1
|
Ebenig A, Lange MV, Gellhorn Serra M, Kupke A, Plesker R, Qu B, Brown RJP, Maier TJ, Mühlebach MD. Differential efficacy of first licensed western vaccines protecting without immunopathogenesis Wuhan-1-challenged hamsters from severe COVID-19. NPJ Vaccines 2025; 10:51. [PMID: 40097436 PMCID: PMC11914482 DOI: 10.1038/s41541-025-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Four COVID-19 vaccines were developed, tested, and authorized early in Europe and the US. Comirnaty and Spikevax are mRNA-based, whereas Jcovden and Vaxzevria utilize adenoviral vectors (AdV). We described a hamster model of COVID-19 utilizing Wuhan-1 strain SARS-CoV-2, in which vaccine-associated immunopathogenesis can be induced by Alum-adjuvanted Spike protein (Alum+S). Such animals were vaccinated with the authorized vaccines or Alum+S, challenged, and examined. All vaccinated hamsters produced antibodies targeting S. Neutralizing antibodies (nAb) were induced only by authorized vaccines. While nAbs were present after one vaccination with AdV-vaccines, mRNA vaccines needed a boost immunization. Upon challenge, all authorized vaccines protected from severe disease. Less tissue damage and no live virus (one exception) were detectable in the lungs. In contrast, Alum+S immunized hamsters developed VAERD. Our data reveal the absence of induction of VAERD by early commercial vaccines in hamsters, while animals´ immune responses and protection seem to match the clinical vaccine efficacy.
Collapse
Affiliation(s)
- Aileen Ebenig
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Mona V Lange
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | | | - Alexandra Kupke
- Institute for Virology, Philipps University, 35043, Marburg, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Roland Plesker
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Bingqian Qu
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Richard J P Brown
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
- Department of Translational and Computational Infection Research, Ruhr University Bochum, 44801, Bochum, Germany
| | - Thorsten J Maier
- Division Safety of Biomedicines and Diagnostics, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Michael D Mühlebach
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
2
|
Coish JM, MacNeil LA, MacNeil AJ. The SARS-CoV-2 antibody-dependent enhancement façade. Microbes Infect 2025; 27:105464. [PMID: 39662700 DOI: 10.1016/j.micinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Antibody-dependent enhancement (ADE) is an immunological paradox whereby sensitization following a primary viral infection results in the subsequent enhancement of a similar secondary infection. This idiosyncratic immune response has been established in dengue virus infections, driven by four antigenically related serotypes co-circulating in endemic regions. Several coronaviruses exhibit antibody-mediated mechanisms of viral entry, which has led to speculation of an ADE capacity for SARS-CoV-2, though in vivo and epidemiological evidence do not currently support this phenomenon. Three distinct antibody-dependent mechanisms for SARS-CoV-2 entry have recently been demonstrated: 1. FcR-dependent, 2. ACE2-FcR-interdependent, and 3. FcR-independent. These mechanisms of viral entry may be dependent on SARS-CoV-2 antibody specificity; antibodies targeting the receptor binding domain (RBD) typically result in Fc-dependent and ACE2-FcR-interdependent entry, whereas antibodies targeting the N-terminal domain can induce a conformational change to the RBD that optimizes ACE2-receptor binding domain interactions independent of Fc receptors. Whether these antibody-dependent entry mechanisms of SARS-CoV-2 result in the generation of infectious progenies and enhancement of infection has not been robustly demonstrated. Furthermore, ADE of SARS-CoV-2 mediated by antigenic seniority remains a theoretical concern, as no evidence suggests that SARS-CoV-2 imprinting blunts a subsequent immune response, contributing to severe COVID-19 disease.
Collapse
Affiliation(s)
- Jeremia M Coish
- Department of Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Lori A MacNeil
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
3
|
Chou AA, Lin CH, Chang YC, Chang HW, Lin YC, Pi CC, Kan YM, Chuang HF, Chen HW. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro. Vet Q 2024; 44:1-13. [PMID: 38712855 PMCID: PMC11078076 DOI: 10.1080/01652176.2024.2349665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.
Collapse
Affiliation(s)
- Ai-Ai Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-alliance Research Center, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Lin
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Yao-Ming Kan
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Fen Chuang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Liu P, Huang ML, Guo H, McCallum M, Si JY, Chen YM, Wang CL, Yu X, Shi LL, Xiong Q, Ma CB, Bowen JE, Tong F, Liu C, Sun YH, Yang X, Chen J, Guo M, Li J, Corti D, Veesler D, Shi ZL, Yan H. Design of customized coronavirus receptors. Nature 2024; 635:978-986. [PMID: 39478224 DOI: 10.1038/s41586-024-08121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models1,2. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains. We identify key factors for CVRs to functionally mimic native receptors by facilitating spike proteolytic cleavage, membrane fusion, pseudovirus entry and propagation for various coronaviruses. We delineate functional SARS-CoV-2 spike receptor-binding sites for CVR design and reveal the mechanism of cell entry promoted by the N-terminal domain-targeting S2L20-CVR. We generated CVR-expressing cells for 12 representative coronaviruses from 6 subgenera, most of which lack known receptors, and show that a pan-sarbecovirus CVR supports propagation of a propagation-competent HKU3 pseudovirus and of authentic RsHuB2019A3. Using an HKU5-specific CVR, we successfully rescued wild-type and ZsGreen-HiBiT-incorporated HKU5-1 (LMH03f) and isolated a HKU5 strain from bat samples. Our study demonstrates the potential of the CVR strategy for establishing native receptor-independent infection models, providing a tool for studying viruses that lack known susceptible target cells.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chun-Li Wang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fei Tong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Zheng-Li Shi
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Brostoff T, Savage HP, Jackson KA, Dutra JC, Fontaine JH, Hartigan-O’Connor DJ, Carney RP, Pesavento PA. Feline Infectious Peritonitis mRNA Vaccine Elicits Both Humoral and Cellular Immune Responses in Mice. Vaccines (Basel) 2024; 12:705. [PMID: 39066343 PMCID: PMC11281389 DOI: 10.3390/vaccines12070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a devastating and often fatal disease caused by feline coronavirus (FCoV). Currently, there is no widely used vaccine for FIP, and many attempts using a variety of platforms have been largely unsuccessful due to the disease's highly complicated pathogenesis. One such complication is antibody-dependent enhancement (ADE) seen in FIP, which occurs when sub-neutralizing antibody responses to viral surface proteins paradoxically enhance disease. A novel vaccine strategy is presented here that can overcome the risk of ADE by instead using a lipid nanoparticle-encapsulated mRNA encoding the transcript for the internal structural nucleocapsid (N) FCoV protein. Both wild type and, by introduction of silent mutations, GC content-optimized mRNA vaccines targeting N were developed. mRNA durability in vitro was characterized by quantitative reverse-transcriptase PCR and protein expression by immunofluorescence assay for one week after transfection of cultured feline cells. Both mRNA durability and protein production in vitro were improved with the GC-optimized construct as compared to wild type. Immune responses were assayed by looking at N-specific humoral (by ELISA) and stimulated cytotoxic T cell (by flow cytometry) responses in a proof-of-concept mouse vaccination study. These data together demonstrate that an LNP-mRNA FIP vaccine targeting FCoV N is stable in vitro, capable of eliciting an immune response in mice, and provides justification for beginning safety and efficacy trials in cats.
Collapse
Affiliation(s)
- Terza Brostoff
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Hannah P. Savage
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Kenneth A. Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Joseph C. Dutra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Justin H. Fontaine
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Dennis J. Hartigan-O’Connor
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA;
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| |
Collapse
|
6
|
Salajegheh Tazerji S, Gharieb R, Ardestani MM, Akhtardanesh B, Kabir F, Vazir B, Duarte PM, Saberi N, Khaksar E, Haerian S, Fawzy M. The risk of pet animals in spreading severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and public health importance: An updated review. Vet Med Sci 2024; 10:e1320. [PMID: 38066661 PMCID: PMC10766024 DOI: 10.1002/vms3.1320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 01/06/2024] Open
Abstract
Since the outbreak of SARS-CoV-2 was first identified in 2019, it has been reported that the virus could infect a variety of animals either naturally or experimentally. This review discusses the occurrence SARS-CoV-2 in dogs and cats and the role of these animals in transmitting coronavirus disease 2019 (COVID-19) to their owners. The data were collected from epidemiological studies and case reports that focused on studying the occurrence of SARS-CoV-2 in pet animals and their owners. Epidemiological studies and case reports indicate that dogs and cats are infected with SARS-CoV-2 either naturally or experimentally; however, the global number of naturally infected animals is far lower than the number of people who have COVID-19. These studies demonstrate that pet animals acquire the infection from direct contact with COVID-19-infected owners. Currently, there are no studies reporting that dogs and cats can transmit SARS-CoV-2 to other animals and humans, under natural conditions. The emergence of SARS-CoV-2 infection in companion animals (dogs and cats) in different countries worldwide raises concerns that pets are at higher risk for spreading and transmitting SARS-CoV-2 to humans and other animals, which poses a hazard to the public health. Therefore, investigating the role of dogs and cats in the transmission and epidemiology of SARS-CoV-2 will help us to design and implement appropriate preventive measures against the further transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
- Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Rasha Gharieb
- Department of Zoonoses, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
| | | | - Baharak Akhtardanesh
- Department of Clinical Science, Faculty of Veterinary MedicineShahid Bahonar UniversityKermanIran
| | - Farrokhreza Kabir
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Bita Vazir
- Department of Basic Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Phelipe Magalhães Duarte
- Postgraduate Program in Animal BioscienceFederal Rural University of Pernambuco (UFRPE)RecifePernambucoBrazil
| | - Niloufar Saberi
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Ehsan Khaksar
- Department of Clinical Science, Faculty of Veterinary Medicine, Garmsar BranchIslamic Azad UniversityGarmsarIran
| | - Sadegh Haerian
- Department of Clinical Science, Faculty of Veterinary Medicine, Karaj BranchIslamic Azad UniversityKarajIran
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| |
Collapse
|
7
|
Zehr JD, Kosakovsky Pond SL, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes. Virus Evol 2023; 9:vead019. [PMID: 37038392 PMCID: PMC10082545 DOI: 10.1093/ve/vead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Feline coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed feline enteric coronavirus [FECV]), with around 12 per cent developing into deadly feline infectious peritonitis (FIP; feline infectious peritonitis virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV- and FECV-specific signals of positive selection. We analyzed full-length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site (FCS) and the other within the fusion domain of Spike. We also found fifteen sites subject to positive selection associated with FIPV within Spike, eleven of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were fourteen sites (twelve novel sites) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 FCS and adjacent to C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype and included twenty-four positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV-wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that it is unlikely to be one singular 'switch' mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas 78352, France
| | - Ximena A Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Zehr JD, Pond SLK, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic Feline Coronavirus phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523607. [PMID: 36712007 PMCID: PMC9882035 DOI: 10.1101/2023.01.11.523607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Feline Coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed Feline Enteric Coronavirus [FECV]), with around 12% developing into deadly Feline Infectious Peritonitis (FIP; Feline Infectious Peritonitis Virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV and FECV specific signals of positive selection. We analyzed full length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site, and the other within the fusion domain of Spike. We also found 15 sites subject to positive selection associated with FIPV within Spike, 11 of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were 14 sites (12 novel) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 furin cleavage site and adjacent C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype, and included 24 positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that is unlikely to be one singular "switch" mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouyen-Josas, France
| | - Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Alexander G. Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D. Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M. Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Laura B. Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, Yassine HM. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol 2022; 152:172-182. [PMID: 36371813 PMCID: PMC9647202 DOI: 10.1016/j.molimm.2022.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Qatar University, Qatar; Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | | | - Allal Ouhtit
- Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | - Farhan S Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Qatar.
| | | | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| |
Collapse
|
10
|
Ebenig A, Muraleedharan S, Kazmierski J, Todt D, Auste A, Anzaghe M, Gömer A, Postmus D, Gogesch P, Niles M, Plesker R, Miskey C, Gellhorn Serra M, Breithaupt A, Hörner C, Kruip C, Ehmann R, Ivics Z, Waibler Z, Pfaender S, Wyler E, Landthaler M, Kupke A, Nouailles G, Goffinet C, Brown RJP, Mühlebach MD. Vaccine-associated enhanced respiratory pathology in COVID-19 hamsters after TH2-biased immunization. Cell Rep 2022; 40:111214. [PMID: 35952673 PMCID: PMC9346010 DOI: 10.1016/j.celrep.2022.111214] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.
Collapse
Affiliation(s)
- Aileen Ebenig
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Samada Muraleedharan
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Arne Auste
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Martina Anzaghe
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Patricia Gogesch
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Marc Niles
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Roland Plesker
- Animal Facilities, Div. Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Csaba Miskey
- Div. of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Cindy Hörner
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Carina Kruip
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Rosina Ehmann
- Institute for Microbiology, Bundeswehr, 80937 München, Germany
| | - Zoltan Ivics
- Div. of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Zoe Waibler
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Alexandra Kupke
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute for Virology, Phillipps-University, 35043 Marburg, Germany
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Richard J P Brown
- Virus Tropism and Immunogenicity, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
11
|
Guérin P, Yahi N, Azzaz F, Chahinian H, Sabatier JM, Fantini J. Structural Dynamics of the SARS-CoV-2 Spike Protein: A 2-Year Retrospective Analysis of SARS-CoV-2 Variants (from Alpha to Omicron) Reveals an Early Divergence between Conserved and Variable Epitopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123851. [PMID: 35744971 PMCID: PMC9230616 DOI: 10.3390/molecules27123851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022]
Abstract
We analyzed the epitope evolution of the spike protein in 1,860,489 SARS-CoV-2 genomes. The structural dynamics of these epitopes was determined by molecular modeling approaches. The D614G mutation, selected in the first months of the pandemic, is still present in currently circulating SARS-CoV-2 strains. This mutation facilitates the conformational change leading to the demasking of the ACE2 binding domain. D614G also abrogated the binding of facilitating antibodies to a linear epitope common to SARS-CoV-1 and SARS-CoV-2. The main neutralizing epitope of the N-terminal domain (NTD) of the spike protein showed extensive structural variability in SARS-CoV-2 variants, especially Delta and Omicron. This epitope is located on the flat surface of the NTD, a large electropositive area which binds to electronegatively charged lipid rafts of host cells. A facilitating epitope located on the lower part of the NTD appeared to be highly conserved among most SARS-CoV-2 variants, which may represent a risk of antibody-dependent enhancement (ADE). Overall, this retrospective analysis revealed an early divergence between conserved (facilitating) and variable (neutralizing) epitopes of the spike protein. These data aid in the designing of new antiviral strategies that could help to control COVID-19 infection by mimicking neutralizing antibodies or by blocking facilitating antibodies.
Collapse
Affiliation(s)
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Fodil Azzaz
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Jean-Marc Sabatier
- Inst Neurophysiopathol, Aix-Marseille University, CNRS, INP, CEDEX, 13005 Marseille, France;
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
- Correspondence:
| |
Collapse
|
12
|
de Oliveira-Filho EF, de Carvalho OV, Carneiro IO, Fernandes FD, Vaz SN, Pedroso C, Gonzalez-Auza L, Urbieta VC, Kühne A, Mayoral R, Jo WK, Moreira-Soto A, Reusken CBEM, Drosten C, Brites C, Osterrieder K, Netto EM, Ristow LE, Maia RDC, Vogel FSF, de Almeida NR, Franke CR, Drexler JF. Frequent Infection of Cats With SARS-CoV-2 Irrespective of Pre-Existing Enzootic Coronavirus Immunity, Brazil 2020. Front Immunol 2022; 13:857322. [PMID: 35450070 PMCID: PMC9016337 DOI: 10.3389/fimmu.2022.857322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Carnivores such as cats and minks are highly susceptible to SARS-CoV-2. Brazil is a global COVID-19 hot spot and several cases of human-to-cat transmission have been documented. We investigated the spread of SARS-CoV-2 by testing 547 domestic cats sampled between July-November 2020 from seven states in southern, southeastern, and northeastern Brazil. Moreover, we investigated whether immune responses elicited by enzootic coronaviruses affect SARS-CoV-2 infection in cats. We found infection with significantly higher neutralizing antibody titers against the Gamma variant of concern, endemic in Brazil during 2020, than against an early SARS-CoV-2 B.1 isolate (p<0.0001), validating the use of Gamma for further testing. The overall SARS-CoV-2 seroprevalence in Brazilian cats during late 2020 validated by plaque reduction neutralization test (PRNT90) was 7.3% (95% CI, 5.3-9.8). There was no significant difference in SARS-CoV-2 seroprevalence in cats between Brazilian states, suggesting homogeneous infection levels ranging from 4.6% (95% CI, 2.2-8.4) to 11.4% (95% CI, 6.7-17.4; p=0.4438). Seroprevalence of the prototypic cat coronavirus Feline coronavirus (FCoV) in a PRNT90 was high at 33.3% (95% CI, 24.9-42.5) and seroprevalence of Bovine coronavirus (BCoV) was low at 1.7% (95% CI, 0.2-5.9) in a PRNT90. Neutralizing antibody titers were significantly lower for FCoV than for SARS-CoV-2 (p=0.0001), consistent with relatively more recent infection of cats with SARS-CoV-2. Neither the magnitude of SARS-CoV-2 antibody titers (p=0.6390), nor SARS-CoV-2 infection status were affected by FCoV serostatus (p=0.8863). Our data suggest that pre-existing immunity against enzootic coronaviruses neither prevents, nor enhances SARS-CoV-2 infection in cats. High SARS-CoV-2 seroprevalence already during the first year of the pandemic substantiates frequent infection of domestic cats and raises concerns on potential SARS-CoV-2 mutations escaping human immunity upon spillback.
Collapse
Affiliation(s)
- Edmilson F de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Ianei O Carneiro
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | | | - Sara Nunes Vaz
- Disease Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | - Célia Pedroso
- Disease Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | - Lilian Gonzalez-Auza
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Carvalho Urbieta
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rafaela Mayoral
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Wendy K Jo
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrés Moreira-Soto
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chantal B E M Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlos Brites
- Disease Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | | | - Eduardo Martins Netto
- Disease Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | | | - Rita de Cassia Maia
- Veterinary Medicine Department, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Nadia Rossi de Almeida
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Carlos Roberto Franke
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site Charité, Berlin, Germany
| |
Collapse
|
13
|
Clark NM, Janaka SK, Hartman W, Stramer S, Goodhue E, Weiss J, Evans DT, Connor JP. Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not enhance viral infection. PLoS One 2022; 17:e0257930. [PMID: 35259162 PMCID: PMC8903276 DOI: 10.1371/journal.pone.0257930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
The novel coronavirus, SARS-CoV-2 that causes COVID-19 has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination, and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization with a theoretical risk of antibody-dependent enhancement (ADE) of viral infection. Though vaccines elicit a strong and protective immune response and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV-2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, not only supports the therapeutic use of currently available antibody-based treatment, including the continuation of CCP transfusion strategies, but also the use of various vaccine platforms in a prophylactic approach.
Collapse
Affiliation(s)
- Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William Hartman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Susan Stramer
- American Red Cross, Washington, DC, United States of America
| | - Erin Goodhue
- American Red Cross, Washington, DC, United States of America
| | - John Weiss
- American Red Cross, Washington, DC, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Joseph P. Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Sweet AN, André NM, Stout AE, Licitra BN, Whittaker GR. Clinical and Molecular Relationships between COVID-19 and Feline Infectious Peritonitis (FIP). Viruses 2022; 14:481. [PMID: 35336888 PMCID: PMC8954060 DOI: 10.3390/v14030481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) has led the medical and scientific community to address questions surrounding the pathogenesis and clinical presentation of COVID-19; however, relevant clinical models outside of humans are still lacking. In felines, a ubiquitous coronavirus, described as feline coronavirus (FCoV), can present as feline infectious peritonitis (FIP)-a leading cause of mortality in young cats that is characterized as a severe, systemic inflammation. The diverse extrapulmonary signs of FIP and rapidly progressive disease course, coupled with a closely related etiologic agent, present a degree of overlap with COVID-19. This paper will explore the molecular and clinical relationships between FIP and COVID-19. While key differences between the two syndromes exist, these similarities support further examination of feline coronaviruses as a naturally occurring clinical model for coronavirus disease in humans.
Collapse
Affiliation(s)
- Arjun N. Sweet
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole M. André
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Alison E. Stout
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Beth N. Licitra
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| |
Collapse
|
15
|
Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW. Vaccine-Associated Enhanced Disease and Pathogenic Human Coronaviruses. Front Immunol 2022; 13:882972. [PMID: 35444667 PMCID: PMC9014240 DOI: 10.3389/fimmu.2022.882972] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
Vaccine-associated enhanced disease (VAED) is a difficult phenomenon to define and can be confused with vaccine failure. Using studies on respiratory syncytial virus (RSV) vaccination and dengue virus infection, we highlight known and theoretical mechanisms of VAED, including antibody-dependent enhancement (ADE), antibody-enhanced disease (AED) and Th2-mediated pathology. We also critically review the literature surrounding this phenomenon in pathogenic human coronaviruses, including MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Poor quality histopathological data and a lack of consistency in defining severe pathology and VAED in preclinical studies of MERS-CoV and SARS-CoV-1 vaccines in particular make it difficult to interrogate potential cases of VAED. Fortuitously, there have been only few reports of mild VAED in SARS-CoV-2 vaccination in preclinical models and no observations in their clinical use. We describe the problem areas and discuss methods to improve the characterisation of VAED in the future.
Collapse
Affiliation(s)
- Cillian Gartlan
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Francisco J Salguero
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew Gorringe
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Miles W Carroll
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Antibody-Dependent Enhancement of SARS-CoV-2 Infection of Human Immune Cells: In Vitro Assessment Provides Insight in COVID-19 Pathogenesis. Viruses 2021; 13:v13122483. [PMID: 34960752 PMCID: PMC8704563 DOI: 10.3390/v13122483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.
Collapse
|
17
|
Establishment of Full-Length cDNA Clones and an Efficient Oral Infection Model for Feline Coronavirus in Cats. J Virol 2021; 95:e0074521. [PMID: 34406859 DOI: 10.1128/jvi.00745-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Feline infectious peritonitis virus (FIPV) is the etiologic agent of feline infectious peritonitis (FIP) and causes fatal disease in cats of almost all ages. Currently, there are no clinically approved drugs or effective vaccines for FIP. Furthermore, the pathogenesis of FIP is still not fully understood. There is an urgent need for an effective infection model of feline infectious peritonitis induced by FIPV. Here, we constructed a field type I FIPV full-length cDNA clone, pBAC-QS, corresponding to the isolated FIPV QS. By replacing the FIPV QS spike gene with the commercially available type II FIPV 79-1146 (79-1146_CA) spike gene, we established and rescued a recombinant virus, designated rQS-79. Moreover, we constructed 79-1146_CA infectious full-length cDNA pBAC-79-1146_CA, corresponding to recombinant feline coronavirus (FCoV) 79-1146_CA (r79-1146_CA). In animal experiments with 1- to 2-year-old adult cats orally infected with the recombinant virus, rQS-79 induced typical FIP signs and 100% mortality. In contrast to cats infected with rQS-79, cats infected with 79-1146_CA did not show obvious signs. Furthermore, by rechallenging rQS-79 in surviving cats previously infected with 79-1146_CA, we found that there was no protection against rQS-79 with different titers of neutralizing antibodies. However, high titers of neutralizing antibodies may help prolong the cat survival time. Overall, we report the first reverse genetics of virulent recombinant FCoV (causing 100% mortality in adult cats) and attenuated FCoV (causing no mortality in adult cats), which will be powerful tools to study pathogenesis, antiviral drugs, and vaccines for FCoV. IMPORTANCE Tissue- or cell culture-adapted feline infectious peritonitis virus (FIPV) usually loses pathogenicity. To develop a highly virulent FIPV, we constructed a field isolate type I FIPV full-length clone with the spike gene replaced by the 79-1146 spike gene, corresponding to a virus named rQS-79, which induces high mortality in adult cats. rQS-79 represents the first described reverse genetics system for highly pathogenic FCoV. By further constructing the cell culture-adapted FCoV 79-1146_CA, we obtained infectious clones of virulent and attenuated FCoV. By in vitro and in vivo experiments, we established a model that can serve to study the pathogenic mechanisms of FIPV. Importantly, the wild-type FIPV replicase skeleton of serotype I will greatly facilitate the screening of antiviral drugs, both in vivo and in vitro.
Collapse
|
18
|
Clark NM, Janaka SK, Hartman W, Stramer S, Goodhue E, Weiss J, Evans DT, Connor JP. Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not facilitate antibody-dependent enhance of viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34545365 PMCID: PMC8452094 DOI: 10.1101/2021.09.14.460394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The novel coronavirus SARS-CoV2, which causes COVID-19, has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization, with the theoretical risk of antibody-dependent enhancement (ADE) of viral infection remaining undetermined. Though vaccines elicit a strong and protective immune response, and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, support the clinical use of currently available antibody-based treatment including the continued study of CCP transfusion strategies.
Collapse
|
19
|
Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021; 12:636966. [PMID: 34557180 PMCID: PMC8452982 DOI: 10.3389/fimmu.2021.636966] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Since 2003, the world has been confronted with three new betacoronaviruses that cause human respiratory infections: SARS-CoV, which causes severe acute respiratory syndrome (SARS), MERS-CoV, which causes Middle East respiratory syndrome (MERS), and SARS-CoV-2, which causes Coronavirus Disease 2019 (COVID-19). The mechanisms of coronavirus transmission and dissemination in the human body determine the diagnostic and therapeutic strategies. An important problem is the possibility that viral particles overcome tissue barriers such as the intestine, respiratory tract, blood-brain barrier, and placenta. In this work, we will 1) consider the issue of endocytosis and the possibility of transcytosis and paracellular trafficking of coronaviruses across tissue barriers with an emphasis on the intestinal epithelium; 2) discuss the possibility of antibody-mediated transcytosis of opsonized viruses due to complexes of immunoglobulins with their receptors; 3) assess the possibility of the virus transfer into extracellular vesicles during intracellular transport; and 4) describe the clinical significance of these processes. Models of the intestinal epithelium and other barrier tissues for in vitro transcytosis studies will also be briefly characterized.
Collapse
Affiliation(s)
- Evgeny Knyazev
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Alexander Tonevitsky
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
20
|
Jo WK, de Oliveira‐Filho EF, Rasche A, Greenwood AD, Osterrieder K, Drexler JF. Potential zoonotic sources of SARS-CoV-2 infections. Transbound Emerg Dis 2021; 68:1824-1834. [PMID: 33034151 PMCID: PMC7675418 DOI: 10.1111/tbed.13872] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing coronavirus disease-2019 (COVID-19) likely has evolutionary origins in other animals than humans based on genetically related viruses existing in rhinolophid bats and pangolins. Similar to other animal coronaviruses, SARS-CoV-2 contains a functional furin cleavage site in its spike protein, which may broaden the SARS-CoV-2 host range and affect pathogenesis. Whether ongoing zoonotic infections are possible in addition to efficient human-to-human transmission remains unclear. In contrast, human-to-animal transmission can occur based on evidence provided from natural and experimental settings. Carnivores, including domestic cats, ferrets and minks, appear to be particularly susceptible to SARS-CoV-2 in contrast to poultry and other animals reared as livestock such as cattle and swine. Epidemiologic evidence supported by genomic sequencing corroborated mink-to-human transmission events in farm settings. Airborne transmission of SARS-CoV-2 between experimentally infected cats additionally substantiates the possibility of cat-to-human transmission. To evaluate the COVID-19 risk represented by domestic and farmed carnivores, experimental assessments should include surveillance and health assessment of domestic and farmed carnivores, characterization of the immune interplay between SARS-CoV-2 and carnivore coronaviruses, determination of the SARS-CoV-2 host range beyond carnivores and identification of human risk groups such as veterinarians and farm workers. Strategies to mitigate the risk of zoonotic SARS-CoV-2 infections may have to be developed in a One Health framework and non-pharmaceutical interventions may have to consider free-roaming animals and the animal farming industry.
Collapse
Affiliation(s)
- Wendy K. Jo
- Institute of Virology, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Edmilson Ferreira de Oliveira‐Filho
- Institute of Virology, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Andrea Rasche
- Institute of Virology, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- German Centre for Infection Research (DZIF)Associated Partner Charité‐Universitätsmedizin BerlinBerlinGermany
| | - Alex D. Greenwood
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institut für VirologieFreie Universität BerlinBerlinGermany
| | | | - Jan Felix Drexler
- Institute of Virology, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- German Centre for Infection Research (DZIF)Associated Partner Charité‐Universitätsmedizin BerlinBerlinGermany
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector‐Borne DiseasesSechenov UniversityMoscowRussia
| |
Collapse
|
21
|
Stovbun SV, Kalinina TS, Zlenko DV, Kiselev AV, Litvin AA, Bukhvostov AA, Usachev SV, Kuznetsov DA. Antiviral potential of plant polysaccharide nanoparticles actuating non-specific immunity. Int J Biol Macromol 2021; 182:743-749. [PMID: 33831450 PMCID: PMC8020621 DOI: 10.1016/j.ijbiomac.2021.03.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
The development of high-end targeted drugs and vaccines against modern pandemic infections, such as COVID-19, can take a too long time that lets the epidemic spin up and harms society. However, the countermeasures must be applied against the infection in this period until the targeted drugs became available. In this regard, the non-specific, broad-spectrum anti-viral means could be considered as a compromise allowing overcoming the period of trial. One way to enhance the ability to resist the infection is to activate the nonspecific immunity using a suitable driving-up agent, such as plant polysaccharides, particularly our drug Panavir isolated from the potato shoots. Earlier, we have shown the noticeable anti-viral and anti-bacterial activity of Panavir. Here we demonstrate the pro-inflammation activity of Panavir, which four-to-eight times intensified the ATP and MIF secretion by HL-60 cells. This effect was mediated by the active phagocytosis of the Panavir particles by the cells. We hypothesized the physiological basis of the Panavir proinflammatory activity is mediated by the indol-containing compounds (auxins) present in Panavir and acting as a plant analog of serotonin.
Collapse
Affiliation(s)
- Sergey V Stovbun
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana S Kalinina
- Federal State Budgetary Institution, Research Zakusov Institute of Pharmacology, Moscow, Russia
| | - Dmitry V Zlenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia; A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia.
| | - Aleksei V Kiselev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Litvin
- Federal Research and Clinical Center of Physical-Chemical Medicine FMBA, Russia
| | | | - Sergey V Usachev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Kuznetsov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; N.I. Pirogov Russian, National Research Medical University, Moscow, Russia
| |
Collapse
|
22
|
Szekely L, Bozoky B, Bendek M, Ostad M, Lavignasse P, Haag L, Wu J, Jing X, Gupta S, Saccon E, Sönnerborg A, Cao Y, Björnstedt M, Szakos A. Pulmonary stromal expansion and intra-alveolar coagulation are primary causes of COVID-19 death. Heliyon 2021; 7:e07134. [PMID: 34056141 PMCID: PMC8141733 DOI: 10.1016/j.heliyon.2021.e07134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Most COVID-19 victims are old and die from unrelated causes. Here we present twelve complete autopsies, including two rapid autopsies of young patients where the cause of death was COVID-19 ARDS. The main virus induced pathology was in the lung parenchyma and not in the airways. Most coagulation events occurred in the intra-alveolar and not in the intra-vascular space and the few thrombi were mainly composed of aggregated thrombocytes. The dominant inflammatory response was the massive accumulation of CD163 + macrophages and the disappearance of T killer, NK and B-cells. The virus was replicating in the pneumocytes and macrophages but not in bronchial epithelium, endothelium, pericytes or stromal cells. The lung consolidations were produced by a massive regenerative response, stromal and epithelial proliferation and neovascularization. We suggest that thrombocyte aggregation inhibition, angiogenesis inhibition and general proliferation inhibition may have a roll in the treatment of advanced COVID-19 ARDS.
Collapse
Affiliation(s)
- Laszlo Szekely
- Department of Pathology/Cytology, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| | - Bela Bozoky
- Department of Pathology/Cytology, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| | - Matyas Bendek
- Department of Pathology/Cytology, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| | - Masih Ostad
- Department of Pathology/Cytology, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| | - Pablo Lavignasse
- Department of Pathology/Cytology, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| | - Lars Haag
- Department of Pathology/Cytology, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| | - Jieyu Wu
- Microbiology and Tumor Biology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xu Jing
- Microbiology and Tumor Biology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
- The Second Hospital of Shandong University, Department of Clinical Laboratory, 250033 Jinan, China
| | - Soham Gupta
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elisa Saccon
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anders Sönnerborg
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Yihai Cao
- Microbiology and Tumor Biology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mikael Björnstedt
- Department of Pathology/Cytology, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| | - Attila Szakos
- Department of Pathology/Cytology, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| |
Collapse
|
23
|
Forthal D. Adaptive immune responses to SARS-CoV-2. Adv Drug Deliv Rev 2021; 172:1-8. [PMID: 33610693 PMCID: PMC7891074 DOI: 10.1016/j.addr.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
This review focuses on adaptive immune responses against SARS-CoV-2, the coronavirus that causes COVID-19. A great deal of work has been accomplished in a very short period of time to describe adaptive immune responses and to ascertain their roles in determining the course of infection. As with other viral infections, SARS-CoV-2 elicits both antibody and T-cell responses. Whereas antibody responses are likely effective in preventing infection and may participate in controlling infection once established, it is less clear whether or not they play a role in pathogenesis. T cells are likely involved in controlling established infection, but a pathogenic role is also possible. Longer term evaluation is necessary to determine the durability of protective immune responses.
Collapse
Affiliation(s)
- Donald Forthal
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine and School of Biological Sciences, United States.
| |
Collapse
|
24
|
Rammensee HG, Gouttefangeas C, Heidu S, Klein R, Preuß B, Walz JS, Nelde A, Haen SP, Reth M, Yang J, Tabatabai G, Bösmüller H, Hoffmann H, Schindler M, Planz O, Wiesmüller KH, Löffler MW. Designing a SARS-CoV-2 T-Cell-Inducing Vaccine for High-Risk Patient Groups. Vaccines (Basel) 2021; 9:428. [PMID: 33923363 PMCID: PMC8146137 DOI: 10.3390/vaccines9050428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023] Open
Abstract
We describe the results of two vaccinations of a self-experimenting healthy volunteer with SARS-CoV-2-derived peptides performed in March and April 2020, respectively. The first set of peptides contained eight peptides predicted to bind to the individual's HLA molecules. The second set consisted of ten peptides predicted to bind promiscuously to several HLA-DR allotypes. The vaccine formulation contained the new TLR 1/2 agonist XS15 and was administered as an emulsion in Montanide as a single subcutaneous injection. Peripheral blood mononuclear cells isolated from blood drawn before and after vaccinations were assessed using Interferon-γ ELISpot assays and intracellular cytokine staining. We detected vaccine-induced CD4 T cell responses against six out of 11 peptides predicted to bind to HLA-DR after 19 days, following vaccination, for one peptide already at day 12. We used these results to support the design of a T-cell-inducing vaccine for application in high-risk patients, with weakened lymphocyte performance. Meanwhile, an according vaccine, incorporating T cell epitopes predominant in convalescents, is undergoing clinical trial testing.
Collapse
Affiliation(s)
- Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence CMFI (EXC2124) “Controlling Microbes to Fight Infections”, University of Tübingen, 72076 Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Sonja Heidu
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (R.K.); (B.P.)
| | - Beate Preuß
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (R.K.); (B.P.)
| | - Juliane Sarah Walz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), Clinical Collaboration Unit Translational Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology (IKP) and Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Annika Nelde
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), Clinical Collaboration Unit Translational Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Sebastian P. Haen
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany;
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Michael Reth
- Signaling Research Centres BIOSS and CIBSS, Institute of Biology III, Department of Molecular Immunology, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; (M.R.); (J.Y.)
| | - Jianying Yang
- Signaling Research Centres BIOSS and CIBSS, Institute of Biology III, Department of Molecular Immunology, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; (M.R.); (J.Y.)
| | - Ghazaleh Tabatabai
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany;
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Hans Bösmüller
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076 Tübingen, Germany;
| | - Helen Hoffmann
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany;
| | - Oliver Planz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
| | | | - Markus W. Löffler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (C.G.); (S.H.); (J.S.W.); (A.N.); (H.H.); (O.P.); (M.W.L.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Abstract
Vaccines are urgently needed to control the coronavirus disease 2019 (COVID-19) pandemic and to help the return to pre-pandemic normalcy. A great many vaccine candidates are being developed, several of which have completed late-stage clinical trials and are reporting positive results. In this Progress article, we discuss which viral elements are used in COVID-19 vaccine candidates, why they might act as good targets for the immune system and the implications for protective immunity.
Collapse
Affiliation(s)
- Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Lee P, Kim CU, Seo SH, Kim DJ. Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages. Immune Netw 2021; 21:e4. [PMID: 33728097 PMCID: PMC7937514 DOI: 10.4110/in.2021.21.e4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) is still threatening human health, economy, and social life worldwide. As a counteraction for this devastating disease, a number of vaccines are being developed with unprecedented speed combined with new technologies. As COVID-19 vaccines are being developed in the absence of a licensed human coronavirus vaccine, there remain further questions regarding the long-term efficacy and safety of the vaccines, as well as immunological mechanisms in depth. This review article discusses the current status of COVID-19 vaccine development, mainly focusing on antigen design, clinical trials in later stages, and immunological considerations for further study.
Collapse
Affiliation(s)
- Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| | | | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
27
|
Hong J, Jhun H, Choi YO, Taitt AS, Bae S, Lee Y, Song CS, Yeom SC, Kim S. Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Netw 2021; 21:e8. [PMID: 33728101 PMCID: PMC7937506 DOI: 10.4110/in.2021.21.e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.
Collapse
Affiliation(s)
- Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu 42472, Korea
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Yeo-Ok Choi
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Afeisha S. Taitt
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Suyoung Bae
- Department of Bioequivalence Division for Drug Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, College of Medicine, Inje University, Busan 47392, Korea
| | - Chang-seon Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Veterinary Science Research Institute, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
28
|
Alluwaimi AM, Alshubaith IH, Al-Ali AM, Abohelaika S. The Coronaviruses of Animals and Birds: Their Zoonosis, Vaccines, and Models for SARS-CoV and SARS-CoV2. Front Vet Sci 2020; 7:582287. [PMID: 33195600 PMCID: PMC7543176 DOI: 10.3389/fvets.2020.582287] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
The viruses of the family Coronaviridae are ubiquitous in nature due to their existence in a wide spectrum of mammals and avian species. The coronaviruses, as RNA viruses, exist as quasispecies because of their high rate of mutations. This review elaborates on the pathogenesis and the developed vaccines of most of the ubiquitous coronavirus' diseases, mainly bovine, dromedary camel, porcine, feline, canine, and avian coronaviruses. The review emphasizes the significant setbacks in the full exploitation of most of the pathogenesis of the coronavirus' diseases, raising the prospect of effective vaccines for these diseases. The therapeutical trials for the treatment of SARS-CoV2 and the setbacks of these trials are also addressed. The review draws attention to the lessons accumulated from the large number of studies of the pathogenesis of animals and birds' coronaviruses and their vaccines, particularly the bovine, feline, and avian coronaviruses. The lessons drawn from the studies will have an immense influence on how the human coronaviruses pathogenesis and vaccine development will proceed. In addition, the extensive efforts to designate suitable animal models to study the lately emerged human coronaviruses are one of the invaluable contributions carried out by veterinarian scientists. Finally, factors and determinants that contribute to the possibility of emerging new coronavirus zoonotic disease are elaborated on and a call goes out to urge transdisciplinary collaboration in the implementation of the "One Health" concept.
Collapse
Affiliation(s)
- Ahmed M. Alluwaimi
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, AlAhsaa, Saudi Arabia
| | | | - Ahmed M. Al-Ali
- Central Biotechnology Laboratory, Veterinary Teaching Hospital, College of Veterinary Medicine, King Faisal University, AlAhsaa, Saudi Arabia
| | - Salah Abohelaika
- Clinical Pharmacology Department, Qatif Central Hospital, Ministry of Health, Qatif, Saudi Arabia
| |
Collapse
|
29
|
Kleen TO, Galdon AA, MacDonald AS, Dalgleish AG. Mitigating Coronavirus Induced Dysfunctional Immunity for At-Risk Populations in COVID-19: Trained Immunity, BCG and "New Old Friends". Front Immunol 2020; 11:2059. [PMID: 33013871 PMCID: PMC7498663 DOI: 10.3389/fimmu.2020.02059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
The novel, highly contagious coronavirus SARS-CoV-2 spreads rapidly throughout the world, leading to a deadly pandemic of a predominantly respiratory illness called COVID-19. Safe and effective anti-SARS-CoV-2 vaccines are urgently needed. However, emerging immunological observations show hallmarks of significant immunopathological characteristics and dysfunctional immune responses in patients with COVID-19. Combined with existing knowledge about immune responses to other closely related and highly pathogenic coronaviruses, this could forebode significant challenges for vaccine development, including the risk of vaccine failure. Animal data from earlier coronavirus vaccine efforts indicate that elderly people, most at risk from severe COVID-19 disease, could be especially at risk from immunopathologic responses to novel coronavirus vaccines. Bacterial "new old friends" such as Bacille Calmette-Guérin (BCG) or Mycobacterium obuense have the ability to elevate basal systemic levels of type 1 cytokines and immune cells, correlating with increased protection against diverse and unrelated infectious agents, called "trained immunity." Here we describe dysfunctional immune responses induced by coronaviruses, representing potentially difficult to overcome obstacles to safe, effective vaccine development for COVID-19, and outline how trained immunity could help protect high risk populations through immunomodulation with BCG and other "new old friends."
Collapse
Affiliation(s)
| | - Alicia A. Galdon
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Angus G. Dalgleish
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
30
|
Stout AE, André NM, Jaimes JA, Millet JK, Whittaker GR. Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit? Vet Microbiol 2020; 247:108777. [PMID: 32768223 PMCID: PMC7309752 DOI: 10.1016/j.vetmic.2020.108777] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022]
Abstract
Coronaviruses (CoVs) cause disease in a range of agricultural and companion animal species, and can be important causes of zoonotic infections. In humans, several coronaviruses circulate seasonally. Recently, a novel zoonotic CoV named SARS-CoV-2 emerged from a bat reservoir, resulting in the COVID-19 pandemic. With a focus on felines, we review here the evidence for SARS-CoV-2 infection in cats, ferrets and dogs, describe the relationship between SARS-CoV-2 and the natural coronaviruses known to infect these species, and provide a rationale for the relative susceptibility of these species to SARS-CoV-2 through comparative analysis of the ACE-2 receptor.
Collapse
Affiliation(s)
- Alison E Stout
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Nicole M André
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Javier A Jaimes
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352, Jouy-en-Josas, France
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States; Master of Public Health Program, Cornell University, Ithaca, NY, 14853, United States; Cornell Feline Health Center, Ithaca, NY, 14853, United States.
| |
Collapse
|
31
|
Correlation of Feline Coronavirus Shedding in Feces with Coronavirus Antibody Titer. Pathogens 2020; 9:pathogens9080598. [PMID: 32707796 PMCID: PMC7459802 DOI: 10.3390/pathogens9080598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Feline coronavirus (FCoV) infection is ubiquitous in multi-cat households. Responsible for the continuous presence are cats that are chronically shedding a high load of FCoV. The aim of the study was to determine a possible correlation between FCoV antibody titer and frequency and load of fecal FCoV shedding in cats from catteries. METHODS Four fecal samples from each of 82 cats originating from 19 German catteries were examined for FCoV viral loads by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR). Additionally, antibody titers were determined by an immunofluorescence assay. RESULTS Cats with antibodies were more likely to be FCoV shedders than non-shedders, and there was a weak positive correlation between antibody titer and mean fecal virus load (Spearman r = 0.2984; p = 0.0072). Antibody titers were significantly higher if cats shed FCoV more frequently throughout the study period (p = 0.0063). When analyzing only FCoV shedders, cats that were RT-qPCR-positive in all four samples had significantly higher antibody titers (p = 0.0014) and significantly higher mean fecal virus loads (p = 0.0475) than cats that were RT-qPCR-positive in only one, two, or three samples. CONCLUSIONS The cats' antibody titers correlate with the likelihood and frequency of FCoV shedding and fecal virus load. Chronic shedders have higher antibody titers and shed more virus. This knowledge is important for the management of FCoV infections in multi-cat environments, but the results indicate that antibody measurement cannot replace fecal RT-qPCR.
Collapse
|
32
|
Lv H, Wu NC, Mok CKP. COVID-19 vaccines: Knowing the unknown. Eur J Immunol 2020; 50:939-943. [PMID: 32437587 PMCID: PMC7280575 DOI: 10.1002/eji.202048663] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
Vaccine development against SARS-CoV-2 has drawn attention around the globe due to the exploding pandemic. Although COVID-19 is caused by a new coronavirus, SARS-CoV-2, previous research on other coronavirus vaccines, such as FIPV, SARS, and MERS, has provided valuable information for the rapid development of COVID-19 vaccine. However, important knowledge gaps remain - some are specific to SARS-CoV-2, others are fundamental to immunology and vaccinology. Here, we discuss areas that need to be addressed for COVID-19 vaccine development, and what can be learned from examples of vaccine development in the past. Since the beginning of the outbreak, the research progress on COVID-19 has been remarkable. We are therefore optimistic about the rapid development of COVID-19 vaccine.
Collapse
Affiliation(s)
- Huibin Lv
- HKU‐Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCA92037USA
| | - Chris K. P. Mok
- HKU‐Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
33
|
Hosie MJ, Jasim S. The case for adopting a combined comparative medicine and One Health approach to tackle emerging diseases. Vet Rec 2020; 187:24-26. [PMID: 33638551 PMCID: PMC7456687 DOI: 10.1136/vr.m2686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube, Glasgow, UK
| | - Seema Jasim
- MRC-University of Glasgow Centre for Virus Research, Garscube, Glasgow, UK
| |
Collapse
|
34
|
The Effect of Natural Feline Coronavirus Infection on the Host Immune Response: A Whole-Transcriptome Analysis of the Mesenteric Lymph Nodes in Cats with and without Feline Infectious Peritonitis. Pathogens 2020; 9:pathogens9070524. [PMID: 32610501 PMCID: PMC7400348 DOI: 10.3390/pathogens9070524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a coronavirus-induced disease of cats, in which the immune system is known to play a crucial, but complex, role in the pathogenesis. This role is still incompletely understood, with involvement of both host and viral factors. To evaluate differential gene expression and pathway involvement in feline coronavirus (FCoV) infection and FIP, we applied next-generation RNA-sequencing of the mesenteric lymph nodes from cats with naturally-acquired FIP, as well as those with systemic FCoV infection without FIP, and those with neither. Viral infection was associated with upregulation of viral defenses regardless of the disease state, but to a greater degree in FIP. FIP was associated with higher pro-inflammatory pathway enrichment, whilst non-FIP FCoV-positive cats showed lower enrichment of humoral immunity pathways, below that of uninfected cats in the case of immunoglobulin production pathways. This host response is presumed to be protective. In FIP, downregulation of T cell-related processes was observed, which did not occur in non-FIP FCoV-positive cats. These results emphasize the importance of the host’s immune balance in determining the outcome of the FCoV infection.
Collapse
|
35
|
Coish JM, MacNeil AJ. Out of the frying pan and into the fire? Due diligence warranted for ADE in COVID-19. Microbes Infect 2020; 22:405-406. [PMID: 32590062 PMCID: PMC7311339 DOI: 10.1016/j.micinf.2020.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Antibody-dependent enhancement (ADE) is an atypical immunological paradox commonly associated with dengue virus re-infection. However, various research models have demonstrated this phenomenon with other viral families, including Coronaviridae. Recently, ADE in SARS-CoV-2 has emerged as one hypothesis to explain severe clinical manifestations. Whether SARS-CoV-2 is augmented by ADE remains undetermined and has therefore garnered criticism for the improper attribution of the phenomenon to the pandemic. Thus, critical evaluation of ADE in SARS-CoV-2 vaccine development will be indispensable to avoid a global setback and the erosion of public trust.
Collapse
Affiliation(s)
- Jeremia M Coish
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
36
|
In Vitro Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles against Feline Infectious Peritonitis Virus and Pharmacokinetics Study in Cats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3012198. [PMID: 32596292 PMCID: PMC7262662 DOI: 10.1155/2020/3012198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 01/23/2023]
Abstract
Feline infectious peritonitis (FIP) is an important feline viral disease, causing an overridden inflammatory response that results in a high mortality rate, primarily in young cats. Curcumin is notable for its biological activities against various viral diseases; however, its poor bioavailability has hindered its potential in therapeutic application. In this study, curcumin was encapsulated in chitosan nanoparticles to improve its bioavailability. Curcumin-encapsulated chitosan (Cur-CS) nanoparticles were synthesised based on the ionic gelation technique and were spherical and cuboidal in shape, with an average particle size of 330 nm and +42 mV in zeta potential. The nanoparticles exerted lower toxicity in Crandell-Rees feline kidney (CrFK) cells and enhanced antiviral activities with a selective index (SI) value three times higher than that of curcumin. Feline-specific bead-based multiplex immunoassay and qPCR were used to examine their modulatory effects on proinflammatory cytokines, including tumour necrosis factor (TNF)α, interleukin- (IL-) 6, and IL-1β. There were significant decrements in IL-1β, IL-6, and TNFα expression in both curcumin and Cur-CS nanoparticles. Based on the multiplex immunoassay, curcumin and the Cur-CS nanoparticles could lower the immune-related proteins in FIP virus (FIPV) infection. The single- and multiple-dose pharmacokinetics profiles of curcumin and the Cur-CS nanoparticles were determined by high-performance liquid chromatography (HPLC). Oral delivery of the Cur-CS nanoparticles to cats showed enhanced bioavailability with a maximum plasma concentration (C max) value of 621.5 ng/mL. Incorporating chitosan nanoparticles to deliver curcumin improved the oral bioavailability and antiviral effects of curcumin against FIPV infection. This study provides evidence for the potential of Cur-CS nanoparticles as a supplementary treatment of FIP.
Collapse
|
37
|
Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jadi RS, Marrama D, de Silva AM, Frazier A, Carlin AF, Greenbaum JA, Peters B, Krammer F, Smith DM, Crotty S, Sette A. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020; 181:1489-1501.e15. [PMID: 32473127 PMCID: PMC7237901 DOI: 10.1016/j.cell.2020.05.015] [Citation(s) in RCA: 2753] [Impact Index Per Article: 550.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | | | - Stephen A Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Ramesh S Jadi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aaron F Carlin
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jason A Greenbaum
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Doki T, Tarusawa T, Hohdatsu T, Takano T. In Vivo Antiviral Effects of U18666A Against Type I Feline Infectious Peritonitis Virus. Pathogens 2020; 9:pathogens9010067. [PMID: 31963705 PMCID: PMC7169457 DOI: 10.3390/pathogens9010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The cationic amphiphilic drug U18666A inhibits the proliferation of type I FIPV in vitro. In this study, we evaluated the in vivo antiviral effects of U18666A by administering it to SPF cats challenged with type I FIPV. Methods: Ten SPF cats were randomly assigned to two experimental groups. FIPV KU-2 were inoculated intraperitoneally to cats. The control group was administered PBS, and the U18666A-treated group was administered U18666A subcutaneously at 2.5 mg/kg on day 0, and 1.25 mg/kg on days 2 and 4 after viral inoculation. Results: Two of the five control cats administered PBS alone developed FIP. Four of the five cats administered U18666A developed no signs of FIP. One cat that temporarily developed fever, had no other clinical symptoms, and no gross lesion was noted on an autopsy after the end of the experiment. The FIPV gene was detected intermittently in feces and saliva regardless of the development of FIP or administration of U18666A. Conclusions: When U18666A was administered to cats experimentally infected with type I FIPV, the development of FIP might be suppressed compared with the control group. However, the number of animals with FIP is too low to establish anti-viral effect of U18666A in cats.
Collapse
Affiliation(s)
| | | | | | - Tomomi Takano
- Correspondence: ; Tel.: +81-176-23-4371; Fax: +81-176-23-8703
| |
Collapse
|
39
|
Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663. J Virol 2019; 93:JVI.01208-19. [PMID: 31375588 PMCID: PMC6803248 DOI: 10.1128/jvi.01208-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Feline infectious peritonitis (FIP) is one of the most important infectious diseases in cats and is caused by feline coronavirus (FCoV). Tissue culture-adapted type I FCoV shows reduced FIP induction in experimental infections, which complicates the understanding of FIP pathogenesis caused by type I FCoV. We previously found that the type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats through the naturally infectious route. In this study, we employed a bacterial artificial chromosome-based reverse genetics system to gain more insights into FIP caused by the C3633 strain. We successfully generated recombinant virus (rC3663) from Fcwf-4 cells transfected with infectious cDNA that showed growth kinetics similar to those shown by the parental virus. Next, we constructed a reporter C3663 virus carrying the nanoluciferase (Nluc) gene to measure viral replication with high sensitivity. The inhibitory effects of different compounds against rC3663-Nluc could be measured within 24 h postinfection. Furthermore, we found that A72 cells derived from canine fibroblasts permitted FCoV replication without apparent cytopathic effects. Thus, our reporter virus is useful for uncovering the infectivity of type I FCoV in different cell lines, including canine-derived cells. Surprisingly, we uncovered aberrant viral RNA transcription of rC3663 in A72 cells. Overall, we succeeded in obtaining infectious cDNA clones derived from type I FCoV that retained its virulence. Our recombinant FCoVs are powerful tools for increasing our understanding of the viral life cycle and pathogenesis of FIP-inducing type I FCoV.IMPORTANCE Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression.
Collapse
|
40
|
Takano T, Yamada S, Doki T, Hohdatsu T. Pathogenesis of oral type I feline infectious peritonitis virus (FIPV) infection: Antibody-dependent enhancement infection of cats with type I FIPV via the oral route. J Vet Med Sci 2019; 81:911-915. [PMID: 31019150 PMCID: PMC6612493 DOI: 10.1292/jvms.18-0702] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Feline infectious peritonitis virus (FIPV) causes a severe, immune-mediated disease called FIP in domestic and wild cats. It is unclear whether FIP transmits from cat to cat through the oral route of FIPV infection, and the reason for this includes that FIP is caused by oral inoculation with some FIPV strains (e.g., type II FIPV WSU 79-1146), but is not caused by other FIPV (e.g., type I FIPV KU-2 strain: FIPV-I KU-2). In this study, when cats passively immunized with anti-FIPV-I KU-2 antibodies were orally inoculated with FIPV-I KU-2, FIP was caused at a 50% probability, i.e., FIPV not causing FIP through oral infection caused FIP by inducing antibody-dependent enhancement. Many strains of type I FIPV do not cause FIP by inoculation through the oral route in cats. Based on the findings of this study, type I FIPV which orally infected cats may cause FIP depending on the condition.
Collapse
Affiliation(s)
- Tomomi Takano
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Shinji Yamada
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomoyoshi Doki
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Tsutomu Hohdatsu
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
41
|
Marenzoni ML, Lauzi S, Miglio A, Coletti M, Arbia A, Paltrinieri S, Antognoni MT. Comparison of three blood transfusion guidelines applied to 31 feline donors to minimise the risk of transfusion-transmissible infections. J Feline Med Surg 2018; 20:663-673. [PMID: 28840782 PMCID: PMC11104146 DOI: 10.1177/1098612x17727233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Objectives The increased demand for animal blood transfusions creates the need for an adequate number of donors. At the same time, a high level of blood safety must be guaranteed and different guidelines (GLs) deal with this topic. The aim of this study was to evaluate the appropriateness of different GLs in preventing transfusion-transmissible infections (TTI) in Italian feline blood donors. Methods Blood samples were collected from 31 cats enrolled as blood donors by the owners' voluntary choice over a period of approximately 1 year. Possible risk factors for TTI were recorded. Based on Italian, European and American GLs, specific TTI, including haemoplasmas, feline leukaemia virus (FeLV), feline immunodeficiency virus (FIV), Anaplasma phagocytophilum, Ehrlichia species, Bartonella species, Babesia species, Theileria species, Cytauxzoon species, Leishmania donovani sensu lato and feline coronavirus (FCoV), were screened. Rapid antigen and serological tests and biomolecular investigations (PCR) were used. Several PCR protocols for haemoplasma and FeLV DNA were compared. Results The presence of at least one recognised risk factor for TTI was reported in all cats. Results for FIV and FeLV infections were negative using rapid tests, whereas five (16.1%) cats were positive for FCoV antibodies. Four (12.9%) cats were PCR positive for haemoplasma DNA and one (3.2%) for FeLV provirus, the latter being positive only using the most sensitive PCR protocol applied. Other TTI were not detected using PCR. Conclusions and relevance Blood safety increases by combining the recommendations of different GLs. To reduce the risk of TTI, sensitive tests are needed and the choice of the best protocol is a critical step in improving blood safety. The cost and time of the screening procedures may be reduced if appropriate tests are selected. To this end, the GLs should include appropriate recruitment protocols and questionnaire-based risk profiles to identify suitable donors.
Collapse
Affiliation(s)
| | - Stefania Lauzi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
- Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Arianna Miglio
- Veterinary Transfusion Unit (EMOVET-UNIPG), Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Mauro Coletti
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Andrea Arbia
- Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, Milan, Italy
- Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Maria Teresa Antognoni
- Veterinary Transfusion Unit (EMOVET-UNIPG), Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
42
|
Jaimes JA, Whittaker GR. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology 2018; 517:108-121. [PMID: 29329682 PMCID: PMC7112122 DOI: 10.1016/j.virol.2017.12.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022]
Abstract
Feline coronavirus (FCoV) is an etiological agent that causes a benign enteric illness and the fatal systemic disease feline infectious peritonitis (FIP). The FCoV spike (S) protein is considered the viral regulator for binding and entry to the cell. This protein is also involved in FCoV tropism and virulence, as well as in the switch from enteric disease to FIP. This regulation is carried out by spike's major functions: receptor binding and virus-cell membrane fusion. In this review, we address important aspects in FCoV genetics, replication and pathogenesis, focusing on the role of S. To better understand this, FCoV S protein models were constructed, based on the human coronavirus NL63 (HCoV-NL63) S structure. We describe the specific structural characteristics of the FCoV S, in comparison with other coronavirus spikes. We also revise the biochemical events needed for FCoV S activation and its relation to the structural features of the protein.
Collapse
Affiliation(s)
- Javier A Jaimes
- Department of Microbiology, College of Agricultural and Life Sciences, Cornell University, 930 Campus Rd. VMC C4-133, Ithaca, NY 14853, USA.
| | - Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, VMC C4-127, Ithaca, NY 14853, USA.
| |
Collapse
|
43
|
Evaluation of Antibody-Dependent Enhancement of SARS-CoV Infection in Rhesus Macaques Immunized with an Inactivated SARS-CoV Vaccine. Virol Sin 2018. [PMID: 29541941 PMCID: PMC6178114 DOI: 10.1007/s12250-018-0009-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
44
|
Affiliation(s)
- Laurel J Gershwin
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Vet Med 3A, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Hu CMJ, Chang WS, Fang ZS, Chen YT, Wang WL, Tsai HH, Chueh LL, Takano T, Hohdatsu T, Chen HW. Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Sci Rep 2017; 7:13043. [PMID: 29026122 PMCID: PMC5638965 DOI: 10.1038/s41598-017-13316-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023] Open
Abstract
Feline infectious peritonitis (FIP), caused by a mutated feline coronavirus, is one of the most serious and fatal viral diseases in cats. The disease remains incurable, and there is no effective vaccine available. In light of the pathogenic mechanism of feline coronavirus that relies on endosomal acidification for cytoplasmic entry, a novel vacuolar ATPase blocker, diphyllin, and its nanoformulation are herein investigated for their antiviral activity against the type II feline infectious peritonitis virus (FIPV). Experimental results show that diphyllin dose-dependently inhibits endosomal acidification in fcwf-4 cells, alters the cellular susceptibility to FIPV, and inhibits the downstream virus replication. In addition, diphyllin delivered by polymeric nanoparticles consisting of poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-PLGA) further demonstrates an improved safety profile and enhanced inhibitory activity against FIPV. In an in vitro model of antibody-dependent enhancement of FIPV infection, diphyllin nanoparticles showed a prominent antiviral effect against the feline coronavirus. In addition, the diphyllin nanoparticles were well tolerated in mice following high-dose intravenous administration. This study highlights the therapeutic potential of diphyllin and its nanoformulation for the treatment of FIP.
Collapse
Affiliation(s)
- Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| | - Wei-Shan Chang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - You-Ting Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Lin Wang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Han Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ling-Ling Chueh
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Tomomi Takano
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Tsutomu Hohdatsu
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Hui-Wen Chen
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan. .,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
46
|
Evidence for Complex Formation of the Bacillus cereus Haemolysin BL Components in Solution. Toxins (Basel) 2017; 9:toxins9090288. [PMID: 28926954 PMCID: PMC5618221 DOI: 10.3390/toxins9090288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023] Open
Abstract
Haemolysin BL is an important virulence factor regarding the diarrheal type of food poisoning caused by Bacillus cereus. However, the pathogenic importance of this three-component enterotoxin is difficult to access, as nearly all natural B. cereus culture supernatants additionally contain the highly cytotoxic Nhe, the second three-component toxin involved in the aetiology of B. cereus-induced food-borne diseases. To better address the toxic properties of the Hbl complex, a system for overexpression and purification of functional, cytotoxic, recombinant (r)Hbl components L2, L1 and B from E. coli was established and an nheABC deletion mutant was constructed from B. cereus reference strain F837/76. Furthermore, 35 hybridoma cell lines producing monoclonal antibodies (mAbs) against Hbl L2, L1 and B were generated. While mAbs 1H9 and 1D8 neutralized Hbl toxicity and thus, represent important tools for future investigations of the mode-of-action of Hbl on the target cell surface, mAb 1D7, in contrast, even enhanced Hbl toxicity by supporting the binding of Hbl B to the cell surface. By using the specific mAbs in Dot blots, indirect and hybrid sandwich enzyme immuno assays (EIAs), complex formation between Hbl L1 and B, as well as L1 and L2 in solution could be shown for the first time. Surface plasmon resonance experiments with the rHbl components confirmed these results with KD values of 4.7 × 10−7 M and 1.5 × 10−7 M, respectively. These findings together with the newly created tools lay the foundation for the detailed elucidation of the molecular mode-of-action of the highly complex three-component Hbl toxin.
Collapse
|
47
|
Takano T, Nakaguchi M, Doki T, Hohdatsu T. Antibody-dependent enhancement of serotype II feline enteric coronavirus infection in primary feline monocytes. Arch Virol 2017; 162:3339-3345. [PMID: 28730523 PMCID: PMC7086811 DOI: 10.1007/s00705-017-3489-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/05/2017] [Indexed: 01/15/2023]
Abstract
Feline coronavirus (FCoV) has been classified into two biotypes: avirulent feline coronavirus (feline enteric coronavirus: FECV) and virulent feline coronavirus (feline infectious peritonitis virus: FIPV). In FIPV infection, antibody-dependent enhancement (ADE) has been reported and was shown to be associated with severe clinical disease. On the other hand, the potential role of ADE in FECV infection has not been examined. In this study, using laboratory strains of serotype II FIPV WSU 79-1146 (FIPV 79-1146) and serotype II FECV WSU 79-1683 (FECV 79-1683), we investigated the relationship between ADE and induction of inflammatory cytokines, which are pathogenesis-related factors, for each strain. As with ADE of FIPV 79-1146 infection, a monoclonal antibody against the spike protein of FCoV (mAb 6-4-2) enhanced FECV 79-1683 replication in U937 cells and primary feline monocytes. However, the ADE activity of FECV 79-1683 was lower than that of FIPV 79-1146. Moreover, mRNA levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) significantly increased with ADE of FIPV 79-1146 infection in primary feline monocytes, but FECV 79-1683 did not demonstrate an increase in these levels. In conclusion, infection of monocytes by FECV was enhanced by antibodies, but the efficiency of infection was lower than that of FIPV.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Mamiko Nakaguchi
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tsutomu Hohdatsu
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan.
| |
Collapse
|
48
|
Jiaming L, Yanfeng Y, Yao D, Yawei H, Linlin B, Baoying H, Jinghua Y, Gao GF, Chuan Q, Wenjie T. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine 2016; 35:10-18. [PMID: 27899228 PMCID: PMC7115548 DOI: 10.1016/j.vaccine.2016.11.064] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/08/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023]
Abstract
The persistent public health threat of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the need for an effective MERS-CoV vaccine. Previous studies have focused mainly on the receptor-binding domain (RBD) on the spike protein of MERS-CoV. Herein, we investigated the immunogenicity and protective potential of the recombinant N-terminal domain (rNTD) of spike proteins as a vaccine candidate. BALB/c mice vaccinated with 5 or 10 μg of rNTD protein demonstrated a significant humoral immune response (serum IgG and neutralizing activity). Additionally, according to the enzyme-linked immunospot, intracellular cytokine staining, and cytometric bead array assays, significant and functional T-cell immunity was induced by 10 μg of the rNTD vaccination with aluminum and CpG adjuvant. Furthermore, rNTD-immunized mice showed reduced lung abnormalities in a MERS-CoV-challenge mouse model transfected with an adenoviral vector expressing human DPP4, showing protection consistent with that found with rRBD vaccination. These data show that rNTD induced potent cellular immunity and antigen-specific neutralizing antibodies in mice and that it demonstrated protective capacity against a viral challenge, indicating that rNTD is a vaccine candidate against MERS-CoV infection.
Collapse
Affiliation(s)
- Lan Jiaming
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yao Yanfeng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Deng Yao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Hu Yawei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Linlin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Huang Baoying
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yan Jinghua
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qin Chuan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Tan Wenjie
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China.
| |
Collapse
|
49
|
Sugiarto S, Spiri AM, Riond B, Novacco M, Oestmann A, de Miranda LHM, Meli ML, Boretti FS, Hofmann-Lehmann R, Willi B. Passive immunization does not provide protection against experimental infection with Mycoplasma haemofelis. Vet Res 2016; 47:79. [PMID: 27496124 PMCID: PMC4975915 DOI: 10.1186/s13567-016-0361-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/18/2016] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma haemofelis (Mhf) is the most pathogenic feline hemotropic mycoplasma. Cats infected with Mhf that clear bacteremia are protected from Mhf reinfection, but the mechanisms of protective immunity are unresolved. In the present study we investigated whether the passive transfer of antibodies from Mhf-recovered cats to naïve recipient cats provided protection against bacteremia and clinical disease following homologous challenge with Mhf; moreover, we characterized the immune response in the recipient cats. Ten specified pathogen-free (SPF) cats were transfused with pooled plasma from cats that had cleared Mhf bacteremia; five control cats received plasma from naïve SPF cats. After homologous challenge with Mhf, cats were monitored for 100 days using quantitative PCR, hematology, blood biochemistry, Coombs testing, flow cytometry, DnaK ELISA, and red blood cell (RBC) osmotic fragility (OF) measurement. Passively immunized cats were not protected against Mhf infection but, compared to control cats, showed significantly higher RBC OF and B lymphocyte (CD45R/B220+) counts and occasionally higher lymphocyte, monocyte and activated CD4+ T lymphocyte (CD4+CD25+) counts; they also showed higher bilirubin, total protein and globulin levels compared to those of control cats. At times of peak bacteremia, a decrease in eosinophils and lymphocytes, as well as subsets thereof (B lymphocytes and CD5+, CD4+ and CD8+ T lymphocytes), and an increase in monocytes were particularly significant in the passively immunized cats. In conclusion, passive immunization does not prevent bacteremia and clinical disease following homologous challenge with Mhf, but enhances RBC osmotic fragility and induces a pronounced immune response.
Collapse
Affiliation(s)
- Sarah Sugiarto
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - Andrea M Spiri
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - Barbara Riond
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - Marilisa Novacco
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - Angelina Oestmann
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - Luisa H Monteiro de Miranda
- Laboratory of Clinical Research on Dermatozoonosis in Domestic Animals, National Institute of Infectiology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marina L Meli
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - Felicitas S Boretti
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - Barbara Willi
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland. .,Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland.
| |
Collapse
|
50
|
Tsukada R, Osaka Y, Takano T, Sasaki M, Inose M, Ikadai H. Serological survey of Encephalitozoon cuniculi infection in cats in Japan. J Vet Med Sci 2016; 78:1615-1617. [PMID: 27320966 PMCID: PMC5095633 DOI: 10.1292/jvms.15-0545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antibodies to Encephalitozoon cuniculi (E. cuniculi) were examined by enzyme-linked immunosorbent assay using E. cuniculi PTP2 recombinant protein from serum samples that had been collected from a total of 295 cats in Japan. Of these samples, 6.1% (18/295) had antibodies against E. cuniculi, which included 6.3% (6/96) of the male cats and 6.0% (12/199) of the female cats. The incidence was slightly higher in feral cats (8.3%, 11/132) compared to domesticated cats (4.3%, 7/163). This suggests the possibility that the cats of our country have become a reservoir of E. cuniculi. This study is the first to demonstrate the prevalence of E. cuniculi infection in cats in Japan.
Collapse
Affiliation(s)
- Ryusuke Tsukada
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | |
Collapse
|