1
|
Zhao W, Sun J, Zhou B, Qiao H, Zhang J. Pan-cancer characterization of C-C motif chemokine ligand 5 (CCL5) identifies its role as biomarker and therapeutic target. Discov Oncol 2025; 16:264. [PMID: 40035930 PMCID: PMC11880496 DOI: 10.1007/s12672-025-02004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVES C-C Motif Chemokine Ligand 5 (CCL5) is known for its role in immune regulation and has been implicated in cancer progression. However, its expression and prognostic significance in pan-cancer require comprehensive evaluation. This study was initiated to decipher the pan-cancer role of CCL5 genes. METHODS In silico analyses involving various online databases and molecular experiments involving CCL5 knockdown experiments in KIRC cell lines evaluated its role in cell proliferation, colony formation, and migration. RESULTS CCL5 expression was significantly up-regulated in several cancers. High CCL5 expression correlated with poorer overall survival in kidney renal cell carcinoma (KIRC) and esophageal cancer (ESCA) patients. Promoter hypomethylation correlated with elevated CCL5 expression and poorer prognosis. CCL5 mutations were rare; indicating its role in cancer is driven by overexpression rather than genetic alterations. Positive correlations with immune inhibitory and MHC genes suggested CCL5's role in fostering an immunosuppressive tumor microenvironment. High CCL5 expression correlated with increased immune cell infiltration, particularly CD8 T cells and macrophages. CCL5 expression did not significantly influence drug sensitivity. CCL5 knockdown in resulted in reduced proliferation, colony formation, and migration, underscoring its critical role in cancer cell dynamics. CONCLUSION Our study highlights the significance of CCL5 in cancer progression and prognosis, particularly in KIRC and ESCA. CCL5's role in modulating the tumor immune microenvironment and its potential as a therapeutic target warrant further investigation.
Collapse
Affiliation(s)
- Wenming Zhao
- Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Department of Pathology, Baoding First Central Hospital, Baoding, 071000, China
| | - Jirui Sun
- Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Department of Pathology, Baoding First Central Hospital, Baoding, 071000, China
| | - Bingjuan Zhou
- Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Department of Pathology, Baoding First Central Hospital, Baoding, 071000, China
| | - Haizhi Qiao
- Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Department of Pathology, Baoding First Central Hospital, Baoding, 071000, China
| | - Jinku Zhang
- Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Department of Pathology, Baoding First Central Hospital, Baoding, 071000, China.
| |
Collapse
|
2
|
Elizalde-Bielsa A, Muñoz PM, Zúñiga-Ripa A, Conde-Álvarez R. A Review on the Methodology and Use of the Pregnant Mouse Model in the Study of Brucella Reproductive Pathogenesis and Its Abortifacient Effect. Microorganisms 2024; 12:866. [PMID: 38792696 PMCID: PMC11123383 DOI: 10.3390/microorganisms12050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Brucellosis is one of the most common and widespread bacterial zoonoses and is caused by Gram-negative bacteria belonging to the genus Brucella. These organisms are able to infect and replicate within the placenta, resulting in abortion, one of the main clinical signs of brucellosis. Although the mouse model is widely used to study Brucella virulence and, more recently, to evaluate the protection of new vaccines, there is no clear consensus on the experimental conditions (e.g., mouse strains, doses, routes of inoculation, infection/pregnancy time) and the natural host reproducibility of the pregnant mouse model for reproductive brucellosis. This lack of consensus calls for a review that integrates the major findings regarding the effect of Brucella wild-type and vaccine strains infections on mouse pregnancy. We found sufficient evidence on the utility of the pregnant mouse model to study Brucella-induced placentitis and abortion and propose suitable experimental conditions (dose, time of infection) and pregnancy outcome readouts for B. abortus and B. melitensis studies. Finally, we discuss the utility and limitations of the pregnant mouse as a predictive model for the abortifacient effect of live Brucella vaccines.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| | - Pilar M. Muñoz
- Department of Animal Science, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
3
|
Zavattieri L, Muñoz González F, Ferrero MC, Baldi PC. Immune Responses Potentially Involved in the Gestational Complications of Brucella Infection. Pathogens 2023; 12:1450. [PMID: 38133333 PMCID: PMC10747693 DOI: 10.3390/pathogens12121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Infection by Brucella species in pregnant animals and humans is associated with an increased risk of abortion, preterm birth, and transmission of the infection to the offspring. The pathogen has a marked tropism for the placenta and the pregnant uterus and has the ability to invade and replicate within cells of the maternal-fetal unit, including trophoblasts and decidual cells. Placentitis is a common finding in infected pregnant animals. Several proinflammatory factors have been found to be increased in both the placenta of Brucella-infected animals and in trophoblasts or decidual cells infected in vitro. As normal pregnancies require an anti-inflammatory placental environment during most of the gestational period, Brucella-induced placentitis is thought to be associated with the obstetric complications of brucellosis. A few studies suggest that the blockade of proinflammatory factors may prevent abortion in these cases.
Collapse
Affiliation(s)
- Lucía Zavattieri
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
4
|
Xiao Y, Li M, Guo X, Zeng H, Shuai X, Guo J, Huang Q, Chu Y, Zhou B, Wen J, Liu J, Jiao H. Inflammatory Mechanism of Brucella Infection in Placental Trophoblast Cells. Int J Mol Sci 2022; 23:13417. [PMID: 36362199 PMCID: PMC9657658 DOI: 10.3390/ijms232113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/03/2024] Open
Abstract
Brucellosis is a severe zoonotic infectious disease caused by the infection of the Brucella, which is widespread and causes considerable economic losses in underdeveloped areas. Brucella is a facultative intracellular bacteria whose main target cells for infection are macrophages, placental trophoblast cells and dendritic cells. The main clinical signs of Brucella infection in livestock are reproductive disorders and abortion. At present, the pathogenesis of placentitis or abortion caused by Brucella in livestock is not fully understood, and further research on the effect of Brucella on placental development is still necessary. This review will mainly introduce the research progress of Brucella infection of placental trophoblast cells as well as the inflammatory response caused by it, explaining the molecular regulation mechanism of Brucella leading to reproductive system disorders and abortion, and also to provide the scientific basis for revealing the pathogenesis and infection mechanism of Brucella.
Collapse
Affiliation(s)
- Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Jake Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Tumor Necrosis Factor Alpha Contributes to Inflammatory Pathology in the Placenta during Brucella abortus Infection. Infect Immun 2022; 90:e0001322. [PMID: 35100011 PMCID: PMC8929372 DOI: 10.1128/iai.00013-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Research on Brucella pathogenesis has focused primarily on its ability to cause persistent intracellular infection of the mononuclear phagocyte system. At these sites, Brucella abortus evades innate immunity, which results in low-level inflammation and chronic infection of phagocytes. In contrast, the host response in the placenta during infection is characterized by severe inflammation and extensive extracellular replication of B. abortus. Despite the importance of reproductive disease caused by Brucella infection, our knowledge of the mechanisms involved in placental inflammation and abortion is limited. To understand the immune responses specifically driving placental pathology, we modeled placental B. abortus infection in pregnant mice. B. abortus infection caused an increase in the production of tumor necrosis factor alpha (TNF-α), specifically in the placenta. We found that placental expression levels of Tnfa and circulating TNF-α were dependent on the induction of endoplasmic reticulum stress and the B. abortus type IV secretion system (T4SS) effector protein VceC. Blockade of TNF-α reduced placental inflammation and improved fetal viability in mice. This work sheds light on a tissue-specific response of the placenta to B. abortus infection that may be important for bacterial transmission via abortion in the natural host species.
Collapse
|
6
|
Poveda-Urkixo I, Ramírez GA, Grilló MJ. Kinetics of Placental Infection by Different Smooth Brucella Strains in Mice. Pathogens 2022; 11:pathogens11030279. [PMID: 35335603 PMCID: PMC8955611 DOI: 10.3390/pathogens11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/18/2023] Open
Abstract
Abortion and reproductive failures induced by Brucella are the main symptoms of animal brucellosis. Laboratory animal models are essential tools of research to study the Brucella pathogenesis before experimentation in natural hosts. To extend the existing knowledge, we studied B. melitensis 16M (virulent) and Rev1 (attenuated) as well as B. suis bv2 infections in pregnant mice. Here, we report new information about kinetics of infection (in spleens, blood, placentas, vaginal shedding, and foetuses), serum cytokine profiles, and histopathological features in placentas and the litter throughout mice pregnancy. Both B. melitensis strains showed a marked placental tropism and reduced viability of pups (mainly in 16M infections), which was preceded by an intense Th1-immune response during placental development. In contrast, B. suis bv2 displayed lower placental tropism, mild proinflammatory immune response, and scarce bacterial transmission to the litter, thus allowing foetal viability. Overall, our studies revealed three different smooth Brucella patterns of placental and foetal pathogenesis in mice, providing a useful animal model for experimental brucellosis.
Collapse
Affiliation(s)
- Irati Poveda-Urkixo
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Spain;
| | - Gustavo A. Ramírez
- Departamento de Sanidad Animal, Universidad de Lleida, 25198 Lleida, Spain;
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Spain;
- Correspondence:
| |
Collapse
|
7
|
Ren J, Hou H, Zhao W, Wang J, Peng Q. Administration of Exogenous Progesterone Protects Against Brucella abortus Infection-Induced Inflammation in Pregnant Mice. J Infect Dis 2021; 224:532-543. [PMID: 33216902 DOI: 10.1093/infdis/jiaa722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/14/2020] [Indexed: 11/13/2022] Open
Abstract
Progesterone has been recognized as essential for the establishment and maintenance of pregnancy, and is typically known as an immunosuppressive agent. However, its effects on mediating Brucella infection-induced inflammation have not been evaluated. Here we demonstrated that Brucella abortus infection inhibits progesterone levels in the pregnant mouse by suppressing the production of progesterone by placenta. Progesterone treatment significantly reduced the secretion of inflammatory cytokines in serum, macrophages, and trophoblasts of B. abortus-infected mice, leading to decreased placentitis and enhancing the pup viability. Mechanistically, this decreased inflammatory response results from inhibition of NF-kB activation by progesterone. Moreover, progesterone treatment suppresses B. abortus growth within trophoblasts associated with an inability of bacteria to escape the late endosome compartment in vitro. Collectively, our data illustrate that progesterone treatment might be useful therapeutically in protection against placentitis or abortion caused by B. abortus infection.
Collapse
Affiliation(s)
- Jingjing Ren
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Huanhuan Hou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Weizheng Zhao
- Clinical Medical College, Jilin University, Changchun, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
8
|
Osman AY, Kadir AA, Jesse FF, Saharee AA. Modelling the immunopathophysiology of Brucella melitensis and its lipopolysaccharide in mice infected via oral route of exposure. Microb Pathog 2019; 136:103669. [PMID: 31445124 DOI: 10.1016/j.micpath.2019.103669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 01/18/2023]
Abstract
Brucella melitensis is one of the leading zoonotic pathogens with significant economic implications in animal industry worldwide. Lipopolysaccharide, however, remains by far the major virulence with substantial role in diseases pathogenesis. Nonetheless, the effect of B. melitensis and its lipopolysaccharide on immunopathophysiological aspects largely remains an enigma. This study examines the effect of B.melitensis and its lipopolysaccharide on immunopathophysiological parameters following experimental infection using mouse model. Eighty four (n = 84) mice, BALB/c, both sexes with equal gender distribution and 6-8 weeks-old were randomly assigned into three groups. Group 1-2 (n = 72) were orally inoculated with 0.4 mL containing 109 CFU/mL of B. melitensis and its LPS, respectively. Group 3 (n = 12) was challenged orally with phosphate buffered saline and served as a control group. Animals were observed for clinical signs, haematological and histopathological analysis for a period of 24 days post-infection. We hereby report that B.melitensis infected group demonstrated significant clinical signs and histopathological changes than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1β and IL-6) and antibody levels (IgM and IgG) with varying degrees of predominance in LPS infected group than B. melitensis infected group. For hormone analysis, low levels of progesterone, estradiol and testosterone were observed in both B. melitensis and LPS groups throughout the study period. Moreover, in B. melitensis infected group, the organism was re-isolated from the organs and tissues of gastrointestinal, respiratory and reproductive systems thereby confirming the infection and transmission dynamics. This report is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in a mouse model after oral inoculation with B. melitensis and its lipopolysaccharide.
Collapse
Affiliation(s)
- Abdinasir Yusuf Osman
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100, Kota Bharu, Kelantan, Malaysia; Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Arifah Abdul Kadir
- Department of Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faez Firdaus Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abdul Aziz Saharee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Byndloss MX, Tsai AY, Walker GT, Miller CN, Young BM, English BC, Seyffert N, Kerrinnes T, de Jong MF, Atluri VL, Winter MG, Celli J, Tsolis RM. Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. mBio 2019; 10:e01538-19. [PMID: 31337727 PMCID: PMC6650558 DOI: 10.1128/mbio.01538-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
Subversion of endoplasmic reticulum (ER) function is a feature shared by multiple intracellular bacteria and viruses, and in many cases this disruption of cellular function activates pathways of the unfolded protein response (UPR). In the case of infection with Brucella abortus, the etiologic agent of brucellosis, the unfolded protein response in the infected placenta contributes to placentitis and abortion, leading to pathogen transmission. Here we show that B. abortus infection of pregnant mice led to death of infected placental trophoblasts in a manner that depended on the VirB type IV secretion system (T4SS) and its effector VceC. The trophoblast death program required the ER stress-induced transcription factor CHOP. While NOD1/NOD2 expression in macrophages contributed to ER stress-induced inflammation, these receptors did not play a role in trophoblast death. Both placentitis and abortion were independent of apoptosis-associated Speck-like protein containing a caspase activation and recruitment domain (ASC). These studies show that B. abortus uses its T4SS to induce cell-type-specific responses to ER stress in trophoblasts that trigger placental inflammation and abortion. Our results suggest further that in B. abortus the T4SS and its effectors are under selection as bacterial transmission factors.IMPORTANCEBrucella abortus infects the placenta of pregnant cows, where it replicates to high levels and triggers abortion of the calf. The aborted material is highly infectious and transmits infection to both cows and humans, but very little is known about how B. abortus causes abortion. By studying this infection in pregnant mice, we discovered that B. abortus kills trophoblasts, which are important cells for maintaining pregnancy. This killing required an injected bacterial protein (VceC) that triggered an endoplasmic reticulum (ER) stress response in the trophoblast. By inhibiting ER stress or infecting mice that lack CHOP, a protein induced by ER stress, we could prevent death of trophoblasts, reduce inflammation, and increase the viability of the pups. Our results suggest that B. abortus injects VceC into placental trophoblasts to promote its transmission by abortion.
Collapse
Affiliation(s)
- Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - April Y Tsai
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Gregory T Walker
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Cheryl N Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Bevin C English
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Núbia Seyffert
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Tobias Kerrinnes
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Maarten F de Jong
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Vidya L Atluri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Maria G Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Jean Celli
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
10
|
Liu X, Zhou M, Wu J, Wang J, Peng Q. HMGB1 release from trophoblasts contributes to inflammation during Brucella melitensis infection. Cell Microbiol 2019; 21:e13080. [PMID: 31265755 DOI: 10.1111/cmi.13080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 01/10/2023]
Abstract
Brucella melitensis infection causes acute necrotizing inflammation in pregnant animals; however, the pathophysiological mechanisms leading to placentitis are unknown. Here, we demonstrate that high-mobility group box 1 (HMGB1) acts as a mediator of placenta inflammation in B. melitensis-infected pregnant mice model. HMGB1 levels were increased in trophoblasts or placental explant during B. melitensis infection. Inhibition of HMGB1 activity with neutralising antibody significantly reduced the secretion of inflammatory cytokines in B. melitensis-infected trophoblasts or placenta, whereas administration of recombinant HMGB1 (rHMGB1) increased the inflammatory response. Mechanistically, this decreased inflammatory response results from inhibition of HMGB1 activity, which cause the suppression of both mitogen-activated protein kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Moreover, neutralising antibody to HMGB1 prevented B. melitensis infection-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in trophoblasts. In contrast, in vitro stimulation of trophoblasts with rHMGB1 caused activation of NADPH oxidase and increased the production of ROS, which contributes to high bacterial burden within trophoblasts or placenta. In vivo, treatment with anti-HMGB1 antibody increases the number of Brucella survival within placenta in B. melitensis-infected pregnant mice but successfully reduced the severity of placentitis and abortion.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Clinical laboratory, Tumor Hospital of Jilin Province, Changchun, China
| | - Mi Zhou
- Department of Microbiology, Changchun Medical College, Changchun, China
| | - Jing Wu
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Wang
- Laboratory Department, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
11
|
Fernández AG, Hielpos MS, Ferrero MC, Fossati CA, Baldi PC. Proinflammatory response of canine trophoblasts to Brucella canis infection. PLoS One 2017; 12:e0186561. [PMID: 29036184 PMCID: PMC5643107 DOI: 10.1371/journal.pone.0186561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/03/2017] [Indexed: 01/18/2023] Open
Abstract
Brucella canis infection is an important cause of late-term abortion in pregnant bitches. The pathophysiological mechanisms leading to B. canis-induced abortion are unknown, but heavily infected trophoblasts are consistently observed. As trophoblasts responses to other pathogens contribute to placental inflammation leading to abortion, the aim of the present study was to characterize the cytokine response of canine trophoblasts to B. canis infection. To achieve this, trophoblasts isolated from term placenta of healthy female dogs were infected with B. canis, culture supernatants were harvested for cytokine determinations, and the load of intracellular viable B. canis was determined at different times post-infection. Additionally, cytokine responses were assessed in non-infected trophoblasts stimulated with conditioned media (CM) from B. canis-infected canine monocytes and neutrophils. Finally, cytokine response and bacteria replication were assessed in canine placental explants infected ex vivo. B. canis successfully infected and replicated in primary canine trophoblasts, eliciting an increase in IL-8 and RANTES (CCL5) secretion. Moreover, the stimulation of trophoblasts with CM from B. canis-infected monocytes and neutrophils induced a significant increase in IL-8, IL-6 and RANTES secretion. B. canis replication was confirmed in infected placental explants and the infection elicited an increased secretion of TNF-α, IL-8, IL-6 and RANTES. This study shows that canine trophoblasts produce proinflammatory cytokines in response to B. canis infection and/or to stimulation with factors produced by infected monocytes and neutrophils. These cytokines may contribute to placental inflammation leading to abortion in B. canis-infected pregnant bitches.
Collapse
Affiliation(s)
- Andrea G. Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - M. Soledad Hielpos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Mariana C. Ferrero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Carlos A. Fossati
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo C. Baldi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| |
Collapse
|
12
|
CCR5 Is Involved in Interruption of Pregnancy in Mice Infected with Toxoplasma gondii during Early Pregnancy. Infect Immun 2017. [PMID: 28630065 DOI: 10.1128/iai.00257-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasmosis can cause abortion in pregnant humans and other animals; however, the mechanism of abortion remains unknown. C-C chemokine receptor type 5 (CCR5) is essential for host defense against Toxoplasma gondii infection. To investigate the relationship between CCR5 and abortion in toxoplasmosis, we inoculated wild-type and CCR5-deficient (CCR5-/-) mice with T. gondii tachyzoites intraperitoneally on day 3 of pregnancy (embryonic day 3 [E3]). The pregnancy rate decreased as pregnancy progressed in infected wild-type mice. Histopathologically, no inflammatory lesions were observed in the fetoplacental tissues. Although wild-type mice showed a higher parasite burden at the implantation sites than did CCR5-/- mice at E6 (3 days postinfection [dpi]), T. gondii antigen was detected only in the uterine tissue and not in the fetoplacental tissues. At E8 (5 dpi), the embryos in infected wild-type mice showed poor development compared with those of infected CCR5-/- mice, and apoptosis was observed in poorly developed embryos. Compared to uninfected mice, infected wild-type mice showed increased CCR5 expression at the implantation site at E6 and E8. Furthermore, analyses of mRNA expression in the uterus of nonpregnant and pregnant mice suggested that a lack of the CCR5 gene and the downregulation of tumor necrosis factor alpha (TNF-α) and CCL3 expression at E6 (3 dpi) are important factors for the maintenance of pregnancy following T. gondii infection. These results suggested that CCR5 signaling is involved in embryo loss in T. gondii infection during early pregnancy and that apoptosis is associated with embryo loss rather than direct damage to the fetoplacental tissues.
Collapse
|
13
|
Byndloss MX, Rivera-Chávez F, Tsolis RM, Bäumler AJ. How bacterial pathogens use type III and type IV secretion systems to facilitate their transmission. Curr Opin Microbiol 2017; 35:1-7. [DOI: 10.1016/j.mib.2016.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
|
14
|
Interferon γ-induced GTPase promotes invasion of Listeria monocytogenes into trophoblast giant cells. Sci Rep 2015; 5:8195. [PMID: 25645570 PMCID: PMC4314643 DOI: 10.1038/srep08195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023] Open
Abstract
Listeria monocytogenes is well known for having the ability to cross the placental barrier, leading to fetal infections and abortion. However, the mechanisms leading to infectious abortion are poorly understood. In this study, we demonstrate that interferon γ-induced GTPase (IGTP) contributes to the invasion of L. monocytogenes into trophoblast giant (TG) cells, which are placental immune cells. Knockdown of IGTP in TG cells decreased the relative efficiencies of L. monocytogenes invasion. Moreover, IGTP accumulated around infected L. monocytogenes in TG cells. Treatment of TG cells with phosphatidylinositol 3-kinase (PI3K)/Akt inhibitors also reduced bacterial invasion. PI3K/Akt inhibitor or IGTP knockdown reduced the amount of phosphorylated Akt. Monosialotetrahexosylganglioside (GM1) gangliosides, lipid raft markers, accumulated in the membrane of L. monocytogenes-containing vacuoles in TG cells. Furthermore, treatment with a lipid raft inhibitor reduced bacterial invasion. These results suggest that IGTP-induced activation of the PI3K/Akt signaling pathway promotes bacterial invasion into TG cells.
Collapse
|
15
|
Barquero-Calvo E, Martirosyan A, Ordoñez-Rueda D, Arce-Gorvel V, Alfaro-Alarcón A, Lepidi H, Malissen B, Malissen M, Gorvel JP, Moreno E. Neutrophils exert a suppressive effect on Th1 responses to intracellular pathogen Brucella abortus. PLoS Pathog 2013; 9:e1003167. [PMID: 23458832 PMCID: PMC3573106 DOI: 10.1371/journal.ppat.1003167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the first line of defense against microbial pathogens. In addition to their role in innate immunity, PMNs may also regulate events related to adaptive immunity. To investigate the influence of PMNs in the immune response during chronic bacterial infections, we explored the course of brucellosis in antibody PMN-depleted C57BL/6 mice and in neutropenic mutant Genista mouse model. We demonstrate that at later times of infection, Brucella abortus is killed more efficiently in the absence of PMNs than in their presence. The higher bacterial removal was concomitant to the: i) comparatively reduced spleen swelling; ii) augmented infiltration of epithelioid histiocytes corresponding to macrophages/dendritic cells (DCs); iii) higher recruitment of monocytes and monocyte/DCs phenotype; iv) significant activation of B and T lymphocytes, and v) increased levels of INF-γ and negligible levels of IL4 indicating a balance of Th1 over Th2 response. These results reveal that PMNs have an unexpected influence in dampening the immune response against intracellular Brucella infection and strengthen the notion that PMNs actively participate in regulatory circuits shaping both innate and adaptive immunity.
Collapse
Affiliation(s)
- Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Anna Martirosyan
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Diana Ordoñez-Rueda
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Alejandro Alfaro-Alarcón
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Hubert Lepidi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Marseille, France
- Centre National de la Recherche Scientifique, (CNRS), UMR7278, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1095, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
16
|
Grilló MJ, Blasco JM, Gorvel JP, Moriyón I, Moreno E. What have we learned from brucellosis in the mouse model? Vet Res 2012; 43:29. [PMID: 22500859 PMCID: PMC3410789 DOI: 10.1186/1297-9716-43-29] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 04/13/2012] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-β favor Brucella replication; whereas IL-1β, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 108 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model.
Collapse
Affiliation(s)
- María-Jesús Grilló
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
| | - José María Blasco
- Centro de Investigación y Tecnología Agroalimentaria (CITA) de Aragón, Zaragoza, Spain
| | - Jean Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Luminy, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
17
|
Rossetti CA, Galindo CL, Everts RE, Lewin HA, Garner HR, Adams LG. Comparative analysis of the early transcriptome of Brucella abortus--infected monocyte-derived macrophages from cattle naturally resistant or susceptible to brucellosis. Res Vet Sci 2011; 91:40-51. [PMID: 20932540 PMCID: PMC3032834 DOI: 10.1016/j.rvsc.2010.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/30/2010] [Accepted: 09/04/2010] [Indexed: 11/27/2022]
Abstract
Brucellosis is a worldwide zoonotic infectious disease that has a significant economic impact on animal production and human public health. We characterized the gene expression profile of B. abortus-infected monocyte-derived macrophages (MDMs) from naïve cattle naturally resistant (R) or susceptible (S) to brucellosis using a cDNA microarray technology. Our data indicate that (1) B. abortus induced a slightly increased genome activation in R MDMs and a down-regulated transcriptome in S MDMs, during the onset of infection, (2) R MDMs had the ability to mount a type 1 immune response against B. abortus infection which was impaired in S cells, and (3) the host cell activity was not altered after 12 h post-B. abortus infection in R MDMs while the cell cycle was largely arrested in infected S MDMs at 12 h p.i. These results contribute to an improved understanding of how host responses may be manipulated to prevent infection by brucellae.
Collapse
Affiliation(s)
- C A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77483-4467, USA; Instituto de Patobiología, CICVyA-CNIA, INTA. CC25 (B1712WAA) Castelar, Buenos Aires, Argentina
| | - C L Galindo
- Department of Biochemistry and Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390, USA; Virginia Bioinformatics Institute, Virginia Polytechnic and State University, Blacksburg, VA 24060, USA
| | - R E Everts
- Department of Animal Sciences, University of Illinois, 206 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | - H A Lewin
- Department of Animal Sciences, University of Illinois, 206 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | - H R Garner
- Department of Biochemistry and Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390, USA; Virginia Bioinformatics Institute, Virginia Polytechnic and State University, Blacksburg, VA 24060, USA
| | - L G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77483-4467, USA.
| |
Collapse
|
18
|
Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 2011; 240:211-34. [PMID: 21349096 DOI: 10.1111/j.1600-065x.2010.00982.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Brucella is an intracellular bacterial pathogen that causes abortion and infertility in mammals and leads to a debilitating febrile illness that can progress into a long lasting disease with severe complications in humans. Its virulence depends on survival and replication properties in host cells. In this review, we describe the stealthy strategy used by Brucella to escape recognition of the innate immunity and the means by which this bacterium evades intracellular destruction. We also discuss the development of adaptive immunity and its modulation during brucellosis that in course leads to chronic infections. Brucella has developed specific strategies to influence antigen presentation mediated by cells. There is increasing evidence that Brucella also modulates signaling events during host adaptive immune responses.
Collapse
Affiliation(s)
- Anna Martirosyan
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | | | | |
Collapse
|
19
|
Karcaaltincaba D, Sencan I, Kandemir O, Guvendag-Guven ES, Yalvac S. Does brucellosis in human pregnancy increase abortion risk? Presentation of two cases and review of literature. J Obstet Gynaecol Res 2010; 36:418-23. [PMID: 20492399 DOI: 10.1111/j.1447-0756.2009.01156.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brucellosis is one of the most common zoonotic diseases that can be encountered during pregnancy. We present two pregnant women with brucellosis. One of them delivered normally and the other patient had an abortion. We reviewed the literature regarding the clinical course of brucellosis in pregnant women. Brucellosis during pregnancy can be associated with abortion, congenital and neonatal infections and infection of the delivery team. Therefore treatment with a combination of rifampicin and trimethoprim-sulfamethoxazole should be started as soon as it is diagnosed to prevent possible complications.
Collapse
Affiliation(s)
- Deniz Karcaaltincaba
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanim Women's Hospital, Turkey.
| | | | | | | | | |
Collapse
|
20
|
Ortiz-Alegría LB, Caballero-Ortega H, Cañedo-Solares I, Rico-Torres CP, Sahagún-Ruiz A, Medina-Escutia ME, Correa D. Congenital toxoplasmosis: candidate host immune genes relevant for vertical transmission and pathogenesis. Genes Immun 2010; 11:363-73. [PMID: 20445562 DOI: 10.1038/gene.2010.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toxoplasma gondii infects a variety of vertebrate hosts, including humans. Transplacental passage of the parasite leads to congenital toxoplasmosis. A primary infection during the first weeks of gestation causes vertical transmission at low rate, although it causes major damage to the embryo. Transmission frequency increases to near 80% by the end of pregnancy, but the proportion of ill newborns is low. For transmission and pathogenesis, the parasite genetics is certainly important. Several host innate and adaptative immune response genes are induced during infection in adults, which control the rapidly replicating tachyzoite. The T helper 1 (Th1) response is protective, although it has to be modulated to avoid inflammatory damage. Paradoxical observations on this response pattern in congenital toxoplasmosis have been reported, as it may be protective or deleterious, inducing sterile abortion or favoring parasite transplacental passage. Regarding pregnancy, an early Th1 microenvironment is important for control of infectious diseases and successful implantation, although it has to be regulated to support trophoblast survival. Polymorphism of genes involved in these parallel phenomena, such as Toll-like receptors (TLRs), adhesins, cytokines, chemokines or their receptors, immunoglobulins or Fc receptors (FcRs), might be important in susceptibility for T. gondii vertical transmission, abortion or fetal pathology. In this study some examples are presented and discussed.
Collapse
Affiliation(s)
- L B Ortiz-Alegría
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, SSA, México DF, Mexico
| | | | | | | | | | | | | |
Collapse
|