1
|
Puthillam U, Selvam RE. A numerical study on mechanical and permeability properties of novel design additive manufactured Titanium based metal matrix composite bone scaffold for bone tissue engineering. J Biomater Appl 2025:8853282251333237. [PMID: 40233186 DOI: 10.1177/08853282251333237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A novel design was developed for extrusion based additive manufacturing (robocasting) of bone scaffolds and a numerical study was carried out to find the optimal design to develop a bone scaffold for critical bone defect treatments. Initially, Representative Volume Analysis (RVE) analysis was carried out to predict the Young's modulus (E) of Titanium + Calcium Silicate and Titanium + Hydroxyapatite composites. The RVE analysis outputs were used to find out the E value of various bone scaffold designs and material compositions. The novel stepped design could be used to tailor the mechanical and biological properties of the scaffold by altering the contact support area between strands and changing the pore size, shape and orientation to control the permeability and nutrient transportation. The test revealed that some of the designed scaffolds are suitable for developing scaffolds for cortical bone defects as the E value lies between 10 and 30 GPa. The CFD analysis indicated that some designs do not possess the permeability required for a scaffold to aid nutrient transportation which is ideally between 1.5 × 10-9 and 5 × 10-8 m2. A sample model was printed and sintered in an argon atmosphere using a microwave furnace to check the feasibility of the process.
Collapse
Affiliation(s)
- Umanath Puthillam
- School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
2
|
Gersie T, Bitter T, Wolfson D, Freeman R, Verdonschot N, Janssen D. Characterization of nonlinear stress relaxation of the femoral and tibial trabecular bone for computational modeling. Med Eng Phys 2025; 138:104324. [PMID: 40180536 DOI: 10.1016/j.medengphy.2025.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/16/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Computational models of orthopedic reconstructions are reliant on bone material properties, but viscoelastic behavior of trabecular bone is often ignored in numerical simulations. The inclusion of stress relaxation could be of importance for the accuracy of models simulating the primary stability of cementless implants. In this study, a material model to describe the nonlinear viscoelastic behavior of human trabecular bone was constructed based on uniaxial stress relaxation experiments. The relationship of bone mineral density (BMD) and stress relaxation was explored, and the material model was implemented in sample-specific finite element (FE) simulations. Cylindrical trabecular human bone specimens, from the distal femur and proximal tibia, were subjected to stress relaxation tests, undergoing compression with strains from 0.2 % to 0.8 % for 30 min on four consecutive days. The experimental data were extrapolated to 24 h. Similar levels of stress relaxation were found for femoral and tibial specimens, with an average 54.4 % stress relaxation and a maximum level of 81.6 %. Using a modified superposition model, the specimen-specific nonlinear stress relaxation behavior was captured. However, when the samples were considered collectively, no correlation was found between applied strain, BMD and the viscoelastic response. Therefore, the average level of stress relaxation in combination with existing BMD-stiffness relationships were implemented in FE simulations for each individual specimen. While the FE models, on average, overestimated the overall stiffness by 64 %, they were able to adequately capture the stress relaxation response.
Collapse
Affiliation(s)
- Thomas Gersie
- Radboudumc, Orthopaedic Research Lab, PO Box 9101, Nijmegen, HB 6500, the Netherlands.
| | - Thom Bitter
- Radboudumc, Orthopaedic Research Lab, PO Box 9101, Nijmegen, HB 6500, the Netherlands
| | - David Wolfson
- DePuy Synthes Joint Reconstruction, WW Research & Development, LS11 OBG Leeds, UK
| | - Robert Freeman
- DePuy Synthes Joint Reconstruction, WW Research & Development, LS11 OBG Leeds, UK
| | - Nico Verdonschot
- Radboudumc, Orthopaedic Research Lab, PO Box 9101, Nijmegen, HB 6500, the Netherlands; Faculty of Science and Technology, University of Twente, Enschede 7522LW, the Netherlands
| | - Dennis Janssen
- Radboudumc, Orthopaedic Research Lab, PO Box 9101, Nijmegen, HB 6500, the Netherlands
| |
Collapse
|
3
|
Adams DS, Boyce BL, Hooks DE, Garber KW, Klitsner B, Price SA, Blob R. A Brief Introductory Guide to Nanoindentation for Comparative and Evolutionary Biologists, with a Case Study of Bone Material Property Diversity across Artiodactyl Skulls. Integr Org Biol 2025; 7:obaf010. [PMID: 40161253 PMCID: PMC11953029 DOI: 10.1093/iob/obaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Quantifying the material properties of hard biological materials can improve understanding of the relationships between form, function, and performance. This study illustrates the use of nanoindentation as a tool for evaluating material properties in a comparative biology framework. We provide a step-by-step guide for comparative and evolutionary biologists illustrating the collection and analysis of nanoindentation data from samples of artiodactyl skull bones. We assess the impact of methodological decisions on the output of nanoindentation tests. We also investigate whether evolutionary variations in skull bone properties are present between artiodactyl species that engage in intraspecific head-to-head combat and those that do not. Elastic modulus exhibited little variation among numbers of indents performed per test and per bone sample. The average elastic modulus was significantly lower when bones were hydrated with deionized water. The skulls of artiodactyls exhibited a gradient of elastic modulus values in which the anterior of the skull is less stiff than more posterior locations. Species involved in head-to-head combat showed little difference in elastic modulus values compared to non-combat species. This suggests that ecological factors influence the evolutionary diversity of bone material properties, rather than strictly phylogenetic constraints. In a phylogenetic context, nanoindentation reveals tetrapod bone heterogeneity and provides insights into the evolution of these traits.
Collapse
Affiliation(s)
- D S Adams
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - B L Boyce
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - D E Hooks
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - K W Garber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - B Klitsner
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Saini D, Diaz RL, Amirouche F, Cataneo JL, Mathis SA, Marques MA, Williams QL, Zhao L, Reid RR, Alkureishi L. Investigating mechanical properties for developing a human infant cranial bone surrogate in pediatric craniofacial surgery. Heliyon 2024; 10:e40366. [PMID: 39641045 PMCID: PMC11617861 DOI: 10.1016/j.heliyon.2024.e40366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Beyond the surgeon's feedback on bone behavior in the operating room, there is a paucity of data present in the literature on the mechanical properties of pediatric calvarial bone. The present study tested the calvarial bone of four species (Adult Humans, Dog, Pig, and Monkey) to find the mechanical properties. Three types of tests were performed; flexural, compression, and torsion to mimic how bone is handled during the surgery and the results were further compared with the existing published data for human pediatric calvarium. Test results indicated a significant difference between the modulus (p = 0.006 for flexural, 0.0002 for compression, and 0.0075 for shear) and strength (p = 0.0005 for flexural, 0.0051 for compression, and p < 0.0001 for shear) amongst the tested groups. Compared with published data, the flexural properties of the 12-day-old pig were found to be closest to that of an 11-month-old human infant (E = 0.783 GPa). In contrast, the adult human was found to have a flexural modulus 3.9 times that of the pig, and specimen thickness of adult humans had a strong positive correlation (r = 0.77, p = 0.0237) with its flexural modulus, strengthening the disparity between infant and adult human skull bone material properties. Based on these results, neonatal piglet calvarium was selected as a model for 1-year-old human infants commonly presented for total cranial vault reconstruction. These results will help to inform the development and use of new technologies and techniques for bone graft manipulation in the laboratory and the operating room.
Collapse
Affiliation(s)
- Devansh Saini
- School of Technology, Eastern Illinois University, United States
| | | | - Farid Amirouche
- Department of Orthopaedic Surgery, University of Illinois at Chicago, United States
| | - Jose L. Cataneo
- Department of Surgery, University of Illinois at Chicago, United States
| | - Sydney A. Mathis
- University of Illinois College of Medicine Rockford, United States
| | | | - Quintin L. Williams
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, United States
| | - Linping Zhao
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago, United States
| | - Russell R. Reid
- Department of Surgery, University of Chicago Medical Center, United States
| | - Lee Alkureishi
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago, United States
| |
Collapse
|
5
|
Daras N, Nurick GN, Cloete TJ. Degradation of the mechanical properties of cortical bone due to long duration storage. J Mech Behav Biomed Mater 2024; 157:106632. [PMID: 38917557 DOI: 10.1016/j.jmbbm.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Understanding the behaviour and material properties of bone is critical in predicting the failure and fracture of bones in humans. To address this, mechanical tests have traditionally been conducted to characterize bone material and this has resulted in large body of literature. However, there appears to be a lack of complete information regarding the storage protocols used for bone specimens prior to conducting mechanical tests. For example, while storage methods are well described, parameters such as the time between donor death and bone retrieval, as well as time between specimen machining and testing, are seldom reported. As biological materials undergo degradation in storage after being removed from the donor, a clear understanding of this degradation behaviour would identify critical time frames in which previously stored cortical bone specimens should be tested such that they can still be considered representative of an in-vivo condition. In this paper, the results of an investigation to determine the effects of long duration storage on the measured mechanical properties of bovine cortical bone are reported. Three different storage protocols are compared; namely machined-refrigerated, machined-frozen and frozen-machined-frozen. Degradation effects are evident for both refrigerated and frozen specimens and the results demonstrate that testing bone specimens after more than one week in storage may not provide representative in-vivo properties. In addition, specimens exhibit severe degradation after six months in storage regardless of the storage protocol.
Collapse
Affiliation(s)
- Nicholas Daras
- Blast Impact and Survivability Research Unit (BISRU), Mechanical Engineering, University of Cape Town, Cape Town, 7701, Western Cape, South Africa
| | - Gerald N Nurick
- Blast Impact and Survivability Research Unit (BISRU), Mechanical Engineering, University of Cape Town, Cape Town, 7701, Western Cape, South Africa
| | - Trevor J Cloete
- Blast Impact and Survivability Research Unit (BISRU), Mechanical Engineering, University of Cape Town, Cape Town, 7701, Western Cape, South Africa.
| |
Collapse
|
6
|
Evrard R, Feyens M, Manon J, Lengelé B, Cartiaux O, Schubert T. Impact of NaOH based perfusion-decellularization protocol on mechanical resistance of structural bone allografts. Connect Tissue Res 2024; 65:279-292. [PMID: 38781097 DOI: 10.1080/03008207.2024.2356586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION To mitigate the post-operative complication rates associated with massive bone allografts, tissue engineering techniques have been employed to decellularize entire bones through perfusion with a sequence of solvents. Mechanical assessment was performed in order to compare conventional massive bone allografts and perfusion/decellularized massive bone allografts. MATERIAL AND METHODS Ten porcine femurs were included. Five were decellularized by perfusion. The remaining 5 were left untreated as the "control" group. Biomechanical testing was conducted on each bone, encompassing five different assessments: screw pull-out, 3-points bending, torsion, compression and Vickers indentation. RESULTS Under the experimental conditions of this study, all five destructive tested variables (maximum force until screw pull-out, maximum elongation until screw pull-out, energy to pull out the screw, fracture resistance in flexion and maximum constrain of compression) were statistically significantly superior in the control group. All seven nondestructive variables (Young's modulus in flexion, Young's modulus in shear stress, Young's modulus in compression, Elastic conventional limit in compression, lengthening to rupture in compression, resilience in compression and Vickers Hardness) showed no significant difference. DISCUSSION Descriptive statistical results suggest a tendency for the biomechanical characteristics of decellularized bone to decrease compared with the control group. However, statistical inferences demonstrated a slight significant superiority of the control group with destructive mechanical stresses. Nondestructive mechanical tests (within the elastic phase of Young's modulus) were not significantly different.
Collapse
Affiliation(s)
- Robin Evrard
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Maxendre Feyens
- ECAM Brussels Engineering School, Haute Ecole ICHEC-ECAM-ISFSC, Bruxelles, Belgique
| | - Julie Manon
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Benoit Lengelé
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Olivier Cartiaux
- ECAM Brussels Engineering School, Haute Ecole ICHEC-ECAM-ISFSC, Bruxelles, Belgique
| | - Thomas Schubert
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| |
Collapse
|
7
|
Kulić M, Bagavac P, Bekić M, Krstulović-Opara L. Ex Vivo Biomechanical Bone Testing of Pig Femur as an Experimental Model. Bioengineering (Basel) 2024; 11:572. [PMID: 38927808 PMCID: PMC11200541 DOI: 10.3390/bioengineering11060572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigates the mechanical behavior of femur bones under loading conditions, focusing on the transition from elastic to plastic deformation and eventual fracture. The force-displacement curves reveal distinct phases of deformation, with an initial linear relationship indicating elastic behavior, followed by deviation from linearity marking the onset of plastic deformation. Fracture occurs beyond a critical load, leading to a sharp drop in the force-displacement curve. The maximum fracture force varies among specimens and is influenced by bone geometry, size, cross-sectional area, and cortical thickness. Post-failure analysis highlights additional insights into fracture mechanics and bone material toughness. Reinforcing bones with screws enhances their strength, which is evident in the higher fracture forces observed in force-displacement diagrams. Fixation procedures following fractures further increase bone strength. Comparing specimens with and without strengthening underscores the effectiveness of reinforcement methods in improving bone mechanical properties. After analyzing the results, it is evident that femur bones with reinforcement can withstand greater loads, and they can also absorb higher impact energies while remaining in the elastic deformation range and without suffering permanent plastic damage. This study provides valuable insights into bone biomechanics and the efficacy of reinforcement techniques in enhancing bone strength and fracture resistance.
Collapse
Affiliation(s)
| | - Petra Bagavac
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia;
| | - Marijo Bekić
- Dubrovnik County Hospital, 20000 Dubrovnik, Croatia;
| | - Lovre Krstulović-Opara
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia;
| |
Collapse
|
8
|
Kunath BA, Beloglowka K, Rainbow R, Ploeg HL. Mechanical loading of ex vivo bovine trabecular bone in 3D printed bioreactor chambers. J Mech Behav Biomed Mater 2024; 153:106470. [PMID: 38422872 DOI: 10.1016/j.jmbbm.2024.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Previous ex vivo bone culture methods have successfully implemented polycarbonate (PC) bioreactors to investigate bone adaptation to mechanical load; however, they are difficult to fabricate and have been limited to a 5 mm maximum specimen height. The objective of this study was to validate a custom-made 3D printed MED610TM bioreactor system that addresses the limitations of the PC bioreactor and assess its efficacy in ex vivo bone culture. Twenty-three viable trabecular bone cores (10 mm height by 10 mm diameter) from an 18-month-old bovine sternum were cultured in MED610TM bioreactors with culture medium at 37 °C and 5% CO2 for 21-days. Bone cores were ranked based on their day 0 apparent elastic modulus (Eapp) and evenly separated into a "Load" group (n = 12) and a control group (n = 11). The Load group was loaded five times per week with a sinusoidal strain waveform between -1000 and -5000 με for 120 cycles at 2 Hz. Eapp was assessed on day 0, 8, and 21 using quasi-static tests with a -4000 με applied strain. Over 21-days, the Eapp of Load group samples tended to increase by more than double the control group (53.4% versus 20.9%) and no visual culture contamination was observed. This study demonstrated that bone organ culture in 3D printed MED610TM bioreactors replicated Eapp trends found in previous studies with PC bioreactors. However, further studies are warranted with a larger sample size to increase statistical power and histology to assess cell viability and bone mineral apposition rate.
Collapse
Affiliation(s)
- Brian A Kunath
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada; Centre for Health Innovation, Queen's University, Kingston, ON, Canada.
| | - Kail Beloglowka
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada; Centre for Health Innovation, Queen's University, Kingston, ON, Canada.
| | - Roshni Rainbow
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada; Centre for Health Innovation, Queen's University, Kingston, ON, Canada.
| | - Heidi-Lynn Ploeg
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada; Centre for Health Innovation, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
9
|
Day GA, Jones AC, Mengoni M, Wilcox RK. A Finite Element Model to Investigate the Stability of Osteochondral Grafts Within a Human Tibiofemoral Joint. Ann Biomed Eng 2024; 52:1393-1402. [PMID: 38446329 PMCID: PMC10995060 DOI: 10.1007/s10439-024-03464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage. However, factors that cause graft subsidence are not well understood. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint, suitable for an investigation of parameters affecting graft stability. Cadaveric femurs were used to experimentally calibrate the bone properties and graft-bone frictional forces for use in corresponding image-based FE models, generated from µCT scan data. Effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using further in vitro tests. Here, six defects were created in the femoral condyles, which were subsequently treated with osteochondral autografts or metal pins. Matching image-based FE models were created, and the contact patches were compared. The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC = 0.87). The tibiofemoral joint experiment provided a range of cases that were accurately described in the resultant pressure maps and were well represented in the FE models. Cartilage defects and repair quality were experimentally measurable with good agreement in the FE model pressure maps. Model confidence was built through extensive validation and sensitivity testing. It was found that specimen-specific properties were required to accurately represent graft behaviour. The final models produced are suitable for a range of parametric testing to investigate immediate graft stability.
Collapse
Affiliation(s)
- Gavin A Day
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, Leeds, UK.
| | - Alison C Jones
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, Leeds, UK
| | - Marlène Mengoni
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, Leeds, UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Scott JW, Ng KCG, Liddle AD, Jeffers JRT. Method for accurate removal of trabecular bone samples from a curved articulating surface of the distal femur. Clin Biomech (Bristol, Avon) 2024; 115:106240. [PMID: 38615548 DOI: 10.1016/j.clinbiomech.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Knowing the mechanical properties of trabecular bone is critical for many branches of orthopaedic research. Trabecular bone is anisotropic and the principal trabecular direction is usually aligned with the load it transmits. It is therefore critical that the mechanical properties are measured as close as possible to this direction, which is often perpendicular to a curved articulating surface. METHODS This study presents a method to extract trabecular bone cores perpendicular to a curved articulating surface of the distal femur. Cutting guides were generated from computed tomography scans of 12 human distal femora and a series of cutting tools were used to release cylindrical bone cores from the femora. The bone cores were then measured to identify the angle between the bone core axis and the principal trabecular axis. FINDINGS The method yielded an 83% success rate in core extraction over 10 core locations per distal femur specimen. In the condyles, 97% of extracted cores were aligned with the principal trabecular direction. INTERPRETATION This method is a reliable way of extracting trabecular bone specimens perpendicular to a curved articular surface and could be useful across the field of orthopaedic research.
Collapse
Affiliation(s)
- James W Scott
- Biomechanics Group, Mechanical Engineering Department, Imperial College London, United Kingdom.
| | - K C Geoffrey Ng
- Department of Medical Biophysics, Western University, Canada; Department of Medical Imaging, Western University, Canada; Department of Surgery, Western University, Canada; Robarts Research Institute, Western University, Canada; MSk Lab, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Alexander D Liddle
- MSk Lab, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Jonathan R T Jeffers
- Biomechanics Group, Mechanical Engineering Department, Imperial College London, United Kingdom
| |
Collapse
|
11
|
Picavet PP, Claeys S, Rondia E, Balligand M. Compressive mechanical properties of dry antler cortical bone cylinders from different cervidae species. J Mech Behav Biomed Mater 2024; 152:106442. [PMID: 38330876 DOI: 10.1016/j.jmbbm.2024.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Antlers are bony structures composed predominantly of primary osteons with unique mechanical properties due to their specific use by deer as weapon and shield. Antler bone fracture resistance has attracted prior scrutiny through experimental tests and theoretical models. To characterize antler mechanical properties, compression of cubes, or bending or tensioning of rectangular bars have been performed in the literature with variations in the protocols precluding comparisons of the data. Compression testing is a widely used experimental technique for determining the mechanical properties of specimens excised from cortical or cancellous regions of bone. However, the recommended geometry for compression tests is the cylinder, being more representative of the real performances of the material. The purpose of research was to report data for compressive strength and stiffness of antler cortical bone following current guidelines. Cylinders (n = 296) of dry antler cortical bone from either the main beam or the tines of Cervus elaphus, Rangifer tarandus, Cervus nippon and Damadama were tested. This study highlights the fact that compression of antler cortical bone cylinders following current guidelines is feasible but not applicable in all species. Standardization of the testing protocols could help to compare data from the literature. This study also confirms that sample localization has no effect on the mechanical properties, that sample density has a significant impact and allows enriching the knowledge of the mechanical properties of dry antler cortical bone.
Collapse
Affiliation(s)
- Pierre P Picavet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium; Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| | - Stéphanie Claeys
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| | - Etienne Rondia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| | - Marc Balligand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| |
Collapse
|
12
|
Gersie T, Bitter T, Wolfson D, Freeman R, Verdonschot N, Janssen D. Quantification of long-term nonlinear stress relaxation of bovine trabecular bone. J Mech Behav Biomed Mater 2024; 152:106434. [PMID: 38350383 DOI: 10.1016/j.jmbbm.2024.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
The reliability of computational models in orthopedic biomechanics depends often on the accuracy of the bone material properties. It is widely recognized that the mechanical response of trabecular bone is time-dependent, yet it is often ignored for the sake of simplicity. Previous investigations into the viscoelastic properties of trabecular bone have not explored the relationship between nonlinear stress relaxation and bone mineral density. The inclusion of this behavior could enhance the accuracy of simulations of orthopedic interventions, such as of primary fixation of implants. Although methods to quantify the viscoelastic behavior are known, the time period during which the viscoelastic properties should be investigated to obtain reliable predictions is currently unclear. Therefore, this study aimed to: 1) Investigate the duration of stress relaxation in bovine trabecular bone; 2) construct a material model that describes the nonlinear viscoelastic behavior of uniaxial stress relaxation experiments on trabecular bone; and 3) implement bone density into this model. Uniaxial compressive stress relaxation experiments were performed with cylindrical bovine femoral trabecular bone samples (n = 16) with constant strain held for 24 h. Additionally, multiple stress relaxation experiments with four ascending strain levels with a holding time of 30 min, based on the results of the 24-h experiment, were executed on 18 bovine bone cores. The bone specimens used in this study had a mean diameter of 12.80 mm and a mean height of 28.70 mm. A Schapery and a Superposition model were used to capture the nonlinear stress relaxation behavior in terms of applied strain level and bone mineral density. While most stress relaxation happened in the first 10 min (up to 53 %) after initial compression, the stress relaxation continued even after 24 h. Up to 69 % of stress relaxation was observed at 24 h. Extrapolating the results of 30 min of experimental data to 24 h provided a good fit for accuracy with much improved experimental efficiency. The Schapery and Superposition model were both capable of fitting the repeated stress relaxation in a sample-by-sample approach. However, since bone mineral density did not influence the time-dependent behavior, only the Superposition model could be used for a group-based model fit. Although the sample-by-sample approach was more accurate for an individual specimen, the group based approach is considered a useful model for general application.
Collapse
Affiliation(s)
- Thomas Gersie
- Radboudumc, Orthopaedic Research Lab, PO Box 9101, 6500 HB, Nijmegen, Netherlands.
| | - Thom Bitter
- Radboudumc, Orthopaedic Research Lab, PO Box 9101, 6500 HB, Nijmegen, Netherlands
| | - David Wolfson
- DePuy Synthes Joint Reconstruction, WW Research & Development, LS11 OBG, Leeds, UK
| | - Robert Freeman
- DePuy Synthes Joint Reconstruction, WW Research & Development, LS11 OBG, Leeds, UK
| | - Nico Verdonschot
- Radboudumc, Orthopaedic Research Lab, PO Box 9101, 6500 HB, Nijmegen, Netherlands; University of Twente, Faculty of Science and Technology, 7522LW, Enschede, Netherlands
| | - Dennis Janssen
- Radboudumc, Orthopaedic Research Lab, PO Box 9101, 6500 HB, Nijmegen, Netherlands
| |
Collapse
|
13
|
Skedros JG, Dayton MR, Bloebaum RD, Bachus KN, Cronin JT. Strain-mode-specific mechanical testing and the interpretation of bone adaptation in the deer calcaneus. J Anat 2024; 244:411-423. [PMID: 37953064 PMCID: PMC10862189 DOI: 10.1111/joa.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
The artiodactyl (deer and sheep) calcaneus is a model that helps in understanding how many bones achieve anatomical optimization and functional adaptation. We consider how the dorsal and plantar cortices of these bones are optimized in quasi-isolation (the conventional view) versus in the context of load sharing along the calcaneal shaft by "tension members" (the plantar ligament and superficial digital flexor tendon). This load-sharing concept replaces the conventional view, as we have argued in a recent publication that employs an advanced analytical model of habitual loading and fracture risk factors of the deer calcaneus. Like deer and sheep calcanei, many mammalian limb bones also experience prevalent bending, which seems problematic because the bone is weaker and less fatigue-resistant in tension than compression. To understand how bones adapt to bending loads and counteract deleterious consequences of tension, it is important to examine both strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension) and non-S-M-S testing. Mechanical testing was performed on individually machined specimens from the dorsal "compression cortex" and plantar "tension cortex" of adult deer calcanei and were independently tested to failure in one of these two strain modes. We hypothesized that the mechanical properties of each cortex region would be optimized for its habitual strain mode when these regions are considered independently. Consistent with this hypothesis, energy absorption parameters were approximately three times greater in S-M-S compression testing in the dorsal/compression cortex when compared to non-S-M-S tension testing of the dorsal cortex. However, inconsistent with this hypothesis, S-M-S tension testing of the plantar/tension cortex did not show greater energy absorption compared to non-S-M-S compression testing of the plantar cortex. When compared to the dorsal cortex, the plantar cortex only had a higher elastic modulus (in S-M-S testing of both regions). Therefore, the greater strength and capacity for energy absorption of the dorsal cortex might "protect" the weaker plantar cortex during functional loading. However, this conventional interpretation (i.e., considering adaptation of each cortex in isolation) is rejected when critically considering the load-sharing influences of the ligament and tendon that course along the plantar cortex. This important finding/interpretation has general implications for a better understanding of how other similarly loaded bones achieve anatomical optimization and functional adaptation.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Michael R Dayton
- Department of Orthopedics, University of Colorado, Aurora, Colorado, USA
| | - Roy D Bloebaum
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Kent N Bachus
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
- Research Service, Veterans Affair Medical Center, Salt Lake City, Utah, USA
| | - John T Cronin
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Nguyen VA, Brooks-Richards TL, Ren J, Woodruff MA, Allenby MC. Quantitative and large-format histochemistry to characterize peripheral artery compositional gradients. Microsc Res Tech 2023; 86:1642-1654. [PMID: 37602569 DOI: 10.1002/jemt.24400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
The femoropopliteal artery (FPA) is a long, flexible vessel that travels down the anteromedial compartment of the thigh as the femoral artery and then behind the kneecap as the popliteal artery. This artery undergoes various degrees of flexion, extension, and torsion during normal walking movements. The FPA is also the most susceptible peripheral artery to atherosclerosis and is where peripheral artery disease manifests in 80% of cases. The connection between peripheral artery location, its mechanical flexion, and its physiological or pathological biochemistry has been investigated for decades; however, histochemical methods remain poorly leveraged in their ability to spatially correlate normal or abnormal extracellular matrix and cells with regions of mechanical flexion. This study generates new histological image processing pipelines to quantitate tissue composition across high-resolution FPA regions-of-interest or low-resolution whole-section cross-sections in relation to their anatomical locations and flexions during normal movement. Comparing healthy ovine femoral, popliteal, and cranial-tibial artery sections as a pilot, substantial arterial contortion was observed in the distal popliteal and cranial tibial regions of the FPA which correlated with increased vascular smooth muscle cells and decreased elastin content. These methods aim to aid in the quantitative characterization of the spatial distribution of extracellular matrix and cells in large heterogeneous tissue sections such as the FPA. RESEARCH HIGHLIGHTS: Large-format histology preserves artery architecture. Elastin and smooth muscle content is correlated with distance from heart and contortion during flexion. Cell and protein analyses are sensitive to sectioning plane and image magnification.
Collapse
Affiliation(s)
- V A Nguyen
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - T L Brooks-Richards
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - J Ren
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - M A Woodruff
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - M C Allenby
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- School of Chemical Engineering, University of Queensland (UQ), Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Marupudi S, Cao Q, Samala R, Petrick N. Characterization of mechanical stiffness using additive manufacturing and finite element analysis: potential tool for bone health assessment. 3D Print Med 2023; 9:32. [PMID: 37978094 PMCID: PMC10656885 DOI: 10.1186/s41205-023-00197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Bone health and fracture risk are known to be correlated with stiffness. Both micro-finite element analysis (μFEA) and mechanical testing of additive manufactured phantoms are useful approaches for estimating mechanical properties of trabecular bone-like structures. However, it is unclear if measurements from the two approaches are consistent. The purpose of this work is to evaluate the agreement between stiffness measurements obtained from mechanical testing of additive manufactured trabecular bone phantoms and μFEA modeling. Agreement between the two methods would suggest 3D printing is a viable method for validation of μFEA modeling. METHODS A set of 20 lumbar vertebrae regions of interests were segmented and the corresponding trabecular bone phantoms were produced using selective laser sintering. The phantoms were mechanically tested in uniaxial compression to derive their stiffness values. The stiffness values were also derived from in silico simulation, where linear elastic μFEA was applied to simulate the same compression and boundary conditions. Bland-Altman analysis was used to evaluate agreement between the mechanical testing and μFEA simulation values. Additionally, we evaluated the fidelity of the 3D printed phantoms as well as the repeatability of the 3D printing and mechanical testing process. RESULTS We observed good agreement between the mechanically tested stiffness and μFEA stiffness, with R2 of 0.84 and normalized root mean square deviation of 8.1%. We demonstrate that the overall trabecular bone structures are printed in high fidelity (Dice score of 0.97 (95% CI, [0.96,0.98]) and that mechanical testing is repeatable (coefficient of variation less than 5% for stiffness values from testing of duplicated phantoms). However, we noticed some defects in the resin microstructure of the 3D printed phantoms, which may account for the discrepancy between the stiffness values from simulation and mechanical testing. CONCLUSION Overall, the level of agreement achieved between the mechanical stiffness and μFEA indicates that our μFEA methods may be acceptable for assessing bone mechanics of complex trabecular structures as part of an analysis of overall bone health.
Collapse
Affiliation(s)
- Sriharsha Marupudi
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Labs, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Qian Cao
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Labs, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Ravi Samala
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Labs, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Nicholas Petrick
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Labs, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
16
|
Fischer B, Reise R, Schleifenbaum S, Roth A. Mechanical parameter assessment of fresh human cancellous bone of the femoral head in atraumatic femoral head necrosis and primary coxarthrosis. Clin Biomech (Bristol, Avon) 2023; 108:106057. [PMID: 37549470 DOI: 10.1016/j.clinbiomech.2023.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Atraumatic femoral head necrosis is a rare pathological change of the femoral head. It is characterized by local necrosis of the cancellous bone as a result of reduced blood supply to the bone. Even today it remains unclear how to assess the hardness of the necrosis, whether it is soft tissue that is easily removed, or hard tissue that is difficult to resect. METHODS Femoral heads with primary coxarthrosis were selected as a comparison group. For this purpose, 49 femoral heads obtained during total hip arthroplasty surgery with either condition (23 femoral head necrosis, 26 coxarthrosis) were transferred to the testing laboratory in fresh condition. Cylindrical specimens were obtained using a tenon cutter along the main trabecular load direction in the subchondral region of the femoral head. Additionally, thin bone slices were extracted proximal and distal to the specimens for density measurements. Brass plates were glued to the circular surfaces of the specimens. After curing of the adhesive, the specimens were mounted in the testing machine and destructive uniaxial compression tests were conducted. FINDINGS The recorded mean compressive strengths and elastic moduli were almost identical for both groups, but the necrosis group showed significantly higher data scattering and range regarding the elastic modulus. The mean density of the coxarthrosis specimens was significantly higher than that of the necrotic specimens. INTERPRETATION The mechanical properties of cancellous bone vary considerably in the presence of femoral head necrosis. The existence of hard necrosis implies a potential challenge regarding the clinical resection of these tissues.
Collapse
Affiliation(s)
- Benjamin Fischer
- ZESBO - Centre for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany; Institute of Anatomy, Leipzig University, Leipzig, Germany.
| | - Rebekka Reise
- ZESBO - Centre for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany; Department of Orthopaedic, Trauma and Plastic Surgery, Leipzig University, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO - Centre for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany; Department of Orthopaedic, Trauma and Plastic Surgery, Leipzig University, Leipzig, Germany
| | - Andreas Roth
- Department of Orthopaedic, Trauma and Plastic Surgery, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Moshage SG, McCoy AM, Kersh ME. Elastic Modulus and Its Relation to Apparent Mineral Density in Juvenile Equine Bones of the Lower Limb. J Biomech Eng 2023; 145:081001. [PMID: 37144881 DOI: 10.1115/1.4062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Density-modulus relationships are necessary to develop finite element models of bones that may be used to evaluate local tissue response to different physical activities. It is unknown if juvenile equine trabecular bone may be described by the same density-modulus as adult equine bone, and how the density-modulus relationship varies with anatomical location and loading direction. To answer these questions, trabecular bone cores from the third metacarpal (MC3) and proximal phalanx (P1) bones of juvenile horses (age <1 yr) were machined in the longitudinal (n = 134) and transverse (n = 90) directions and mechanically tested in compression. Elastic modulus was related to apparent computed tomography density of each sample using power law regressions. We found that density-modulus relationships for juvenile equine trabecular bone were significantly different for each anatomical location (MC3 versus P1) and orientation (longitudinal versus transverse). Use of the incorrect density-modulus relationship resulted in increased root mean squared percent error of the modulus prediction by 8-17%. When our juvenile density-modulus relationship was compared to one of an equivalent location in adult horses, the adult relationship resulted in an approximately 80% increase in error of the modulus prediction. Moving forward, more accurate models of young bone can be developed and used to evaluate potential exercise regimens designed to encourage bone adaptation.
Collapse
Affiliation(s)
- Sara G Moshage
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Annette M McCoy
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign,, Urbana, IL 61801
| |
Collapse
|
18
|
Zehr JD, Watson MI, Callaghan JP. Experimentally dissociating the overuse mechanisms of endplate fracture lesions and Schmorl's node injuries using the porcine cervical spine model. Clin Biomech (Bristol, Avon) 2023; 104:105946. [PMID: 37003044 DOI: 10.1016/j.clinbiomech.2023.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Compared to the documented overuse mechanisms of endplate fracture lesions, the cause of Schmorl's node injuries remains unknown, despite existing hypotheses. Therefore, this study aimed to examine and dissociate the overuse injury mechanisms of these spinal pathologies. METHODS Forty-eight porcine cervical spinal units were included. Spinal units were randomly assigned to groups that differed by initial condition (control, sham, chemical fragility, structural void) and loading posture (flexed, neutral). Chemical fragility and structural void groups involved a verified 49% reduction in localized infra-endplate trabecular bone strength and removal of central trabecular bone, respectively. All experimental groups were exposed to cyclic compression loading that was normalized to 30% of the predicted tolerance until failure occurred. The cycles to failure were examined using a general linear model and the distribution of injury types were examined using chi-squared statistics. FINDINGS The incidence of fracture lesions and Schmorl's nodes was 31(65%) and 17(35%), respectively. Schmorl's nodes were exclusive to chemical fragility and structural void groups and 88% occurred in the caudal joint endplate (p = 0.004). In contrast, 100% of control and sham spinal units sustained fracture lesions, with 100% occurring in the cranial joint endplate (p < 0.001). Spinal units tolerated 665 fewer cycles when cyclically loaded in flexed postures compared to neutral (p = 0.015). Furthermore, the chemical fragility and structural void groups tolerated 5318 fewer cycles compared to the control and sham groups (p < 0.001). INTERPRETATION These findings demonstrate that Schmorl's node and fracture lesion injuries can result from pre-existing differences in the structural integrity of trabecular bone supporting the central endplate.
Collapse
Affiliation(s)
- Jackie D Zehr
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Michael I Watson
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack P Callaghan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
19
|
Yan Z, Hu Y, Shi H, Wang P, Liu Z, Tian Y, Zhuang Z. Experimentally characterizing the spatially varying anisotropic mechanical property of cancellous bone via a Bayesian calibration method. J Mech Behav Biomed Mater 2023; 138:105643. [PMID: 36603525 DOI: 10.1016/j.jmbbm.2022.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/07/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Traditional experimental tests for characterizing bone's mechanical properties usually hypothesize a uniaxial stress condition without quantitatively evaluating the influence of spatially varying principal material orientations, which cannot accurately predict the mechanical properties distribution of bones in vivo environment. In this study, a Bayesian calibrating procedure was developed using quantified multiaxial stress to investigate cancellous bone's local anisotropic elastic performance around joints as the spatial variation of main bearing orientations. First, the bone cube specimens from the distal femur of sheep are prepared using traditional anatomical axes. The multiaxial stress state of each bone specimen is calibrated using the actual principal material orientations derived from fabric tensor at different anatomical locations. Based on the calibrated multiaxial stress state, the process of identifying mechanical properties is described as an inverse problem. Then, a Bayesian calibration procedure based on a surrogate constitutive model was developed via multiaxial stress correction to identify the anisotropic material parameters. Finally, a comparison between the experiment and simulation results is discussed by applying the optimal model parameters obtained from the Bayesian probability distribution. Compared to traditional uniaxial methods, our results prove that the calibration based on the spatial variation of the main bearing orientations can significantly improve the accuracy of characterizing regional anisotropic mechanical responses. Moreover, we determine that the actual mechanical property distribution is influenced by complicated mechanical stimulation. This study provides a novel method to evaluate the spatially varying mechanical properties of bone tissues enduring complex mechanical loading accurately and effectively. It is expected to provide more realistic mechanical design targets in vivo for a personalized artificial bone prosthesis in clinical treatment.
Collapse
Affiliation(s)
- Ziming Yan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China
| | - Yuanyu Hu
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Huibin Shi
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China
| | - Peng Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China
| | - Zhanli Liu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China.
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhuo Zhuang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Decellularized vascularized bone grafts as therapeutic solution for bone reconstruction: A mechanical evaluation. PLoS One 2023; 18:e0280193. [PMID: 36638107 PMCID: PMC9838862 DOI: 10.1371/journal.pone.0280193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Large bone defects are challenging for surgeons. Available reimplanted bone substitutes can't properly restore optimal function along and long term osteointegration of the bone graft. Bone substitute based on the perfusion-decellularization technique seem to be interesting in order to overcome these limitations. We present here an evaluation of the biomechanics of the bones thus obtained. MATERIAL AND METHODS Two decellularization protocols were chosen for this study. One using Sodium Dodecyl Sulfate (SDS) (D1) and one using NaOH and H2O2 (D2). The decellularization was performed on porcine forearms. We then carried out compression, three-point bending, indentation and screw pull-out tests on each sample. Once these tests were completed, we compared the results obtained between the different decellularization protocols and with samples left native. RESULTS The difference in the means was similar between the tests performed on bones decellularized with the SDS protocol and native bones for pull-out test: +1.4% (CI95% [-10.5%- 12.4%]) of mean differences when comparing Native vs D1, compression -14.9% (CI95% [-42.7%- 12.5%]), 3-point bending -5.7% (CI95% [-22.5%- 11.1%]) and indentation -10.8% (CI95% [-19.5%- 4.6%]). Bones decellularized with the NaOH protocol showed different results from those obtained with the SDS protocol or native bones during the pull-out screw +40.7% (CI95% [24.3%- 57%]) for Native vs D2 protocol and 3-point bending tests +39.2% (CI95% [13.7%- 64.6%]) for Native vs D2 protocol. The other tests, compression and indentation, gave similar results for all our samples. CONCLUSION Vascularized decellularized grafts seem to be an interesting means for bone reconstruction. Our study shows that the decellularization method affects the mechanical results of our specimens. Some methods seem to limit these alterations and could be used in the future for bone decellularization.
Collapse
|
21
|
Hudyma N, Lisjak A, Tatone BS, Garner HW, Wight J, Mandavalli AS, Olutola IA, Pujalte GGA. Comparison of Cortical Bone Fracture Patterns Under Compression Loading Using Finite Element–Discrete Element Numerical Modeling Approach and Destructive Testing. Cureus 2022; 14:e29596. [PMID: 36321046 PMCID: PMC9599044 DOI: 10.7759/cureus.29596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Finite element analysis may not be the only method by which bone fracture initiation and propagation may be analyzed. This study compares fracture patterns generated from compression testing of bone to fracture patterns generated using a combination of both the finite element method (FEM) and discrete element method (DEM) as defined by the finite discrete element method (FDEM). Before testing, a three-dimensional bone model was developed using CT. Force and displacement data were collected during testing. The tested specimen was reimaged using CT. The solid model was discretized and material properties adjusted such that finite element-discrete element macro behavior matched the force-displacement data. A qualitative comparison of the fracture patterns demonstrates that FDEM can successfully be used to simulate and predict fracturing in bone, with this study representing the first time this has been done and reported.
Collapse
|
22
|
Inacio JV, Schwarzenberg P, Kantzos A, Malige A, Nwachuku CO, Dailey HL. Rethinking the 10% strain rule in fracture healing: A distal femur fracture case series. J Orthop Res 2022; 41:1049-1059. [PMID: 36116021 DOI: 10.1002/jor.25446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Since the 1970s, the 2%-10% rule has been used to describe the range of interfragmentary gap closure strains that are conducive for secondary bone healing. Interpreting the available evidence for the association between strain and bone healing remains challenging because interfragmentary strain is impossible to directly measure in vivo. The question of how much strain occurs within and around the fracture gap is also difficult to resolve using bench tests with osteotomy models because these do not reflect the complexity of injury patterns seen in the clinic. To account for these challenges, we used finite element modeling to assess the three-dimensional interfragmentary strain in a case series of naturally occurring distal femur fractures treated with lateral plating under load conditions representative of the early postoperative period. Preoperative computed tomography scans were used to construct patient-specific finite element models and plate fixation constructs to match the operative management of each patient. The simulations showed that gap strains were within 2%-10% only for the lowest load application level, 20% static body weight (BW). Moderate loading of 60% static BW and above caused gap strains that far exceeded 10%, but in all cases, strains in the periosteal region external to the fracture line remained low. Comparing these findings with postoperative radiographs suggests that in vivo secondary healing of distal femur fractures may be robust to early gap strains much greater than 10% because formation of new bone is initiated outside the gap where strains are lower, followed by later consolidation within the gap.
Collapse
Affiliation(s)
- Jordan V Inacio
- Packard Laboratory, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Peter Schwarzenberg
- Packard Laboratory, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Andrew Kantzos
- Department of Orthopaedic Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Ajith Malige
- Department of Orthopaedic Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Chinenye O Nwachuku
- Department of Orthopaedic Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Hannah L Dailey
- Packard Laboratory, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
23
|
Dall'Ara E, Bodey AJ, Isaksson H, Tozzi G. A practical guide for in situ mechanical testing of musculoskeletal tissues using synchrotron tomography. J Mech Behav Biomed Mater 2022; 133:105297. [PMID: 35691205 DOI: 10.1016/j.jmbbm.2022.105297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Musculoskeletal tissues are complex hierarchical materials where mechanical response is linked to structural and material properties at different dimensional levels. Therefore, high-resolution three-dimensional tomography is very useful for assessing tissue properties at different scales. In particular, Synchrotron Radiation micro-Computed Tomography (SR-microCT) has been used in several applications to analyze the structure of bone and biomaterials. In the past decade the development of digital volume correlation (DVC) algorithms applied to SR-microCT images and its combination with in situ mechanical testing (four-dimensional imaging) have allowed researchers to visualise, for the first time, the deformation of musculoskeletal tissues and their interaction with biomaterials under different loading scenarios. However, there are several experimental challenges that make these measurements difficult and at high risk of failure. Challenges relate to sample preparation, imaging parameters, loading setup, accumulated tissue damage for multiple tomographic acquisitions, reconstruction methods and data processing. Considering that access to SR-microCT facilities is usually associated with bidding processes and long waiting times, the failure of these experiments could notably slow down the advancement of this research area and reduce its impact. Many of the experimental failures can be avoided with increased experience in performing the tests and better guidelines for preparation and execution of these complex experiments; publication of negative results could help interested researchers to avoid recurring mistakes. Therefore, the goal of this article is to highlight the potential and pitfalls in the design and execution of in situ SR-microCT experiments, involving multiple scans, of musculoskeletal tissues for the assessment of their structural and/or mechanical properties. The advice and guidelines that follow should improve the success rate of this type of experiment, allowing the community to reach higher impact more efficiently.
Collapse
Affiliation(s)
- E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK.
| | | | - H Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - G Tozzi
- School of Engineering, London South Bank University, London, UK
| |
Collapse
|
24
|
Day GA, Cooper RJ, Jones AC, Mengoni M, Wilcox RK. Development of robust finite element models to investigate the stability of osteochondral grafts within porcine femoral condyles. J Mech Behav Biomed Mater 2022; 134:105411. [PMID: 36037705 DOI: 10.1016/j.jmbbm.2022.105411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Osteoarthritis (OA) is the most prevalent chronic rheumatic disease worldwide with knee OA having an estimated lifetime risk of approximately 14%. Autologous osteochondral grafting has demonstrated positive outcomes in some patients, however, understanding of the biomechanical function and how treatments can be optimised remains limited. Increased short-term stability of the grafts allows cartilage surfaces to remain congruent prior to graft integration. In this study methods for generating specimen specific finite element (FE) models of osteochondral grafts were developed, using parallel experimental data for calibration and validation. Experimental testing of the force required to displace osteochondral grafts by 2 mm was conducted on three porcine knees, each with four grafts. Specimen specific FE models of the hosts and grafts were created from registered μCT scans captured from each knee (pre- and post-test). Material properties were based on the μCT background with a conversion between μCT voxel brightness and Young's modulus. This conversion was based on the results of the separate testing of eight porcine condyles and optimization of specimen specific FE models. The comparison between the experimental and computational push-in forces gave a strong agreement with a concordance correlation coefficient (CCC) = 0.75, validating the modelling approach. The modelling process showed that homogenous material properties based on whole bone BV/TV calculations are insufficient for accurate modelling and that an intricate description of the density distribution is required. The robust methodology can provide a method of testing different treatment options and can be used to investigate graft stability in full tibiofemoral joints.
Collapse
Affiliation(s)
- Gavin A Day
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK.
| | - Robert J Cooper
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK
| | - Alison C Jones
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK
| | - Marlène Mengoni
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, Mechanical Engineering, University of Leeds, UK
| |
Collapse
|
25
|
Wang F, Metzner F, Zheng L, Osterhoff G, Schleifenbaum S. Selected mechanical properties of human cancellous bone subjected to different treatments: short-term immersion in physiological saline and acetone treatment with subsequent immersion in physiological saline. J Orthop Surg Res 2022; 17:376. [PMID: 35933396 PMCID: PMC9357305 DOI: 10.1186/s13018-022-03265-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Physiological saline (0.9% NaCl) and acetone are extensively used for storage (as well as hydration) and removal of bone marrow, respectively, of cancellous bone during preparation and mechanical testing. Our study aimed to investigate the mechanical properties of cancellous bone subjected to short-term immersion in saline and acetone treatment with subsequent immersion in saline. Methods Cylindrical samples (Ø6 × 12 mm) were harvested from three positions (left, middle, and right) of 1 thoracic vertebral body, 19 lumbar vertebral bodies, and 5 sacral bones, as well as from 9 femoral heads. All samples were divided into two groups according to the different treatments, (i) samples from the left and middle sides were immersed in saline at 4℃ for 43 h (saline-immersed group, n = 48); (ii) samples from the respective right side were treated with a combination of acetone and ultrasonic bath (4 h), air-dried at room temperature (21℃, 15 h), and then immersed in saline at room temperature (21℃, 24 h) (acetone and saline-treated group, n = 38). All samples were subjected, both before and after treatment, to a non-destructive compression test with a strain of 0.45%, and finally destructive tests with a strain of 50%. Actual density (ρact), initial modulus (E0), maximum stress (σmax), energy absorption (W), and plateau stress (σp) were calculated as evaluation indicators. Results Based on visual observation, a combination of acetone and ultrasonic bath for 4 h failed to completely remove bone marrow from cancellous bone samples. The mean values of ρact, σmax, W, and σp were significantly higher in the femoral head than in the spine. There was no significant difference in E0 between non-treated and saline-immersed samples (non-treated 63.98 ± 20.23 vs. saline-immersed 66.29 ± 20.61, p = 0.132). The average E0 of acetone and saline-treated samples was significantly higher than that of non-treated ones (non-treated 62.17 ± 21.08 vs. acetone and saline-treated 74.97 ± 23.98, p = 0.043). Conclusion Short-term storage in physiological saline is an appropriate choice and has no effect on the E0 of cancellous bone. Treatment of cancellous bone with acetone resulted in changes in mechanical properties that could not be reversed by subsequent immersion in physiological saline. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03265-4.
Collapse
Affiliation(s)
- Fangxing Wang
- ZESBO - Center for Research on Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany. .,Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße. 20 Haus 4, 04103, Leipzig, Germany.
| | - Florian Metzner
- ZESBO - Center for Research on Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany.,Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße. 20 Haus 4, 04103, Leipzig, Germany
| | - Leyu Zheng
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße. 20 Haus 4, 04103, Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße. 20 Haus 4, 04103, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO - Center for Research on Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany.,Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße. 20 Haus 4, 04103, Leipzig, Germany
| |
Collapse
|
26
|
Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT. MATERIALS 2022; 15:ma15145065. [PMID: 35888531 PMCID: PMC9320168 DOI: 10.3390/ma15145065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023]
Abstract
Many axial and appendicular skeleton bones are subjected to repetitive loading during daily activities. Until recently, the structural analysis of fractures has been limited to 2D sections, and the dynamic assessment of fracture progression has not been possible. The structural failure was analyzed using step-wise micro-compression combined with time-lapsed micro-computed tomographic imaging. The structural failure was investigated in four different sample materials (two different bone surrogates, lumbar vertebral bodies from bovine and red deer). The samples were loaded in different force steps based on uniaxial compression tests. The micro-tomography images were used to create three-dimensional models from which various parameters were calculated that provide information about the structure and density of the samples. By superimposing two 3D images and calculating the different surfaces, it was possible to precisely analyze which trabeculae failed in which area and under which load. According to the current state of the art, bone mineral density is usually used as a value for bone quality, but the question can be raised as to whether other values such as trabecular structure, damage accumulation, and bone mineralization can predict structural competence better than bone mineral density alone.
Collapse
|
27
|
Gerbino PG, Kerr HA. Load-deformation characteristics of cadaver patellae: Relationship to intraosseous pressure. Clin Biomech (Bristol, Avon) 2022; 97:105681. [PMID: 35661891 DOI: 10.1016/j.clinbiomech.2022.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/14/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Anterior knee pain can arise from several sources. One of the main sources of pain in patients with anterior knee pain is the patella. Increased patellofemoral joint loading is the prime source of patellar pain. Elevated intraosseous pressures have been measured in painful patellae and increasing the intraosseous fluid pressure in the patella causes pain. Whether elevated fluid pressure is an independent source of pain or if the patellar deformation under load leads to elevated pressure and pain has not been determined. Our hypothesis was that the patella deforms measurably under physiologic loads and that intraosseous pressure increase is related to that deformation. The relationship may be linear as measured by correlation or nonlinear as measured by the sum of squared error. METHODS Part I: Assessment of patellar load-deformation profiles were obtained in 2 intact cadaver patellae and 1 bisected patella under physiologic loads. Part II: Measurements of intraosseous pressure were obtained in 9 cadaver patellae as the patellae were compressed with physiologic loads. Pressures were recorded at sequential levels of anterior-posterior patellar compression. FINDINGS Cadaver patellae compress up to 3.5 mm in the anterior-posterior plane. Compression with physiologic forces raises intraosseous pressure to more than 40 mmHg. INTERPRETATION Load-deformation of cadaver patellae results in deformation and an increase in intraosseous pressure. These findings may help explain previous studies of patellofemoral pain where elevated patellar intraosseous pressures have been found in vivo.
Collapse
Affiliation(s)
- Peter G Gerbino
- Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA; Beth Israel-Deaconess Hospital, Orthopaedic Biomechanics Laboratory, Boston, MA, USA.
| | - Hamish A Kerr
- Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA; Beth Israel-Deaconess Hospital, Orthopaedic Biomechanics Laboratory, Boston, MA, USA.
| |
Collapse
|
28
|
Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Acta Biomater 2022; 146:317-340. [PMID: 35533924 DOI: 10.1016/j.actbio.2022.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Porous scaffolds have recently attracted attention in bone tissue engineering. The implanted scaffolds are supposed to satisfy the mechanical and biological requirements. In this study, two porous structures named MFCC-1 (modified face centered cubic-1) and MFCC-2 (modified face centered cubic-2) are introduced. The proposed porous architectures are evaluated, optimized, and tested to enhance mechanical and biological properties. The geometric parameters of the scaffolds with porosities ranging from 70% to 90% are optimized to find a compromise between the effective Young's modulus and permeability, as well as satisfying the pore size and specific surface area requirements. To optimize the effective Young's modulus and permeability, we integrated a mathematical formulation, finite element analysis, and computational fluid dynamics simulations. For validation, the optimized scaffolds were 3D-printed, tested, and compared with two different orthogonal cylindrical struts (OCS) scaffold architectures. The MFCC designs are preferred to the generic OCS scaffolds from various perspectives: a) the MFCC architecture allows scaffold designs with porosities up to 96%; b) the very porous architecture of MFCC scaffolds allows achieving high permeabilities, which could potentially improve the cell diffusion; c) despite having a higher porosity compared to the OCS scaffolds, MFCC scaffolds improve mechanical performance regarding Young's modulus, stress concentration, and apparent yield strength; d) the proposed structures with different porosities are able to cover all the range of permeability for the human trabecular bones. The optimized MFCC designs have simple architectures and can be easily fabricated and used to improve the quality of load-bearing orthopedic scaffolds. STATEMENT OF SIGNIFICANCE: Porous scaffolds are increasingly being studied to repair large bone defects. A scaffold is supposed to withstand mechanical loads and provide an appropriate environment for bone cell growth after implantation. These mechanical and biological requirements are usually contradicting; improving the mechanical performance would require a reduction in porosity and a lower porosity is likely to reduce the biological performance of the scaffold. Various studies have shown that the mechanical and biological performance of bone scaffolds can be improved by internal architecture modification. In this study, we propose two scaffold architectures named MFCC-1 and MFCC-2 and provide an optimization framework to simultaneously optimize their stiffness and permeability to improve their mechanical and biological performances.
Collapse
|
29
|
Pearce DJ, Hitchens PL, Malekipour F, Ayodele B, Lee PVS, Whitton RC. Biomechanical and Microstructural Properties of Subchondral Bone From Three Metacarpophalangeal Joint Sites in Thoroughbred Racehorses. Front Vet Sci 2022; 9:923356. [PMID: 35847629 PMCID: PMC9277662 DOI: 10.3389/fvets.2022.923356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fatigue-induced subchondral bone (SCB) injury is common in racehorses. Understanding how subchondral microstructure and microdamage influence mechanical properties is important for developing injury prevention strategies. Mechanical properties of the disto-palmar third metacarpal condyle (MCIII) correlate poorly with microstructure, and it is unknown whether the properties of other sites within the metacarpophalangeal (fetlock) joint are similarly complex. We aimed to investigate the mechanical and structural properties of equine SCB from specimens with minimal evidence of macroscopic disease. Three sites within the metacarpophalangeal joint were examined: the disto-palmar MCIII, disto-dorsal MCIII, and proximal sesamoid bone. Two regions of interest within the SCB were compared, a 2 mm superficial and an underlying 2 mm deep layer. Cartilage-bone specimens underwent micro-computed tomography, then cyclic compression for 100 cycles at 2 Hz. Disto-dorsal MCIII specimens were loaded to 30 MPa (n = 10), while disto-palmar MCIII (n = 10) and proximal sesamoid (n = 10) specimens were loaded to 40 MPa. Digital image correlation determined local strains. Specimens were stained with lead-uranyl acetate for volumetric microdamage quantification. The dorsal MCIII SCB had lower bone volume fraction (BVTV), bone mineral density (BMD), and stiffness compared to the palmar MCIII and sesamoid bone (p < 0.05). Superficial SCB had higher BVTV and lower BMD than deeper SCB (p < 0.05), except at the palmar MCIII site where there was no difference in BVTV between depths (p = 0.419). At all sites, the deep bone was stiffer (p < 0.001), although the superficial to deep gradient was smaller in the dorsal MCIII. Hysteresis (energy loss) was greater superficially in palmar MCIII and sesamoid (p < 0.001), but not dorsal MCIII specimens (p = 0.118). The stiffness increased with cyclic loading in total cartilage-bone specimens (p < 0.001), but not in superficial and deep layers of the bone, whereas hysteresis decreased with the cycle for all sites and layers (p < 0.001). Superficial equine SCB is uniformly less stiff than deeper bone despite non-uniform differences in bone density and damage levels. The more compliant superficial layer has an important role in energy dissipation, but whether this is a specific adaptation or a result of microdamage accumulation is not clear.
Collapse
Affiliation(s)
- Duncan J. Pearce
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Peta L. Hitchens
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Fatemeh Malekipour
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Babatunde Ayodele
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - R. Chris Whitton
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
- *Correspondence: R. Chris Whitton
| |
Collapse
|
30
|
Munford MJ, Xiao D, Jeffers JRT. Lattice implants that generate homeostatic and remodeling strains in bone. J Orthop Res 2022; 40:871-877. [PMID: 34086355 DOI: 10.1002/jor.25114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
Bone remodeling is mediated by several factors including strain. An increase in strain between 1% and 10% compared to homeostasis can trigger bone formation. We aim to create an orthopedic implant using clinically established imaging and manufacturing methods that induces this strain control in human bone. Titanium scaffolds were manufactured with multiaxial apparent modulus tailored to the mechanical properties of bone defined from computed tomography scans of cadaver human tibiae. Five bone cubes were tested with corresponding titanium scaffolds by loading under compression, which is similar to the implanted tibia loading condition. Bone strain was precisely controlled by varying the scaffold modulus, from 0% to 15% bone strain increase. This strain increase is the magnitude reported to invoke bone's positive remodeling. Axial modulus was closely matched between titanium scaffolds and bone, ranging from 48-728 and 81-800 MPa, respectively, whereby scaffold axial modulus was within 2% of nominal target values. Fine control of multiaxial moduli resulted in transverse modulus that matched bone well; ranging from 42-648 and 47-585 MPa in scaffolds and bone respectively. The scaffold manufacturing material and method are already used in the orthopedic industry. This study has significant clinical implications as it enables the design of implants which positively harness bone's natural mechanoresponse and respect bone's mechanical anisotropy and heterogeneity.
Collapse
Affiliation(s)
- Maxwell J Munford
- Department of Mechanical Engineering, Imperial College London, South Kensington, London, UK
| | - Dannier Xiao
- Department of Mechanical Engineering, Imperial College London, South Kensington, London, UK
| | - Jonathan R T Jeffers
- Department of Mechanical Engineering, Imperial College London, South Kensington, London, UK
| |
Collapse
|
31
|
Guha I, Zhang X, Rajapakse CS, Chang G, Saha PK. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modelling. Med Phys 2022; 49:3886-3899. [PMID: 35319784 PMCID: PMC9325403 DOI: 10.1002/mp.15629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Osteoporosis is a bone disease associated with enhanced bone loss, microstructural degeneration, and fracture‐risk. Finite element (FE) modeling is used to estimate trabecular bone (Tb) modulus from high‐resolution three‐dimensional (3‐D) imaging modalities including micro‐computed tomography (CT), magnetic resonance imaging (MRI), and high‐resolution peripheral quantitative CT (HR‐pQCT). This paper validates an application of voxel‐based continuum finite element analysis (FEA) to predict Tb modulus from clinical CT imaging under a condition similar to in vivo imaging by comparing with measures derived by micro‐CT and experimental approaches. Method Voxel‐based continuum FEA methods for CT imaging were implemented using linear and nonlinear models and applied on distal tibial scans under a condition similar to in vivo imaging. First, tibial axis in a CT scan was aligned with the coordinate z‐axis at 150 μm isotropic voxels. FEA was applied on an upright cylindrical volume of interests (VOI) with its axis coinciding with the tibial bone axis. Voxel volume, edge, and vertex elements and their connectivity were defined as per the isotropic image grid. A calibration phantom was used to calibrate CT numbers in Hounsfield unit to bone mineral density (BMD) values, which was then converted into calcium hydroxyapatite (CHA) density. Mechanical properties at each voxel volume element was defined using its ash‐density defined on CT‐derived CHA density. For FEA, the bottom surface of the cylindrical VOI was fixed and a constant displacement was applied along the z‐direction at each vertex element on the top surface to simulate a physical axial compressive loading condition. Finally, a Poisson's ratio of 0.3 was applied, and Tb modulus (MPa) was computed as the ratio of average von Mises stress (MPa) of volume elements on the top surface and the applied displacement. FEA parameters including mesh element size, substep number, and different tolerance values were optimized. Results CT‐derived Tb modulus values using continuum FEA showed high linear correlation with the micro‐CT‐derived reference values (r ∈ [0.87 0.90]) as well as experimentally measured values (r ∈ [0.80 0.87]). Linear correlation of computed modulus with their reference values using continuum FEA with linear modeling was comparable with that obtained by nonlinear modeling. Nonlinear continuum FEA‐based modulus values (mean of 1087.2 MPa) showed greater difference from their reference values (mean of 1498.9 MPa using micro‐CT‐based FEA) as compared with linear continuum methods. High repeat CT scan reproducibility (intra‐class correlation [ICC] = 0.98) was observed for computed modulus values using both linear and nonlinear continuum FEA. It was observed that high stress regions coincide with Tb microstructure as fuzzily characterized by BMD values. Distributions of von Mises stress over Tb microstructure and marrow regions were significantly different (p < 10–8). Conclusion Voxel‐based continuum FEA offers surrogate measures of Tb modulus from CT imaging under a condition similar to in vivo imaging that alleviates the need for segmentation of Tb and marrow regions, while accounting for bone distribution at the microstructural level. This relaxation of binary segmentation will extend the scope of FEA application to assess mechanical properties of bone microstructure at relatively low‐resolution imaging.
Collapse
Affiliation(s)
- Indranil Guha
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Xiaoliu Zhang
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory Chang
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Punam K Saha
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, USA.,Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
32
|
Patel AH, Wilder JH, Weldy JM, Ross BJ, Kim NE, Wang H, Sanchez FL, Sherman WF. Patella Strength Characteristics in Cemented vs Press-fit Implants: A Biomechanical Analysis of Initial Stability. Arthroplast Today 2022; 14:140-147. [PMID: 35308050 PMCID: PMC8927789 DOI: 10.1016/j.artd.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background Patellar resurfacing is routinely performed during total knee arthroplasty to reduce pain associated with patellofemoral osteoarthritis. With 3-dimensional ingrowth materials readily available, the present study aimed to evaluate if cemented polyethylene (CP) patellar buttons conferred higher ultimate load to failure than press-fit metal-backed (PF) buttons in axial compression. Material and methods Ten matched cadaveric and 20 composite patellae were resurfaced and implanted with either a PF or CP button. Biomechanical testing using an MTS machine was performed to measure the force required to generate a periprosthetic patella fracture. Mean load to failure and load to failure per 1-mm patellar thickness were compared with a paired and independent samples Students’ t-test for the cadaveric and composite patellae, respectively. Results The average load to failure for the matched cadaveric patellae with PF implants was significantly lower than that for patellae with CP buttons (4082.05 N vs 5898.37 N, P = .045). The average load to failure for composite patella with PF implants was significantly higher than that for composite patellae with CP implants (6004.09 N vs 4551.40 N, P = .001). The mean load to failure per 1-mm patellar thickness was also significantly higher for composite patellae with PF implants (263.80 N/mm vs 200.37 N/mm, P = .001). Conclusion Cadaveric patellae with cemented implants had a significantly higher ultimate load to failure in axial compression than press-fit patella. However, this result was reversed in the composite model. Exploration of biological and composite model properties could provide further insight into patellar implant selection during total knee arthroplasty.
Collapse
Affiliation(s)
- Akshar H Patel
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - J Heath Wilder
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - John M Weldy
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bailey J Ross
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathaniel E Kim
- Department of Biomedical Engineering, Tulane University School of Science & Engineering, New Orleans, LA, USA
| | - Hao Wang
- Department of Biomedical Engineering, Tulane University School of Science & Engineering, New Orleans, LA, USA
| | - Fernando L Sanchez
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - William F Sherman
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
33
|
Moss SM, Ortiz-Hernandez M, Levin D, Richburg CA, Gerton T, Cook M, Houlton JJ, Rizvi ZH, Goodwin PC, Golway M, Ripley B, Hoying JB. A Biofabrication Strategy for a Custom-Shaped, Non-Synthetic Bone Graft Precursor with a Prevascularized Tissue Shell. Front Bioeng Biotechnol 2022; 10:838415. [PMID: 35356783 PMCID: PMC8959609 DOI: 10.3389/fbioe.2022.838415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Critical-sized defects of irregular bones requiring bone grafting, such as in craniofacial reconstruction, are particularly challenging to repair. With bone-grafting procedures growing in number annually, there is a reciprocal growing interest in bone graft substitutes to meet the demand. Autogenous osteo(myo)cutaneous grafts harvested from a secondary surgical site are the gold standard for reconstruction but are associated with donor-site morbidity and are in limited supply. We developed a bone graft strategy for irregular bone-involved reconstruction that is customizable to defect geometry and patient anatomy, is free of synthetic materials, is cellularized, and has an outer pre-vascularized tissue layer to enhance engraftment and promote osteogenesis. The graft, comprised of bioprinted human-derived demineralized bone matrix blended with native matrix proteins containing human mesenchymal stromal cells and encased in a simple tissue shell containing isolated, human adipose microvessels, ossifies when implanted in rats. Ossification follows robust vascularization within and around the graft, including the formation of a vascular leash, and develops mechanical strength. These results demonstrate an early feasibility animal study of a biofabrication strategy to manufacture a 3D printed patient-matched, osteoconductive, tissue-banked, bone graft without synthetic materials for use in craniofacial reconstruction. The bone fabrication workflow is designed to be performed within the hospital near the Point of Care.
Collapse
Affiliation(s)
- Sarah M. Moss
- Advanced Solutions Life Sciences, Louisville, KY, United States
| | - Monica Ortiz-Hernandez
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Dmitry Levin
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Chris A. Richburg
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Thomas Gerton
- Advanced Solutions Life Sciences, Louisville, KY, United States
| | - Madison Cook
- Advanced Solutions Life Sciences, Louisville, KY, United States
| | - Jeffrey J. Houlton
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Zain H. Rizvi
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Michael Golway
- Advanced Solutions Life Sciences, Louisville, KY, United States
| | - Beth Ripley
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - James B. Hoying
- Advanced Solutions Life Sciences, Louisville, KY, United States
| |
Collapse
|
34
|
Inacio JV, Schwarzenberg P, Yoon R, Kantzos A, Malige A, Nwachuku C, Dailey H. Boundary Conditions Matter - Impact of Test Setup On Inferred Construct Mechanics in Plated Distal Femur Osteotomies. J Biomech Eng 2022; 144:1136733. [PMID: 35171212 DOI: 10.1115/1.4053875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/08/2022]
Abstract
The mechanics of distal femur fracture fixation has been widely studied in bench tests that employ a variety of approaches for holding and constraining femurs to apply loads. No standard test methods have been adopted for these tests and the impact of test setup on inferred construct mechanics has not been reported. Accordingly, the purpose of this study was to use finite element models to compare the mechanical performance of a supracondylar osteotomy with lateral plating under conditions that replicate several common bench test methods. A literature review was used to define a parameterized virtual model of a plated distal femur osteotomy in axial compression loading with four boundary condition sets ranging from minimally to highly constrained. Axial stiffness, longitudinal motion, and shear motion at the fracture line were recorded for a range of applied loads and bridge spans. The results showed that construct mechanical performance was highly sensitive to boundary conditions imposed by the mechanical test fixtures. Increasing the degrees of constraint, for example by potting and rigidly clamping one or more ends of the specimen, caused up to a 25x increase in axial stiffness of the construct. Shear motion and longitudinal motion at the fracture line, which is an important driver of interfragmentary strain, was also largely influenced by the constraint test setup. These results suggest that caution should be used when comparing reported results between bench tests that use different fixtures and that standardization of testing methods is needed in this field.
Collapse
Affiliation(s)
- Jordan V Inacio
- Department of Mechanical Engineering & Mechanics, Lehigh University, Packard Laboratory, 19 Memorial Drive West, Bethlehem, PA 18015, USA
| | - Peter Schwarzenberg
- Department of Mechanical Engineering & Mechanics, Lehigh University, Packard Laboratory, 19 Memorial Drive West, Bethlehem, PA 18015, USA
| | - Richard Yoon
- Division of Orthopaedic Trauma, Department of Orthopaedic Surgery, Jersey City Medical Center - RWJBarnabas Health, 377 Jersey Ave, Suite 130, Jersey City, NJ 07302, USA
| | - Andrew Kantzos
- Department of Orthopaedic Surgery, St. Luke's University Health Network, 801 Ostrum, 12 Street, Bethlehem, PA 18015, USA
| | - Ajith Malige
- Department of Orthopaedic Surgery, St. Luke's University Health Network, 801 Ostrum, 12 Street, Bethlehem, PA 18015, USA
| | - Chinenye Nwachuku
- Department of Orthopaedic Surgery, St. Luke's University Health Network, 801 Ostrum, 12 Street, Bethlehem, PA 18015, USA
| | - Hannah Dailey
- Department of Mechanical Engineering & Mechanics, Lehigh University, Packard Laboratory, 19 Memorial Drive West, Bethlehem, PA 18015, USA
| |
Collapse
|
35
|
Wilder JH, Patel AH, Ross BJ, Weldy JM, Wang H, Sherman WF. Fracture Risk With Patella Resurfacing During Total Knee Arthroplasty After Anterior Cruciate Ligament Reconstruction Using Bone-Patella-Bone Autograft: A Biomechanical Analysis. Arthroplast Today 2022; 13:142-148. [PMID: 35106351 PMCID: PMC8784308 DOI: 10.1016/j.artd.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 11/04/2022] Open
Abstract
Background Anterior cruciate ligament (ACL) tears are common injuries. Ipsilateral bone patellar tendon bone (BPTB) autograft has been frequently used for ACL reconstructions. A large percentage of patients who sustain ACL ruptures develop early osteoarthritis and require total knee arthroplasty (TKA). When patients with previous BPTB autograft for an ACL tear undergo TKA, there may be an increased risk of fracture after patellar resurfacing. Methods There were 20 artificial Sawbones and 10 cadaveric patellae resurfaced. To simulate the presence of a previous BPTB autograft, a bone plug was removed from the anterior surface of the patellae and was resurfaced with a cemented patellar button. Biomechanical testing was performed to determine the compressive load to fracture of patellae with and without previous BPTB autograft. Results The average maximum load to failure for the artificial Sawbones patellae without a previous BPTB autograft was 4551.40 N ± 753.12 compared with 2855.39 N ± 531.46 with a previous BPTB autograft (P < .001). The average maximum load to failure for the cadaveric patellae without a previous BPTB autograft was 7256.37 N ± 1473.97 compared with 5232.22 N ± 475.04 with a previous BPTB autograft (P = .021). Conclusions The results demonstrate a significantly lower maximum load to failure of a resurfaced patella in the presence of a previous BPTB autograft. This can be used to aid in the decision of whether to resurface the patellae in these patients and to educate patients that the presence of a previous BPTB autograft may be an increased risk factor for patella fracture after TKA.
Collapse
|
36
|
Yang Harmony TC, Yusof N, Ramalingam S, Baharin R, Syahrom A, Mansor A. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study. Clin Orthop Relat Res 2022; 480:407-418. [PMID: 34491235 PMCID: PMC8747490 DOI: 10.1097/corr.0000000000001968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Gamma irradiation, which minimizes the risk of infectious disease transmission when human bone allograft is used, has been found to negatively affect its biomechanical properties. However, in those studies, the deep-freezing temperature during irradiation was not necessarily maintained during transportation and sterilization, which may have affected the findings. Prior reports have also suggested that controlled deep freezing may mitigate the detrimental effects of irradiation on the mechanical properties of bone allograft. QUESTION/PURPOSE Does a controlled deep-freezing temperature during irradiation help preserve the compressive mechanical properties of human femoral cortical bone allografts? METHODS Cortical bone cube samples, each measuring 64 mm3, were cut from the mid-diaphyseal midshaft of five fresh-frozen cadaver femurs (four male donors, mean [range] age at procurement 42 years [42 to 43]) and were allocated via block randomization into one of three experimental groups (with equal numbers of samples from each donor allocated into each group). Each experimental group consisted of 20 bone cube samples. Samples irradiated in dry ice were subjected to irradiation doses ranging from 26.7 kGy to 27.1 kGy (mean 26.9 kGy) at a deep-freezing temperature below -40°C (the recommended long-term storage temperature for allografts). Samples irradiated in gel ice underwent irradiation doses ranging from 26.2 kGy and 26.4 kGy (mean 26.3 kGy) in a freezing temperature range between -40°C and 0°C. Acting as controls, samples in a third group were not subjected to gamma irradiation. The mechanical properties (0.2% offset yield stress, ultimate compression stress, toughness, and the Young modulus) of samples from each group were subsequently evaluated via axial compression loading to failure along the long axis of the bone. The investigators were blinded to sample group during compression testing. RESULTS The mean ultimate compression stress (84 ± 27 MPa versus 119 ± 31 MPa, mean difference 35 [95% CI 9 to 60]; p = 0.005) and toughness (3622 ± 1720 kJ/m3 versus 5854 ± 2900 kJ/m3, mean difference 2232 [95% CI 70 to 4394]; p = 0.009) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than in those irradiated at deep-freezing temperatures (below -40°C). The mean 0.2% offset yield stress (73 ± 28 MPa versus 109 ± 38 MPa, mean difference 36 [95% CI 11 to 60]; p = 0.002) and ultimate compression stress (84 ± 27 MPa versus 128 ± 40 MPa, mean difference 44 [95% CI 17 to 69]; p < 0.001) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than the nonirradiated control group samples. The mean 0.2% offset yield stress (73 ± 28 MPa versus 101 ± 28 MPa, mean difference 28 [95% CI 3 to 52]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to those irradiated at deep-freezing temperature. The mean toughness (3622 ± 1720 kJ/m3 versus 6231 ± 3410 kJ/m3, mean difference 2609 [95% CI 447 to 4771]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to the non-irradiated control group samples. The mean 0.2% offset yield stress, ultimate compression stress, and toughness of samples irradiated in deep-freezing temperatures (below -40°C) were not different with the numbers available to the non-irradiated control group samples. The Young modulus was not different with the numbers available among the three groups. CONCLUSION In this study, maintenance of a deep-freezing temperature below -40°C, using dry ice as a cooling agent, consistently mitigated the adverse effects of irradiation on the monotonic-compression mechanical properties of human cortical bone tissue. Preserving the mechanical properties of a cortical allograft, when irradiated in a deep-freezing temperature, may have resulted from attenuation of the deleterious, indirect effects of gamma radiation on its collagen architecture in a frozen state. Immobilization of water molecules in this state prevents radiolysis and the subsequent generation of free radicals. This hypothesis was supported by an apparent loss of the protective effect when a range of higher freezing temperatures was used during irradiation. CLINICAL RELEVANCE Deep-freezing temperatures below -40°C during gamma irradiation may be a promising approach to better retain the native mechanical properties of cortical bone allografts. A further study of the effect of deep-freezing during gamma radiation sterilization on sterility and other important biomechanical properties of cortical bone (such as, tensile strength, fracture toughness, and fatigue) is needed to confirm these findings.
Collapse
Affiliation(s)
- Tan Chern Yang Harmony
- Ministry of Health Malaysia, Federal Government Administrative Centre, Putrajaya, Malaysia
| | - Norimah Yusof
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning, Kuala Lumpur, Malaysia
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
- Jalan Universiti, Kuala Lumpur, Malaysia
| | - Saravana Ramalingam
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning, Kuala Lumpur, Malaysia
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
- Jalan Universiti, Kuala Lumpur, Malaysia
| | | | - Ardiyansyah Syahrom
- Medical Device Technology Center, Institute of Human Centered Engineering, Skudai Johor, Malaysia
- Faculty of Engineering, Universiti Teknologi Malaysia, Skudai Johor, Malaysia
| | - Azura Mansor
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning, Kuala Lumpur, Malaysia
- Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia
- Jalan Universiti, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Chen J, Zhang W, Pang G, Meng Q, Zhu Y, Deng X. Influence of coracoglenoid space on scapular neck fracture stability: biomechanical study. BMC Musculoskelet Disord 2022; 23:30. [PMID: 34983487 PMCID: PMC8728935 DOI: 10.1186/s12891-021-04974-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The anatomical variation of the coracoglenoid space has the potential to influence the stability of scapular neck fractures. This paper aimed to investigate the mechanical mechanism underlying the influence of different coracoglenoid space types on scapular neck fractures by morphometric analysis and biomechanical experiments. Methods The morphology of 68 dried scapulae (left: 36; right: 32) was studied. Two variables, the length of the coracoglenoid distance (CGD) and the coracoglenoid notch (CGN), were measured. The distribution of CGN/CGD × 100% was used to identify the morphology of the coracoglenoid space. Each specimen was tested for failure under static axial compression loading. The average failure load, stiffness, and energy were calculated. Results Two coracoglenoid space types were identified. The incidence of Type I (‘‘hook’’ shape) was 53%, and that of Type II (‘‘square bracket’’ shape) was 47%. The CGD and CGN were significantly higher for type I than type II (13.81 ± 0.74 mm vs. 11.50 ± 1.03 mm, P < 0.05; 4.74 ± 0.45 mm vs. 2.61 ± 0.45 mm, P < 0.05). The average maximum failure load of the two types was 1270.82 ± 318.85 N and 1529.18 ± 467.29 N, respectively (P = 0.011). The stiffness and energy were significantly higher for type II than type I (896.75 ± 281.14 N/mm vs. 692.91 ± 217.95 N/mm, P = 0.001; 2100.38 ± 649.54 N × mm vs. 1712.71 ± 626.02 N × mm, P = 0.015). Conclusions There was great interindividual variation in the anatomical morphology of the coracoglenoid space. Type I (hook-like) spaces bore lower forces, were less stiff, and bore less energy, which may constitute an anatomical predisposition to scapular neck fractures.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China
| | - Wei Zhang
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China
| | - Gang Pang
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China
| | - Qingling Meng
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China
| | - Youyu Zhu
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China
| | - Xuefei Deng
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
38
|
Oliveira AS, Silva JC, Figueiredo L, Ferreira FC, Kotov NA, Colaço R, Serro AP. High-performance bilayer composites for the replacement of osteochondral defects. Biomater Sci 2022; 10:5856-5875. [DOI: 10.1039/d2bm00716a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two novel bilayer constructs for the repair of osteochondral defects were developed from nanofibers and ceramic particles embedded into PVA matrices, exhibiting multiple promising properties similar to those of corresponding natural tissues.
Collapse
Affiliation(s)
- A. S. Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - J. C. Silva
- Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal – Zona Industrial, 2430-028 Marinha Grande, Portugal
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - L. Figueiredo
- Bioceramed S.A., Rua José Gomes Ferreira 1 Arm. D, 2660-360 São Julião do Tojal, Portugal
| | - F. C. Ferreira
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - N. A. Kotov
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R. Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - A. P. Serro
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
39
|
Shape optimization of orthopedic porous scaffolds to enhance mechanical performance. J Mech Behav Biomed Mater 2022; 128:105098. [DOI: 10.1016/j.jmbbm.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
|
40
|
Mustahsan VM, Anugu A, Komatsu DE, Kao I, Pentyala S. Biocompatible Customized 3D Bone Scaffolds Treated with CRFP, an Osteogenic Peptide. Bioengineering (Basel) 2021; 8:bioengineering8120199. [PMID: 34940352 PMCID: PMC8698998 DOI: 10.3390/bioengineering8120199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Currently used synthetic bone graft substitutes (BGS) are either too weak to bear the principal load or if metallic, they can support loading, but can lead to stress shielding and are unable to integrate fully. In this study, we developed biocompatible, 3D printed scaffolds derived from µCT images of the bone that can overcome these issues and support the growth of osteoblasts. METHODS Cylindrical scaffolds were fabricated with acrylonitrile butadiene styrene (ABS) and Stratasys® MED 610 (MED610) materials. The 3D-printed scaffolds were seeded with Mus musculus calvaria cells (MC3T3). After the cells attained confluence, osteogenesis was induced with and without the addition of calcitonin receptor fragment peptide (CRFP) and the bone matrix production was analyzed. Mechanical compression testing was carried out to measure compressive strength, stiffness, and elastic modulus. RESULTS For the ABS scaffolds, there was a 9.8% increase in compressive strength (p < 0.05) in the scaffolds with no pre-coating and the treatment with CRFP, compared to non-treated scaffolds. Similarly, MED610 scaffolds treated with CRFP showed an 11.9% (polylysine pre-coating) and a 20% (no pre-coating) increase (p < 0.01) in compressive strength compared to non-treated scaffolds. CONCLUSIONS MED610 scaffolds are excellent BGS as they support osteoblast growth and show enhanced bone growth with enhanced compressive strength when augmented with CRFP.
Collapse
Affiliation(s)
- Vamiq M. Mustahsan
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (V.M.M.); (A.A.)
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Amith Anugu
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (V.M.M.); (A.A.)
| | - David E. Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Imin Kao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Srinivas Pentyala
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (V.M.M.); (A.A.)
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA;
- Department of Orthopedics, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence:
| |
Collapse
|
41
|
Inacio JV, Cristino DM, Hast MW, Dailey HL. An Adaptable Computed Tomography-Derived Three-Dimensional-Printed Alignment Fixture Minimizes Errors in Radius Biomechanical Testing. J Biomech Eng 2021; 143:111006. [PMID: 34114605 DOI: 10.1115/1.4051433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 11/08/2022]
Abstract
Biomechanical testing of long bones can be susceptible to errors and uncertainty due to malalignment of specimens with respect to the mechanical axis of the test frame. To solve this problem, we designed a novel, customizable alignment and potting fixture for long bone testing. The fixture consists of three-dimensional-printed components modeled from specimen-specific computed tomography (CT) scans to achieve a predetermined specimen alignment. We demonstrated the functionality of this fixture by comparing benchtop torsional test results to specimen-matched finite element models and found a strong correlation (R2 = 0.95, p < 0.001). Additional computational models were used to estimate the impact of malalignment on mechanical behavior in both torsion and axial compression. Results confirmed that torsion testing is relatively robust to alignment artifacts, with absolute percent errors less than 8% in all malalignment scenarios. In contrast, axial testing was highly sensitive to setup errors, experiencing absolute percent errors up to 50% with off-center malalignment and up to 170% with angular malalignment. This suggests that whenever appropriate, torsion tests should be used preferentially as a summary mechanical measure. When more challenging modes of loading are required, pretest clinical-resolution CT scanning can be effectively used to create potting fixtures that allow for precise preplanned specimen alignment. This may be particularly important for more sensitive biomechanical tests (e.g., axial compressive tests) that may be needed for industrial applications, such as orthopedic implant design.
Collapse
Affiliation(s)
- Jordan V Inacio
- Department of Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015
| | - Danielle M Cristino
- Department of Orthopaedic Surgery, Biedermann Lab for Orthopaedic Research, University of Pennsylvania, 3737 Market Street, Tenth Floor Suite 1050, Philadelphia, PA 19104
| | - Michael W Hast
- Department of Orthopaedic Surgery, Biedermann Lab for Orthopaedic Research, University of Pennsylvania, 3737 Market Street, Tenth Floor Suite 1050, Philadelphia, PA 19104
| | - Hannah L Dailey
- Department of Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015
| |
Collapse
|
42
|
Kusins J, Knowles N, Targosinski J, Columbus M, Athwal GS, Ferreira L. 3D strain analysis of trabecular bone within the osteoarthritic humeral head subjected to stepwise compressive loads. J Mech Behav Biomed Mater 2021; 125:104922. [PMID: 34740010 DOI: 10.1016/j.jmbbm.2021.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/30/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
Understanding the local mechanical properties of trabecular bone at the humeral head-neck junction is essential for the safe design of stemless humeral head implants. Recent advancements in mechanical testing coupled with volumetric imaging have allowed for the ability to quantify full-field strain distributions throughout trabecular bone. Within this study, digital volume correlation (DVC) was applied to micro-computed tomography images to investigate the local load carrying characteristics of trabecular bone within osteoarthritic (OA) humeral heads subjected to stepwise loading. A multi-pegged indenter was used to transfer loads from a custom-fabricated loading apparatus to trabecular bone on the resection surface of OA humeral head osteotomies retrieved from patients undergoing total shoulder arthroplasty (TSA). In regions of trabecular bone that eventually fractured, third principal strains were significantly higher (95th percentile third principal strain = -12,558 μstrain, p < 0.001) compared to regions that did not fracture (95th percentile third principal strain = -7,806 μstrain). As well, bone volume fraction (p = 0.012), trabecular separation (p = 0.014), and trabecular number (p = 0.007) were found to influence the likelihood of trabecular bone fracture. Collectively, this work has led to a deeper understanding of the local load carrying characteristics of trabecular bone specific to patients receiving TSA for osteoarthritis.
Collapse
Affiliation(s)
- Jonathan Kusins
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada; Roth
- McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - Nikolas Knowles
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Jakub Targosinski
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada; Roth
- McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - Melanie Columbus
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
| | - George S Athwal
- Roth
- McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - Louis Ferreira
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada; Roth
- McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada.
| |
Collapse
|
43
|
Soltanihafshejani N, Bitter T, Janssen D, Verdonschot N. Development of a crushable foam model for human trabecular bone. Med Eng Phys 2021; 96:53-63. [PMID: 34565553 DOI: 10.1016/j.medengphy.2021.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/12/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Finite element (FE) simulations can be used to evaluate the mechanical behavior of human bone and allow for quantitative prediction of press-fit implant fixation. An adequate material model that captures post-yield behavior is essential for a realistic simulation. The crushable foam (CF) model is a constitutive model that has recently been proposed in this regard. Compression tests under uniaxial and confined loading conditions were performed on 59 human trabecular bone specimens. Three essential material parameters were obtained as a function of bone mineral density (BMD) to develop the isotropic CF model. The related constitutive rule was implemented in FE models and the results were compared to the experimental data. The CF model provided an accurate simulation of uniaxial compression tests and the post-yield behavior of the stress-strain was well-matched with the experimental results. The model was able to reproduce the confined response of the bone up to 15% of strain. This model allows for simulation of the mechanical behavior of the cellular structure of human bone and adequately predicts the post-yield response of trabecular bone, particularly under uniaxial loading conditions. The model can be further improved to simulate bone collapse due to local overload around orthopaedic implants.
Collapse
Affiliation(s)
- Navid Soltanihafshejani
- Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, 6500 HB, Nijmegen, the Netherlands.
| | - Thom Bitter
- Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, 6500 HB, Nijmegen, the Netherlands
| | - Dennis Janssen
- Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, 6500 HB, Nijmegen, the Netherlands
| | - Nico Verdonschot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, 6500 HB, Nijmegen, the Netherlands; University of Twente, Laboratory for Biomechanical Engineering, Faculty of Engineering Technology, 7500 AE, Enschede, the Netherlands
| |
Collapse
|
44
|
Ryan C, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs M, Griffin M, Zeugolis D. A combined physicochemical approach towards human tenocyte phenotype maintenance. Mater Today Bio 2021; 12:100130. [PMID: 34632361 PMCID: PMC8488312 DOI: 10.1016/j.mtbio.2021.100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
During in vitro culture, bereft of their optimal tissue context, tenocytes lose their phenotype and function. Considering that tenocytes in their native tissue milieu are exposed simultaneously to manifold signals, combination approaches (e.g. growth factor supplementation and mechanical stimulation) are continuously gaining pace to control cell fate during in vitro expansion, albeit with limited success due to the literally infinite number of possible permutations. In this work, we assessed the potential of scalable and potent physicochemical approaches that control cell fate (substrate stiffness, anisotropic surface topography, collagen type I coating) and enhance extracellular matrix deposition (macromolecular crowding) in maintaining human tenocyte phenotype in culture. Cell morphology was primarily responsive to surface topography. The tissue culture plastic induced the largest nuclei area, the lowest aspect ratio, and the highest focal adhesion kinase. Collagen type I coating increased cell number and metabolic activity. Cell viability was not affected by any of the variables assessed. Macromolecular crowding intensely enhanced and accelerated native extracellular matrix deposition, albeit not in an aligned fashion, even on the grooved substrates. Gene analysis at day 14 revealed that the 130 kPa grooved substrate without collagen type I coating and under macromolecular crowding conditions positively regulated human tenocyte phenotype. Collectively, this work illustrates the beneficial effects of combined physicochemical approaches in controlling cell fate during in vitro expansion.
Collapse
Affiliation(s)
- C.N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - E. Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - N. Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D. Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - P. Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md N. Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - M.J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - M.D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
45
|
The precision of macroscale mechanical measurements is limited by the inherent structural heterogeneity of human stratum corneum. Acta Biomater 2021; 130:308-316. [PMID: 34087446 DOI: 10.1016/j.actbio.2021.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Biological tissues are structurally heterogenous mosaics at cellular and sub-cellular length scales. Some tissues, like the outermost layer of human skin, or stratum corneum (SC), also exhibit a rich topography of microchannels at larger mesoscopic length scales. Although this is well understood, modern studies continue to characterize the mechanical properties of biological tissues, including the SC, using macroscale techniques that assume these materials are homogenous in structure, thickness, and composition. Macroscale failure testing of SC is commonly associated with large sample to sample variability. We anticipate that microscale heterogeneities play an important role in defining the global mechanical response of the tissue. To evaluate the validity of the prevailing paradigm that macroscopic testing techniques can provide meaningful information about failure in soft heterogenous tissues, the macroscale work of fracture in isolated human SC samples is measured using conventional macroscale testing techniques and compared with the energy cost of creating new crack interfaces at the microscale, measured using a modified traction force microscopy technique. Results show that measured micro- and macroscale energy costs per unit crack path length are highly consistent. However, crack propagation is found to be guided by microscale topographical features in the tissue. This correlation reveals that macroscale mechanical sample to sample variability is caused by notable differences in crack propagation pathways. STATEMENT OF SIGNIFICANCE: Although designed to test homogeneous materials, macroscopic uniaxial tensometry is currently the gold standard for measuring the mechanical properties of biological tissues. All tissues, including human stratum corneum are structurally heterogeneous at the microscale and mechanical measurements are commonly highly variable, even for specimens from the same source. This study explores the fundamental causes of this disparity and evaluates the prevailing paradigm that macroscopic testing techniques can provide meaningful information about failure in soft heterogeneous tissues. Results conclude that the cause of large variability in mechanical work of fracture is due to inherent structural heterogeneities governing crack propagation pathways and altering the total crack length. Structural heterogeneities in tissue therefore limits the precision of macroscale biomechanical testing.
Collapse
|
46
|
A Damage Model to Trabecular Bone and Similar Materials: Residual Resource, Effective Elasticity Modulus, and Effective Stress under Uniaxial Compression. Symmetry (Basel) 2021. [DOI: 10.3390/sym13061051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Experimental research of bone strength remains costly and limited for ethical and technical reasons. Therefore, to predict the mechanical state of bone tissue, as well as similar materials, it is desirable to use computer technology and mathematical modeling. Yet, bone tissue as a bio-mechanical object with a hierarchical structure is difficult to analyze for strength and rigidity; therefore, empirical models are often used, the disadvantage of which is their limited application scope. The use of new analytical solutions overcomes the limitations of empirical models and significantly improves the way engineering problems are solved. Aim of the paper: the development of analytical solutions for computer models of the mechanical state of bone and similar materials. Object of research: a model of trabecular bone tissue as a quasi-brittle material under uniaxial compression (or tension). The new ideas of the fracture mechanics, as well as the methods of mathematical modeling and the biomechanics of bone tissues were used in the work. Compression and tension are considered as asymmetric mechanical states of the material. Results: a new nonlinear function that simulates both tension and compression is justified, analytical solutions for determining the effective and apparent elastic modulus are developed, the residual resource function and the damage function are justified, and the dependences of the initial and effective stresses on strain are obtained. Using the energy criterion, it is proven that the effective stress continuously increases both before and after the extremum point on the load-displacement plot. It is noted that the destruction of bone material is more likely at the inflection point of the load-displacement curve. The model adequacy is explained by the use of the energy criterion of material degradation. The results are consistent with the experimental data available in the literature.
Collapse
|
47
|
Bikos D, Samaras G, Cann P, Masen M, Hardalupas Y, Hartmann C, Vieira J, Charalambides MN. Effect of micro-aeration on the mechanical behaviour of chocolates and implications for oral processing. Food Funct 2021; 12:4864-4886. [PMID: 33969364 DOI: 10.1039/d1fo00045d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aeration in foods has been widely utilised in the food industry to develop novel foods with enhanced sensorial characteristics. Specifically, aeration at the micron-sized scale has a significant impact on the microstructure where micro-bubbles interact with the other microstructural features in chocolates. This study aims to determine the effect of micro-aeration on the mechanical properties of chocolate products, which are directly correlated with textural attributes such as hardness and crumbliness. Uniaxial compression tests were performed to determine the mechanical properties such as Poisson's ratio, Young's modulus and macroscopic yield strength together with fracture tests to estimate the fracture toughness. In vivo mastication tests were also conducted to investigate the link between the fracture properties and fragmentation during the first two chewing cycles. The uniaxial stress-strain data were used to calibrate a viscoplastic constitutive law. The results showed that micro-aeration significantly affects mechanical properties such as Young's modulus, yield and fracture stresses, as well as fracture toughness. In addition, it enhances the brittle nature of the chocolate, as evidenced by lower fracture stress but also lower fracture toughness leading to higher fragmentation, in agreement with observations in the in vivo mastication tests. As evidenced by the XRT images and the stress-strain measurements micro-aeration hinders the re-arrangement of the microscopic features inside the chocolate during the material's deformation. The work provides a new insight of the role of bubbles on the bulk behaviour of complex multiphase materials, such as chocolates, and defines the mechanical properties which are important input parameters for the development of oral processing simulations.
Collapse
Affiliation(s)
- D Bikos
- Department of Mechanical Engineering, Imperial College London, UK.
| | - G Samaras
- Department of Mechanical Engineering, Imperial College London, UK.
| | - P Cann
- Department of Mechanical Engineering, Imperial College London, UK.
| | - M Masen
- Department of Mechanical Engineering, Imperial College London, UK.
| | - Y Hardalupas
- Department of Mechanical Engineering, Imperial College London, UK.
| | | | - J Vieira
- Nestlé Product Technology Centre, York, UK
| | | |
Collapse
|
48
|
Oliviero S, Roberts M, Owen R, Reilly GC, Bellantuono I, Dall'Ara E. Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models. Biomech Model Mechanobiol 2021; 20:941-955. [PMID: 33523337 PMCID: PMC8154847 DOI: 10.1007/s10237-021-01422-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023]
Abstract
New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load-displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53-0.65, average error of 13-17%). A lower correlation was found for failure load (R2 = 0.21-0.48, average error of 9-15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75-0.80 for stiffness, R2 = 0.55-0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia.
Collapse
Affiliation(s)
- S Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - M Roberts
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - R Owen
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, UK
| | - G C Reilly
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - I Bellantuono
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, The Medical School, University of Sheffield, Sheffield, UK
| | - E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
- Healthy Lifespan Institute, The Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
49
|
Tran L, Tam DNH, Elshafay A, Dang T, Hirayama K, Huy NT. Quality assessment tools used in systematic reviews of in vitro studies: A systematic review. BMC Med Res Methodol 2021; 21:101. [PMID: 33964880 PMCID: PMC8106836 DOI: 10.1186/s12874-021-01295-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Systematic reviews (SRs) and meta-analyses (MAs) are commonly conducted to evaluate and summarize medical literature. This is especially useful in assessing in vitro studies for consistency. Our study aims to systematically review all available quality assessment (QA) tools employed on in vitro SRs/MAs. METHOD A search on four databases, including PubMed, Scopus, Virtual Health Library and Web of Science, was conducted from 2006 to 2020. The available SRs/MAs of in vitro studies were evaluated. DARE tool was applied to assess the risk of bias of included articles. Our protocol was developed and uploaded to ResearchGate in June 2016. RESULTS Our findings reported an increasing trend in publication of in vitro SRs/MAs from 2007 to 2020. Among the 244 included SRs/MAs, 126 articles (51.6%) had conducted the QA procedure. Overall, 51 QA tools were identified; 26 of them (51%) were developed by the authors specifically, whereas 25 (49%) were pre-constructed tools. SRs/MAs in dentistry frequently had their own QA tool developed by the authors, while SRs/MAs in other topics applied various QA tools. Many pre-structured tools in these in vitro SRs/MAs were modified from QA tools of in vivo or clinical trials, therefore, they had various criteria. CONCLUSION Many different QA tools currently exist in the literature; however, none cover all critical aspects of in vitro SRs/MAs. There is a need for a comprehensive guideline to ensure the quality of SR/MA due to their precise nature.
Collapse
Affiliation(s)
- Linh Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam
| | - Dao Ngoc Hien Tam
- Asia Shine Trading & Service CO. LTD., Ho Chi Minh City, Vietnam
- Online Research Club, Nagasaki, Japan
| | - Abdelrahman Elshafay
- Online Research Club, Nagasaki, Japan
- Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Thao Dang
- Online Research Club, Nagasaki, Japan
- Department of Internal Medicine, Texas Tech University Health Science Center at the Permian Basin, Odessa, TX, USA
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
50
|
Pape J, Emberton M, Cheema U. 3D Cancer Models: The Need for a Complex Stroma, Compartmentalization and Stiffness. Front Bioeng Biotechnol 2021; 9:660502. [PMID: 33912551 PMCID: PMC8072339 DOI: 10.3389/fbioe.2021.660502] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The use of tissue-engineered 3D models of cancer has grown in popularity with recent advances in the field of cancer research. 3D models are inherently more biomimetic compared to 2D cell monolayers cultured on tissue-culture plastic. Nevertheless 3D models still lack the cellular and matrix complexity of native tissues. This review explores different 3D models currently used, outlining their benefits and limitations. Specifically, this review focuses on stiffness and collagen density, compartmentalization, tumor-stroma cell population and extracellular matrix composition. Furthermore, this review explores the methods utilized in different models to directly measure cancer invasion and growth. Of the models evaluated, with PDX and in vivo as a relative "gold standard", tumoroids were deemed as comparable 3D cancer models with a high degree of biomimicry, in terms of stiffness, collagen density and the ability to compartmentalize the tumor and stroma. Future 3D models for different cancer types are proposed in order to improve the biomimicry of cancer models used for studying disease progression.
Collapse
Affiliation(s)
- Judith Pape
- Division of Surgery and Interventional Science, Department of Targeted Intervention, Centre for 3D Models of Health and Disease, University College London, London, United Kingdom
| | - Mark Emberton
- Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Umber Cheema
- Division of Surgery and Interventional Science, Department of Targeted Intervention, Centre for 3D Models of Health and Disease, University College London, London, United Kingdom
| |
Collapse
|