1
|
Hassell LA, Forsythe ML, Bhalodia A, Lan T, Rashid T, Powers A, Bui MM, Brickman A, Gu Q, Bychkov A, Cree I, Pantanowitz L. Toward Optimizing the Impact of Digital Pathology and Augmented Intelligence on Issues of Diagnosis, Grading, Staging and Classification. Mod Pathol 2025:100765. [PMID: 40204094 DOI: 10.1016/j.modpat.2025.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
The introduction of new diagnostic information in pathology requires effective dissemination and adoption strategies. While traditional methods like journals, meetings, and atlases have been used, they pose challenges in accessibility, interactivity, and performance validation. Digital pathology (DP) and artificial or augmented intelligence (AI) offer promising solutions to address these limitations. This paper advocates the use of DP and AI tools to facilitate the introduction of new diagnostic information in pathology. It highlights the importance of standardized training and validation sets, digital slide libraries, and AI-enhanced diagnostic tools. While AI can improve efficiency and accuracy, it's crucial to address potential pitfalls such as over-reliance on AI, bias and the need for human oversight. By leveraging DP and AI, the efficiency and accuracy of diagnosis, grading, staging, and classification can be augmented, ultimately improving patient care.
Collapse
Affiliation(s)
- Lewis A Hassell
- University of Oklahoma Health Sciences, 940 Stanton L. Young Blvd, BMSB 451, Oklahoma City, OK 73104.
| | | | | | | | - Tasnuva Rashid
- University of Florida, College of Medicine, Jacksonville
| | - Astin Powers
- H. Lee Moffitt Cancer Center & Research Institute
| | | | | | | | | | - Ian Cree
- International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
2
|
Khozeymeh F, Ariamanesh M, Roshan NM, Jafarian A, Farzanehfar M, Majd HM, Sedghian A, Dehghani M. Comparison of FNA-based conventional cytology specimens and digital image analysis in assessment of pancreatic lesions. Cytojournal 2023; 20:39. [PMID: 37942305 PMCID: PMC10629281 DOI: 10.25259/cytojournal_61_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/05/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is one of the most important diagnostic tools for investigation of suspected pancreatic masses, although the interpretation of the results is controversial. In recent decades, digital image analysis (DIA) has been considered in pathology. The aim of this study was to assess the DIA in the evaluation of EUS-FNA based cytopathological specimens of pancreatic masses and comparing it with conventional cytology analysis by pathologist. Material and Methods This study was performed using cytological slides related to EUS-FNA samples of pancreatic lesions. The digital images were prepared and then analyzed by ImageJ software. Factors such as perimeter, circularity, area, minimum, maximum, mean, median of gray value, and integrated chromatin density of cell nucleus were extracted by software ImageJ and sensitivity, specificity, and cutoff point were evaluated in the diagnosis of malignant and benign lesions. Results In this retrospective study, 115 cytology samples were examined. Each specimen was reviewed by a pathologist and 150 images were prepared from the benign and malignant lesions and then analyzed by ImageJ software and a cut point was established by SPSS 26. The cutoff points for perimeter, integrated density, and the sum of three factors of perimeter, integrated density, and circularity to differentiate between malignant and benign lesions were reported to be 204.56, 131953, and 24643077, respectively. At this cutting point, the accuracy of estimation is based on the factors of perimeter, integrated density, and the sum of the three factors of perimeter, integrated density, and circularity were 92%, 92%, and 94%, respectively. Conclusion The results of this study showed that digital analysis of images has a high accuracy in diagnosing malignant and benign lesions in the cytology of EUS-FNA in patients with suspected pancreatic malignancy and by obtaining cutoff points by software output factors; digital imaging can be used to differentiate between benign and malignant pancreatic tumors.
Collapse
Affiliation(s)
- Farzaneh Khozeymeh
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Ariamanesh
- Department of Pathology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | | | | | - Hassan Mehrad Majd
- Clinical Research Development Unit, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sedghian
- Department of Computer, Ferdowsi University of Engineering, Mashhad, Iran
| | - Mansoureh Dehghani
- Department of Oncology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Qin X, Guo X, Liu T, Li L, Zhou N, Ma X, Meng X, Liu J, Zhu H, Jia B, Yang Z. High in-vivo stability in preclinical and first-in-human experiments with [ 18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. Eur J Nucl Med Mol Imaging 2023; 50:302-313. [PMID: 36129493 DOI: 10.1007/s00259-022-05967-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/11/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE [18F]AlF-RESCA was introduced as a core particularly useful for 18F-labeling of heat-sensitive biomolecules. However, no translational studies have been reported up to now. Herein, we reported the first-in-human evaluation of an 18F-labeled anti-HER2 nanobody MIRC213 as a PET radiotracer for imaging HER2-positive cancers. METHODS MIRC213 was produced by E. coli and conjugated with ( ±)-H3RESCA-Mal. [18F]AlF-RESCA-MIRC213 was prepared at room temperature. Its radiochemical purity and stability of were determined by radio-HPLC with the size-exclusion chromatographic column. Cell uptake was performed in NCI-N87 (HER2 +) and MCF-7 (HER2-) cells and the cell-binding affinity was verified in SK-OV-3 (HER2 +) cells. Small-animal PET/CT was performed using SK-OV-3, NCI-N87, and MCF-7 tumor-bearing mice at 30 min, 1 h, and 2 h post-injection. For blocking experiment, excess MIRC213 was co-injected with radiotracer. Biodistribution were performed on SKOV-3 and MCF-7 tumor-bearing mice at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of [18F]AlF-RESCA-MIRC213 (1.85-3.7 MBq/kg) in six breast cancer patients (3 HER2-positive and 3 HER2-negative). All patients underwent [18F]-FDG PET/CT within a week for tissue selection purpose. Distribution and dosimetry were calculated. Standardized uptake values (SUV) were measured in tumors and normal organs. RESULTS MIRC213 was produced with > 95% purity and modified with RESCA to obtain RESCA-MIRC213. [18F]AlF-RESCA-MIRC213 was prepared within 20 min at room temperature with the radiochemical yield of 50.48 ± 7.6% and radiochemical purity of > 98% (n > 10), and remained stable in both PBS (88%) and 5% HSA (92%) after 6 h. The 2 h cellular uptake of [18F]AlF-RESCA-MIRC213 in NCI-N87 cells was 11.22 ± 0.60 AD%/105 cells. Its binding affinity Kd value was determined to be 1.23 ± 0.58 nM. Small-animal PET/CT with [18F]AlF-RESCA-MIRC213 can clearly differentiate SK-OV-3 and NCI-N87 tumors from MCF-7 tumors and background with a high uptake of 4.73 ± 1.18 ID%/g and substantially reduced to 1.70 ± 0.13 ID%/g for the blocking group (p < 0.05) in SK-OV-3 tumors at 2 h post-injection. No significant bone radioactivity was seen in the tumor-bearing animals. In all six breast cancer patients, there was no adverse reaction during study. The uptake of [18F]AlF-RESCA-MIRC213 was mainly in lacrimal gland, parotid gland, submandibular gland, thyroid gland, gallbladder, kidneys, liver, and intestines. There was no significant bone radioactivity accumulation in cancer patients. [18F]AlF-RESCA-MIRC213 had significantly higher tumor uptake in lesions from HER2-positive patients than that lesions from HER2-negative patients (SUVmax of 3.62 ± 1.56 vs. 1.41 ± 0.41, p = 0.0012) at 2 h post-injection. The kidneys received the highest radiation dose of 2.42 × 10-1 mGy/MBq, and the effective dose was 1.56 × 10-2 mSv/MBq. CONCLUSIONS [18F]AlF-RESCA-MIRC213 could be prepared with high radiolabeling yield under mild conditions. [18F]AlF-RESCA-MIRC213 has relatively high stability both in vitro and in vivo. The results from clinical transformation suggest that [18F]AlF-RESCA-MIRC213 PET/CT is a safe procedure with favorable pharmacokinetics and dosimetry profile, and it is a promising new PET radiotracer for noninvasive diagnosis of HER2-positive cancers.
Collapse
Affiliation(s)
- Xue Qin
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Tianyu Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Liqiang Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaopan Ma
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayue Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hua Zhu
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Zhi Yang
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
4
|
Her2-Positive Cancers and Antibody-Based Treatment: State of the Art and Future Developments. Cancers (Basel) 2021; 13:cancers13225771. [PMID: 34830927 PMCID: PMC8616515 DOI: 10.3390/cancers13225771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
HER2 positive breast cancer represent about 20% of all breast cancer subtypes and it was considered the subtype with the worst prognosis until the discovery of therapies directed against the HER2 protein. The determination of the status of the HER2 must be very precise and well managed to identify this subtype, and there are very specific and updated guides that allow its characterization to be adjusted. Treatment in local disease has been considerably improved with less aggressive and highly effective approaches and very high cure rates. In metastatic disease, average median survival rates of 5 years have been achieved. New highly active molecules have also been discovered that allow disease control in very complicated situations. This article reviews all these options that can be used for the management of this disease.
Collapse
|
5
|
Abstract
OBJECTIVES The specific aims of the study are to determine skillsets most valuable to regional employers of cytotechnologists and assess the employers' willingness to use graduating MS cytology practitioners in the expanded scope of practice. METHODS Data from the greater New York region were collected via a web-based survey distributed to a broad sample of laboratory professionals involved with hiring in a variety of institutions. RESULTS The three skillsets most important to New York employers and most employable are fine-needle aspiration adequacy assessment, regulatory acumen, and prescreening cell blocks. The skills that are of least important and least employable are prescreening high-volume tissue biopsy specimens and histology. CONCLUSIONS The results of this survey shed light on regional employers' perspectives regarding the skillsets that are most important and marketable in the greater New York region and may be useful for subsequent curriculum development.
Collapse
Affiliation(s)
- Paul Z Chiou
- Department of Clinical Laboratory and Medical Imaging, Rutgers University, Newark, NJ
| |
Collapse
|
6
|
Casterá C, Bernet L. HER2 immunohistochemistry inter-observer reproducibility in 205 cases of invasive breast carcinoma additionally tested by ISH. Ann Diagn Pathol 2019; 45:151451. [PMID: 31955049 DOI: 10.1016/j.anndiagpath.2019.151451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
Assessment of HER2 biomarker in invasive breast carcinoma patients allows a specific therapeutic approach. Clinical guidelines indicate immunohistochemistry (IHC) and in situ hybridization (ISH) to test HER2, however both have drawbacks which results in low reproducibility of results especially in equivocal cases. Our main objective is to quantify inter-observer IHC reproducibility and cross it with the ISH result. Our series includes 205 invasive breast carcinoma cases sent for ISH retest from 14 hospitals, 5 observers to assess the IHC and 2 observers for the ISH of each case. We found that the observers only achieve an absolute agreement for IHC in 1 out of 3 cases. The inter-observer concordance for IHC is low (0.2 ≤ k ≤ 0.4) or moderate (0.41 ≤ k ≤ 0.6). In ISH positive cases the concordance for IHC is higher than in the ISH negative cases. In conclusion, the study shows low and moderate IHC inter-observer concordance, finding the more worrying values among the ISH negative cases which are the most part of this particular sample. Subjective interpretation of the techniques, among other factors, has negative impact in HER2 evaluation. To offset this limitation we have checked that reaching a consensus from different observers for HER2 IHC assessment improves the results.
Collapse
Affiliation(s)
- Carlos Casterá
- Hospital Universitario de la Ribera, Crta Corbera km 1, 46600 Alzira, Valencia, Spain.
| | - Laia Bernet
- Hospital Universitario de la Ribera, Crta Corbera km 1, 46600 Alzira, Valencia, Spain
| |
Collapse
|
7
|
Bui MM, Riben MW, Allison KH, Chlipala E, Colasacco C, Kahn AG, Lacchetti C, Madabhushi A, Pantanowitz L, Salama ME, Stewart RL, Thomas NE, Tomaszewski JE, Hammond ME. Quantitative Image Analysis of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry for Breast Cancer: Guideline From the College of American Pathologists. Arch Pathol Lab Med 2019; 143:1180-1195. [PMID: 30645156 PMCID: PMC6629520 DOI: 10.5858/arpa.2018-0378-cp] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT.— Advancements in genomic, computing, and imaging technology have spurred new opportunities to use quantitative image analysis (QIA) for diagnostic testing. OBJECTIVE.— To develop evidence-based recommendations to improve accuracy, precision, and reproducibility in the interpretation of human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) for breast cancer where QIA is used. DESIGN.— The College of American Pathologists (CAP) convened a panel of pathologists, histotechnologists, and computer scientists with expertise in image analysis, immunohistochemistry, quality management, and breast pathology to develop recommendations for QIA of HER2 IHC in breast cancer. A systematic review of the literature was conducted to address 5 key questions. Final recommendations were derived from strength of evidence, open comment feedback, expert panel consensus, and advisory panel review. RESULTS.— Eleven recommendations were drafted: 7 based on CAP laboratory accreditation requirements and 4 based on expert consensus opinions. A 3-week open comment period received 180 comments from more than 150 participants. CONCLUSIONS.— To improve accurate, precise, and reproducible interpretation of HER2 IHC results for breast cancer, QIA and procedures must be validated before implementation, followed by regular maintenance and ongoing evaluation of quality control and quality assurance. HER2 QIA performance, interpretation, and reporting should be supervised by pathologists with expertise in QIA.
Collapse
Affiliation(s)
- Marilyn M Bui
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Michael W Riben
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Kimberly H Allison
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Elizabeth Chlipala
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Carol Colasacco
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Andrea G Kahn
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Christina Lacchetti
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Anant Madabhushi
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Liron Pantanowitz
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Mohamed E Salama
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Rachel L Stewart
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - Nicole E Thomas
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - John E Tomaszewski
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| | - M Elizabeth Hammond
- From the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Riben); the Department of Pathology, Stanford University Medical Center, Stanford, California (Dr Allison); Premier Laboratory, Longmont, Colorado (Ms Chlipala); Surveys (Mses Colasacco and Thomas), College of American Pathologists, Northfield, Illinois; the Department of Pathology, University of South Alabama, Mobile (Dr Kahn); Policy and Advocacy, American Society of Clinical Oncology, Alexandria, Virginia (Ms Lacchetti); the Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (Dr Madabhushi); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Pantanowitz); the Department of Pathology, University of Utah/ARUP Laboratories Inc, Salt Lake City (Dr Salama); the Department of Pathology, University of Kentucky, Lexington (Dr Stewart); the Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo (Dr Tomaszewski); and the Department of Pathology, University of Utah School of Medicine and Intermountain Healthcare, Salt Lake City (Dr Hammond)
| |
Collapse
|
8
|
Yim K, Park HS, Kim DM, Lee YS, Lee A. Image Analysis of HER2 Immunohistochemical Staining of Surgical Breast Cancer Specimens. Yonsei Med J 2019; 60:158-162. [PMID: 30666837 PMCID: PMC6342717 DOI: 10.3349/ymj.2019.60.2.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/25/2018] [Accepted: 11/30/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Trastuzumab is an effective treatment for human epidermal growth factor receptor 2 (HER2)-amplified breast cancers. We sought to develop a simple protocol for HER2 image analysis of breast cancer specimens. MATERIALS AND METHODS In a preliminary test, we found that at least 1000 tumor cells need to be examined in the most strongly stained areas. Next, we evaluated the clinical usefulness of this established protocol of image analysis in 555 breast cancer patients. Results of the HER2 immunohistochemical (IHC) staining were compared between manual scoring and image analysis. RESULTS The HER2 IHC results obtained by the image analysis method correlated well with those obtained by the manual scoring method (Cohen's kappa=0.830). Using the HER2 silver in situ hybridization (SISH) results as a gold standard, sensitivity values were 72.1% for manual scoring and 74.0% for image analysis; specificity values were 96.2% for manual scoring and 94.7% for image analysis; and accuracy values were 91.7% for manual scoring and 90.8% for image analysis. McNemar's test was applied to the results, and there were no statistically significant differences in sensitivity and specificity between the positive (p=0.688) and negative (p=0.118) SISH groups. CONCLUSION HER2 image analysis results were similar to those obtained via the manual scoring method, indicating that the use of image analysis can reduce assessment time and effort. We suggest that image analysis-based evaluation of 1000 tumor cells in the most strongly IHC-stained area, regardless of stroma content, is sufficient for determining HER2 expression levels in breast cancer specimens.
Collapse
Affiliation(s)
- Kwangil Yim
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Hong Sik Park
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Min Kim
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
9
|
Saha M, Chakraborty C. Her2Net: A Deep Framework for Semantic Segmentation and Classification of Cell Membranes and Nuclei in Breast Cancer Evaluation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2018; 27:2189-2200. [PMID: 29432100 DOI: 10.1109/tip.2018.2795742] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present an efficient deep learning framework for identifying, segmenting, and classifying cell membranes and nuclei from human epidermal growth factor receptor-2 (HER2)-stained breast cancer images with minimal user intervention. This is a long-standing issue for pathologists because the manual quantification of HER2 is error-prone, costly, and time-consuming. Hence, we propose a deep learning-based HER2 deep neural network (Her2Net) to solve this issue. The convolutional and deconvolutional parts of the proposed Her2Net framework consisted mainly of multiple convolution layers, max-pooling layers, spatial pyramid pooling layers, deconvolution layers, up-sampling layers, and trapezoidal long short-term memory (TLSTM). A fully connected layer and a softmax layer were also used for classification and error estimation. Finally, HER2 scores were calculated based on the classification results. The main contribution of our proposed Her2Net framework includes the implementation of TLSTM and a deep learning framework for cell membrane and nucleus detection, segmentation, and classification and HER2 scoring. Our proposed Her2Net achieved 96.64% precision, 96.79% recall, 96.71% F-score, 93.08% negative predictive value, 98.33% accuracy, and a 6.84% false-positive rate. Our results demonstrate the high accuracy and wide applicability of the proposed Her2Net in the context of HER2 scoring for breast cancer evaluation.
Collapse
|
10
|
Sweeney BJ, Wilbur DC. Advanced practitioner in anatomic pathology: The time has come. Cancer Cytopathol 2018; 126:229-231. [DOI: 10.1002/cncy.21967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Brenda J. Sweeney
- Department of Pathology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - David C. Wilbur
- Department of Pathology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
11
|
Bertram CA, Klopfleisch R. The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine. Vet Pathol 2017; 54:756-766. [DOI: 10.1177/0300985817709888] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Christof A. Bertram
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
12
|
Schacht MJ, Toustrup CB, Madsen LB, Martiny MS, Larsen BB, Simonsen JT. Endobronchial ultrasound-guided transbronchial needle aspiration: performance of biomedical scientists on rapid on-site evaluation and preliminary diagnosis. Cytopathology 2016; 27:344-50. [DOI: 10.1111/cyt.12338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 12/19/2022]
Affiliation(s)
- M. J. Schacht
- Department of Pathology; Aarhus University Hospital; Aarhus Denmark
| | - C. B. Toustrup
- Department of Pathology; Aarhus University Hospital; Aarhus Denmark
| | - L. B. Madsen
- Department of Pathology; Aarhus University Hospital; Aarhus Denmark
| | - M. S. Martiny
- Department of Pathology; Aarhus University Hospital; Aarhus Denmark
| | | | | |
Collapse
|
13
|
Vaidyanathan G, McDougald D, Choi J, Koumarianou E, Weitzel D, Osada T, Lyerly HK, Zalutsky MR. Preclinical Evaluation of 18F-Labeled Anti-HER2 Nanobody Conjugates for Imaging HER2 Receptor Expression by Immuno-PET. J Nucl Med 2016; 57:967-73. [PMID: 26912425 DOI: 10.2967/jnumed.115.171306] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The human growth factor receptor type 2 (HER2) is overexpressed in breast as well as other types of cancer. Immuno-PET, a noninvasive imaging procedure that could assess HER2 status in both primary and metastatic lesions simultaneously, could be a valuable tool for optimizing application of HER2-targeted therapies in individual patients. Herein, we have evaluated the tumor-targeting potential of the 5F7 anti-HER2 Nanobody (single-domain antibody fragment; ∼13 kDa) after (18)F labeling by 2 methods. METHODS The 5F7 Nanobody was labeled with (18)F using the novel residualizing label N-succinimidyl 3-((4-(4-(18)F-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ((18)F-SFBTMGMB; (18)F-RL-I) and also via the most commonly used (18)F protein-labeling prosthetic agent N-succinimidyl 3-(18)F-fluorobenzoate ((18)F-SFB). For comparison, 5F7 Nanobody was also labeled using the residualizing radioiodination agent N-succinimidyl 4-guanidinomethyl-3-(125)I-iodobenzoate ((125)I-SGMIB). Paired-label ((18)F/(125)I) internalization assays and biodistribution studies were performed on HER2-expressing BT474M1 breast carcinoma cells and in mice with BT474M1 subcutaneous xenografts, respectively. Small-animal PET/CT imaging of 5F7 Nanobody labeled using (18)F-RL-I also was performed. RESULTS Internalization assays indicated that intracellularly retained radioactivity for (18)F-RL-I-5F7 was similar to that for coincubated (125)I-SGMIB-5F7, whereas that for (18)F-SFB-5F7 was lower than coincubated (125)I-SGMIB-5F7 and decreased with time. BT474M1 tumor uptake of (18)F-RL-I-5F7 was 28.97 ± 3.88 percentage injected dose per gram of tissue (%ID/g) at 1 h and 36.28 ± 14.10 %ID/g at 2 h, reduced by more than 90% on blocking with trastuzumab, indicating HER2 specificity of uptake, and was also 26%-28% higher (P < 0.05) than that of (18)F-SFB-5F7. At 2 h, the tumor-to-blood ratio for (18)F-RL-I-5F7 (47.4 ± 13.1) was significantly higher (P < 0.05) than for (18)F-SFB-5F7 (25.4 ± 10.3); however, kidney uptake was 28-36-fold higher for (18)F-RL-I-5F7. CONCLUSION (18)F-RL-I-5F7 is a promising tracer for evaluating HER2 status by immuno-PET; however, in settings in which renal background is problematic, strategies for reducing its kidney uptake may be needed.
Collapse
Affiliation(s)
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Jaeyeon Choi
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | | - Douglas Weitzel
- Department of Radiation Oncology and Cancer Biology, Duke University Medical Center, Durham, North Carolina; and
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
14
|
Green IF, Zynger DL. Institutional quality assurance for breast cancer HER2 immunohistochemical testing: identification of outlier results and impact of simultaneous fluorescence in situ hybridization cotesting. Hum Pathol 2015; 46:1842-9. [DOI: 10.1016/j.humpath.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/02/2015] [Accepted: 08/13/2015] [Indexed: 11/25/2022]
|
15
|
Bahreini F, Soltanian AR, Mehdipour P. A meta-analysis on concordance between immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) to detect HER2 gene overexpression in breast cancer. Breast Cancer 2015; 22:615-625. [PMID: 24718809 DOI: 10.1007/s12282-014-0528-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/17/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND We performed this meta-analysis study to evaluate the concordance and discordance between immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) in detecting HER2 alteration in human breast cancer. METHODS As a meta-analysis, the present study evaluated the available data from previous studies on the HER2 gene detected by IHC and FISH. To indicate the meta-analysis results, a forest plot was used. RESULTS We identified 172 citations, for which our inclusion criteria were met by 18 articles, representing 6629 cases. The overall concordance and discordance rate between IHC staining with score 0/1+ and FISH for detection failure of HER2 expression was 96 and 4 %, respectively. The present study showed that the overall proportion of FISH positive and negative rate for IHC score 2+ for detection of HER2 expression was 36 and 64 %, respectively; and 91 and 9 % for 3+ IHC scores. CONCLUSION The results of this study show that IHC score 0/1+ and 3+ cannot be completely considered as negative and positive breast cancer test, respectively. Therefore, we suggest a valid and complementary test, the same as FISH, to explore HER2 expression.
Collapse
Affiliation(s)
- Fatemeh Bahreini
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Pour Sina Avenue, 14176-13151, Tehran, Iran.
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Shahid Fahmideh Street, P.O.Box 4171, 65155, Hamadan, Iran.
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Pour Sina Avenue, 14176-13151, Tehran, Iran.
| |
Collapse
|
16
|
Helin HO, Tuominen VJ, Ylinen O, Helin HJ, Isola J. Free digital image analysis software helps to resolve equivocal scores in HER2 immunohistochemistry. Virchows Arch 2015; 468:191-8. [PMID: 26493985 DOI: 10.1007/s00428-015-1868-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/22/2015] [Accepted: 10/12/2015] [Indexed: 01/29/2023]
Abstract
Evaluation of human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) is subject to interobserver variation and lack of reproducibility. Digital image analysis (DIA) has been shown to improve the consistency and accuracy of the evaluation and its use is encouraged in current testing guidelines. We studied whether digital image analysis using a free software application (ImmunoMembrane) can assist in interpreting HER2 IHC in equivocal 2+ cases. We also compared digital photomicrographs with whole-slide images (WSI) as material for ImmunoMembrane DIA. We stained 750 surgical resection specimens of invasive breast cancers immunohistochemically for HER2 and analysed staining with ImmunoMembrane. The ImmunoMembrane DIA scores were compared with the originally responsible pathologists' visual scores, a researcher's visual scores and in situ hybridisation (ISH) results. The originally responsible pathologists reported 9.1 % positive 3+ IHC scores, for the researcher this was 8.4 % and for ImmunoMembrane 9.5 %. Equivocal 2+ scores were 34 % for the pathologists, 43.7 % for the researcher and 10.1 % for ImmunoMembrane. Negative 0/1+ scores were 57.6 % for the pathologists, 46.8 % for the researcher and 80.8 % for ImmunoMembrane. There were six false positive cases, which were classified as 3+ by ImmunoMembrane and negative by ISH. Six cases were false negative defined as 0/1+ by IHC and positive by ISH. ImmunoMembrane DIA using digital photomicrographs and WSI showed almost perfect agreement. In conclusion, digital image analysis by ImmunoMembrane can help to resolve a majority of equivocal 2+ cases in HER2 IHC, which reduces the need for ISH testing.
Collapse
Affiliation(s)
- Henrik O Helin
- BioMediTech/Cancer Biology, University of Tampere, 33014, Tampere, Finland
| | - Vilppu J Tuominen
- BioMediTech/Cancer Biology, University of Tampere, 33014, Tampere, Finland
| | - Onni Ylinen
- BioMediTech/Cancer Biology, University of Tampere, 33014, Tampere, Finland
| | - Heikki J Helin
- HUSLAB, Division of Pathology and Genetics, Helsinki University Central Hospital, P.O. Box 400, 00029 HUS, Finland
| | - Jorma Isola
- BioMediTech/Cancer Biology, University of Tampere, 33014, Tampere, Finland.
| |
Collapse
|
17
|
Sarode VR, Xiang QD, Christie A, Collins R, Rao R, Leitch AM, Euhus D, Haley B. Evaluation of HER2/neu Status by Immunohistochemistry Using Computer-Based Image Analysis and Correlation With Gene Amplification by Fluorescence In Situ Hybridization Assay: A 10-Year Experience and Impact of Test Standardization on Concordance Rate. Arch Pathol Lab Med 2015; 139:922-8. [PMID: 26125432 DOI: 10.5858/arpa.2014-0127-oa] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The American Society of Clinical Oncology/College of American Pathologists proposed several recommendations for human epidermal growth factor receptor 2 (HER2) test standardization. One suggestion was that image analysis (IA) could be useful for scoring of HER2/neu immunohistochemistry. The utilization of IA in a real-world practice in a large cohort of cases has not been previously reported. OBJECTIVES To compare HER2/neu quantification by IA with gene amplification by fluorescence in situ hybridization (FISH); to determine sensitivity, specificity, and concordance rates with the FISH assay; and to determine association between HER2 status with estrogen receptor (ER), progesterone receptor (PR), and Ki-67 expression. DESIGN We evaluated HER2 results performed by immunohistochemistry and FISH in conjunction with ER, PR, and Ki-67 in 3093 invasive breast cancer cases from 2002 to 2011. RESULTS The overall concordance between immunohistochemistry and FISH was 87.3% (1768 of 2026). When analyzed by year, there was an improvement in the positive concordance rate from 49.4% (44 of 89) to 95.0% (57 of 60) (P < .001). The negative concordance rate was at least 95% with a median false-negative rate of 1.5%. In the FISH+ group, amplification ratio showed significant correlation with IA scores (P < .001). Positive versus negative HER2 status was associated with lower ER and PR levels (P < .001) and higher Ki-67 expression (P < .001). CONCLUSION Scoring of HER2/neu by IA was associated with high false-positive rates before 2008. Improvement in concordance rate after 2008 may be due to proper tissue handling, improved HER2/neu scoring by IA, and assay standardization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Barbara Haley
- From the Departments of Pathology (Drs Sarode, Xiang, and Collins)
| |
Collapse
|
18
|
Ayad E, Mansy M, Elwi D, Salem M, Salama M, Kayser K. Comparative study between quantitative digital image analysis and fluorescence in situ hybridization of breast cancer equivocal human epidermal growth factor receptors 2 score 2(+) cases. J Pathol Inform 2015; 6:31. [PMID: 26110098 PMCID: PMC4470009 DOI: 10.4103/2153-3539.158066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/19/2022] Open
Abstract
Background: Optimization of workflow for breast cancer samples with equivocal human epidermal growth factor receptors 2 (HER2)/neu score 2+ results in routine practice, remains to be a central focus of the on-going efforts to assess HER2 status. According to the College of American Pathologists/American Society of Clinical Oncology guidelines equivocal HER2/neu score 2+ cases are subject for further testing, usually by fluorescence in situ hybridization (FISH) investigations. It still remains on open question, whether quantitative digital image analysis of HER2 immunohistochemistry (IHC) stained slides can assist in further refining the HER2 score 2+. Aim of this Work: To assess utility of quantitative digital analysis of IHC stained slides and compare its performance to FISH in cases of breast cancer with equivocal HER2 score 2+. Materials and Methods: Fifteen specimens (previously diagnosed as breast cancer and was evaluated as HER 2- score 2+) represented the study population. Contemporary new cuts were prepared for re-evaluation of HER2 immunohistochemical studies and FISH examination. All the cases were digitally scanned by iScan (Produced by BioImagene [Now Roche-Ventana]). The IHC signals of HER2 were measured using an automated image analyzing system (MECES, www.Diagnomx.eu/meces). Finally, a comparative study was done between the results of the FISH and the quantitative analysis of the virtual slides. Results: Three out of the 15 cases with equivocal HER2 score 2+, turned out to be positive (3+) by quantitative digital analysis, and 12 were found to be negative in FISH too. Two of these three positive cases proved to be positive with FISH, and only one was negative. Conclusions: Quantitative digital analysis is highly sensitive and relatively specific when compared to FISH in detecting HER2/neu overexpression. Therefore, it represents a potential reliable substitute for FISH in breast cancer cases, which desire further refinement of equivocal IHC results.
Collapse
Affiliation(s)
- Essam Ayad
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mina Mansy
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalal Elwi
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mostafa Salem
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Salama
- Department of Pathology, University of Utah and ARUP Reference Lab, Utah, USA
| | - Klaus Kayser
- Department of Pathology, Humbold University Berlin, Berlin, Germany
| |
Collapse
|
19
|
Wilbur DC, Brachtel EF, Gilbertson JR, Jones NC, Vallone JG, Krishnamurthy S. Whole slide imaging for human epidermal growth factor receptor 2 immunohistochemistry interpretation: Accuracy, Precision, and reproducibility studies for digital manual and paired glass slide manual interpretation. J Pathol Inform 2015; 6:22. [PMID: 26110090 PMCID: PMC4466789 DOI: 10.4103/2153-3539.157788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/03/2015] [Indexed: 11/23/2022] Open
Abstract
Background: The use of digital whole slide imaging for human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) could create improvements in workflow and performance, allowing for central archiving of specimens, distributed and remote interpretation, and the potential for additional computerized automation. Procedures: The accuracy, precision, and reproducibility of manual digital interpretation for HER2 IHC were determined by comparison to manual glass slide interpretation. Inter- and intra-pathologist reproducibility and precision between the glass slide and digital interpretations of HER2 IHC were determined in 5 studies using DAKO HercepTest-stained breast cancer slides with the Philips Digital Pathology System. In 2 inter-method studies, 3 pathologists interpreted glass and digital slides in sequence or in random order with a minimum of 7 days as a washout period. These studies also measured inter-observer reproducibility and precision. Another two studies measured intra-pathologist reproducibility on cases read 10 times by glass and digital methods. One additional study evaluated the effects of adding IHC control slides with each run, using 1 pathologist interpreting glass and digital slides randomized from the sets above along with appropriate controls for each slide in the set. Results: The overall results show that there is no statistical difference between the variance of performance when comparing glass and digital HER2 interpretations; and there were no effects noted when control tissues were evaluated in conjunction with the test slides. Conclusions: The results show that there is an equivalence of result when interpreting HER2 IHC slides in breast cancer by either glass slides or digital images. Digital interpretation can therefore be safely and effectively used for this purpose.
Collapse
Affiliation(s)
- David C Wilbur
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Elena F Brachtel
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - John R Gilbertson
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas C Jones
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - John G Vallone
- Department of Pathology, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
20
|
Quantification of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry Using the Ventana Image Analysis System. Am J Surg Pathol 2015; 39:624-31. [DOI: 10.1097/pas.0000000000000375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Veta M, Pluim JPW, van Diest PJ, Viergever MA. Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 2015; 61:1400-11. [PMID: 24759275 DOI: 10.1109/tbme.2014.2303852] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper presents an overview of methods that have been proposed for the analysis of breast cancer histopathology images. This research area has become particularly relevant with the advent of whole slide imaging (WSI) scanners, which can perform cost-effective and high-throughput histopathology slide digitization, and which aim at replacing the optical microscope as the primary tool used by pathologist. Breast cancer is the most prevalent form of cancers among women, and image analysis methods that target this disease have a huge potential to reduce the workload in a typical pathology lab and to improve the quality of the interpretation. This paper is meant as an introduction for nonexperts. It starts with an overview of the tissue preparation, staining and slide digitization processes followed by a discussion of the different image processing techniques and applications, ranging from analysis of tissue staining to computer-aided diagnosis, and prognosis of breast cancer patients.
Collapse
|
22
|
Image analysis of immunohistochemistry is superior to visual scoring as shown for patient outcome of esophageal adenocarcinoma. Histochem Cell Biol 2014; 143:1-9. [PMID: 25156293 DOI: 10.1007/s00418-014-1258-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/13/2022]
Abstract
Quantification of protein expression based on immunohistochemistry (IHC) is an important step in clinical diagnoses and translational tissue-based research. Manual scoring systems are used in order to evaluate protein expression based on staining intensities and distribution patterns. However, visual scoring remains an inherently subjective approach. The aim of our study was to explore whether digital image analysis proves to be an alternative or even superior tool to quantify expression of membrane-bound proteins. We analyzed five membrane-binding biomarkers (HER2, EGFR, pEGFR, β-catenin, and E-cadherin) and performed IHC on tumor tissue microarrays from 153 esophageal adenocarcinomas patients from a single center study. The tissue cores were scored visually applying an established routine scoring system as well as by using digital image analysis obtaining a continuous spectrum of average staining intensity. Subsequently, we compared both assessments by survival analysis as an end point. There were no significant correlations with patient survival using visual scoring of β-catenin, E-cadherin, pEGFR, or HER2. In contrast, the results for digital image analysis approach indicated that there were significant associations with disease-free survival for β-catenin, E-cadherin, pEGFR, and HER2 (P = 0.0125, P = 0.0014, P = 0.0299, and P = 0.0096, respectively). For EGFR, there was a greater association with patient survival when digital image analysis was used compared to when visual scoring was (visual: P = 0.0045, image analysis: P < 0.0001). The results of this study indicated that digital image analysis was superior to visual scoring. Digital image analysis is more sensitive and, therefore, better able to detect biological differences within the tissues with greater accuracy. This increased sensitivity improves the quality of quantification.
Collapse
|
23
|
Guan SS, Chang J, Cheng CC, Luo TY, Ho AS, Wang CC, Wu CT, Liu SH. Afatinib and its encapsulated polymeric micelles inhibits HER2-overexpressed colorectal tumor cell growth in vitro and in vivo. Oncotarget 2014; 5:4868-80. [PMID: 24947902 PMCID: PMC4148106 DOI: 10.18632/oncotarget.2050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is known as a common malignant neoplasm worldwide. The role of EGFR/HER2 in CRC is unclear. Afatinib is an irreversible EGFR/HER2 inhibitor. There were few studies of afatinib on CRC. Here, we investigated the protein levels/expressions of HER2 in sera and tumors from CRC patients and the therapeutic effect of afatinib on HER2-overexpressed CRC in vitro and in vivo. The increased HER2 levels were detected in the collected sera and tumors of patients with CRC. The serological HER2 levels were correlated with the tumor HER2 expressions in patients. Afatinib also inhibited the HER2-positive tumor cell growth and caused apoptosis in HER2-overexpressed human colorectal cancer HCT-15 cells but not in low HER2 expressed human gastric cancer MKN45 cells. In vivo study showed that afatinib reduced tumor growth in HER2-overexpressed xenografts. Moreover, afatinib-encapsulated micelles displayed higher cytotoxic activity in HCT-15 cells and were more effective for tumor growth suppression in HCT-15-induced tumor xenografts than afatinib performance alone. Taken together, these findings suggest that higher serum HER2 levels reflect the higher HER2 contents in tumors of CRC patients, and the improved afatinib-encapsulated micelles possess high therapeutic efficacy in HER2-overexpressed CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chia Cheng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yueh Luo
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chia-Chi Wang
- Division of Hepatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Ma GF, Liu YM, Gao H, Miao Q, Luo TC, Zeng XQ, Chen SY. HER2 mRNA status contributes to the discrepancy between gene amplification and protein overexpression in gastric cancer. Dig Dis Sci 2014; 59:328-35. [PMID: 24185685 DOI: 10.1007/s10620-013-2925-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/14/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) is an important proto-oncogene of prognostic use in gastric cancer (GC). Fluorescence in-situ hybridization (FISH) and immunohistochemistry (IHC) are the main clinical methods of detection of HER2, but consistency between the methods is poor and the cause of the discrepancy is unclear. AIM To investigate the involvement of HER2 mRNA status in the disparity between gene amplification and protein overexpression. METHODS We investigated HER2 gene, mRNA, and protein profiles in gastric precancer and cancer tissues by use of the molecular approaches FISH, real-time polymerase chain reaction, and IHC. The relationships between HER2 and matrix metalloproteinase 9 (MMP9) and Smad7 expression were analyzed and the involvement of HER2 in the interaction between tumor cells and lymphocytes was investigated by coculturing GC cell lines with peripheral blood mononuclear cells (PBMCs). RESULTS HER2 protein expression was significantly increased in cancer compared with precancer (P = 0.003), and the corresponding mRNA levels were significantly lower in precancer and cancer tissues than in normal tissues (κ = 0.290, P = 0.025). HER2 mRNA levels were significantly higher in tumor than in peritumor tissue (P = 0.028), and were positively correlated with MMP9 and Smad7 mRNA levels in tumor tissues. HER2 mRNA expression in GC cell lines was increased by coculture with PBMCs. CONCLUSIONS Different HER2 mRNA profiles, possibly in relation to contact between tumor cells and lymphocytes, might help to explain the discrepancy between gene amplification and protein overexpression results.
Collapse
Affiliation(s)
- Gui-Fen Ma
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China,
| | | | | | | | | | | | | |
Collapse
|
25
|
Greer LT, Rosman M, Mylander WC, Hooke J, Kovatich A, Sawyer K, Buras RR, Shriver CD, Tafra L. Does breast tumor heterogeneity necessitate further immunohistochemical staining on surgical specimens? J Am Coll Surg 2012; 216:239-51. [PMID: 23141136 DOI: 10.1016/j.jamcollsurg.2012.09.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prognostic and predictive tumor markers in breast cancer are most commonly performed on core needle biopsies (CNB) of the primary tumor. Because treatment recommendations are influenced by these markers, it is imperative to verify strong concordance between tumor markers on CNB specimens and the corresponding surgical specimens (SS). STUDY DESIGN A prospective study was performed on 165 women (205 samples) with breast cancer diagnosed from January 2009 to July 2011. Tumor type, grade, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and Ki67 expression by immunohistochemical (IHC) testing were retrospectively analyzed in the CNB and SS. Contingency tables and agreement modeling were performed. RESULTS There was substantial agreement between the CNB and SS for PR% and HER2; moderate agreement for tumor type, grade, and ER%; and fair agreement for Ki67%. In 8% of patients (n = 13), tumor heterogeneity was seen. In heterogeneous tumors the overall concordance between the CNB and SS was worse, especially for HER2. Six of these patients had areas of tumor that were positive for HER2, which were not detected in their CNBs. Nine patients had multiple distinct molecular subtypes within their tumor(s). CONCLUSIONS The heterogeneous distribution of antigens in breast cancer tumors raises concern that the CNB may not adequately represent the true biologic profile in all patients. There is strong concordance for tumor type, ER, and PR between CNB and SS (although a quantitative decline was noted from CNB to SS); however, HER2 activity does not appear to be adequately detected on CNB in patients with heterogeneous tumors. These data suggest that IHC testing on the CNB alone may not be adequate to tailor targeted therapy in all patients.
Collapse
Affiliation(s)
- Lauren T Greer
- Clinical Breast Care Project, Walter Reed National Military Medical Center, Bethesda, MD 20889-5600, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|