1
|
Sawan S, Kumari A, Majie A, Ghosh A, Karmakar V, Kumari N, Ghosh S, Gorain B. siRNA-based nanotherapeutic approaches for targeted delivery in rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 168:214120. [PMID: 39577366 DOI: 10.1016/j.bioadv.2024.214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Rheumatoid arthritis (RA), characterized as a systemic autoimmune ailment, predominantly results in substantial joint and tissue damage, affecting millions of individuals globally. Modern treatment modalities are being explored as the traditional RA therapy with non-specific immunosuppressive drugs showcased potential side effects and variable responses. Research potential with small interfering RNA (siRNA) depicted potential in the treatment of RA. These siRNA-based therapies could include genes encoding pro-inflammatory cytokines like TNF-α, IL-1, and IL-6, as well as other molecular targets such as RANK, p38 MAPK, TGF-β, Wnt/Fz complex, and HIF. By downregulating the expression of these genes, siRNA-based nanoformulations can attenuate inflammation, inhibit immune system dysregulation, and prevent tissue damage associated with RA. Strategies of delivering siRNA molecules through nanocarriers could be targeted to treat RA effectively, where specific genes associated with this autoimmune disease pathology can be selectively silenced. Additionally, simultaneous targeting of multiple molecular pathways may offer synergistic therapeutic benefits, potentially leading to more effective and safer therapeutic strategies for RA patients. This review critically highlights the in-depth pathology of RA, RNA interference-mediated molecular targets, and nanocarrier-based siRNA delivery strategies, along with the challenges and opportunities to harbor future solutions.
Collapse
Affiliation(s)
- Sweta Sawan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankita Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
2
|
Mohaddes AA, Saatchi MA, Afshari Chamanabadi M, Saatchi S, Rostami S, Askari VR. Quantum Health Accelerator ® Ameliorates CFA-Induced Animal Model of Rheumatoid Arthritis: Investigating the Role of Immunomodulatory and Anti-Oxidative Effects. Brain Sci 2025; 15:232. [PMID: 40149754 PMCID: PMC11940038 DOI: 10.3390/brainsci15030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Introduction: Rheumatoid arthritis (RA) is a systemic inflammatory and autoimmune disease characterized by joint swelling, pain, damage to the cartilage, and disability. In the present study, we aimed to evaluate the anti-oxidant, anti-inflammatory, and immune-modulatory properties of Quantum Health Accelerator® as water enriched with vital bio-quantum information/energy (EW) following complete Freund's adjuvant (CFA)-induced RA in rats. Methods: Forty adult male Wistar rats (180-220 g) were divided into five groups. Arthritis was induced on day one using a single subcutaneous injection of CFA into the left hind footpad of the rat. Rats were assigned to receive methotrexate (MTX, 2 mg/kg/week, intraperitoneally), EW (orally, instead of normal water ad libitum), or their combination for 29 days. The anti-RA activities were determined by paw edema, joint diameter, arthritis score, and several nociceptive behavioral tests (thermal hyperalgesia, cold allodynia, and tactile allodynia). The levels of inflammatory (TNF-α, CRP, RF, and anti-CCP), anti-inflammatory (IL-10), and oxidative stress (NO, MDA, and GSH) markers were measured in serum. In addition, the levels of IFN-γ, IL-4, IL-17, and TGF-β were assessed in the spleen-isolated lymphocytes. Results: We found that treatment with MTX, EW, and their combination remarkably ameliorated thermal hyperalgesia, cold allodynia, and tactile allodynia results following CFA-induced RA in rats. In addition, EW also notably attenuated arthritis score, joint diameter, inflammatory cytokines, and oxidative markers while propagating anti-inflammatory and anti-oxidative mediators. Conclusions: We reveal that EW possesses anti-arthritic effects, possibly through anti-oxidative, anti-inflammatory, and immunomodulatory properties. Collectively, EW may be a promising therapeutic agent for treating RA.
Collapse
Affiliation(s)
- Ali Akbar Mohaddes
- International Group of Ali Akbar Mohaddes Company, License NO 1090645, Dubai 35360-97797, United Arab Emirates; (A.A.M.); (M.A.S.); (M.A.C.); (S.S.); (S.R.)
| | - Mohammad Ali Saatchi
- International Group of Ali Akbar Mohaddes Company, License NO 1090645, Dubai 35360-97797, United Arab Emirates; (A.A.M.); (M.A.S.); (M.A.C.); (S.S.); (S.R.)
| | - Marziyeh Afshari Chamanabadi
- International Group of Ali Akbar Mohaddes Company, License NO 1090645, Dubai 35360-97797, United Arab Emirates; (A.A.M.); (M.A.S.); (M.A.C.); (S.S.); (S.R.)
| | - Saeed Saatchi
- International Group of Ali Akbar Mohaddes Company, License NO 1090645, Dubai 35360-97797, United Arab Emirates; (A.A.M.); (M.A.S.); (M.A.C.); (S.S.); (S.R.)
| | - Sadra Rostami
- International Group of Ali Akbar Mohaddes Company, License NO 1090645, Dubai 35360-97797, United Arab Emirates; (A.A.M.); (M.A.S.); (M.A.C.); (S.S.); (S.R.)
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
3
|
Yang C, Zha M, Li L, Qiao J, Kwok LY, Wang D, Chen Y. Bifidobacterium animalis ssp. lactis BX-245-fermented milk alleviates tumor burden in mice with colorectal cancer. J Dairy Sci 2025; 108:1211-1226. [PMID: 39694256 DOI: 10.3168/jds.2024-25614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024]
Abstract
Colorectal cancer (CRC) arises from the accumulation of abnormal mutations in colorectal cells during prolonged inflammation. This study aimed to investigate the potential of probiotic fermented milk containing the probiotic strain, Bifidobacterium animalis ssp. lactis BX-245 (BX-245), in alleviating tumor burden in CRC mice induced by azoxymethane and dextran sodium sulfate. The study monitored changes in tumor size and number, gut microbiota, metabolomics, and inflammation levels before and after the intervention. Our findings indicate that intragastric administration of BX245-fermented milk effectively modulated the intratumor microbiota, as well as the gut microbiota and its metabolism. We also observed a decreased relative abundance of intratumor Akkermansia in the CRC mice, while the intratumor Parabacteroides exhibited a significant positive correlation with tumor number and weight. Moreover, administering BX245-fermented milk significantly reduced gut barrier permeability, alleviated gut barrier damage, and increased serum IL-2 and IFN-γ levels compared with the ordinary fermented milk group. Collectively, our data suggest that administering probiotic fermented milk containing specific functional strains such as BX245 could result in a reduction in tumor burden in CRC mice. Conversely, ordinary fermented milk did not show the same tumor-inhibiting effects. The current results are preliminary, and further confirmation is necessary to establish the causal relationship among probiotic milk, changes in gut microbiota, and disease alleviation.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lu Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jiaqi Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Dandan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
4
|
Wang L, Nakamura A. Where are we in targeting hypoxia-induced pathways in inflammatory arthritis? Current understanding, insights, and future directions. Int Immunopharmacol 2025; 146:113883. [PMID: 39718060 DOI: 10.1016/j.intimp.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Joint tissues affected by inflammatory arthritis (IA) create hypoxic microenvironments that sustain the inflammatory response. Although targeting molecules in hypoxia-induced pathways has provided valuable insights into potential novel therapies for various types of IA, progress remains preclinical, and no clinical trials have been conducted for IA. METHODS A literature search was conducted to create a narrative review exploring the role of hypoxia and its signaling pathways in IA pathogenesis, as well as the potential and future directions for IA therapies that target hypoxia-induced molecules before moving forward to clinical applications. RESULTS Hypoxia is a prevalent feature of the IA synovial microenvironment and contributes to disease progression. Various studies and preclinical models demonstrate how hypoxia-inducible factors, vascular endothelial growth factors, and matrix metalloproteinases, among other molecules, influence rheumatoid arthritis, axial spondyloarthritis, psoriatic arthritis, and juvenile idiopathic arthritis. Despite these findings, drug development targeting these molecules in IA has been limited due to challenges in delineating the mechanistic pathways of hypoxia, the distinct roles of hypoxia-induced molecules depending on anatomical sites, and concerns regarding pharmacokinetics and patient safety. However, given that hypoxia-induced molecule-targeting therapies have been successfully approved for treating cancers and cardiovascular diseases, further research is needed to advance the application of similar medications in IA. CONCLUSIONS Given the pathogenic effects of hypoxic microenvironments in IA, it is imperative to continue gathering compelling evidence to advance hypoxia-induced therapies. Furthermore, elucidating the safety and efficacy of such drugs in various preclinical models, in collaboration with chemists and the pharmaceutical industry, is crucial for accelerating the development of novel, optimized treatment methods.
Collapse
Affiliation(s)
- Lisa Wang
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada.
| | - Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, Department of Medicine, Queen's University, Ontario, Canada; Rheumatology Clinic, Kingston Health Science Centre, Kingston, Ontario, Canada.
| |
Collapse
|
5
|
Rims C, Uchtenhagen H, Brooks K, Ng B, Posso SE, Carlin J, Kwok WW, Buckner JH, James EA. Antigen-specific T-cell frequency and phenotype mirrors disease activity in DRB1*04:04+ rheumatoid arthritis patients. Clin Exp Immunol 2025; 219:uxae102. [PMID: 39492692 PMCID: PMC11754868 DOI: 10.1093/cei/uxae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is associated with high-risk HLA class II alleles known as the "RA shared epitope." Among prevalent shared epitope alleles, study of DRB1*04:04 has been limited. To define relevant epitopes, we identified citrullinated peptide sequences from synovial antigens that were predicted to bind to HLA-DRB1*04:04 and utilized a systematic approach to confirm their binding and assess their recognition by CD4 T cells. After confirming the immunogenicity of 13 peptides derived from aggrecan, cartilage intermediate layer protein (CILP), α-enolase, vimentin, and fibrinogen, we assessed their recognition by T cells from a synovial tissue sample, observing measurable responses to 8 of the 13 peptides. We then implemented a multicolor tetramer panel to evaluate the frequency and phenotype of antigen-specific CD4 T cells in individuals with anti-citrullinated protein antibody-positive RA and controls. In subjects with RA, CILP-specific T-cell frequencies were significantly higher than those of other antigens. The surface phenotypes exhibited by antigen-specific T cells were heterogeneous, but Th1-like and Th2-like cells predominated. Stratifying based on disease status and activity, antigen-specific T cells were more frequent and most strongly polarized in RA subjects with high disease activity. In total, these findings identify novel citrullinated epitopes that can be used to interrogate antigen-specific CD4 T cells and show that antigen-specific T-cell frequency is elevated in subjects with high disease activity.
Collapse
Affiliation(s)
- Cliff Rims
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Hannes Uchtenhagen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Kadin Brooks
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Bernard Ng
- VA National Rheumatology Program, Specialty Care Program Office, Washington DC, USA
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Sylvia E Posso
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jeffrey Carlin
- Department of Rheumatology, Virginia Mason Medical Center, Seattle, WA, USA
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
6
|
Xu H, Luo Y, An Y, Wu X. The mechanism of action of indole-3-propionic acid on bone metabolism. Food Funct 2025; 16:406-421. [PMID: 39764708 DOI: 10.1039/d4fo03783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity. Additionally, IPA provides indirect protection to bone health by regulating host immune responses and inflammation via activation of receptors such as the Aryl hydrocarbon Receptor (AhR) and the Pregnane X Receptor (PXR). This review summarizes the roles and signaling pathways of IPA in bone metabolism and its impact on various bone metabolic disorders. Furthermore, we discuss the therapeutic potential and limitations of IPA in treating bone metabolic diseases, aiming to offer novel strategies for clinical management.
Collapse
Affiliation(s)
- Huimin Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi An
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Pavliuchenko N, Kuzmina M, Danek P, Spoutil F, Prochazka J, Skopcova T, Pokorna J, Sedlacek R, Alberich-Jorda M, Brdicka T. Genetic background affects neutrophil activity and determines the severity of autoinflammatory osteomyelitis in mice. J Leukoc Biol 2024; 117:qiae168. [PMID: 39120532 DOI: 10.1093/jleuko/qiae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024] Open
Abstract
The knowledge about the contribution of the innate immune system to health and disease is expanding. However, to obtain reliable results, it is critical to select appropriate mouse models for in vivo studies. Data on genetic and phenotypic changes associated with different mouse strains can assist in this task. Such data can also facilitate our understanding of how specific polymorphisms and genetic alterations affect gene function, phenotypes, and disease outcomes. Extensive information is available on genetic changes in all major mouse strains. However, comparatively little is known about their impact on immune response and, in particular, on innate immunity. Here, we analyzed a mouse model of chronic multifocal osteomyelitis, an autoinflammatory disease driven exclusively by the innate immune system, which is caused by an inactivating mutation in the Pstpip2 gene. We investigated how the genetic background of BALB/c, C57BL/6J, and C57BL/6NCrl strains alters the molecular mechanisms controlling disease progression. While all mice developed the disease, symptoms were significantly milder in BALB/c and partially also in C57BL/6J when compared to C57BL/6NCrl. Disease severity correlated with the number of infiltrating neutrophils and monocytes and with the production of chemokines attracting these cells to the site of inflammation. It also correlated with increased expression of genes associated with autoinflammation, rheumatoid arthritis, neutrophil activation, and degranulation, resulting in altered neutrophil activation in vivo. Together, our data demonstrate striking effects of genetic background on multiple parameters of neutrophil function and activity influencing the onset and course of chronic multifocal osteomyelitis.
Collapse
Affiliation(s)
- Nataliia Pavliuchenko
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Maria Kuzmina
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Petr Danek
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Laboratory of Molecular Analysis of Growth Regulation in Animals, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 160 00 Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Meritxell Alberich-Jorda
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
8
|
Sarkar A, Chakraborty D, Malik S, Mann S, Agnihotri P, Monu M, Kumar V, Biswas S. Alpha-Taxilin: A Potential Diagnosis and Therapeutics Target in Rheumatoid Arthritis Which Interacts with Key Glycolytic Enzymes Associated with Metabolic Shifts in Fibroblast-Like Synoviocytes. J Inflamm Res 2024; 17:10027-10045. [PMID: 39634288 PMCID: PMC11615101 DOI: 10.2147/jir.s465051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Rheumatoid Arthritis (RA) is a chronic multifactorial inflammatory autoimmune disease of the synovial joint with unknown etiology. In our previous study, we identified Alpha-Taxilin (α-Taxilin) as one of the upregulated proteins in RA and validated it in different biological samples such as tissue, synovial fluid, and blood cells. Here we further investigated its mechanistic role in RA pathophysiology. Methods The α-Taxilin was validated in a larger cohort (n = 106) of RA plasma by Enzyme-linked Immunosorbent Assay (ELISA). Interacting proteins were identified by co-immunoprecipitation followed by mass spectrometry, and in silico analyses were done to identify protein-protein interactions and involved pathways. The in vitro knockdown studies were performed on SW982 cells and Rheumatoid Arthritis Fibroblast-like Synoviocyte (RAFLS) to investigate the molecular mechanism of α-Taxilin involved in RA via Western Blot, quantitative real-time polymerase chain reaction (qRT-PCR), and confocal microscopy, which was further validated by in vivo studies via collagen-induced arthritis (CIA) rat model. Results The plasma level of α-Taxilin was found to be significantly increased in plasma samples from patients with RA compared to osteoarthritis (OA), systemic lupus erythematosus (SLE), and healthy controls (HC). The α-Taxilin was found to be positively correlated with anti-citrullinated peptide antibody (ACPA) levels and DAS score in patients with RA. Seventeen interacting proteins were identified with α-Taxilin, and in silico study suggested that glycolysis and gluconeogenesis pathways are the most affected pathways regulated by α-Taxilin. The in vitro knockdown studies of α-Taxilin resulted in decreased levels of pro-inflammatory cytokines, p65, reactive oxygen species (ROS), and toll-like receptors (TLRs). It also improved macroscopic arthritic score, paw edema, and inflammation in CIA rats. Conclusion α-Taxilin has been found to be associated with glycolysis and gluconeogenesis. This may lead to a metabolic shift in synovial cells, ROS generation, and TLR activation. Therefore, α-Taxilin can be targeted for its diagnostic and therapeutic potential in RA along with other parameters.
Collapse
Affiliation(s)
- Ashish Sarkar
- Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Debolina Chakraborty
- Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Swati Malik
- Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sonia Mann
- Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, 110007, India
| | - Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Monu Monu
- Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vijay Kumar
- All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
9
|
Meléndez DC, Laniewski N, Jusko TA, Qiu X, Paige Lawrence B, Rivera-Núñez Z, Brunner J, Best M, Macomber A, Leger A, Kannan K, Miller RK, Barrett ES, O'Connor TG, Scheible K. In utero exposure to per - and polyfluoroalkyl substances (PFAS) associates with altered human infant T helper cell development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317489. [PMID: 39606350 PMCID: PMC11601683 DOI: 10.1101/2024.11.18.24317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Environmental exposures to chemical toxicants during gestation and infancy can dysregulate multiple developmental processes, causing lifelong effects. There is compelling evidence of PFAS-associated immunotoxicity in adults and children. However, the effect of developmental PFAS exposure on infant T-cell immunity is unreported, and, if present, could be implicated in immune-related health outcomes. Objectives We seek to model longitudinal changes in CD4+ T-cell subpopulations from birth through 12 months and their association with in-utero PFAS exposure and postnatal CD4+ T-cell frequencies and functions. Methods Maternal-infant dyads were recruited as part of the UPSIDE-ECHO cohort during the first trimester between 2015 and 2019 in Rochester, New York; dyads were followed through the infant's first birthday. Maternal PFAS concentrations (PFOS, PFOA, PFNA, and PFHXS) were quantified in serum during the second trimester using high-performance liquid chromatography and tandem mass spectrometry. Infant lymphocyte frequencies were assessed at birth, 6- and 12-months using mass cytometry and high-dimensional clustering methods. Linear mixed-effects models were employed to analyze the relationship between maternal PFAS concentrations and CD4+ T-cell subpopulations (n=200). All models included a PFAS and age interaction and were adjusted for parity, infant sex, and pre-pregnancy body mass index. Results In-utero PFAS exposure correlated with multiple CD4+ T-cell subpopulations in infants. The greatest effect sizes were seen in T-follicular helper (Tfh) and T-helper 2 (Th2) cells at 12 months. A log 2 -unit increase in PFOS was associated with lower Tfh [0.17% (95%CI: -0.30, -0.40)] and greater Th2 [0.27% (95%CI: 0.18, 0.35)] cell percentages at 12 months. Similar trends were observed for PFOA, PFNA, and PFHXS. Discussion Maternal PFAS exposures correlate with cell-specific changes in the infant T-cell compartment, including key CD4+ T-cell subpopulations that play central roles in coordinating well-regulated, protective immunity. Future studies into the role of PFAS-associated T-cell distribution and risk of adverse immune-related health outcomes in children are warranted.
Collapse
|
10
|
Abebaw D, Akelew Y, Adugna A, Teffera ZH, Tegegne BA, Fenta A, Selabat B, Amare GA, Getinet M, Jemal M, Baylie T, Atnaf A. Extracellular vesicles: immunomodulation, diagnosis, and promising therapeutic roles for rheumatoid arthritis. Front Immunol 2024; 15:1499929. [PMID: 39624102 PMCID: PMC11609219 DOI: 10.3389/fimmu.2024.1499929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 01/03/2025] Open
Abstract
Extracellular vesicles (EV) can be produced as part of pathology and physiology with increased amounts in pathological conditions. EVs can carry and transfer cargo such as proteins, nucleic acids, and lipids to target cells and mediate intercellular communication resulting in modulation of gene expression, signaling pathways, and phenotype of recipient cells. EVs greatly influence the extracellular environment and the immune response. Their immunomodulatory properties are crucial in rheumatoid arthritis (RA), a condition marked by dysregulated immune response. EVs can modulate the functions of innate and adaptive immune cells in RA pathogenesis. Differentially expressed EV-associated molecules in RA, such as microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), messenger RNAs (mRNAs) and proteins are promising markers to diagnose the disease. miRNA, lncRNA, and circular RNA (circRNA) cargos in EV regulate inflammation and the pathogenic functions of RA fibroblast-like synoviocytes (RA-FLS). Downregulated molecules in RA tissue and drugs can be encapsulated in EVs for RA therapy. This review provides an updated overview of EVs' immunomodulatory, diagnostic, and therapeutic roles, particularly emphasizing mesenchymal stem cell-derived EVs (MSC-EVs).
Collapse
Affiliation(s)
- Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantegize Selabat
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
11
|
Sharma Y, Bala K. Multifarious Aspect of Cytokines as an Immuno-Therapeutic for Various Diseases. J Interferon Cytokine Res 2024; 44:477-485. [PMID: 39394036 DOI: 10.1089/jir.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
Cytokines are known to be a group of growing small proteins that are majorly responsible for the transmission of signals and communication between hematopoietic cells, the cells of the human immune system, and other types of cells. Cytokines play a dominant role in different types of disorders and in perpetuating the inflammation-related disorders. The production of cytokines is a natural process inside the body of a human being against any foreign invasion or due to some pathogenic state to maintain the homeostasis. Cytokines respond in two ways; in some cases, the production and development of cytokines as a therapeutic discovery or intervention will enhance the treatment process and support the reaction given by the body against any pathogenic activity, and in some cases, overproduction of these cytokines responds in the opposite way and behaves as antagonists toward a typical therapeutic drug and its treatment. Overall, 41 articles were reviewed, and it was found that cytokines have proved to be a therapeutic approach among various diseases and can be utilized as a good candidate or a better choice for cancer therapeutics in future development.
Collapse
Affiliation(s)
- Yash Sharma
- Department of Biotechnology, IILM University, Greater Noida, India
| | - Kumud Bala
- Department of Biotechnology, IILM University, Greater Noida, India
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
12
|
Bufan B, Marčetić M, Djuretić J, Ćuruvija I, Blagojević V, Božić DD, Milutinović V, Janković R, Sopta J, Kotur-Stevuljević J, Arsenović-Ranin N. Evaluation of the Anti-Inflammatory/Immunomodulatory Effect of Teucrium montanum L. Extract in Collagen-Induced Arthritis in Rats. BIOLOGY 2024; 13:818. [PMID: 39452128 PMCID: PMC11505313 DOI: 10.3390/biology13100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The anti-inflammatory/immunomodulatory effects of Teucrium montanum L. (TM), a plant distributed in the Mediterranean region, have been insufficiently examined. The effects of the TM ethanol extract were tested in a rat collagen-induced arthritis (CIA) model of rheumatoid arthritis. LC-MS was used for the phytochemical analysis of the TM extract. Dark Agouti rats were immunized with bovine type II collagen (CII) in incomplete Freund's adjuvant for CIA, and treated with 100 or 200 mg/kg of TM extract daily via oral administration. Clinical and histopathological evaluations and a flow cytometric analysis of the phenotypic and functional characteristics of splenocytes and draining lymph node cells were performed. The cytokines in the paw tissue culture supernatants and anti-CII antibodies in serum were determined by ELISA. The TM extract, with the dominant components verbascoside and luteolin 7-O-rutinoside, reduced the arthritic score and ankle joint inflammation in CIA rats, promoted the antioxidant profile in serum, and lowered pro-inflammatory TNF-α, IL-6 and IL-1β production. It suppressed the activation status of CD11b+ cells by lowering CD86, MHCII and TLR-4 expression, and promoted the Th17/T regulatory cell (Tregs) balance towards Tregs. A lower frequency of B cells was accompanied by a lower level of anti-CII antibodies in treated rats. These findings imply the favorable effect of TM extract on the clinical presentation of CIA, suggesting its anti-inflammatory/immunomodulatory action and potential therapeutic effect.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia; (B.B.); (D.D.B.)
| | - Mirjana Marčetić
- Department of Pharmacognosy, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia; (M.M.); (V.M.)
| | - Jasmina Djuretić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia;
| | - Ivana Ćuruvija
- Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ć.); (V.B.)
| | - Veljko Blagojević
- Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ć.); (V.B.)
| | - Dragana D. Božić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia; (B.B.); (D.D.B.)
| | - Violeta Milutinović
- Department of Pharmacognosy, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia; (M.M.); (V.M.)
| | - Radmila Janković
- Institute of Pathology “Prof. dr Đorđe Joannović”, University of Belgrade-Faculty of Medicine, 11000 Belgrade, Serbia; (R.J.); (J.S.)
| | - Jelena Sopta
- Institute of Pathology “Prof. dr Đorđe Joannović”, University of Belgrade-Faculty of Medicine, 11000 Belgrade, Serbia; (R.J.); (J.S.)
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia;
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia; (B.B.); (D.D.B.)
| |
Collapse
|
13
|
Feng Y, Zhu P, Yan D, Wang X, Chen C, Zhang Z, Tian Y, Wang J, Liu S, Li J, Meng D, Wang K. Implications of vitamin D levels or status for mortality in rheumatoid arthritis: analysis of 2001-2018 data from the National Health and Nutrition Examination Survey. Front Immunol 2024; 15:1425119. [PMID: 39445024 PMCID: PMC11496074 DOI: 10.3389/fimmu.2024.1425119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background Inadequate levels of vitamin D (VitD) have been linked to increased rates of various health conditions and mortality. However, little is known about the relationship between mortality outcomes and 25-hydroxyvitamin D [25(OH)D] levels in individuals with rheumatoid arthritis (RA). This study aimed to examine this association using data from the National Health and Nutrition Examination Survey. Methods A cohort of 2,290 individuals aged 20 to 85 years with RA was analyzed. Lower 25(OH)D levels were inversely associated with all-cause mortality, with a hazard ratio (HR) of 0.91 (0.87 to 0.96) per 10 nmol/L increase. Comparatively, the HR for the VitD insufficiency group was 0.64 (0.50 to 0.83), and for the VitD sufficiency group, it was 0.60 (0.44 to 0.80), both compared to the VitD deficiency group. Cause-specific analysis showed that higher 25(OH)D levels were associated with reduced mortality from heart disease (HR: 0.88, 0.82 to 0.95) and malignant neoplasms (HR: 0.86, 0.79 to 0.94). No significant correlation was found between 25(OH)D levels and cause-specific mortalities for other conditions. Results Stratified by gender, the HR for males was 0.92 (0.85 to 0.99) and for females was 0.91 (0.86 to 0.98) per 10 nmol/L increase in 25(OH)D levels. Among individuals aged 20-59 years, no significant correlation was observed, while for those aged 60 years and older, the HR was 0.86 (0.82 to 0.90) per 10 nmol/L increase. Nonlinear analysis identified a sharp increase in HR below 59.95 nmol/L, while HR remained below 1 for 25(OH)D levels above 59.95 nmol/L. Conclusion This study reveals a strong negative correlation between 25(OH)D levels and overall mortality in individuals with RA. Notably, this association is particularly significant for mortality related to heart disease and malignant neoplasms. Targeted VitD supplementation should be emphasized, especially in individuals aged 60 years and older with RA. The proposed minimum threshold for adequate 25(OH)D levels in the RA population is 60 nmol/L.
Collapse
Affiliation(s)
- Yalin Feng
- Department of Laboratory, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Ping Zhu
- Department of Endocrinology, The Affiliated Chuzhou Hospital of Traditional Chinese Medicine of Jiangsu College of Nursing, Huaian, China
| | - Dandan Yan
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| | - Xu Wang
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| | - Caiyun Chen
- Department of Laboratory, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Zhongyuan Zhang
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| | - Yian Tian
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| | - Jiajia Wang
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| | - Ju Li
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| | - Deqian Meng
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| | - Kai Wang
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- Huaian Key Laboratory of Autoimmune Diseases, Huaian, China
| |
Collapse
|
14
|
Vijayan S, Margesan T. Comprehensive investigation of network pharmacology, computational modeling, and pharmacokinetic assessment to evaluate the efficacy of flavonoids in rheumatoid arthritis. Mol Divers 2024:10.1007/s11030-024-10989-4. [PMID: 39348084 DOI: 10.1007/s11030-024-10989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune disease characterized by inflammation and joint damage, imposing a significant burden on affected individuals worldwide. Flavonoids, a class of natural compounds abundant in various plant-based foods, have shown promising anti-inflammatory and immunomodulatory effects, suggesting their potential as therapeutic agents for RA. In this study, we conducted a comprehensive investigation of identified LCMS compounds utilizing network pharmacology, computational modeling, in silico approaches, and pharmacokinetic assessment to evaluate the efficacy of flavonoids in RA treatment. The study identified 5 flavonoid structures with common targets via LCMS and Integration of network pharmacology approaches enabled a comprehensive evaluation of the pharmacological profile of flavonoids in the context of RA treatment, guiding the selection of promising candidates for further experimental validation and clinical development. The top 10 targets were AKT1, PI3KR1, CDK2, EGFR, CDK6, NOS2, FLT3, ALOX5, CCNB1, and PTPRS via PPI network. The investigation emphasized several pathways, including the AGE-RAGE signaling pathway, resistance to EGFR tyrosine kinase inhibitors, the PI3K-AKT signaling network, and the Rap 1 signaling pathway. In silico studies estimated binding affinities that ranged from - 7.0 to - 10.0 kcal/mol. Schaftoside and Vitexin showed no toxicity in computational approach and found suitable for further investigations. Overall, our study underscores the potential of flavonoids as therapeutic agents for RA and highlights the utility of integrative approaches combining network pharmacology, computational modeling, in silico methods, and pharmacokinetic assessment in drug discovery and development processes.
Collapse
Affiliation(s)
- Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Thirumal Margesan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
15
|
Talib M, Gyebrovszki B, Bőgér D, Csomor R, Mészáros A, Fodor A, Rojkovich B, Sármay G. Helper T Cells are Hyperactive and Contribute to the Dysregulation of Antibody Production in Patients with Rheumatoid Arthritis. Int J Mol Sci 2024; 25:10190. [PMID: 39337675 PMCID: PMC11431999 DOI: 10.3390/ijms251810190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease, mediated by a complex interaction between B cells and various subsets of T cells. Dysfunction of helper T (Th) and regulatory T (Treg) cells may contribute to the breakdown of self-tolerance and the progression of autoimmune disease. In this study, we investigated the activity of Th and Treg cells on the differentiation of autologous B cells in vitro using cell cultures from the peripheral blood of healthy controls (HCs) and RA patients. The expressions of programmed death 1 (PD-1) and IL-21 were monitored as activation markers for Th cells. Unstimulated Th cells from RA patients showed remarkably higher PD-1 expression than HC samples. Stimulation of Th cells from RA patients with Staphylococcus enterotoxin B (SEB) in the presence of B cells significantly induced their PD-1 and IL-21 expression at a considerably higher level in RA compared to HCs, and Treg cells did not affect IL-21 production. When monitoring B-cell differentiation, a significantly higher frequency of plasma cells was observed, even in unstimulated samples of RA patients compared to HCs. In the SEB-stimulated co-cultures of the RA samples, plasma cell frequency and IgG production were considerably higher than in HCs and were not significantly affected by Tregs. These findings demonstrate that Th cells are constitutively active in RA, and their hyperactivity upon interaction with diseased B cells may lead to uncontrolled antibody production.
Collapse
Affiliation(s)
- Mustafa Talib
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Balázs Gyebrovszki
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Dorottya Bőgér
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Réka Csomor
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Anna Mészáros
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Anna Fodor
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Bernadette Rojkovich
- Rheumatology-Rehabilitation Department, Buda Hospital of the Hospitaller Order of Saint John of God, 1027 Budapest, Hungary;
| | - Gabriella Sármay
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| |
Collapse
|
16
|
Nagy S, Ditchek J, Kesselman MM. Coronary Artery Calcification in Rheumatoid Arthritis Patients: A Systematic Review. Cureus 2024; 16:e70517. [PMID: 39479072 PMCID: PMC11524640 DOI: 10.7759/cureus.70517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Rheumatoid arthritis (RA) is one of the leading autoimmune causes of inflammatory arthropathy worldwide. The musculoskeletal impacts of RA are well described within the literature. More recently, research efforts have highlighted that inflammation associated with the condition is not solely isolated to the joint synovium. Specifically, data has demonstrated that the cardiovascular system is negatively impacted by inflammation tied to RA, with adverse cardiovascular outcomes considered the leading cause of mortality among patients with RA. One approach to determine the risk for cardiovascular disease (CVD) is computed tomography (CT) coronary angiography, a noninvasive imaging approach that analyzes the calcifications within the coronary vessels. This has increasingly been utilized to analyze plaque burden and vessel obstruction, which is measured using the coronary artery calcium (CAC) score. A total of 305 articles were analyzed, and 11 articles were selected for this review based on inclusion and exclusion criteria. The results indicated that nearly 60% of patients with RA experienced an elevated CAC score. As such, patients with RA likely carry a higher risk for adverse cardiovascular outcomes as compared to their healthy counterparts. Additional research is warranted based on these findings to determine whether the addition of CT coronary angiography and analysis of laboratory markers for CVD, including lipid markers in standard protocols for RA comorbid assessment, would help to reduce adverse cardiovascular complications.
Collapse
Affiliation(s)
- Stephanie Nagy
- Rheumatology, Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Jordan Ditchek
- Radiology, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, USA
| | - Marc M Kesselman
- Rheumatology, Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| |
Collapse
|
17
|
Nosratabadi R, Ranjkesh M, Safari M, Ramezani M, Zainodini N, Mahmoodi M. In Vitro Effects of Curcumin in Free and Phytosomal Forms on the Expression of T Helper1 and Regulatory T Cells' Transcription Factors in Collagen-Induced Arthritis. Adv Biomed Res 2024; 13:69. [PMID: 39434949 PMCID: PMC11493216 DOI: 10.4103/abr.abr_291_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 10/23/2024] Open
Abstract
Background Curcumin as a polyphenolic compound has a potential capacity to reduce autoimmune reactions by skewing the balance of Thelper1 (Th1)/regulatory T cells (Treg) toward Treg cells. However, the low absorption and bioavailability of this agent have prompted researchers to use various drug delivery systems such as phytosomes to reduce these drawbacks. To date, few studies have evaluated the effects of phytosomal curcumin (nano-curcumin) on immune responses. Hence, we compared the modulatory effects of curcumin in free and phytosomal form on the expression of Th1 and Treg transcription factors, T-bet (T-box-containing protein) and Foxp3 (forkhead box p3), respectively, in a collagen-induced arthritis model (CIA). Materials and Methods Following the induction of CIA, splenocytes were isolated and re-stimulated with collagen in the absence or presence of two different doses of curcumin in free and phytosomal form. Then, expression of T-bet and Foxp3 was assessed by real-time PCR. Results The expression of T-bet was reduced in curcumin and phytosomal curcumin groups rather than in the untreated group. The level of T-bet was not significantly different between free and phytosomal groups. Moreover, mRNA expression of Foxp3 enhanced after treatment with curcumin, while phytosomal curcumin groups showed no difference in comparison with the untreated group. Conclusions curcumin in nano/free form showed a modulatory effect on the expression of T-bet. However, only free-form enhanced Foxp3 expression, which could be owing to the low amount of curcumin in the phytosomal complex rather than free-form at the same dose or due to leakage of curcumin from the complex.
Collapse
Affiliation(s)
- Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Ranjkesh
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Safari
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Ramezani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Yao X, He Y, Xiao C, Zhou R, Zhao C, Wang W. The Potential of Immunotherapy for SMARCA4-Deficient Undifferentiated Uterine Sarcoma (SDUS). Biomolecules 2024; 14:987. [PMID: 39199375 PMCID: PMC11352696 DOI: 10.3390/biom14080987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: SMARCA4-deficient undifferentiated uterine sarcoma (SDUS) is a rare and aggressive cancer that urgently requires novel therapeutic strategies. Despite the proven efficacy of immunotherapy in various cancer types, its application in SDUS remains largely unexplored. This study aims to investigate the immune microenvironment of SDUS to evaluate the feasibility of utilizing immunotherapy. (2) Methods: Multiplex immunofluorescence (mIF) was employed to examine the immune microenvironment in two cases of SDUS in comparison to other subtypes of endometrial stromal sarcomas (ESSs). This research involved a comprehensive evaluation of immune cell infiltration, cellular interactions, and spatial organization within the tumor immune microenvironment (TiME). Statistical analysis was performed to assess differences in immune cell densities and interactions between SDUS and other ESSs. (3) Results: SDUS exhibited a significantly higher density of cytotoxic T lymphocytes (CTLs), T helper (Th) cells, B cells, and macrophages compared to other ESSs. Notable cellular interactions included Th-CTL and Th-B cell interactions, which were more prominent in SDUS. The spatial analysis revealed distinct immune niches characterized by lymphocyte aggregation and a vascular-rich environment, suggesting an active and engaged immune microenvironment in SDUS. (4) Conclusions: The results suggest that SDUS exhibits a highly immunogenic TiME, characterized by substantial lymphocyte infiltration and dynamic cellular interactions. These findings highlight the potential of immunotherapy as an effective treatment approach for SDUS. However, given the small number of samples evaluated, these conclusions should be drawn with caution. This study underscores the importance of additional investigation into immune-targeted therapies for this challenging cancer subtype, with a larger sample size to validate and expand upon these preliminary findings.
Collapse
Affiliation(s)
- Xiaohong Yao
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.H.)
| | - Ying He
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.H.)
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (C.X.); (R.Z.)
| | - Ruihan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (C.X.); (R.Z.)
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (C.X.); (R.Z.)
| | - Wei Wang
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.H.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|
19
|
Li MM, Huang Y, Sumathipala M, Liang MQ, Valdeolivas A, Ananthakrishnan AN, Liao K, Marbach D, Zitnik M. Contextual AI models for single-cell protein biology. Nat Methods 2024; 21:1546-1557. [PMID: 39039335 PMCID: PMC11310085 DOI: 10.1038/s41592-024-02341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Understanding protein function and developing molecular therapies require deciphering the cell types in which proteins act as well as the interactions between proteins. However, modeling protein interactions across biological contexts remains challenging for existing algorithms. Here we introduce PINNACLE, a geometric deep learning approach that generates context-aware protein representations. Leveraging a multiorgan single-cell atlas, PINNACLE learns on contextualized protein interaction networks to produce 394,760 protein representations from 156 cell type contexts across 24 tissues. PINNACLE's embedding space reflects cellular and tissue organization, enabling zero-shot retrieval of the tissue hierarchy. Pretrained protein representations can be adapted for downstream tasks: enhancing 3D structure-based representations for resolving immuno-oncological protein interactions, and investigating drugs' effects across cell types. PINNACLE outperforms state-of-the-art models in nominating therapeutic targets for rheumatoid arthritis and inflammatory bowel diseases and pinpoints cell type contexts with higher predictive capability than context-free models. PINNACLE's ability to adjust its outputs on the basis of the context in which it operates paves the way for large-scale context-specific predictions in biology.
Collapse
Affiliation(s)
- Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yepeng Huang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marissa Sumathipala
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Man Qing Liang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ashwin N Ananthakrishnan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine Liao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Data Science Initiative, Cambridge, MA, USA.
| |
Collapse
|
20
|
Karnam S, Donthi MR, Jindal AB, Paul AT. Recent innovations in topical delivery for management of rheumatoid arthritis: A focus on combination drug delivery. Drug Discov Today 2024; 29:104071. [PMID: 38942070 DOI: 10.1016/j.drudis.2024.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Rheumatoid arthritis (RA) is an immune-mediated disease that necessitates a thorough understanding of its intricate pathophysiological mechanism for precise and effective therapeutic targeting. The European League Against Rheumatism (EULAR) has established guidelines for RA treatment, endorsing monotherapy or combination therapy with corticosteroids and synthetic disease-modifying antirheumatic drugs (sDMARDs). This review delves into clinical trials and research outcomes related to combination drug delivery, with an emphasis on the role of natural products in combination with synthetic drugs. Given the significant adverse effects associated with systemic administration, topical delivery has emerged as an alternative avenue for effective management of RA.
Collapse
Affiliation(s)
- Sriravali Karnam
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Mahipal Reddy Donthi
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil B Jindal
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Atish T Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
21
|
Badawi K, El Sharazly BM, Negm O, Khan R, Carter WG. Is Cadmium Genotoxicity Due to the Induction of Redox Stress and Inflammation? A Systematic Review. Antioxidants (Basel) 2024; 13:932. [PMID: 39199178 PMCID: PMC11351676 DOI: 10.3390/antiox13080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
The transition metal cadmium (Cd) is toxic to humans and can induce cellular redox stress and inflammation. Cd is a recognized carcinogen, but the molecular mechanisms associated with its genotoxicity and carcinogenicity are not defined. Therefore, a systematic review was undertaken to examine the scientific literature that has covered the molecular mechanism of Cd genotoxicity and its relationship to cellular redox stress and inflammation. An electronic database search of PubMed, Scopus, and the Web of Science Core Collection was conducted to retrieve the studies that had investigated if Cd genotoxicity was directly linked to the induction of redox stress and inflammation. Studies included exposure to Cd via in vitro and in vivo routes of administration. Of 214 publications retrieved, 10 met the inclusion criteria for this review. Preclinical studies indicate that Cd exposure causes the induction of reactive oxygen species (ROS) and, via concomitant activity of the transcription factor NF-κβ, induces the production of pro-inflammatory cytokines and a cytokine profile consistent with the induction of an allergic response. There is limited information regarding the impact of Cd on cellular signal transduction pathways, and the relationship of this to genotoxicity is still inconclusive. Nevertheless, pre-incubation with the antioxidants, N-acetylcysteine or sulforaphane, or the necroptosis inhibitor, necrostatin-1, reduces Cd toxicity; indicative that these agents may be a beneficial treatment adjunct in cases of Cd poisoning. Collectively, this review highlights that Cd-induced toxicity and associated tissue pathology, and ultimately the carcinogenic potential of Cd, may be driven by redox stress and inflammatory mechanisms.
Collapse
Affiliation(s)
- Khulud Badawi
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (K.B.); (B.M.E.S.)
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Basma M. El Sharazly
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (K.B.); (B.M.E.S.)
- Parasitology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ola Negm
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (O.N.); (R.K.)
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, El-Mansoura 35516, Egypt
| | - Raheela Khan
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (O.N.); (R.K.)
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (K.B.); (B.M.E.S.)
| |
Collapse
|
22
|
Li MM, Huang Y, Sumathipala M, Liang MQ, Valdeolivas A, Ananthakrishnan AN, Liao K, Marbach D, Zitnik M. Contextual AI models for single-cell protein biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549602. [PMID: 37503080 PMCID: PMC10370131 DOI: 10.1101/2023.07.18.549602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Understanding protein function and developing molecular therapies require deciphering the cell types in which proteins act as well as the interactions between proteins. However, modeling protein interactions across biological contexts remains challenging for existing algorithms. Here, we introduce Pinnacle, a geometric deep learning approach that generates context-aware protein representations. Leveraging a multi-organ single-cell atlas, Pinnacle learns on contextualized protein interaction networks to produce 394,760 protein representations from 156 cell type contexts across 24 tissues. Pinnacle's embedding space reflects cellular and tissue organization, enabling zero-shot retrieval of the tissue hierarchy. Pretrained protein representations can be adapted for downstream tasks: enhancing 3D structure-based representations for resolving immuno-oncological protein interactions, and investigating drugs' effects across cell types. Pinnacle outperforms state-of-the-art models in nominating therapeutic targets for rheumatoid arthritis and inflammatory bowel diseases, and pinpoints cell type contexts with higher predictive capability than context-free models. Pinnacle's ability to adjust its outputs based on the context in which it operates paves way for large-scale context-specific predictions in biology.
Collapse
Affiliation(s)
- Michelle M. Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yepeng Huang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marissa Sumathipala
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Man Qing Liang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ashwin N. Ananthakrishnan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine Liao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA, USA
| | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Data Science Initiative, Cambridge, MA, USA
| |
Collapse
|
23
|
Bakinowska E, Bratborska AW, Kiełbowski K, Ćmil M, Biniek WJ, Pawlik A. The Role of Mesenchymal Stromal Cells in the Treatment of Rheumatoid Arthritis. Cells 2024; 13:915. [PMID: 38891047 PMCID: PMC11171813 DOI: 10.3390/cells13110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterised by the formation of a hyperplastic pannus, as well as cartilage and bone damage. The pathogenesis of RA is complex and involves broad interactions between various cells present in the inflamed synovium, including fibroblast-like synoviocytes (FLSs), macrophages, and T cells, among others. Under inflammatory conditions, these cells are activated, further enhancing inflammatory responses and angiogenesis and promoting bone and cartilage degradation. Novel treatment methods for RA are greatly needed, and mesenchymal stromal cells (MSCs) have been suggested as a promising new regenerative and immunomodulatory treatment. In this paper, we present the interactions between MSCs and RA-FLSs, and macrophages and T cells, and summarise studies examining the use of MSCs in preclinical and clinical RA studies.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | | | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Wojciech Jerzy Biniek
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| |
Collapse
|
24
|
Cotter M, Quinn SM, Fearon U, Ansboro S, Rakovic T, Southern JM, Kelly VP, Connon SJ. A new class of 7-deazaguanine agents targeting autoimmune diseases: dramatic reduction of synovial fibroblast IL-6 production from human rheumatoid arthritis patients and improved performance against murine experimental autoimmune encephalomyelitis. RSC Med Chem 2024; 15:1556-1564. [PMID: 38784475 PMCID: PMC11110761 DOI: 10.1039/d4md00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/17/2024] [Indexed: 05/25/2024] Open
Abstract
A simple in vitro assay involving the measurement of IL-6 production in human synovial fibroblasts from rheumatoid arthritis patients has been utilised to select candidates from a targeted library of queuine tRNA ribosyltransferase (QTRT) substrates for subsequent in vivo screening in murine experimental autoimmune encephalomyelitis (EAE - a model of multiple sclerosis). The in vitro activity assay discriminated between poor and excellent 7-deazaguanine QTRT substrates and allowed the identification of several structures which subsequently outperformed the previous lead in EAE. Two molecules were of significant promise: one rigidified analogue of the lead, and another considerably simpler structure incorporating an oxime motif which differs structurally from the lead to a considerable extent. These studies provide data from human cells for the first time and have expanded both the chemical space and current understanding of the structure-activity relationship underpinning the remarkable potential of 7-deazguanines in a Multiple Sclerosis disease model.
Collapse
Affiliation(s)
- Michelle Cotter
- School of Chemistry, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Shauna M Quinn
- School of Biochemistry & Immunology, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Ursula Fearon
- School of Medicine, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Sharon Ansboro
- School of Medicine, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Tatsiana Rakovic
- School of Medicine, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - John M Southern
- School of Chemistry, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| |
Collapse
|
25
|
Simula ER, Jasemi S, Cossu D, Manca PC, Sanna D, Scarpa F, Meloni G, Cusano R, Sechi LA. The Genetic Landscape of Systemic Rheumatic Diseases: A Comprehensive Multigene-Panel Study Identifying Key Gene Polymorphisms. Pharmaceuticals (Basel) 2024; 17:438. [PMID: 38675400 PMCID: PMC11054024 DOI: 10.3390/ph17040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Systemic rheumatic diseases, including conditions such as rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus, represent a complex array of autoimmune disorders characterized by chronic inflammation and diverse clinical manifestations. This study focuses on unraveling the genetic underpinnings of these diseases by examining polymorphisms in key genes related to their pathology. Utilizing a comprehensive genetic analysis, we have documented the involvement of these genetic variations in the pathogenesis of rheumatic diseases. Our study has identified several key polymorphisms with notable implications in rheumatic diseases. Polymorphism at chr11_112020916 within the IL-18 gene was prevalent across various conditions with a potential protective effect. Concurrently, the same IL18R1 gene polymorphism located at chr2_103010912, coding for the IL-18 receptor, was observed in most rheumatic conditions, reinforcing its potential protective role. Additionally, a further polymorphism in IL18R1 at chr2_103013408 seems to have a protective influence against the rheumatic diseases under investigation. In the context of emerging genes involved in rheumatic diseases, like PARK2, a significant polymorphism at chr6_161990516 was consistently identified across different conditions, exhibiting protective characteristics in these pathological contexts. The findings underscore the complexity of the genetic landscape in rheumatic autoimmune disorders and pave the way for a deeper understanding of their etiology and the possible development of more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Elena Rita Simula
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Seyedesomaye Jasemi
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Pietro Carmelo Manca
- S.C. Servizio Immunotrasfusionale, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Gianfranco Meloni
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, 07100 Sassari, Italy;
| | - Roberto Cusano
- Centro di Ricerca, Sviluppo, Studi Superiori in Sardegna (CRS4), Pula, 09100 Cagliari, Italy;
| | - Leonardo Antonio Sechi
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
26
|
Zheng A, Harlow BL, Gereige J. Immune Dysregulation, Inflammation in Characterizing Women with Vulvodynia, Depression, and Both. J Womens Health (Larchmt) 2024; 33:364-370. [PMID: 38190297 PMCID: PMC10924120 DOI: 10.1089/jwh.2023.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Background: Depression and vulvodynia are often comorbid. The onset of depression and vulvodynia may be immune and/or stress/environmentally induced. We explored whether vulvodynia, depression, or both occur in response to a Th1-mediated versus Th2-mediated immune response. Materials and Methods: We analyzed data from a case-control study of clinically confirmed vulvodynia and history of depression determined through structured clinical interviews. Immune dysregulation and inflammation were categorized based on the following self-reported conditions: rheumatoid arthritis, Sjogren's disease, scleroderma, systemic lupus erythematosus, inflammatory bowel disease, fibromyalgia, osteoarthritis, polycystic ovarian syndrome, diabetes mellitus, uterine fibroids, asthma, atopic dermatitis, and allergic rhinitis. Logistic regression analyses were adjusted for marital status, body mass index, age, and pack years. Results: Women with systemic immune dysregulation had higher odds of depression (adjusted odds ratio [aOR] = 1.61, confidence interval [95% CI]: 0.65-3.98), vulvodynia (aOR = 2.45, 95% CI: 1.00-5.96), and comorbid depression and vulvodynia (aOR = 4.93, 95% CI: 2.19-11.10) versus neither condition. Women reporting local immune dysregulation had similar odds of depression (aOR = 1.89, 95% CI: 0.99-3.59), vulvodynia (aOR = 2.12, 95% CI: 1.08-4.18), and comorbid depression and vulvodynia (aOR = 1.96, 95% CI: 0.98-3.90). Women with Th2 inflammation had similar odds of depression (aOR = 2.23, 95% CI: 1.05-4.77) and vulvodynia (aOR = 2.56, 95% CI: 1.20-5.49). Women with Th1 or Th2 inflammation had similar odds of comorbid depression and vulvodynia (aOR = 3.03, 95% CI: 1.48-6.19; aOR = 3.14, 95% CI: 1.49-6.60, respectively). Conclusions: Our results suggest that an imbalance of cytokines, indicated by the presence of one or more immune-related health conditions, is associated with an increased risk of vulvodynia and/or depression.
Collapse
Affiliation(s)
- Amy Zheng
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Bernard L. Harlow
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jessica Gereige
- Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston, Massachusetts, USA
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Gan K, Lian H, Yang T, Huang J, Chen J, Su Y, Zhao J, Xu J, Liu Q. Periplogenin attenuates LPS-mediated inflammatory osteolysis through the suppression of osteoclastogenesis via reducing the NF-κB and MAPK signaling pathways. Cell Death Discov 2024; 10:86. [PMID: 38368392 PMCID: PMC10874423 DOI: 10.1038/s41420-024-01856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
The key target for treating inflammatory osteolysis is osteoclasts. In an inflammatory environment, osteoclast differentiation increases, and bone resorption is enhanced. Periplogenin (Ppg) is a traditional Chinese medicine. It has anti-inflammatory and antitumor effects, but its impact on inflammatory osteolysis is unknown. This study found that Ppg prevented LPS-induced skull osteolysis by inhibiting the expression of inflammatory cytokines and osteoclast production. In vitro, Ppg blocked the RANKL-induced generation of osteoclasts, the development of pseudopodia bands, and bone resorption. Ppg also attenuated the expression of NFATc1, c-Fos, CTSK, and Atp6v0d2 proteins by inhibiting the NFATc1 signaling pathway. In addition, Ppg inhibited the expression of osteoclast-specific genes, including NFATc1, c-Fos, CTSK, Atp6v0d2, and Mmp9. Moreover, Ppg also inhibited NF-κB and MAPK pathways. In vivo, Ppg reduced the number of osteoclasts on the surface of the bone and suppressed LPS-induced osteolysis of the skull. These outcomes suggest that Ppg can serve as a new alternative therapy for treating inflammatory osteolysis by inhibiting inflammation and osteoclasts.
Collapse
Affiliation(s)
- Kai Gan
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Tao Yang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junchun Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiake Xu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
28
|
Dore MP, Erre GL, Piroddu J, Pes GM. Helicobacter pylori infection and rheumatoid arthritis as risk enhancers' factors for atherosclerotic cardiovascular diseases. Helicobacter 2023; 28:e13025. [PMID: 37792567 DOI: 10.1111/hel.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND In addition to established risk factors for atherosclerotic cardiovascular diseases (aCVDs), infections and autoimmune diseases, such as Helicobacter pylori (H. pylori) and rheumatoid arthritis (RA), have been reported as risk-enhancer factors. In this retrospective single-center, case-control study, the relative weight of RA and H. pylori infection on aCVD was evaluated in a cohort of patients from Northern Sardinia, Italy, where both conditions are frequent. MATERIALS AND METHODS Data were retrieved from records of subjects undergoing upper endoscopy and screened for H. pylori infection by at least four biopsies. The presence of H. pylori and chronic-active gastritis were labeled as a current infection or a long-lasting infection (LLHp) when atrophy and/or metaplasia and/or dysplasia were detected in at least one gastric specimen. Diagnosis of aCVD and RA was made by the cardiologist and the rheumatologist, respectively, according to guidelines. Odd ratios (ORs) for aCVD were evaluated, adjusting for age, sex, excess weight, cigarette smoking, blood hypertension, dyslipidemia, diabetes, H. pylori status, and RA. RESULTS Among 4821 records (mean age 52.1 ± 16.7 years; 66.0% female), H. pylori infection was detected in 2262 patients, and more specifically, a LLHp infection was present in 1043 (21.6%). Three-hundred-three (6.3%) patients were diagnosed with aCVD, and 208 (4.3%) with RA. In patients with aCVD (cases), the LLHp infection (33.3% vs. 20.8%, p < 0.0001) and RA (12.2% vs. 3.8%, p < 0.0001) were more frequent in cases compared with controls (patients without aCVD). After adjusting for traditional aCVD risk factors, ORs significantly increased for LLHp infection (1.57; 95% CI 1.20-2.06) and RA (2.63; 95% CI 1.72-4.02). Interestingly, the LLHp infection in patients with RA showed an overall addictive effect on the risk for aCVD (7.89; 95% CI 4.29-14.53). CONCLUSIONS According to our findings, patients with RA should benefit from being screened and eventually treated for H. pylori infection.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
- Baylor College of Medicine, Houston, Texas, USA
| | - Gian Luca Erre
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
| | - Jessica Piroddu
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
- Sardinia Blue Zone Longevity Observatory, Ogliastra, Italy
| |
Collapse
|
29
|
Liu Q, Shen J, Wang J, Xia J, Yin J, Cheng G, Qian X, Jiang Y, Ge X, Wang Q. PR-957 retards rheumatoid arthritis progression and inflammation by inhibiting LMP7-mediated CD4 + T cell imbalance. Int Immunopharmacol 2023; 124:110860. [PMID: 37716163 DOI: 10.1016/j.intimp.2023.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Low molecular mass polypeptide 7 (LMP7) is an immunoproteasome subunit that regulates T cell amplification, differentiation, and inflammation and is involved in rheumatoid arthritis (RA) progression. This study intended to apply PR-957 (an anti-LMP7 agent) for RA treatment in vitro and in vivo and evaluate its interaction with LMP7-mediated CD4+ T cell imbalance. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from 30 RA patients and 30 healthy controls. RA fibroblast-like synoviocytes (RA-FLSs) and CD4+ T cells were isolated from RA patients and then cocultured with PR-957 and/or LMP7 overexpression adenovirus (Ad-LMP7). Collagen-induced arthritis (CIA) mice were constructed and then treated with PR-957 and/or Ad-LMP7. RESULTS LMP7 was higher in RA patients (versus healthy controls) and positively correlated with T helper (Th)1 cells, the Th1/Th2 ratio, Th17 cells, and the Th17/Treg ratio but not with Th2 or T regulatory (Treg) cells. PR-957 reduced Th1 and Th17 cells but increased Th2 and Treg cells in RA-CD4+ T cells, and this effect was partially reversed by Ad-LMP7 transfection. Interestingly, when cocultured with RA-CD4+ T cells, PR-957 increased RA-FLS apoptosis and decreased its invasive ability, viability, and inflammation, as suggested by IL-6, CCL2, MMP1, and MMP3; however, these phenomena were weakened in RA-FLSs without RA-CD4+ T cell coculture. In addition, Ad-LMP7 transfection attenuated the above effects of PR-957. In CIA mice, PR-957 decreased the arthritis score, synovial hyperproliferation and articular injury, inflammation in the synovium and serum, and the imbalance of Th1/Th2 and Th17/Treg in the spleen, and these effects were attenuated by Ad-LMP7. CONCLUSION PR-957 ameliorates RA progression and inflammation by repressing LMP7-mediated CD4+ T cell imbalance.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jin Shen
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jian Wang
- Department of Joint Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jian Yin
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Guowei Cheng
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Ximing Qian
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Yun Jiang
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China.
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China.
| |
Collapse
|
30
|
Fan Y, Li Y, Fu X, Peng J, Chen Y, Chen T, Zhang D. Identification of potential ferroptosis key genes and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis. Heliyon 2023; 9:e21167. [PMID: 37920499 PMCID: PMC10618794 DOI: 10.1016/j.heliyon.2023.e21167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Objective Ferroptosis is of vital importance in the development of Rheumatoid arthritis (RA). The purpose of this project is to clarify the potential ferroptosis-related genes, pathways, and immune infiltration in RA by bioinformatics analysis. Methods We acquired ferroptosis-related genes (FRGs) from Ferroptosis database (FerrDb). We obtained the Gene dataset of RA (GSE55235) from the Gene Expression Omnibus (GEO) Database, screened the differentially expressed genes (DEGs) in RA and control samples, and then took the intersection of it and FRGs. Aiming to construct the protein-protein interaction (PPI) networks of the FRGs-DEGs, STRING database and Cytoscape software 3.7.0 would be used. Furthermore, hub genes were identified by CytoNCA, a Cytoscape plug-in. The gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of FRGs-DEGs were performed. Results We identified 34 FRGs-DEGs, including 7 upregulated and 27 downregulated genes by taking the intersection of the FRGs and DEGs. PPI analysis identified a total of 3 hub genes(VEGFA, PTGS2, and JUN). GO enrichment analyses and KEGG Pathway enrichment displayed that the FRGs-DEGs are involved in the response to oxidative stress and corticosteroid, heme binding, FoxO-signal pathway. Results of immune infiltration displayed that increased infiltration of T cells, while Macrophages M2 less may be related to the occurrence of RA. Conclusion The hub genes involved in ferroptosis in RA may be VEGFA, PTGS2, and JUN, which are mainly involved in FoxO-signal pathway. T cell, Mac, and plasma cells may be involved in the regulation of RA-joints-synovial-inflammation.
Collapse
Affiliation(s)
- Yihua Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Xiaoyan Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Jing Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yuchi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Tao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Di Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong Province, China
| |
Collapse
|
31
|
Gu P, Pu B, Liu T, Yue D, Xin Q, Li HS, Yang BL, Ke DZ, Zheng XH, Zeng ZP, Zhang ZQ. Appraising causal risk and protective factors for rheumatoid arthritis. Bone Joint Res 2023; 12:601-614. [PMID: 37732818 PMCID: PMC10512867 DOI: 10.1302/2046-3758.129.bjr-2023-0118.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Aims Mendelian randomization (MR) is considered to overcome the bias of observational studies, but there is no current meta-analysis of MR studies on rheumatoid arthritis (RA). The purpose of this study was to summarize the relationship between potential pathogenic factors and RA risk based on existing MR studies. Methods PubMed, Web of Science, and Embase were searched for MR studies on influencing factors in relation to RA up to October 2022. Meta-analyses of MR studies assessing correlations between various potential pathogenic factors and RA were conducted. Random-effect and fixed-effect models were used to synthesize the odds ratios of various pathogenic factors and RA. The quality of the study was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines. Results A total of 517 potentially relevant articles were screened, 35 studies were included in the systematic review, and 19 studies were eligible to be included in the meta-analysis. Pooled estimates of 19 included studies (causality between 15 different risk factors and RA) revealed that obesity, smoking, coffee intake, lower education attainment, and Graves' disease (GD) were related to the increased risk of RA. In contrast, the causality contribution from serum mineral levels (calcium, iron, copper, zinc, magnesium, selenium), alcohol intake, and chronic periodontitis to RA is not significant. Conclusion Obesity, smoking, education attainment, and GD have real causal effects on the occurrence and development of RA. These results may provide insights into the genetic susceptibility and potential biological pathways of RA.
Collapse
Affiliation(s)
- Peng Gu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Pu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Teng Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Yue
- Southwest Medical University, Luzhou, China
| | - Qiao Xin
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hai-Shan Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bai-Lin Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dao-Ze Ke
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hui Zheng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhan-Peng Zeng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | |
Collapse
|
32
|
Esrafili A, Kupfer J, Thumsi A, Jaggarapu MMCS, Suresh AP, Talitckii A, Khodaei T, Swaminathan SJ, Mantri S, Peet MM, Acharya AP. Exponentially decreasing exposure of antigen generates anti-inflammatory T-cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558014. [PMID: 37745575 PMCID: PMC10516048 DOI: 10.1101/2023.09.15.558014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Rheumatoid Arthritis (RA) is a chronic debilitating disease characterized by auto-immune reaction towards self-antigen such as collagen type II. In this study, we investigated the impact of exponentially decreasing levels of antigen exposure on pro-inflammatory T cell responses in the collagen-induced arthritis (CIA) mouse model. Using a controlled delivery experimental approach, we manipulated the collagen type II (CII) antigen concentration presented to the immune system. We observed that exponentially decreasing levels of antigen generated reduced pro-inflammatory T cell responses in secondary lymphoid organs in mice suffering from RA. Specifically, untreated mice exhibited robust pro-inflammatory T cell activation and increased paw inflammation, whereas, mice exposed to exponentially decreasing concentrations of CII demonstrated significantly reduced pro-inflammatory T cell responses, exhibited lower levels of paw inflammation, and decreased arthritis scores in right rear paw. The data also demonstrate that the decreasing antigen levels promoted the induction of regulatory T cells (Tregs), which play a crucial role in maintaining immune tolerance and suppressing excessive inflammatory responses. Our findings highlight the importance of antigen concentration in modulating pro-inflammatory T cell responses in the CIA model. These results provide valuable insights into the potential therapeutic strategies that target antigen presentation to regulate immune responses and mitigate inflammation in rheumatoid arthritis and other autoimmune diseases. Further investigations are warranted to elucidate the specific mechanisms underlying the antigen concentration-dependent modulation of T cell responses and to explore the translational potential of this approach for the development of novel therapeutic interventions in autoimmune disorders.
Collapse
Affiliation(s)
- Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Joshua Kupfer
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Abhirami Thumsi
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | | | - Abhirami P. Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Aleksandr Talitckii
- Aerospace and Mechanical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Taravat Khodaei
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
| | | | - Shivani Mantri
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
| | - Matthew M Peet
- Aerospace and Mechanical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Abhinav P. Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA, 85281
- Biodesign Center for Biomaterials Innovation and Translation, Arizona State University, Tempe, AZ, USA, 85281
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA, 44106
| |
Collapse
|
33
|
Thumsi A, Swaminathan SJ, Mangal JL, Suresh AP, Acharya AP. Vaccines prevent reinduction of rheumatoid arthritis symptoms in collagen-induced arthritis mouse model. Drug Deliv Transl Res 2023; 13:1925-1935. [PMID: 36971998 PMCID: PMC10899801 DOI: 10.1007/s13346-023-01333-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Metabolic reprogramming of immune cells modulates their function and reduces the severity of autoimmune diseases. However, the long-term effects of the metabolically reprogrammed cells, specifically in the case of immune flare-ups, need to be examined. Herein, a re-induction rheumatoid arthritis (RA) mouse model was developed by injecting T-cells from RA mice into drug-treated mice to recapitulate the effects of T-cell-mediated inflammation and mimic immune flare-ups. Immune metabolic modulator paKG(PFK15 + bc2) microparticles (MPs) were shown to reduce clinical symptoms of RA in collagen-induced arthritis (CIA) mice. Upon re-induction, a significant delay in the reappearance of clinical symptoms in the paKG(PFK15 + bc2) microparticle treatment group was observed as compared to equal or higher doses of the clinically utilized U.S. Food and Drug Administration (FDA)-approved drug, Methotrexate (MTX). Furthermore, paKG(PFK15 + bc2) microparticle-treated mice were able to lower activated dendritic cells (DCs) and inflammatory T helper cell 1 (TH1) and increased activated, proliferating regulatory T-cells (Tregs) more effectively than MTX. The paKG(PFK15 + bc2) microparticles also led to a significant reduction in paw inflammation in mice as compared to MTX treatment. This study can pave the way for the development of flare-up mouse models and antigen-specific drug treatments.
Collapse
Affiliation(s)
- Abhirami Thumsi
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Joslyn L Mangal
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami P Suresh
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhinav P Acharya
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA.
- Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA.
- Biodesign Center for Biomaterials Innovation and Translation, Tempe, AZ, 85281, USA.
| |
Collapse
|
34
|
Wooster BM, Kennedy NI, Dugdale EM, Sierra RJ, Perry KI, Berry DJ, Abdel MP. Contemporary outcomes of primary total hip arthroplasty in patients with inflammatory arthritis. Bone Joint J 2023; 105-B:768-774. [PMID: 37399088 PMCID: PMC10386849 DOI: 10.1302/0301-620x.105b7.bjj-2023-0220.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Aims Contemporary outcomes of primary total hip arthroplasties (THAs) with highly cross-linked polyethylene (HXLPE) liners in patients with inflammatory arthritis have not been well studied. This study examined the implant survivorship, complications, radiological results, and clinical outcomes of THA in patients with inflammatory arthritis. Methods We identified 418 hips (350 patients) with a primary diagnosis of inflammatory arthritis who underwent primary THA with HXLPE liners from January 2000 to December 2017. Of these hips, 68% had rheumatoid arthritis (n = 286), 13% ankylosing spondylitis (n = 53), 7% juvenile rheumatoid arthritis (n = 29), 6% psoriatic arthritis (n = 24), 5% systemic lupus erythematosus (n = 23), and 1% scleroderma (n = 3). Mean age was 58 years (SD 14.8), 66.3% were female (n = 277), and mean BMI was 29 kg/m2 (SD 7). Uncemented femoral components were used in 77% of cases (n = 320). Uncemented acetabular components were used in all patients. Competing risk analysis was used accounting for death. Mean follow-up was 4.5 years (2 to 18). Results The ten-year cumulative incidence of any revision was 3%, and was highest in psoriatic arthritis patients (16%). The most common indications for the 15 revisions were dislocations (n = 8) and periprosthetic joint infections (PJI; n = 4, all on disease-modifying antirheumatic drugs (DMARDs)). The ten-year cumulative incidence of reoperation was 6.1%, with the most common indications being wound infections (six cases, four on DMARDs) and postoperative periprosthetic femur fractures (two cases, both uncemented femoral components). The ten-year cumulative incidence of complications not requiring reoperation was 13.1%, with the most common being intraoperative periprosthetic femur fracture (15 cases, 14 uncemented femoral components; p = 0.13). Radiological evidence of early femoral component subsidence was observed in six cases (all uncemented). Only one femoral component ultimately developed aseptic loosening. Harris Hip Scores substantially improved (p < 0.001). Conclusion Contemporary primary THAs with HXLPE in patients with inflammatory arthritis had excellent survivorship and good functional outcomes regardless of fixation method. Dislocation, PJI, and periprosthetic fracture were the most common complications in this cohort with inflammatory arthritis.
Collapse
Affiliation(s)
- Benjamin M. Wooster
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905
| | - Nicholas I. Kennedy
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905
| | - Evan M. Dugdale
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905
| | - Rafael J. Sierra
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905
| | - Kevin I. Perry
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905
| |
Collapse
|
35
|
Dzhambazov B, Batsalova T, Merky P, Lange F, Holmdahl R. NIH/3T3 Fibroblasts Selectively Activate T Cells Specific for Posttranslationally Modified Collagen Type II. Int J Mol Sci 2023; 24:10811. [PMID: 37445989 DOI: 10.3390/ijms241310811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
It has been shown that synovial fibroblasts (SF) play a key role in the initiation of inflammation and joint destruction, leading to arthritis progression. Fibroblasts may express major histocompatibility complex class II region (MHCII) molecules, and thus, they could be able to process and present antigens to immunocompetent cells. Here we examine whether different types of fibroblasts (synovial, dermal, and thymic murine fibroblasts, destructive LS48 fibroblasts, and noninvasive NIH/3T3 fibroblasts) may be involved in the initiation of rheumatoid arthritis (RA) pathogenesis and can process and present type II collagen (COL2)-an autoantigen associated with RA. Using a panel of MHCII/Aq-restricted T-cell hybridoma lines that specifically recognize an immunodominant COL2 epitope (COL2259-273), we found that NIH/3T3 fibroblasts activate several T-cell clones that recognize the posttranslationally glycosylated or hydroxylated COL2259-273 epitope. The HCQ.3 hybridoma, which is specific for the glycosylated immunodominant COL2 epitope 259-273 (Gal264), showed the strongest response. Interestingly, NIH/3T3 cells, but not destructive LS48 fibroblasts, synovial, dermal, or thymic fibroblasts, were able to stimulate the HCQ.3 hybridoma and other COL2-specific T-cell hybridomas. Our experiments revealed that NIH/3T3 fibroblasts are able to activate COL2-specific T-cell hybridomas even in the absence of COL2 or a posttranslationally modified COL2 peptide. The mechanism of this unusual activation is contact-dependent and involves the T-cell receptor (TCR) complex.
Collapse
Affiliation(s)
- Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | | | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
36
|
Faheem MA, Akhtar T, Naseem N, Aftab U, Zafar MS, Hussain S, Shahzad M, Gobe GC. Chrysin Is Immunomodulatory and Anti-Inflammatory against Complete Freund's Adjuvant-Induced Arthritis in a Pre-Clinical Rodent Model. Pharmaceutics 2023; 15:1225. [PMID: 37111711 PMCID: PMC10144384 DOI: 10.3390/pharmaceutics15041225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysin (5,7-dihydroxyflavone) has many pharmacological properties including anti-inflammatory actions. The objective of this study was to evaluate the anti-arthritic activity of chrysin and to compare its effect with the non-steroidal anti-inflammatory agent, piroxicam, against complete Freund's adjuvant (CFA)-induced arthritis in a pre-clinical model in rats. Rheumatoid arthritis was induced by injecting CFA intra-dermally in the sub-plantar region of the left hind paw of rats. Chrysin (50 and 100 mg/kg) and piroxicam (10 mg/kg) were given to rats with established arthritis. The model of arthritis was characterized using an index of arthritis, with hematological, biological, molecular, and histopathological parameters. Treatment with chrysin significantly reduced the arthritis score, inflammatory cells, erythrocyte sedimentation rate, and rheumatoid factor. Chrysin also reduced the mRNA levels of tumor necrosis factor, nuclear factor kappa-B, and toll-like recepter-2 and increased anti-inflammatory cytokines interleukin-4 and -10, as well as the hemoglobin levels. Using histopathology and microscopy, chrysin reduced the severity of arthritis in joints, infiltration of inflammatory cells, subcutaneous inflammation, cartilage erosion, bone erosion, and pannus formation. Chrysin showed comparable effects to piroxicam, which is used for the treatment of rheumatoid arthritis. The results showed that chrysin possesses anti-inflammatory and immunomodulatory effects that make it a potential drug for the treatment of arthritis.
Collapse
Affiliation(s)
- Muhammad Asif Faheem
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Nadia Naseem
- Department of Morbid Anatomy and Histopathology, University of Health Sciences, Lahore 54600, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | | | - Safdar Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Glenda Carolyn Gobe
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
37
|
Li Z, Chen M, Wang Z, Fan Q, Lin Z, Tao X, Wu J, Liu Z, Lin R, Zhao C. Berberine inhibits RA-FLS cell proliferation and adhesion by regulating RAS/MAPK/FOXO/HIF-1 signal pathway in the treatment of rheumatoid arthritis. Bone Joint Res 2023; 12:91-102. [PMID: 36718649 PMCID: PMC9950669 DOI: 10.1302/2046-3758.122.bjr-2022-0269.r1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. METHODS Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology. RESULTS Berberine inhibited proliferation and adhesion of RA-FLS cells, and significantly reduced the expression of MMP-1, MMP-3, RANKL, and TNF-α. Transcriptional results suggested that berberine intervention mainly regulated forkhead box O (FOXO) signal pathway, prolactin signal pathway, neurotrophic factor signal pathway, and hypoxia-inducible factor 1 (HIF-1) signal pathway. CONCLUSION The effect of berberine on RA was related to the regulation of RAS/mitogen-activated protein kinase/FOXO/HIF-1 signal pathway in RA-FLS cells.Cite this article: Bone Joint Res 2023;12(2):91-102.
Collapse
Affiliation(s)
- Zhiqi Li
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Meilin Chen
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Zhaoyi Wang
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Qiqi Fan
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Zili Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Tao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jiarui Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Ruichao Lin
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Chongjun Zhao
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China, Mr. Chongjun Zhao. E-mail:
| |
Collapse
|
38
|
Preglej T, Brinkmann M, Steiner G, Aletaha D, Göschl L, Bonelli M. Advanced immunophenotyping: A powerful tool for immune profiling, drug screening, and a personalized treatment approach. Front Immunol 2023; 14:1096096. [PMID: 37033944 PMCID: PMC10080106 DOI: 10.3389/fimmu.2023.1096096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Various autoimmune diseases are characterized by distinct cell subset distributions and activation profiles of peripheral blood mononuclear cells (PBMCs). PBMCs can therefore serve as an ideal biomarker material, which is easily accessible and allows for screening of multiple cell types. A detailed understanding of the immune landscape is critical for the diagnosis of patients with autoimmune diseases, as well as for a personalized treatment approach. In our study, we investigate the potential of multi-parameter spectral flow cytometry for the identification of patients suffering from autoimmune diseases and its power as an evaluation tool for in vitro drug screening approaches (advanced immunophenotyping). We designed a combination of two 22-color immunophenotyping panels for profiling cell subset distribution and cell activation. Downstream bioinformatics analyses included percentages of individual cell populations and median fluorescent intensity of defined markers which were then visualized as heatmaps and in dimensionality reduction approaches. In vitro testing of epigenetic immunomodulatory drugs revealed an altered activation status upon treatment, which supports the use of spectral flow cytometry as a high-throughput drug screening tool. Advanced immunophenotyping might support the exploration of novel therapeutic drugs and contribute to future personalized treatment approaches in autoimmune diseases and beyond.
Collapse
Affiliation(s)
| | | | | | | | - Lisa Göschl
- *Correspondence: Lisa Göschl, ; Michael Bonelli,
| | | |
Collapse
|