1
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Krimpenfort RA, van der Meulen SA, Verhagen H, Driessen M, Filonova G, Hoogenboezem M, van den Akker E, von Lindern M, Nethe M. E-cadherin/β-catenin expression is conserved in human and rat erythropoiesis and marks stress erythropoiesis. Blood Adv 2023; 7:7169-7183. [PMID: 37792794 PMCID: PMC10698263 DOI: 10.1182/bloodadvances.2023010875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
E-cadherin is a crucial regulator of epithelial cell-to-cell adhesion and an established tumor suppressor. Aside epithelia, E-cadherin expression marks the erythroid cell lineage during human but not mouse hematopoiesis. However, the role of E-cadherin in human erythropoiesis remains unknown. Because rat erythropoiesis was postulated to reflect human erythropoiesis more closely than mouse erythropoiesis, we investigated E-cadherin expression in rat erythroid progenitors. E-cadherin expression is conserved within the erythroid lineage between rat and human. In response to anemia, erythroblasts in rat bone marrow (BM) upregulate E-cadherin as well as its binding partner β-catenin. CRISPR/Cas9-mediated knock out of E-cadherin revealed that E-cadherin expression is required to stabilize β-catenin in human and rat erythroblasts. Suppression of β-catenin degradation by glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021 also enhances β-catenin stability in human erythroblasts but hampers erythroblast differentiation and survival. In contrast, direct activation of β-catenin signaling, using an inducible, stable β-catenin variant, does not perturb maturation or survival of human erythroblasts but rather enhances their differentiation. Although human erythroblasts do not respond to Wnt ligands and direct GSK3β inhibition even reduces their survival, we postulate that β-catenin stability and signaling is mostly controlled by E-cadherin in human and rat erythroblasts. In response to anemia, E-cadherin-driven upregulation and subsequent activation of β-catenin signaling may stimulate erythroblast differentiation to support stress erythropoiesis in the BM. Overall, we uncover E-cadherin/β-catenin expression to mark stress erythropoiesis in rat BM. This may provide further understanding of the underlying molecular regulation of stress erythropoiesis in the BM, which is currently poorly understood.
Collapse
Affiliation(s)
- Rosa A. Krimpenfort
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Santhe A. van der Meulen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Han Verhagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Michel Driessen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Galina Filonova
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Micha Nethe
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Josselsohn R, Barnes BJ, Kalfa TA, Blanc L. Navigating the marrow sea towards erythromyeloblastic islands under normal and inflammatory conditions. Curr Opin Hematol 2023; 30:80-85. [PMID: 36718814 PMCID: PMC10065913 DOI: 10.1097/moh.0000000000000756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Terminal erythroid differentiation occurs in specialized niches called erythroblastic islands. Since their discovery in 1958, these niches have been described as a central macrophage surrounded by differentiating erythroblasts. Here, we review the recent advances made in the characterization of these islands and the role they could play in anaemia of inflammation. RECENT FINDINGS The utilization of multispectral imaging flow cytometry (flow cytometry with microscopy) has enabled for a more precise characterization of the niche that revealed the presence of maturing granulocytes in close contact with the central macrophage. These erythromyeloblastic islands (EMBIs) can adapt depending on the peripheral needs. Indeed, during inflammation wherein inflammatory cytokines limit erythropoiesis and promote granulopoiesis, EMBIs present altered structures with increased maturing granulocytes and decreased erythroid precursors. SUMMARY Regulation of the structure and function of the EMBI in the bone marrow emerges as a potential player in the pathophysiology of acute and chronic inflammation and its associated anaemia.
Collapse
Affiliation(s)
- Rachel Josselsohn
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
| | - Betsy J. Barnes
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
- Division of Pediatrics Hematology/Oncology, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | | | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
- Division of Pediatrics Hematology/Oncology, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| |
Collapse
|
4
|
Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022; 286:121568. [DOI: 10.1016/j.biomaterials.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
|
5
|
Mun Y, Fazio S, Arrieta CN. Remodeling of the Bone Marrow Stromal Microenvironment During Pathogenic Infections. Curr Top Microbiol Immunol 2021; 434:55-81. [PMID: 34850282 DOI: 10.1007/978-3-030-86016-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The bone marrow (BM) is the primary hematopoietic organ and a hub in which organismal demands for blood cellular output are systematically monitored. BM tissues are additionally home to a plethora of mature immune cell types, providing functional environments for the activation of immune responses and acting as preferred anatomical reservoirs for cells involved in immunological memory. Stromal cells of the BM microenvironment crucially govern different aspects of organ function, by structuring tissue microanatomy and by directly providing essential regulatory cues to hematopoietic and immune components in distinct niches. Emerging evidence demonstrates that stromal networks are endowed with remarkable functional and structural plasticity. Stress-induced adaptations of stromal cells translate into demand-driven hematopoiesis. Furthermore, aberrations of stromal integrity arising from pathological conditions critically contribute to the dysregulation of BM function. Here, we summarize our current understanding of the alterations that pathogenic infections and ensuing inflammatory conditions elicit on the global topography of the BM microenvironment, the integrity of anatomical niches and cellular interactions, and ultimately, on the regulatory function of diverse stromal subsets.
Collapse
Affiliation(s)
- YeVin Mun
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Häldeliweg 4, 8032, Zurich, Switzerland
| | - Serena Fazio
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Häldeliweg 4, 8032, Zurich, Switzerland
| | - César Nombela Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Häldeliweg 4, 8032, Zurich, Switzerland.
| |
Collapse
|
6
|
Myneni VD, Szalayova I, Mezey E. Differences in Steady-State Erythropoiesis in Different Mouse Bones and Postnatal Spleen. Front Cell Dev Biol 2021; 9:646646. [PMID: 34055777 PMCID: PMC8155546 DOI: 10.3389/fcell.2021.646646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adult erythropoiesis is a highly controlled sequential differentiation of hematopoietic stem cells (HSCs) to mature red blood cells in the bone marrow (BM). The bones which contain BM are diverse in their structure, embryonic origin, and mode of ossification. This has created substantial heterogeneity in HSCs function in BM of different bones, however, it is not known if this heterogeneity influences erythropoiesis in different bones and different regions of the same bone. In this study, we examined steady state BM erythroid progenitors and precursors from different bones - the femur, tibia, pelvis, sternum, vertebrae, radius, humerus, frontal, parietal bone, and compared all to the femur. Trabecular and cortical regions of the femur were also compared for differences in erythropoiesis. In addition, mouse spleen was studied to determine at which age erythropoietic support by the spleen was lost postnatally. We report that total erythroid cells, and erythroid precursors in the femur are comparable to tibia, pelvis, humerus and sternum, but are significantly reduced in the vertebrae, radius, frontal, and parietal bones. Erythroid progenitors and multipotential progenitor numbers are comparable in all the bones except for reduced number in the parietal bone. In the femur, the epiphysis and metaphysis have significantly reduced number of erythroid precursors and progenitors, multipotential progenitors and myeloid progenitors compared to the diaphysis region. These results show that analysis of erythroid precursors from diaphysis region of the femur is representative of tibia, pelvis, humerus and sternum and have significant implications on the interpretation of the steady-state erythropoiesis finding from adult BM. Postnatal spleen supports erythroid precursors until 6 weeks of age which coincides with reduced number of red pulp macrophages. The residual erythroid progenitor support reaches the adult level by 3 months of age. In conclusion, our findings provide insights to the differences in erythropoiesis between different bones, between trabecular and cortical regions of the femur, and developmental changes in postnatal spleen erythropoiesis.
Collapse
Affiliation(s)
- Vamsee D. Myneni
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | | | - Eva Mezey
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
7
|
Culliton K, Louati H, Laneuville O, Ramsay T, Trudel G. Six degrees head-down tilt bed rest caused low-grade hemolysis: a prospective randomized clinical trial. NPJ Microgravity 2021; 7:4. [PMID: 33589644 PMCID: PMC7884785 DOI: 10.1038/s41526-021-00132-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
This study aimed to measure hemolysis before, during and after 60 days of the ground-based spaceflight analog bed rest and the effect of a nutritional intervention through a prospective randomized clinical trial. Twenty male participants were hospitalized for 88 days comprised of 14 days of ambulatory baseline, 60 days of 6° head-down tilt bed rest and 14 days of reambulation. Ten participants each received a control diet or daily polyphenol associated with omega-3, vitamin E, and selenium supplements. The primary outcome was endogenous carbon monoxide (CO) elimination measured by gas chromatography. Hemolysis was also measured with serial bilirubin, iron, transferrin saturation blood levels and serial 3-day stool collections were used to measure urobilinoid excretion using photometry. Total hemoglobin mass (tHb) was measured using CO-rebreathing. CO elimination increased after 5, 11, 30, and 57 days of bed rest: +289 ppb (95% CI 101-477 ppb; p = 0.004), +253 ppb (78-427 ppb; p = 0.007), +193 ppb (89-298 ppb; p = 0.001) and +858 ppb (670-1046 ppb; p < 0.000), respectively, compared to baseline. Bilirubin increased after 20 and 49 days of bed rest +0.8 mg/l (p = 0.013) and +1.1 mg/l (p = 0.012), respectively; and iron increased after 20 days of bed rest +10.5 µg/dl (p = 0.032). The nutritional intervention did not change CO elimination. THb was lower after 60 days of bed rest -0.9 g/kg (p = 0.001). Bed rest enhanced hemolysis as measured through all three by-products of heme oxygenase. Ongoing enhanced hemolysis over 60 days contributed to a 10% decrease in tHb mass. Modulation of red blood cell control towards increased hemolysis may be an important mechanism causing anemia in astronauts.
Collapse
Affiliation(s)
- Kathryn Culliton
- grid.412687.e0000 0000 9606 5108Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Hakim Louati
- grid.412687.e0000 0000 9606 5108Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Odette Laneuville
- grid.28046.380000 0001 2182 2255Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON Canada
| | - Tim Ramsay
- grid.28046.380000 0001 2182 2255School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON Canada
| | - Guy Trudel
- grid.412687.e0000 0000 9606 5108Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa Hospital Research Institute, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
8
|
Li W, Guo R, Song Y, Jiang Z. Erythroblastic Island Macrophages Shape Normal Erythropoiesis and Drive Associated Disorders in Erythroid Hematopoietic Diseases. Front Cell Dev Biol 2021; 8:613885. [PMID: 33644032 PMCID: PMC7907436 DOI: 10.3389/fcell.2020.613885] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/22/2020] [Indexed: 01/13/2023] Open
Abstract
Erythroblastic islands (EBIs), discovered more than 60 years ago, are specialized microenvironments for erythropoiesis. This island consists of a central macrophage with surrounding developing erythroid cells. EBI macrophages have received intense interest in the verifications of the supporting erythropoiesis hypothesis. Most of these investigations have focused on the identification and functional analyses of EBI macrophages, yielding significant progresses in identifying and isolating EBI macrophages, as well as verifying the potential roles of EBI macrophages in erythropoiesis. EBI macrophages express erythropoietin receptor (Epor) both in mouse and human, and Epo acts on both erythroid cells and EBI macrophages simultaneously in the niche, thereby promoting erythropoiesis. Impaired Epor signaling in splenic niche macrophages significantly inhibit the differentiation of stress erythroid progenitors. Moreover, accumulating evidence suggests that EBI macrophage dysfunction may lead to certain erythroid hematological disorders. In this review, the heterogeneity, identification, and functions of EBI macrophages during erythropoiesis under both steady-state and stress conditions are outlined. By reviewing the historical data, we discuss the influence of EBI macrophages on erythroid hematopoietic disorders and propose a new hypothesis that erythroid hematopoietic disorders are driven by EBI macrophages.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxin Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
The erythroblastic island niche: modeling in health, stress, and disease. Exp Hematol 2020; 91:10-21. [DOI: 10.1016/j.exphem.2020.09.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
|
10
|
An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis. Int J Mol Sci 2020; 21:ijms21155263. [PMID: 32722249 PMCID: PMC7432157 DOI: 10.3390/ijms21155263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Human erythropoiesis is a complex process leading to the production of mature, enucleated erythrocytes (RBCs). It occurs mainly at bone marrow (BM), where hematopoietic stem cells (HSCs) are engaged in the early erythroid differentiation to commit into erythroid progenitor cells (burst-forming unit erythroid (BFU-E) and colony-forming unit erythroid (CFU-E)). Then, during the terminal differentiation, several erythropoietin-induced signaling pathways trigger the differentiation of CFU-E on successive stages from pro-erythroblast to reticulocytes. The latter are released into the circulation, finalizing their maturation into functional RBCs. This process is finely regulated by the physiological environment including the erythroblast-macrophage interaction in the erythroblastic island (EBI). Several human diseases have been associated with ineffective erythropoiesis, either by a defective or an excessive production of RBCs, as well as an increase or a hemoglobinization defect. Fully understanding the production of mature red blood cells is crucial for the comprehension of erythroid pathologies as well as to the field of transfusion. Many experimental approaches have been carried out to achieve a complete differentiation in vitro to produce functional biconcave mature RBCs. However, the various protocols usually fail to achieve enough quantities of completely mature RBCs. In this review, we focus on the evolution of erythropoiesis studies over the years, taking special interest in efforts that were made to include the microenvironment and erythroblastic islands paradigm. These more physiological approaches will contribute to a deeper comprehension of erythropoiesis, improve the treatment of dyserythropoietic disorders, and break through the barriers in massive RBCs production for transfusion.
Collapse
|
11
|
Fan H, Li N, Fan P, Hu X, Liang K, Zhang S, Cheng X, Wu Y. Differential tissue expression of erythroblast macrophage protein in a MRL/lpr mouse model of lupus. Lupus 2019; 28:843-853. [PMID: 31132907 DOI: 10.1177/0961203319851572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The objective of this study was to observe the expression features of erythroblast macrophage protein (EMP) between the tissues of MRL/lpr mice, a mouse model of systemic lupus erythematosus (SLE), and control mice. METHODS We examined the serum ANA in both mice groups through indirect immunofluorescence (IIF). Expression features of EMP in bone marrow, liver, renal, spleen, brain, and lung tissues of the MRL/lpr mice and control mice groups were followed using quantitative real-time polymerase chain reaction (Q-PCR). Meanwhile, the expression of EMP was located through immunohistochemical (IHC) studies and the expressive cell identified through double immunofluorescent labeling. RESULTS IIF showed that lupus mice have strong positive fluorescence, but no significant fluorescence was observed in control mice. Q-PCR detection revealed that EMP was expressed in the marrow, liver, renal, spleen, lung, and brain tissues of lupus mice. The highest levels were observed in the bone marrow, but there was no statistical difference between these tissues. EMP mRNA expression in the liver (t = 2.747, p = 0.01) and bone marrow (t = 3.853, p = 0.008) of lupus mice was significantly higher than in the control mice. However, no differences in EMP mRNA expression were observed in the renal, spleen, lung, and brain tissues between the lupus and control mice (p > 0.05). In addition, the IHC results showed that EMP protein is ubiquitously expressed in all of the tissues of the lupus and control mice. The positive expression rate in the bone marrow and liver tissues of the lupus mice was higher than in the control mice, but without an obvious difference in the other tissues. The double IF staining method shows that EMP protein was expressed in macrophages in the tissues of the lupus mice and the control mice. CONCLUSIONS Our data showed that EMP is ubiquitously expressed in macrophages at all of the tissues of the lupus and control mice. However, the expression of EMP in bone marrow and liver tissues of lupus mice was higher than in the control mice, which indicates that EMP may be important in the development of SLE.
Collapse
Affiliation(s)
- H Fan
- 1 Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, China.,2 Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, China
| | - N Li
- 1 Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - P Fan
- 1 Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - X Hu
- 1 Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - K Liang
- 1 Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - S Zhang
- 1 Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - X Cheng
- 1 Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Y Wu
- 3 Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, China
| |
Collapse
|
12
|
Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow. Crit Rev Oncol Hematol 2019; 137:43-56. [DOI: 10.1016/j.critrevonc.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
|
13
|
Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow. Cell Stem Cell 2019; 24:477-486.e6. [PMID: 30661958 DOI: 10.1016/j.stem.2018.11.022] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are maintained in a perivascular niche in bone marrow, in which leptin receptor+ (LepR) stromal cells and endothelial cells synthesize factors required for HSC maintenance, including stem cell factor (SCF). An important question is why LepR+ cells are one hundred times more frequent than HSCs. Here, we show that SCF from LepR+ cells is also necessary to maintain many c-kit+-restricted hematopoietic progenitors. Conditional deletion of Scf from LepR+ cells depleted common myeloid progenitors (CMPs), common lymphoid progenitors (CLPs), granulocyte-macrophage progenitors (GMPs), megakaryocyte-erythrocyte progenitors (MEPs), pre-megakaryocyte-erythrocyte progenitors (PreMegEs), and colony-forming units-erythroid (CFU-Es), as well as myeloid and erythroid blood cells. This was not caused by HSC depletion, as many other restricted progenitors were unaffected. Moreover, Scf deletion from endothelial cells depleted HSCs, but not progenitors. Early erythroid progenitors were closely associated with perisinusoidal LepR+ cells. This reveals cellular specialization within the niche: SCF from LepR+ cells is broadly required by HSCs and restricted progenitors while SCF from endothelial cells is required mainly by HSCs.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Malea M Murphy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elise Jeffery
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Allenby MC, Panoskaltsis N, Tahlawi A, Dos Santos SB, Mantalaris A. Dynamic human erythropoiesis in a three-dimensional perfusion bone marrow biomimicry. Biomaterials 2019; 188:24-37. [DOI: 10.1016/j.biomaterials.2018.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
|
15
|
Robles H, Park S, Joens MS, Fitzpatrick JAJ, Craft CS, Scheller EL. Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone 2019; 118:89-98. [PMID: 29366839 PMCID: PMC6063802 DOI: 10.1016/j.bone.2018.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/10/2023]
Abstract
Unlike white and brown adipose tissues, the bone marrow adipocyte (BMA) exists in a microenvironment containing unique populations of hematopoietic and skeletal cells. To study this microenvironment at the sub-cellular level, we performed a three-dimensional analysis of the ultrastructure of the BMA niche with focused ion beam scanning electron microscopy (FIB-SEM). This revealed that BMAs display hallmarks of metabolically active cells including polarized lipid deposits, a dense mitochondrial network, and areas of endoplasmic reticulum. The distinct orientations of the triacylglycerol droplets suggest that fatty acids are taken up and/or released in three key areas - at the endothelial interface, into the hematopoietic milieu, and at the bone surface. Near the sinusoidal vasculature, endothelial cells send finger-like projections into the surface of the BMA which terminate near regions of lipid within the BMA cytoplasm. In some regions, perivascular cells encase the BMA with their flattened cellular projections, limiting contacts with other cells in the niche. In the hematopoietic milieu, BMAT adipocytes of the proximal tibia interact extensively with maturing cells of the myeloid/granulocyte lineage. Associations with erythroblast islands are also prominent. At the bone surface, the BMA extends organelle and lipid-rich cytoplasmic regions toward areas of active osteoblasts. This suggests that the BMA may serve to partition nutrient utilization between diverse cellular compartments, serving as an energy-rich hub of the stromal-reticular network. Lastly, though immuno-EM, we've identified a subset of bone marrow adipocytes that are innervated by the sympathetic nervous system, providing an additional mechanism for regulation of the BMA. In summary, this work reveals that the bone marrow adipocyte is a dynamic cell with substantial capacity for interactions with the diverse components of its surrounding microenvironment. These local interactions likely contribute to its unique regulation relative to peripheral adipose tissues.
Collapse
Affiliation(s)
- Hero Robles
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA.
| | - SungJae Park
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA.
| | - Matthew S Joens
- Center for Cellular Imaging, Washington University, St. Louis, MO, USA.
| | - James A J Fitzpatrick
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO, USA; Department of Neuroscience, Washington University, St. Louis, MO, USA; Center for Cellular Imaging, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
| | - Clarissa S Craft
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO, USA.
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
16
|
Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E. The Shape Shifting Story of Reticulocyte Maturation. Front Physiol 2018; 9:829. [PMID: 30050448 PMCID: PMC6050374 DOI: 10.3389/fphys.2018.00829] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation.
Collapse
Affiliation(s)
- Elina Ovchynnikova
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Wei Q, Frenette PS. Niches for Hematopoietic Stem Cells and Their Progeny. Immunity 2018; 48:632-648. [PMID: 29669248 PMCID: PMC6103525 DOI: 10.1016/j.immuni.2018.03.024] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Steady-state hematopoietic stem cells' (HSCs) self-renewal and differentiation toward their mature progeny in the adult bone marrow is tightly regulated by cues from the microenvironment. Recent insights into the cellular and molecular constituents have uncovered a high level of complexity. Here, we review emerging evidence showing how HSCs and their progeny are regulated by an interdependent network of mesenchymal stromal cells, nerve fibers, the vasculature, and also other hematopoietic cells. Understanding the interaction mechanisms in these intricate niches will provide great opportunities for HSC-related therapies and immune modulation.
Collapse
Affiliation(s)
- Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departmentof Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
18
|
Messina V, Valtieri M, Rubio M, Falchi M, Mancini F, Mayor A, Alano P, Silvestrini F. Gametocytes of the Malaria Parasite Plasmodium falciparum Interact With and Stimulate Bone Marrow Mesenchymal Cells to Secrete Angiogenetic Factors. Front Cell Infect Microbiol 2018; 8:50. [PMID: 29546035 PMCID: PMC5838020 DOI: 10.3389/fcimb.2018.00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
The gametocytes of Plasmodium falciparum, responsible for the transmission of this malaria parasite from humans to mosquitoes, accumulate and mature preferentially in the human bone marrow. In the 10 day long sexual development of P. falciparum, the immature gametocytes reach and localize in the extravascular compartment of this organ, in contact with several bone marrow stroma cell types, prior to traversing the endothelial lining and re-entering in circulation at maturity. To investigate the host parasite interplay underlying this still obscure process, we developed an in vitro tridimensional co-culture system in a Matrigel scaffold with P. falciparum gametocytes and self-assembling spheroids of human bone marrow mesenchymal cells (hBM-MSCs). Here we show that this co-culture system sustains the full maturation of the gametocytes and that the immature, but not the mature, gametocytes adhere to hBM-MSCs via trypsin-sensitive parasite ligands exposed on the erythrocyte surface. Analysis of a time course of gametocytogenesis in the co-culture system revealed that gametocyte maturation is accompanied by the parasite induced stimulation of hBM-MSCs to secrete a panel of 14 cytokines and growth factors, 13 of which have been described to play a role in angiogenesis. Functional in vitro assays on human bone marrow endothelial cells showed that supernatants from the gametocyte mesenchymal cell co-culture system enhance ability of endothelial cells to form vascular tubes. These results altogether suggest that the interplay between immature gametocytes and hBM-MSCs may induce functional and structural alterations in the endothelial lining of the human bone marrow hosting the P. falciparum transmission stages.
Collapse
Affiliation(s)
- Valeria Messina
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valtieri
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Mercedes Rubio
- ISGlobal, Barcelona Ctr. Int. Health Res, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Mario Falchi
- AIDS National Center, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Mancini
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Umberto I - Policlinico di Roma, Rome, Italy
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
19
|
Abstract
Bone marrow fat cells comprise the largest population of cells in the bone marrow cavity, a characteristic that has attracted the attention of scholars from different disciplines. The perception that bone marrow adipocytes are "inert space fillers" has been broken, and currently, bone marrow fat is unanimously considered to be the third largest fat depot, after subcutaneous fat and visceral fat. Bone marrow fat (BMF) acts as a metabolically active organ and plays an active role in energy storage, endocrine function, bone metabolism, and the bone metastasis of tumors. Bone marrow adipocytes (BMAs), as a component of the bone marrow microenvironment, influence hematopoiesis through direct contact with cells and the secretion of adipocyte-derived factors. They also influence the progression of hematologic diseases such as leukemia, multiple myeloma, and aplastic anemia, and may be a novel target when exploring treatments for related diseases in the future. Based on currently available data, this review describes the role of BMF in hematopoiesis as well as in the development of hematologic diseases.
Collapse
|
20
|
Yeo JH, Cosgriff MP, Fraser ST. Analyzing the Formation, Morphology, and Integrity of Erythroblastic Islands. Methods Mol Biol 2018; 1698:133-152. [PMID: 29076088 DOI: 10.1007/978-1-4939-7428-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bone marrow is the primary site of erythropoiesis in healthy adult mammals. In the bone marrow, erythroid cells mature within specialized microenvironments termed erythroblastic islands (EBIs). EBIs are multi-cellular clusters comprised of a central macrophage surrounded by red blood cell (erythroid) progenitors. It has been proposed that the central macrophage functions as a "nurse-cell" providing iron, cytokines, and growth factors for the developing erythroid cells. The central macrophage also engulfs and destroys extruded erythroid nuclei. EBIs have recently been shown to play clinically important roles during human hematological disease. The molecular mechanisms regulating this hematopoietic niche are largely unknown. In this chapter, we detail protocols to study isolated EBIs using multiple microscopy platforms. Adhesion molecules regulate cell-cell interactions within the EBI and maintain the integrity of the niche. To improve our understanding of the molecular regulation of erythroid cells in EBIs, we have developed protocols for immuno-gold labeling of erythroid surface antigens to combine with scanning electron microscopy. These protocols have allowed imaging of EBIs at the nanometer scale, offering novel insights into the processes regulating red blood cell production.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Discipline of Anatomy and Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Matthew P Cosgriff
- Discipline of Anatomy and Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Stuart T Fraser
- Discipline of Anatomy and Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, 2050, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Room 233, Medical Foundation Building K25, 92-94 Parramatta Road, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
21
|
Heideveld E, Hampton-O'Neil LA, Cross SJ, van Alphen FPJ, van den Biggelaar M, Toye AM, van den Akker E. Glucocorticoids induce differentiation of monocytes towards macrophages that share functional and phenotypical aspects with erythroblastic island macrophages. Haematologica 2017; 103:395-405. [PMID: 29284682 PMCID: PMC5830394 DOI: 10.3324/haematol.2017.179341] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
The classical central macrophage found in erythroblastic islands plays an important role in erythroblast differentiation, proliferation and enucleation in the bone marrow. Convenient human in vitro models to facilitate the study of erythroid-macrophage interactions are desired. Recently, we demonstrated that cultured monocytes/macrophages enhance in vitro erythropoiesis by supporting hematopoietic stem and progenitor cell survival. Herein, we describe that these specific macrophages also support erythropoiesis. Human monocytes cultured in serum-free media supplemented with stem cell factor, erythropoietin, lipids and dexamethasone differentiate towards macrophages expressing CD16, CD163, CD169, CD206, CXCR4 and the phagocytic TAM-receptor family. Phenotypically, they resemble both human bone marrow and fetal liver resident macrophages. This differentiation is dependent on glucocorticoid receptor activation. Proteomic studies confirm that glucocorticoid receptor activation differentiates monocytes to anti-inflammatory tissue macrophages with a M2 phenotype, termed GC-macrophages. Proteins involved in migration, tissue residence and signal transduction/receptor activity are upregulated whilst lysosome and hydrolase activity GO-categories are downregulated. Functionally, we demonstrate that GC-macrophages are highly mobile and can interact to form clusters with erythroid cells of all differentiation stages and phagocytose the expelled nuclei, recapitulating aspects of erythroblastic islands. In conclusion, glucocorticoid-directed monocyte differentiation to macrophages represents a convenient model system to study erythroid-macrophage interactions.
Collapse
Affiliation(s)
- Esther Heideveld
- Sanquin Research, Department of Hematopoiesis, Amsterdam and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | | | - Stephen J Cross
- Wolfson Bioimaging Facility, School of Medical Sciences, Bristol, UK
| | | | - Maartje van den Biggelaar
- Sanquin Research, Department of Research Facilities, Amsterdam, the Netherlands.,Sanquin Research, Department of Plasma Proteins, Amsterdam, the Netherlands
| | - Ashley M Toye
- Department of Biochemistry, School of Medical Sciences, Bristol, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, UK.,National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, UK
| | - Emile van den Akker
- Sanquin Research, Department of Hematopoiesis, Amsterdam and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
22
|
Digesting the role of bone marrow macrophages on hematopoiesis. Immunobiology 2016; 222:814-822. [PMID: 27890297 DOI: 10.1016/j.imbio.2016.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/27/2016] [Accepted: 11/12/2016] [Indexed: 01/07/2023]
Abstract
Tissue resident macrophages are found in various tissues like Langerhans cells in the skin or alveolar macrophages in the lung, and their main function is to regulate organ homeostasis. They have also been observed in the bone marrow and these cells in particular have been gaining importance in recent years as they are key players in hematopoiesis. However, as the characterization and classification of these putatively different bone marrow resident macrophages is far from established there is a need to generate an overview of tissue resident macrophages of the bone marrow. Here, we will review the current knowledge of bone marrow resident macrophages both in mouse and human. We will discuss the state of the art on the origin of bone marrow macrophages, specialized microenvironments where they reside and their unique characteristics. We will emphasize the two best studied examples of macrophage homeostatic function in the bone marrow, specifically within erythroblastic islands and the hematopoietic stem cell niche. Although increasing evidence shows that bone marrow resident macrophages are indispensable for hematopoietic stem cell function and bone marrow erythroid output, the field of bone marrow macrophages is in its infancy. This field is in dire need for a unified nomenclature to support functional experiments, model systems, and the identification of niches.
Collapse
|
23
|
Yeo JH, McAllan BM, Fraser ST. Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:368-378. [PMID: 26898901 DOI: 10.1017/s1431927616000155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production.
Collapse
Affiliation(s)
- Jia Hao Yeo
- 1Discipline of Anatomy & Histology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| | - Bronwyn M McAllan
- 2Discipline of Physiology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| | - Stuart T Fraser
- 1Discipline of Anatomy & Histology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| |
Collapse
|
24
|
Phylogenetic and Ontogenetic View of Erythroblastic Islands. BIOMED RESEARCH INTERNATIONAL 2015; 2015:873628. [PMID: 26557707 PMCID: PMC4628717 DOI: 10.1155/2015/873628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022]
Abstract
Erythroblastic islands are a hallmark of mammalian erythropoiesis consisting of a central macrophage surrounded by and interacting closely with the maturing erythroblasts. The macrophages are thought to serve many functions such as supporting erythroblast proliferation, supplying iron for hemoglobin, promoting enucleation, and clearing the nuclear debris; moreover, inhibition of erythroblastic island formation is often detrimental to erythropoiesis. There is still much not understood about the role that macrophages and microenvironment play in erythropoiesis and insights may be gleaned from a comparative analysis with erythropoietic niches in nonmammalian vertebrates which, unlike mammals, have erythrocytes that retain their nucleus. The phylogenetic development of erythroblastic islands in mammals in which the erythrocytes are anucleate underlines the importance of the macrophage in erythroblast enucleation.
Collapse
|
25
|
Falchi M, Varricchio L, Martelli F, Masiello F, Federici G, Zingariello M, Girelli G, Whitsett C, Petricoin EF, Moestrup SK, Zeuner A, Migliaccio AR. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica 2014; 100:178-87. [PMID: 25533803 DOI: 10.3324/haematol.2014.114405] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation directly, dexamethasone stimulates expansion of these cells indirectly by stimulating maturation and cytokinesis supporting activity of macrophages.
Collapse
Affiliation(s)
- Mario Falchi
- National AIDS Center, New York, NY, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Lilian Varricchio
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Fabrizio Martelli
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Masiello
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Federici
- Regina Elena National Cancer Institute, Rome, Italy Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Carolyn Whitsett
- Kings County Hospital and Downstate Medical Center, Brooklyn, NY, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Søren Kragh Moestrup
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark Institute of Molecular Medicine, University of Souther Denmark, Denmark
| | - Ann Zeuner
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
26
|
Wang YH, Fu R, Dong SW, Liu H, Shao ZH. Erythroblastic islands in the bone marrow of patients with immune-related pancytopenia. PLoS One 2014; 9:e95143. [PMID: 24740145 PMCID: PMC3989288 DOI: 10.1371/journal.pone.0095143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Immune-related pancytopenia (IRP) is characterized by pancytopenia caused by autoantibody-mediated bone marrow destruction or suppression. The bone marrows of IRP patients have remarkably increased erythroblastic islands (EIs). METHODOLOGY AND PRINCIPAL FINDINGS We determined the immunoglobulin G (IgG) autoantibodies in some parts of EIs of IRP patients using immunofluorescence to investigate the biological function of EIs with IgG in the pathophysiology of IRP. The dominant class of autoantibodies detected in mononuclear cells was IgG (CD34 IgG, CD15 IgG, and GlycoA IgG), specifically IgG on GlycoA-positive cells (GlycoA IgG). Results show that extravascular hemolysis occurred in IRP through IgG autoantibodies in the EIs. These data included a high percentage of reticulocytes in the peripheral blood, hypererythrocytosis in the bone marrow, and high serum bilirubin. Furthermore, we examined the macrophages in the bone marrow of IRP patients. The results show that the number of activated macrophages relatively increased, and the phagocytic activity of macrophages significantly increased. CONCLUSIONS AND SIGNIFICANCE Increased EIs with IgG were the sites of erythroblast phagocytosis by the activated macrophages, rather than erythropoietic niches. The IgG autoantibodies in the EIs possibly functioned as adhesion molecules for a ring of erythroblasts around the macrophages, thereby forming morphologic EIs.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,
| | - Shu-Wen Dong
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,
| | - Zong-Hong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,
- * E-mail:
| |
Collapse
|
27
|
de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol 2014; 5:9. [PMID: 24523696 PMCID: PMC3906564 DOI: 10.3389/fphys.2014.00009] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/06/2014] [Indexed: 12/13/2022] Open
Abstract
Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 1010 RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.
Collapse
Affiliation(s)
- Djuna Z de Back
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Elena B Kostova
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Marian van Kraaij
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Timo K van den Berg
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Robin van Bruggen
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
28
|
Neves FMDO, Paccola CC, Miraglia SM, Cipriano I. Morphometric evaluation of the fetal rat liver after maternal dexamethasone treatment: effect on the maturation of erythroid and megakaryocytic cells. Vet Clin Pathol 2013; 42:483-9. [PMID: 24111897 DOI: 10.1111/vcp.12080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND During pregnancy, glucocorticoids are frequently used to accelerate fetal lung maturation in preterm delivery. However, prenatal administration of glucocorticoids has been shown to affect organs such as fetal liver, an important hematopoietic organ during fetal development. OBJECTIVE The aim of this study was to document the qualitative and quantitative changes in erythroid and megakaryocytic cell populations found in fetal livers as well as the hematology profile in neonates after maternal glucocorticoid treatment in rats. METHODS Pregnant female Wistar rats were treated with dexamethasone 21-phosphate from days 13 to 16 of gestation. On the 17th day of pregnancy, the fetuses were collected and their livers processed for light and transmission electron microscopy. Glycol methacrylate-embedded sections were stained with PAS to determine the erythroblast and megakaryocytic cell frequencies. Fetal liver pieces embedded in Spurr resin were analyzed by transmission electron microscopy for morphologic changes. A standard hematology profile was evaluated in neonatal rats. RESULTS In the fetuses from treated dams, the total cell number of erythroid cells in livers was significantly reduced compared to control fetuses (P < .001), but erythroblasts did not present ultrastructural abnormalities. The degree of maturation in the megakaryocyte series tended to be increased. In neonates, there were elevated numbers of nucleated RBCs (P = .002), along with a higher HCT and HGB (P = .02). In addition, the platelet concentration was also significantly increased (P < .007). CONCLUSION These results suggest that maternal dexamethasone treatment has quantitative effects on erythroid and megakaryocytic cells in fetal liver and the neonatal hematology profile in rats.
Collapse
Affiliation(s)
- Flávia Macedo de Oliveira Neves
- Department of Morphology and Genetics, Laboratory of Developmental Biology, Federal University of São Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
29
|
Wang Z, Vogel O, Kuhn G, Gassmann M, Vogel J. Decreased stability of erythroblastic islands in integrin β3-deficient mice. Physiol Rep 2013; 1:e00018. [PMID: 24303107 PMCID: PMC3831914 DOI: 10.1002/phy2.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 11/09/2022] Open
Abstract
Erythroblasts proliferate and differentiate in hematopoietic organs within erythroblastic islands (EI) composed of erythropoietic progenitor cells attached to a central macrophage. This cellular interaction crucially involves the erythroid intercellular adhesion molecule-4 (ICAM-4) and αv integrin. Because integrins are biologically active as α/β heterodimers, we asked whether β3 could be a heterodimerization partner of αv integrin in EIs. To this end we compared stress erythropoiesis driven by two different mechanisms, namely that of integrin β3-deficient (β3(-/-)) mice that exhibit impaired hemostasis due to platelet dysfunction with that of systemically erythropoietin-overexpressing (tg6) mice. While compared to the respective wild type (wt) controls β3(-/-) mice had much less erythropoietic stimulation than tg6 mice β3(-/-) blood contained more erythrocytes of a lower maturity stage. Unexpectedly, membranes of peripheral erythrocytes from β3(-/-) mice (but not those from either wt control or from tg6 mice) contained calnexin, a chaperone that is normally completely lost during terminal differentiation of reticulocytes prior to their release into the circulation. In contrast to erythropoietin-overexpressing mice, the erythropoietic subpopulations representing orthochromatic erythroblasts and premature reticulocytes as well as the number of cells per EI were reduced in β3(-/-) bone marrow. In conclusion, absence of integrin β3 impairs adhesion of the latest erythroid developmental stage to the central macrophage of EIs resulting in preterm release of abnormally immature erythrocytes into the circulation.
Collapse
Affiliation(s)
- Zhenghui Wang
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zürich and Zürich Center for Integrative Human Physiology (ZIHP) Zürich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Cesar B, Abud APR, de Oliveira CC, Cardoso F, Bernardi RPD, Guimarães FSF, Gabardo J, de Freitas Buchi D. Treatment with at homeopathic complex medication modulates mononuclear bone marrow cell differentiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:212459. [PMID: 19736221 PMCID: PMC3095418 DOI: 10.1093/ecam/nep119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 07/21/2009] [Indexed: 01/21/2023]
Abstract
A homeopathic complex medication (HCM), with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products.
Collapse
Affiliation(s)
- Beatriz Cesar
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Ana Paula R. Abud
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Carolina C. de Oliveira
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Raffaello Popa Di Bernardi
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Fernando S. F. Guimarães
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Juarez Gabardo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Dorly de Freitas Buchi
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
31
|
Abstract
Erythroblastic islands, the specialized niches in which erythroid precursors proliferate, differentiate, and enucleate, were first described 50 years ago by analysis of transmission electron micrographs of bone marrow. These hematopoietic subcompartments are composed of erythroblasts surrounding a central macrophage. A hiatus of several decades followed, during which the importance of erythroblastic islands remained unrecognized as erythroid progenitors were shown to possess an autonomous differentiation program with a capacity to complete terminal differentiation in vitro in the presence of erythropoietin but without macrophages. However, as the extent of proliferation, differentiation, and enucleation efficiency documented in vivo could not be recapitulated in vitro, a resurgence of interest in erythroid niches has emerged. We now have an increased molecular understanding of processes operating within erythroid niches, including cell-cell and cell-extracellular matrix adhesion, positive and negative regulatory feedback, and central macrophage function. These features of erythroblast islands represent important contributors to normal erythroid development, as well as altered erythropoiesis found in such diverse diseases as anemia of inflammation and chronic disease, myelodysplasia, thalassemia, and malarial anemia. Coupling of historical, current, and future insights will be essential to understand the tightly regulated production of red cells both in steady state and stress erythropoiesis.
Collapse
|
32
|
Abstract
Erythroblastic islands are specialized microenvironmental compartments within which definitive mammalian erythroblasts proliferate and differentiate. These islands consist of a central macrophage that extends cytoplasmic protrusions to a ring of surrounding erythroblasts. The interaction of cells within the erythroblastic island is essential for both early and late stages of erythroid maturation. It has been proposed that early in erythroid maturation the macrophages provide nutrients, proliferative and survival signals to the erythroblasts, and phagocytose extruded erythroblast nuclei at the conclusion of erythroid maturation. There is also accumulating evidence for the role of macrophages in promoting enucleation itself. The central macrophages are identified by their unique immunophenotypic signature. Their pronounced adhesive properties, ability for avid endocytosis, lack of respiratory bursts, and consequent release of toxic oxidative species, make them perfectly adapted to function as nurse cells. Both macrophages and erythroblasts display adhesive interactions that maintain island integrity, and elucidating these details is an area of intense interest and investigation. Such interactions enable regulatory feedback within islands via cross talk between cells and also trigger intracellular signaling pathways that regulate gene expression. An additional control mechanism for cellular growth within the erythroblastic islands is through the modulation of apoptosis via feedback loops between mature and immature erythroblasts and between macrophages and immature erythroblasts. The focus of this chapter is to outline the mechanisms by which erythroblastic islands aid erythropoiesis, review the historical data surrounding their discovery, and highlight important unanswered questions.
Collapse
Affiliation(s)
- Deepa Manwani
- Schneider Children's Hospital, New York, NY 11040, USA
| | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review focuses on current understanding of molecular mechanisms operating within erythroblastic islands including cell-cell adhesion, regulatory feedback, and central macrophage function. RECENT FINDINGS Erythroblasts express a variety of adhesion molecules and recently two interactions have been identified that appear to be critical for island integrity. Erythroblast macrophage protein, expressed on erythroblasts and macrophages, mediates cell-cell attachments via homophilic binding. Erythroblast intercellular adhesion molecule-4 links erythroblasts to macrophages through interaction with macrophage alphav integrin. In intercellular adhesion molecule-4 knockout mice, erythroblastic islands are markedly reduced, whereas the erythroblast macrophage protein null phenotype is severely anemic and embryonic lethal. Retinoblastoma tumor suppressor (Rb) protein stimulates macrophage differentiation by counteracting inhibition of Id2 on PU.1, a transcription factor that is a crucial regulator of macrophage differentiation. Rb-deficient macrophages do not bind Rb null erythroblasts and the Rb null phenotype is anemic and embryonic lethal. Lastly, extruded nuclei rapidly expose phosphatidylserine on their surface, providing a recognition signal similar to apoptotic cells. SUMMARY Although understanding of molecular mechanisms operating within islands is at an early stage, tantalizing evidence suggests that erythroblastic islands are specialized niches where intercellular interactions in concert with cytokines play critical roles in regulating erythropoiesis.
Collapse
Affiliation(s)
- Joel Anne Chasis
- Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|