agriculture Organization (FAO) Office for Asia and the Pacific, Bangkok 10200, Thailand; (C.B.); (W.K.)
| | - James McGrane
- Food and Agriculture Organization (FAO) Country Office for Indonesia, Jakarta 10250, Indonesia; (J.M.); (L.S.); (A.H.S.)
| | - Luuk Schoonman
- Food and Agriculture Organization (FAO) Country Office for Indonesia, Jakarta 10250, Indonesia; (J.M.); (L.S.); (A.H.S.)
| | - Ady Harja Sukarno
- Food and Agriculture Organization (FAO) Country Office for Indonesia, Jakarta 10250, Indonesia; (J.M.); (L.S.); (A.H.S.)
| | - Jonathan Rushton
- Epidemiology and Population Health, University of Liverpool, Neston CH64 7TE, UK; (I.P.); (J.R.)
| |
Collapse
|
30
|
Thapa SP, Shrestha S, Anal AK. Addressing the antibiotic resistance and improving the food safety in food supply chain (farm-to-fork) in Southeast Asia. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Manson AL, Van Tyne D, Straub TJ, Clock S, Crupain M, Rangan U, Gilmore MS, Earl AM. Chicken Meat-Associated Enterococci: Influence of Agricultural Antibiotic Use and Connection to the Clinic. Appl Environ Microbiol 2019; 85:e01559-19. [PMID: 31471308 PMCID: PMC6821970 DOI: 10.1128/aem.01559-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Industrial farms are unique, human-created ecosystems that provide the perfect setting for the development and dissemination of antibiotic resistance. Agricultural antibiotic use amplifies naturally occurring resistance mechanisms from soil ecologies, promoting their spread and sharing with other bacteria, including those poised to become endemic within hospital environments. To better understand the role of enterococci in the movement of antibiotic resistance from farm to table to clinic, we characterized over 300 isolates of Enterococcus cultured from raw chicken meat purchased at U.S. supermarkets by the Consumers Union in 2013. Enterococcus faecalis and Enterococcus faecium were the predominant species found, and antimicrobial susceptibility testing uncovered striking levels of resistance to medically important antibiotic classes, particularly from classes approved by the FDA for use in animal production. While nearly all isolates were resistant to at least one drug, bacteria from meat labeled as raised without antibiotics had fewer resistances, particularly for E. faecium Whole-genome sequencing of 92 isolates revealed that both commensal- and clinical-isolate-like enterococcal strains were associated with chicken meat, including isolates bearing important resistance-conferring elements and virulence factors. The ability of enterococci to persist in the food system positions them as vehicles to move resistance genes from the industrial farm ecosystem into more human-proximal ecologies.IMPORTANCE Bacteria that contaminate food can serve as a conduit for moving drug resistance genes from farm to table to clinic. Our results show that chicken meat-associated isolates of Enterococcus are often multidrug resistant, closely related to pathogenic lineages, and harbor worrisome virulence factors. These drug-resistant agricultural isolates could thus represent important stepping stones in the evolution of enterococci into drug-resistant human pathogens. Although significant efforts have been made over the past few years to reduce the agricultural use of antibiotics, continued assessment of agricultural practices, including the roles of processing plants, shared breeding flocks, and probiotics as sources for resistance spread, is needed in order to slow the evolution of antibiotic resistance. Because antibiotic resistance is a global problem, global policies are needed to address this threat. Additional measures must be taken to mitigate the development and spread of antibiotic resistance elements from farms to clinics throughout the world.
Collapse
Affiliation(s)
- Abigail L Manson
- Infectious Disease and Microbiome Program, Genomic Center for Infectious Diseases, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Daria Van Tyne
- Infectious Disease and Microbiome Program, Genomic Center for Infectious Diseases, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Ophthalmology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Timothy J Straub
- Infectious Disease and Microbiome Program, Genomic Center for Infectious Diseases, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah Clock
- Food Safety and Sustainability Center, Consumer Reports, Yonkers, New York, USA
| | - Michael Crupain
- Food Safety and Sustainability Center, Consumer Reports, Yonkers, New York, USA
| | - Urvashi Rangan
- Food Safety and Sustainability Center, Consumer Reports, Yonkers, New York, USA
| | - Michael S Gilmore
- Infectious Disease and Microbiome Program, Genomic Center for Infectious Diseases, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Ophthalmology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Genomic Center for Infectious Diseases, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Glasgow L, Forde M, Brow D, Mahoney C, Fletcher S, Rodrigo S. Antibiotic Use in Poultry Production in Grenada. Vet Med Int 2019; 2019:6785195. [PMID: 31346405 PMCID: PMC6620849 DOI: 10.1155/2019/6785195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Research is often lacking in low-income countries to substantiate the regulation of antibiotics in poultry production. Nonregulation of antibiotics in food animal industries has implications for human health. This study was conducted to provide an understanding of farmers' knowledge, attitudes, and practices regarding the use of antibiotics in poultry production in Grenada. METHOD A cross-sectional study was conducted in August-September, 2016, surveying 30 poultry farmers each having 500 or more chickens grown for commercial purposes. RESULTS More than 1000 birds were kept on 18 (60.0%) farms. Antibiotics were used on the majority of farms (25, 83.3%). More than half of the respondents, 19 (63.3%), stated they were only somewhat aware of issues related to the use of antibiotics and the majority, 21 (70.0%), were also unable to define antimicrobial resistance. There was inconsistency in the farmers' knowledge about how and when to use antibiotics. There was also a high level of noncompliance with manufacturers' recommendations for use of antibiotics. The respondents were not aware of local programs to monitor antibiotic use or manage antibiotic resistance in the poultry industry. CONCLUSION Generally, the farmers' knowledge and practices were inconsistent with recommendations by the World Health Organization for antibiotic stewardship. While low-income countries, such as Grenada, are challenged with the lack of resources to undertake research and implement responsive actions, this research highlights the need for some immediate measures of remedy, such as education of farmers and monitoring procurement and use of antibiotics, to reduce risk to public health.
Collapse
Affiliation(s)
- Lindonne Glasgow
- Department of Public Health & Preventive Medicine, St. George's University, St. George, Grenada
| | - Martin Forde
- Department of Public Health & Preventive Medicine, St. George's University, St. George, Grenada
| | - Darren Brow
- Department of Public Health & Preventive Medicine, St. George's University, St. George, Grenada
| | - Catherine Mahoney
- Department of Public Health & Preventive Medicine, St. George's University, St. George, Grenada
| | - Stephanie Fletcher
- Public Health Unit, South Western District Local Health District, Liverpool, Australia
| | - Shelly Rodrigo
- Department of Public Health & Preventive Medicine, St. George's University, St. George, Grenada
| |
Collapse
|
33
|
Vounba P, Arsenault J, Bada-Alambédji R, Fairbrother JM. Pathogenic potential and the role of clones and plasmids in beta-lactamase-producing E. coli from chicken faeces in Vietnam. BMC Vet Res 2019; 15:106. [PMID: 30947723 PMCID: PMC6449924 DOI: 10.1186/s12917-019-1849-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in food-producing animals is a global public health issue. This study investigated AMR and virulence profiles of E. coli isolated from healthy chickens in Vietnam. E. coli were isolated from fecal samples collected in five chicken farms located in the provinces of Hoa Binh, Thai Nguyen and Bac Giang in the North of Vietnam. These isolates were examined by disk diffusion for their AMR, PCR for virulence and AMR genes, pulsed-field gel electrophoresis for relatedness between blaCMY-2/blaCTX-M-positive isolates, electroporation for transferability of blaCMY-2 or blaCTX-M genes and sequencing for mutations responsible for ciprofloxacin resistance. RESULTS Up to 99% of indicator isolates were multidrug resistant. Resistance to third-generation cephalosporins (3GC) was encoded by both blaCTX-M and blaCMY-2 genes; blaCTX-M genes being of genotypes blaCTX-M-1, - 14, - 15, - 17, - 57 and - 87, whereas ciprofloxacin resistance was due to mutations in the gyrA and parC genes. Some isolates originating from farms located in different provinces of Vietnam were found to be closely related, suggesting they may have been disseminated from a same source of contamination. Plasmids may also have played a role in the diffusion of 3GC-resistance as the blaCMY-2 gene was located on plasmids A/C and I1, and the blaCTX-M gene variants were carried by I1, FIB, R and HI1. Plasmids carrying the blaCMY-2/blaCTX-M genes also co-transferred resistance to other antimicrobials. In addition, isolates potentially capable of infecting humans, of which some produced blaCMY-2/blaCTX-M, were identified in this study. CONCLUSIONS Both clones and plasmids could be involved in the dissemination of 3GC-resistant E. coli within and between chicken farms in Vietnam. These results demonstrate the necessity to monitor AMR and control antimicrobial use in poultry in Vietnam.
Collapse
Affiliation(s)
- Passoret Vounba
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, the Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), St-Hyacinthe, Quebec Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, the Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), St-Hyacinthe, Quebec Canada
| | - Rianatou Bada-Alambédji
- Department of Public Health and Environment, Ecole Inter-Etats des Sciences et Médecine Vétérinaires (EISMV), de Dakar, Senegal
| | - John Morris Fairbrother
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, the Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), St-Hyacinthe, Quebec Canada
- OIE Reference Laboratory for Escherichia coli (EcL), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2 Canada
| |
Collapse
|
34
|
High level of multidrug-resistant Escherichia coli in young dairy calves in southern Vietnam. Trop Anim Health Prod 2019; 51:1405-1411. [PMID: 30734887 PMCID: PMC6597609 DOI: 10.1007/s11250-019-01820-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
This study investigated the occurrence of antimicrobial-resistant Escherichia coli in dairy calves in southern Vietnam. Fecal samples were taken directly from the rectum of 84 calves from 41 smallholder dairy farms, when newborn and at 14 days of age for isolation of E. coli. Escherichia coli strains were isolated from 144 of the 168 fecal samples tested. Of the 144 E. coli isolates, 40% were found to be susceptible to all 12 antimicrobial drugs tested and 53% of the E. coli isolates were resistant to at least three antimicrobials. Calves were colonized with antimicrobial-resistant E. coli already on the day of birth. Resistance to tetracycline was most common, followed by resistance to sulfamethoxazole, ampicillin, trimethoprim, and ciprofloxacin. Four isolates carried a gene encoding for extended-spectrum cephalosporinases (ESC), and these genes belonged to blaCTX-M group 1 (2 isolates), blaCTX-M group 9 (1 isolate), and blaCMY-2 (1 isolate). Thirty-three isolates had a plasmid-mediated quinolone resistance (PMQR) phenotype, and 30 of these carried the qnrS gene. These results are of importance for management routines of dairy cattle to prevent the spread of antimicrobial resistance.
Collapse
|
35
|
Molecular and phenotypic characterization of enterococci isolated from broiler flocks in Turkey. Trop Anim Health Prod 2019; 51:1073-1082. [PMID: 30637613 DOI: 10.1007/s11250-018-01784-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine the antimicrobial resistance, resistance mechanisms implicated, and virulence genes (asa1, gelE, cylA, esp, and hyl) of Enterococcus spp. isolated from broiler flocks in Turkey. In addition, clonality of ampicillin and vancomycin-resistant enterococci was also investigated using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Out of 430 cloacal swab samples investigated, 336 (78.1%) Enterococcus spp. was isolated. The most frequently identified species were E. faecalis (87.8%), E. faecium (8.3%), E. durans (2.4%), E. casseliflavus (0.9%), and E. hirae (0.6%). The most common resistance was against tetracycline (81.3%), erythromycin (77.1%), ciprofloxacin (56.8%), and chloramphenicol (46.4%). Fifty (14.9%) isolates showed high-level gentamicin resistance (HLGL) phenotype. Ampicillin and vancomycin resistance were observed in 3.3% and 1.5% of the isolates, respectively. Two hundred eighty-three isolates were positive for the presence of virulence genes. Among the virulence genes tested, only gelE, asa1, esp, and cylA genes were detected. The most prevalent virulence gene was gelE (234, 69.6%), followed by asa1 (160, 47.6%), esp (37, 11%), and cylA (2, 0.6%). In conclusion, this study revealed that commensal enterococci from broiler flocks showed high rate of resistance to antimicrobials including clinically important antimicrobials for humans. The main underlying reason for high resistance could be attributed to the inappropriate and widespread use of antimicrobials. Therefore, there is an urgent need to develop control strategies to prevent the emergence and spread of antimicrobial resistance.
Collapse
|
36
|
Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, Del Campo R, Coque TM. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0032-2018. [PMID: 30051804 PMCID: PMC11633606 DOI: 10.1128/microbiolspec.arba-0032-2018] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals. They can easily contaminate the food and the environment, entering the food chain. Moreover, Enterococcus is an important opportunistic pathogen, especially the species E. faecalis and E. faecium, causing a wide variety of infections. This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance. In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals. Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid. The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as optrA and cfr, is highlighted. The molecular epidemiology and the population structure of E. faecalis and E. faecium isolates in farm and companion animals is presented. Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed.
Collapse
Affiliation(s)
- Carmen Torres
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Carla Andrea Alonso
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Laura Ruiz-Ripa
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Ricardo León-Sampedro
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| |
Collapse
|
37
|
Founou LL, Amoako DG, Founou RC, Essack SY. Antibiotic Resistance in Food Animals in Africa: A Systematic Review and Meta-Analysis. Microb Drug Resist 2018; 24:648-665. [PMID: 29683779 DOI: 10.1089/mdr.2017.0383] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This study critically reviewed the published literature and performed a meta-analysis to determine the overall burden of antibiotic-resistant bacteria in food animals in Africa. METHODS English and French published articles indexed in EBSCOhost, PubMed, Web of Science, and African Journals Online were retrieved, with searches being conducted up to August, 2015. Data were pooled and meta-analysis performed using a random-effects model, and the results are described as event rates. RESULTS According to the predefined inclusion and exclusion criteria, 17 articles out of the 852 retrieved were eligible for the qualitative and quantitative analysis. The studies included were mainly conducted in Nigeria, with Escherichia coli, Salmonella spp., and Campylobacter spp. being the main bacteria. The pooled estimates showed high level of antibiotic resistance (ABR) (86%; p < 0.001) and multidrug resistance (73%; p = 0.003). CONCLUSION Our results suggest that ABR is substantively prevalent and poses a serious threat for food safety and security in Africa. These findings shed light on areas for future research concerning antibiotic-resistant and multidrug-resistant bacteria in food animals as etiological agents of infectious diseases in humans. They further yielded some interesting findings on the burden of ABR that could be useful in developing measures to contain this threat in the farm-to-plate continuum in Africa.
Collapse
Affiliation(s)
- Luria Leslie Founou
- 1 Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal , Durban, South Africa .,2 Department of Food Safety and Environmental Microbiology, Centre of Expertise and Biological Diagnostic of Cameroon , Yaoundé, Cameroon
| | - Daniel Gyamfi Amoako
- 1 Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal , Durban, South Africa
| | - Raspail Carrel Founou
- 1 Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal , Durban, South Africa .,3 Department of Clinical Microbiology, Centre of Expertise and Biological Diagnostic of Cameroon , Yaoundé, Cameroon
| | - Sabiha Yusuf Essack
- 1 Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal , Durban, South Africa
| |
Collapse
|
38
|
Chotinantakul K, Chansiw N, Okada S. Antimicrobial resistance of Enterococcus spp. isolated from Thai fermented pork in Chiang Rai Province, Thailand. J Glob Antimicrob Resist 2018; 12:143-148. [PMID: 29030312 DOI: 10.1016/j.jgar.2017.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the prevalence of antimicrobial-resistant phenotypes and genes of Enterococcus spp. in order to explore the range of resistance profiles from Thai traditional fermented pork. METHODS A total of 120 Thai fermented pork specimens were collected in Chiang Rai, Thailand. Antimicrobial resistance among isolated enterococci to 11 antimicrobial agents was determined by the agar disk diffusion method. Antibiotic resistance genes from resistant phenotypes and virulence genes were observed. RESULTS A total of 119 enterococci were found contaminating the collected samples. The most prevalent species was Enterococcus faecalis (68.9%), followed by Enterococcus hirae (16.0%), Enterococcus faecium (13.4%) and Enterococcus gallinarum (1.7%). The highest percentage of resistance was to ciprofloxacin (97.5%), followed by erythromycin (78.2%) and tetracycline (67.2%), whilst high-level gentamicin- and streptomycin-resistant isolates were of lower frequency (7.6% and 22.7%, respectively). All isolates were susceptible to the clinically important agents vancomycin and teicoplanin. Overall, a relatively high frequency of multidrug-resistant (MDR) enterococci was observed (76.2%). Antimicrobial-resistant phenotypes were found to carry aacA-aphD, addE, erm(B), mefA/E, cat, tet(L) and tet(M) resistance genes. Virulence genes were also evaluated and the gelE gene was found to be the most common (37.8%). CONCLUSIONS These data highlight the importance of MDR enterococci in fermented pork in Thailand. This is the first report to detect the unusual species E. hirae carrying the mefA/E macrolide resistance gene. These clinically important and unusual enterococci isolates from Thai fermented pork could be a source of transferable resistance genes to other bacteria.
Collapse
Affiliation(s)
| | - Nittaya Chansiw
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research and Graduate School of Medical Sciences, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
39
|
Yamaguchi T, Okihashi M, Harada K, Konishi Y, Uchida K, Hoang Ngoc Do M, Thi Bui L, Nguyen TD, Phan HB, Dang Thien Bui H, Nguyen PD, Kajimura K, Kumeda Y, Van Dang C, Hirata K, Yamamoto Y. Detection of antibiotics in chicken eggs obtained from supermarkets in Ho Chi Minh City, Vietnam. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:430-433. [PMID: 28281880 DOI: 10.1080/03601234.2017.1293457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The residual levels of antibiotics in Vietnamese eggs were monitored from 2014 to 2015. A total of 111 egg packages, distributed by 11 different companies, were collected from supermarkets in Ho Chi Minh City and the levels of 28 antibiotics were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening method. Sixteen samples tested positive for antibiotics; a total of eight compounds (enrofloxacin, ciprofloxacin, norfloxacin, sulfadimethoxine, sulfamethazine, sulfamonomethoxine, tilmicosin and trimethoprim) were detected. Enrofloxacin was detected in eight samples, with two samples exhibiting concentrations exceeding 1,000 µg kg-1. Tilmicosin was detected in three samples at a range of 49-568 µg kg-1. We observed that two of the 11 companies frequently sold antibiotic-contaminated eggs (detection rates of 56 and 60%), suggesting that a number of companies do not regulate the use of antibiotics in egg-laying hens. Our findings indicate that livestock farmers require instruction regarding antibiotic use and that continual antibiotic monitoring is essential in Vietnam.
Collapse
Affiliation(s)
- Takahiro Yamaguchi
- a Osaka Prefectural Institute of Public Health , Osaka , Japan
- b Graduate School of Pharmaceutical Sciences, Osaka University , Osaka , Japan
| | - Masahiro Okihashi
- a Osaka Prefectural Institute of Public Health , Osaka , Japan
- b Graduate School of Pharmaceutical Sciences, Osaka University , Osaka , Japan
- c Global Collaboration Center , Osaka University , Osaka , Japan
| | - Kazuo Harada
- b Graduate School of Pharmaceutical Sciences, Osaka University , Osaka , Japan
- c Global Collaboration Center , Osaka University , Osaka , Japan
| | | | - Kotaro Uchida
- a Osaka Prefectural Institute of Public Health , Osaka , Japan
- b Graduate School of Pharmaceutical Sciences, Osaka University , Osaka , Japan
| | | | - Long Thi Bui
- d Institute of Public Health , Ho Chi Minh City , Vietnam
| | | | - Ha Bich Phan
- d Institute of Public Health , Ho Chi Minh City , Vietnam
| | | | - Phuc Do Nguyen
- d Institute of Public Health , Ho Chi Minh City , Vietnam
| | - Keiji Kajimura
- a Osaka Prefectural Institute of Public Health , Osaka , Japan
| | - Yuko Kumeda
- a Osaka Prefectural Institute of Public Health , Osaka , Japan
| | - Chinh Van Dang
- d Institute of Public Health , Ho Chi Minh City , Vietnam
| | - Kazumasa Hirata
- b Graduate School of Pharmaceutical Sciences, Osaka University , Osaka , Japan
- c Global Collaboration Center , Osaka University , Osaka , Japan
| | - Yoshimasa Yamamoto
- a Osaka Prefectural Institute of Public Health , Osaka , Japan
- c Global Collaboration Center , Osaka University , Osaka , Japan
| |
Collapse
|
40
|
Founou LL, Founou RC, Essack SY. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front Microbiol 2016; 7:1881. [PMID: 27933044 PMCID: PMC5120092 DOI: 10.3389/fmicb.2016.01881] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Antibiotics are now "endangered species" facing extinction due to the worldwide emergence of antibiotic resistance (ABR). Food animals are considered as key reservoirs of antibiotic-resistant bacteria with the use of antibiotics in the food production industry having contributed to the actual global challenge of ABR. There are no geographic boundaries to impede the worldwide spread of ABR. If preventive and containment measures are not applied locally, nationally and regionally, the limited interventions in one country, continent and for instance, in the developing world, could compromise the efficacy and endanger ABR containment policies implemented in other parts of the world, the best-managed high-resource countries included. Multifaceted, comprehensive, and integrated measures complying with the One Health approach are imperative to ensure food safety and security, effectively combat infectious diseases, curb the emergence and spread of ABR, and preserve the efficacy of antibiotics for future generations. Countries should follow the World Health Organization, World Organization for Animal Health, and the Food and Agriculture Organization of the United Nations recommendations to implement national action plans encompassing human, (food) animal, and environmental sectors to improve policies, interventions and activities that address the prevention and containment of ABR from farm-to-fork. This review covers (i) the origin of antibiotic resistance, (ii) pathways by which bacteria spread to humans from farm-to-fork, (iii) differences in levels of antibiotic resistance between developed and developing countries, and (iv) prevention and containment measures of antibiotic resistance in the food chain.
Collapse
Affiliation(s)
- Luria Leslie Founou
- Antimicrobial Research Unit, Department of Pharmacy, School of Health Sciences, University of KwaZulu-NatalDurban, South Africa
| | - Raspail Carrel Founou
- Antimicrobial Research Unit, Department of Pharmacy, School of Health Sciences, University of KwaZulu-NatalDurban, South Africa
- Department of Microbiology, Centre of Expertise and Biological Diagnostic of CameroonYaoundé, Cameroon
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, Department of Pharmacy, School of Health Sciences, University of KwaZulu-NatalDurban, South Africa
| |
Collapse
|
41
|
Nhung NT, Cuong NV, Thwaites G, Carrique-Mas J. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review. Antibiotics (Basel) 2016; 5:E37. [PMID: 27827853 PMCID: PMC5187518 DOI: 10.3390/antibiotics5040037] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR). We reviewed English-language peer-reviewed publications related to antimicrobial usage (AMU) and AMR in animal production, as well as antimicrobial residues in meat and fish from 2000 to 2016, in the region. There is a paucity of data from most countries and for most bacterial pathogens. Most of the published work relates to non-typhoidal Salmonella (NTS), Escherichia coli (E. coli), and Campylobacter spp. (mainly from Vietnam and Thailand), Enterococcus spp. (Malaysia), and methicillin-resistant Staphylococcus aureus (MRSA) (Thailand). However, most studies used the disk diffusion method for antimicrobial susceptibility testing; breakpoints were interpreted using Clinical Standard Laboratory Institute (CSLI) guidelines. Statistical models integrating data from publications on AMR in NTS and E. coli studies show a higher overall prevalence of AMR in pig isolates, and an increase in levels of AMR over the years. AMU studies (mostly from Vietnam) indicate very high usage levels of most types of antimicrobials, including beta-lactams, aminoglycosides, macrolides, and quinolones. This review summarizes information about genetic determinants of resistance, most of which are transferrable (mostly plasmids and integrons). The data in this review provide a benchmark to help focus research and policies on AMU and AMR in the region.
Collapse
Affiliation(s)
- Nguyen T Nhung
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| | - Nguyen V Cuong
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| | - Guy Thwaites
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Juan Carrique-Mas
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
42
|
Onseedaeng S, Ratthawongjirakul P. Rapid Detection of Genomic Mutations in gyrA and parC Genes of Escherichia coli by Multiplex Allele Specific Polymerase Chain Reaction. J Clin Lab Anal 2016; 30:947-955. [PMID: 27075845 DOI: 10.1002/jcla.21961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/11/2015] [Accepted: 01/26/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fluoroquinolone (FR) resistant Escherichia coli infection has become a global problem. The FR resistance usually occurs mainly due to specific point of mutations within the quinolone resistance-determining regions (QRDRs) at the gyrA codon of Ser83 and Asp87 and the parC codon of Ser80 and Glu84. Here, we appraised type and frequency of the QRDR mutations in FR-resistant E. coli isolates, and developed multiplex allele specific PCR (MAS-PCR) for the detection of "hot spot" mutations. METHODS A total of 111 ciprofloxacin-resistant E. coli from Ramathibodi Hospital in Bangkok, Thailand, were performed Minimum Inhibitory Concentration (MIC) by Etest® and investigated for gyrA and parC genes' mutations by MAS-PCR. Sensitivity and specificity of MAS-PCR were compared to the sequencing method's. RESULTS Ninety-nine of 111 (89.19%) E. coli isolates had mutation at least one point in the QRDRs. Six usual amino acid substitutes were reported, including Ser83-Lue, Asp87-Asn, Asp87-Tyr, Ser80-Ile, Glu84-Gly, and Glu84-Val. MAS-PCR detected codons 83 and 87 in gyrA and codons 80 and 84 in parC mutations, yielding 96.97%, 100%, 100%, and 93.33% sensitivity, respectively, and 100%, 100%, 100%, and 98.48% specificity, respectively. CONCLUSION MAS-PCR may be used for rapid detection of FR resistance in routine laboratory as well as in epidemiology study.
Collapse
Affiliation(s)
- Sukanlayanee Onseedaeng
- Molecular Science of Medical Microbiology and Immunology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Panan Ratthawongjirakul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
43
|
Public Health Risks of Multiple-Drug-Resistant Enterococcus spp. in Southeast Asia. Appl Environ Microbiol 2015; 81:6090-7. [PMID: 26150452 DOI: 10.1128/aem.01741-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterococci rank as one of the leading causes of nosocomial infections, such as urinary tract infections, surgical wound infections, and endocarditis, in humans. These infections can be hard to treat because of the rising incidence of antibiotic resistance. Enterococci inhabiting nonhuman reservoirs appear to play a critical role in the acquisition and dissemination of antibiotic resistance determinants. The spread of antibiotic resistance has become a major concern in both human and veterinary medicine, especially in Southeast Asia, where many developing countries have poor legislation and regulations to control the supply and excessive use of antimicrobials. This review addresses the occurrence of antibiotic-resistant enterococci in Association of Southeast Asian Nations countries and proposes infection control measures that should be applied to limit the spread of multiple-drug-resistant enterococci.
Collapse
|