1
|
Dutta B, Loo S, Kam A, Wang X, Wei N, Luo KQ, Liu CF, Tam JP. Cell-Permeable Microprotein from Panax Ginseng Protects Against Doxorubicin-Induced Oxidative Stress and Cardiotoxicity. Antioxidants (Basel) 2025; 14:493. [PMID: 40298878 PMCID: PMC12024455 DOI: 10.3390/antiox14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
(1) Background: Doxorubicin (DOX) is a frontline chemotherapeutic, but its side-effects from oxidative stress, leading to cardiotoxicity, pose significant challenges to its clinical use. We recently discovered a novel family of proteolysis-resistant, cystine-dense, and cell-penetrating microproteins from Panax ginseng that we term ginsentides. Ginsentides, such as the 31-residue TP1, coordinate multiple biological systems to prevent vascular dysfunction and endoplasmic reticulum stress induced by internal and external stressors. (2) Methods: We assessed the protective effects of ginsentide TP1 on DOX-induced cardiotoxicity using both in vitro functional studies on H9c2 cardiomyocytes and in vivo animal models by zebrafish and ICR mouse models. In these models, we examined oxidative stress, apoptosis, intracellular calcium levels, mitochondrial function, inflammatory responses, and cardiac function. (3) Results: We show that ginsentide TP1 protects against DOX-induced cytotoxicity in the mitochondria-rich H9c2 cardiomyocytes and reduces myocardial injury in zebrafish and mice by mitigating oxidative stress, inflammation, calcium, and mitochondrial dysfunction, as well as apoptosis-mediated cell death. Importantly, TP1 preserves cellular homeostasis without compromising the anticancer potency of DOX in breast cancer cells. (4) Conclusions: our findings highlight a specific antioxidative function of ginsentide TP1 in managing DOX-induced cardiotoxicity during cancer treatment and provide a promising lead for developing cardioprotective peptides and microproteins against oxidative stress.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- School of Pharmacy, The Neotia University, Sarisa, Diamond Harbour Road, 24 Parganas (South), West Bengal 743368, India
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xiaoliang Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Na Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore;
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China;
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
| |
Collapse
|
2
|
Aprotosoaie AC, Costache AD, Costache II. Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go? Pharmaceutics 2022; 14:722. [PMID: 35456556 PMCID: PMC9025701 DOI: 10.3390/pharmaceutics14040722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022] Open
Abstract
Despite progress in understanding the pathogenesis of atherosclerosis, the development of effective therapeutic strategies is a challenging task that requires more research to attain its full potential. This review discusses current pharmacotherapy in atherosclerosis and explores the potential of some important emerging therapies (antibody-based therapeutics, cytokine-targeting therapy, antisense oligonucleotides, photodynamic therapy and theranostics) in terms of clinical translation. A chemopreventive approach based on modern research of plant-derived products is also presented. Future perspectives on preventive and therapeutic management of atherosclerosis and the design of tailored treatments are outlined.
Collapse
Affiliation(s)
- Ana Clara Aprotosoaie
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Alexandru-Dan Costache
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Irina-Iuliana Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| |
Collapse
|
3
|
Li Y, Zhang W. Effect of Ginsenoside Rb2 on a Myocardial Cell Model of Coronary Heart Disease through Nrf2/HO-1 Signaling Pathway. Biol Pharm Bull 2022; 45:71-76. [PMID: 34980781 DOI: 10.1248/bpb.b21-00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ginsenoside Rbs are the primary active compounds of Panax ginseng and ginsenoside Rb2 is a renowned component among the Rbs. This study aimed to investigate the potential effects of ginsenoside Rb2 on coronary heart disease (CHD). H9c2 cells were exposed to H2O2 to establish CHD model in vitro. Gene expression was determined by quantitative realtime PCR (qPCR) and Western blot. Cellular functions were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assays. We found that Ginsenoside Rb2 promoted cell proliferation while suppressed oxidative stress and apoptosis of H9c2 cells induced by H2O2 exposure. Mechanistically, Ginsenodise Rb2 involves in the regulation of nuclear factor, erythroid 2 like 2 (Nrf2)/heme oxygenase (HO)-1 signaling pathway. Inactivation of Nrf2/HO-1 signaling pathway reversed the effects of ginsenoside Rb2 on H9c2 cells. Taken together, ginsenoside Rb2 exhibited a cardioprotective effect in vitro. The underlying mechanism of ginsenoside Rb2 in H9c2 cells could be standardized to Nrf2/HO-1 signaling pathway, inhibiting cell apoptosis and regaining cell proliferation. The present study has proposed a novel mechanism of ginsenoside Rb2 in the cardioprotective effect.
Collapse
Affiliation(s)
- Yuning Li
- Department of Pharmacy, The 921st Hospital of Joint Logistic Support Force of PLA
| | - Wenhua Zhang
- Department of Pediatrics, The 3rd Hospital of Changsha
| |
Collapse
|
4
|
Tan MM, Chen MH, Han F, Wang JW, Tu YX. Role of Bioactive Constituents of Panax notoginseng in the Modulation of Tumorigenesis: A Potential Review for the Treatment of Cancer. Front Pharmacol 2021; 12:738914. [PMID: 34776959 PMCID: PMC8578715 DOI: 10.3389/fphar.2021.738914] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of death, affecting people in both developed and developing countries. It is a challenging disease due to its complicated pathophysiological mechanism. Many anti-cancer drugs are used to treat cancer and reduce mortality rates, but their toxicity limits their administration. Drugs made from natural products, which act as multi-targeted therapy, have the ability to target critical signaling proteins in different pathways. Natural compounds possess pharmacological activities such as anti-cancer activity, low toxicity, and minimum side effects. Panax notoginseng is a medicinal plant whose extracts and phytochemicals are used to treat cancer, cardiovascular disorders, blood stasis, easing inflammation, edema, and pain. P. notoginseng's secondary metabolites target cancer's dysregulated pathways, causing cancer cell death. In this review, we focused on several ginsenosides extracted from P. notoginseng that have been evaluated against various cancer cell lines, with the aim of cancer treatment. Furthermore, an in vivo investigation of these ginsenosides should be conducted to gain insight into the dysregulation of several pathways, followed by clinical trials for the potential and effective treatment of cancer.
Collapse
Affiliation(s)
- Ming-Ming Tan
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Min-Hua Chen
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun-Wei Wang
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Authentication of American ginseng (Panax quinquefolius L.) from different origins by linear discriminant analysis of multi-elements. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03816-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
7
|
Abstract
To the best of our knowledge, no study has systematically reviewed and analyzed the research trends of wild-simulated ginseng (WSG) used for food or medicinal purposes in many countries. WSG, a non-timber forest product, has been traditionally produced using agroforestry practices, and it has been consumed in various ways for a long time. WSG has a great demand in the market due to its medicinal effects, particularly in improving forest livelihoods and human health. Due to the significance of WSG, we conducted this research to explore the global research trends on WSG using systematic review methodology and keyword analysis. We used two international academic databases, the Web of Science and SCOPUS, to extract 115 peer-reviewed articles published from 1982 to 2020. The research subjects, target countries, and keywords were analyzed. Our results indicate four categories of WSG research subjects, namely growth conditions, components, effects on humans/animals, and the environment of WSG, and the case studies were mainly from the Republic of Korea, China, and the USA. Through topic modelling, research keywords were classified into five groups, namely medicinal effects, metabolite analysis, genetic diversity, cultivation conditions, and bioactive compounds. We observed that the research focus on WSG changed from the biological properties and cultivation conditions of WSG to the precise identification and characterization of bioactive metabolites of WSG. This change indicates an increased academic interest in the value-added utilization of WSG.
Collapse
|
8
|
Psoriasis and Gut Microbiome-Current State of Art. Int J Mol Sci 2021; 22:ijms22094529. [PMID: 33926088 PMCID: PMC8123672 DOI: 10.3390/ijms22094529] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory disease that affects around 125 million people worldwide. Several studies concerning the gut microbiota composition and its role in disease pathogenesis recently demonstrated significant alterations among psoriatic patients. Certain parameters such as Firmicutes/Bacteroidetes ratio or Psoriasis Microbiome Index were developed in order to distinguish between psoriatic and healthy individuals. The “leaky gut syndrome” and bacterial translocation is considered by some authors as a triggering factor for the onset of the disease, as it promotes chronic systemic inflammation. The alterations were also found to resemble those in inflammatory bowel diseases, obesity and certain cardiovascular diseases. Microbiota dysbiosis, depletion in SCFAs production, increased amount of produced TMAO, dysregulation of the pathways affecting the balance between lymphocytes populations seem to be the most significant findings concerning gut physiology in psoriatic patients. The gut microbiota may serve as a potential response-to-treatment biomarker in certain cases of biological treatment. Oral probiotics administration as well as fecal microbial transplantation were most reported in bringing health benefits to psoriatic patients. However, the issue of psoriatic bacterial gut composition, its role and healing potential needs further investigation. Here we reviewed the literature on the current state of the relationship between psoriasis and gut microbiome.
Collapse
|
9
|
Abstract
BACKGROUND Dietary supplements with ginseng, or ginseng alone, are widely used for a broad range of conditions, including erectile dysfunction. Ginseng is particularly popular in Asian countries. Individual studies assessing its effects are mostly small, of uneven methodological quality and have unclear results. OBJECTIVES To assess the effects of ginseng on erectile dysfunction. SEARCH METHODS We conducted systematic searches on multiple electronic databases, including CENTRAL, MEDLINE, Embase, CINAHL, AMED, and loco-regional databases of east Asia, from their inceptions to 30 January 2021 without restrictions on language and publication status. Handsearches included conference proceedings. SELECTION CRITERIA We included randomized or quasi-randomized controlled trials that evaluated the use of any type of ginseng as a treatment for erectile dysfunction compared to placebo or conventional treatment. DATA COLLECTION AND ANALYSIS Two authors independently classified studies and three authors independently extracted data and assessed risk of bias in the included studies. We rated the certainty of evidence according to the GRADE approach. MAIN RESULTS We included nine studies with 587 men with mild to moderate erectile dysfunction, aged from 20 to 70 years old. The studies all compared ginseng to placebo. We found only short-term follow-up data (up to 12 weeks). Primary outcomes Ginseng appears to have a trivial effect on erectile dysfunction when compared to placebo based on the Erectile Function Domain of the International Index of Erectile Function (IIEF)-15 instrument (scale: 1 to 30, higher scores imply better function; mean difference [MD] 3.52, 95% confidence interval [CI] 1.79 to 5.25; I² = 0%; 3 studies; low certainty evidence) assuming a minimal clinically important difference (MCID) of 4. Ginseng probably also has a trivial effect on erectile function when compared to placebo based on the IIEF-5 instrument (scale: 1 to 25, higher scores imply better function; MD 2.39, 95% CI 0.89 to 3.88; I² = 0%; 3 studies; moderate certainty evidence) assuming a MCID of 5. Ginseng may have little to no effect on adverse events compared to placebo (risk ratio [RR] 1.45, 95% CI 0.69 to 3.03; I² = 0%; 7 studies; low certainty evidence). Based on 86 adverse events per 1000 men in the placebo group, this would correspond to 39 more adverse events per 1000 (95% CI 27 fewer to 174 more). Secondary outcomes Ginseng may improve men's self-reported ability to have intercourse (RR 2.55, 95% CI 1.76 to 3.69; I² = 23%; 6 studies; low certainty evidence). Based on 207 per 1000 men self-reporting the ability to have intercourse in the placebo group, this would correspond to 321 more men (95% CI 158 more to 558 more) per 1000 self-reporting the ability to have intercourse. Ginseng may have a trivial effect on men's satisfaction with intercourse based on the Intercourse Satisfaction Domain of the IIEF-15 (scale: 0 to 15, higher scores imply greater satisfaction; MD 1.19, 95% CI 0.41 to 1.97; I²=0%; 3 studies; low certainty evidence) based on a MCID of 25% improvement from baseline. It may also have a trivial effect on men's satisfaction with intercourse based on item 5 of the IIEF-5 (scale: 0 to 5, higher scores imply more satisfaction; MD 0.60, 95% CI 0.02 to 1.18; 1 study; low certainty evidence) based on a MCID of 25% improvement from baseline. No study reported quality of life as an outcome. We found no trial evidence to inform comparisons to other treatments for erectile dysfunction, such as phosphodiesterase-5 inhibitors. We were unable to conduct any predefined subgroup analyses. AUTHORS' CONCLUSIONS Based on mostly low certainty evidence, ginseng may only have trivial effects on erectile function or satisfaction with intercourse compared to placebo when assessed using validated instruments. Ginseng may improve men's self-reported ability to have intercourse. It may have little to no effect on adverse events. We found no trial evidence comparing ginseng to other agents with a more established role in treating erectile dysfunction, such as phosphodiesterase-5 inhibitors.
Collapse
Affiliation(s)
- Hye Won Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea, South
| | - Myeong Soo Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Korea, South
- Korean Convergence Medicine, University of Science and Technology, Daejeon, Korea, South
| | - Tae-Hun Kim
- Korean Medicine Clinical Trial Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea, South
| | - Terje Alraek
- Institute of Health Sciences, Kristiania University College, Oslo, Norway
- NAFKAM, Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Chris Zaslawski
- College of Traditional Chinese Medicine, University of Technology, Sydney, Australia
| | - Jong Wook Kim
- Department of Urology, Korea University Guro Hospital, Seoul, Korea, South
| | - Du Geon Moon
- Department of Urology, Korea University Guro Hospital, Seoul, Korea, South
| |
Collapse
|
10
|
Abstract
RESULTS Exposure of 0.2 mM H2O2 in lenses resulted in obvious cloudiness and typical pathological changes of cataract such as rupture of the lens capsule, degenerative lens epithelial cells (LECs), etc. Rg1 effectively prevented lens opacity caused by H2O2. After Rg1 treatment, lens WSP content, the level of SOD, total GSH, and reduced GSH were increased, while the level of MDA and oxidized GSH were decreased. In addition, MDA concentration of lens by Rg1 treatment only was found to be lower than the controls. Rg1 attenuated H2O2-induced cell injury at the concentration of 0.4 mM that it elevated cell activity, and peaked at 0.6 mM. CONCLUSIONS This study demonstrated that Rg1 might have the capability to protect lens against oxidative stress-induced cataract, at least by local administration.Abbreviations: LECs: lens epithelial cells; Rg1: Ginsenoside Rg1; SD: Sprague-Dawley; ROS: reactive oxygen species; SOD: Superoxide Dismutase; GSH: glutathione; MDA: Malonediadehyde; H2O2: Hydrogen peroxide.
Collapse
Affiliation(s)
- Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Ophthalmology, People's Hospital of Jiangyin, Wuxi, Jiangsu, China
| | - Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Liu Z, Liu X, Li W, Luo Q, Liu J, Wang D. Anti-colon cancer activity tracking isolation of peptide from ginseng leaves and potential mechanisms evaluation in vitro and in vivo. J Pept Sci 2021; 27:e3297. [PMID: 33462944 DOI: 10.1002/psc.3297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022]
Abstract
The ginseng has been used for over hundred years, in the belief of promoting longevity. However, the anticancer activity of ginseng leaf peptide (GP) has been never explored. In current study, we isolated the GPs and explored the anti-colon cancer activity in vitro and in vivo. MTT results showed that the GP-1 (GP-1~FKEHGY) performed most antiproliferative activity against colon cancer CT-26 cells with an IC50 of 86.4 ± 9.46 μM (48 h). Further study indicated that GP-1 activated the caspases, regulated the p53/murine double minute 2 (MDM2) state, and induced the CT-26 cells apoptosis in a mitochondrial pathway. Meanwhile, the GP-1 arrested the CT-26 cells in G0/G1 phase accompanied with cyclin expression regulation. In addition, GP-1 significantly suppressed the tumor growth and induced the tumor cells apoptosis in vivo. Notably, the GP-1 would be a potential anti-colon cancer candidate.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaolei Liu
- Department of Clinical Laboratory, Dongying People's Hospital, Dongying, Shandong, 257091, China
| | - Wei Li
- Department of Clinical Laboratory, Dongying People's Hospital, Dongying, Shandong, 257091, China
| | - Qiang Luo
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518071, China
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518071, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, Jilin, 130021, China
| |
Collapse
|
12
|
Ratan ZA, Youn SH, Kwak YS, Han CK, Haidere MF, Kim JK, Min H, Jung YJ, Hosseinzadeh H, Hyun SH, Cho JY. Adaptogenic effects of Panax ginseng on modulation of immune functions. J Ginseng Res 2021; 45:32-40. [PMID: 33437154 PMCID: PMC7790873 DOI: 10.1016/j.jgr.2020.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Traditional medicinal practices have used natural products such as adaptogens to treat inflammatory, autoimmune, neurodegenerative, bacterial, and viral diseases since the early days of civilization. Panax ginseng Myer is a common herb used in East Asian countries for millennia, especially in Korea, China, and Japan. Numerous studies indicate that ginseng can modulate the immune system and thereby prevent diseases. Although the human immune system comprises many different types of cells, multiple studies suggest that each type of immune cell can be controlled or stimulated by ginseng or its derivatives. Provisional lists of ginseng's potential for use against viruses, bacteria, and other microorganisms suggest it may prove to be a valuable pharmaceutical resource, particularly if higher-quality evidence can be found. Here, we reviewed the role of ginseng as an immune-modulating agent in attempt to provide a valuable starting point for future studies on the herb and the human immune system.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- School of Health and Society, University of Wollongong, NSW, Australia
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Soo Hyun Youn
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | | | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - You-Jung Jung
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon, Republic of Korea
| | | | - Sun Hee Hyun
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo D, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41:630-703. [PMID: 33103257 PMCID: PMC7756641 DOI: 10.1002/med.21743] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.
Collapse
Affiliation(s)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Alexander N. Shikov
- Department of technology of dosage formsSaint‐Petersburg State Chemical‐Pharmaceutical UniversitySt. PetersburgRussia
| | - Olga N. Pozharitskaya
- Department of BiotechnologyMurmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS)MurmanskRussia
| | - Kenny Kuchta
- Department of Far Eastern Medicine, Clinic for Gastroenterology and Gastrointestinal OncologyUniversity Medical Center GöttingenGöttingenGermany
| | - Pulok K. Mukherjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Subhadip Banerjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines, UCL School of Pharmacy, Centre for Pharmacognosy and PhytotherapyUniversity of LondonLondonUK
| | - Wanying Wu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - De‐an Guo
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Hildebert Wagner
- Department of Pharmacy, Center for Pharma ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
14
|
Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, Youn GS, Sung H, Shin MJ, Suk KT. Effect of Korean Red Ginseng on metabolic syndrome. J Ginseng Res 2020; 45:380-389. [PMID: 34025131 PMCID: PMC8134847 DOI: 10.1016/j.jgr.2020.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.
Collapse
Key Words
- ACC, Acetyl-Coenzyme A carboxylase
- ADP, adenosine diphosphate
- AG, American ginseng extract
- AGE, advanced glycation end product
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- AST, aspartate aminotransferase
- Akt, protein kinase B
- BMI, body mass index
- C/EBPα, CCAAT/enhancer-binding protein alpha
- COX-2, cyclooxygenase-2
- CPT, current perception threshold
- CPT-1, carnitine palmitoyl transferase 1
- CRP, C-reactive protein
- CVD, Cardiovascular disease
- DBP, diastolic blood pressure
- DEN, diethyl nitrosamine
- EAT, epididymis adipose tissue
- EF, ejection fraction
- FABP4, fatty acid binding protein 4
- FAS, Fatty acid synthase
- FFA, free fatty acid
- FR, fine root concentration
- FS, fractional shortening
- GBHT, ginseng-plus-Bai-Hu-Tang
- GLUT, glucose transporter type
- GPx, glutathione peroxidase
- GS, ginsenoside
- GST, glutathione S-transferase
- GST-P, glutathione S-transferase placental form
- GTT, glucose tolerance test
- HCC, hepatocellular carcinoma
- HCEF-RG, hypotensive components-enriched fraction of red ginseng
- HDL, high-density lipoprotein
- HFD, High fat diet
- HOMA-IR, homeostasis model assessment of insulin resistance index
- HbA1c, glycosylated hemoglobin
- I.P., intraperitoneal injection
- IL, interleukin
- IR, insulin resistance
- ITT, insulin tolerance test
- Insulin resistance
- KRG, Korean Red Ginseng
- LDL, low-density lipoprotein
- LPL, lipoprotein lipase
- Lex, lower extremities
- MDA, malondialdehyde
- MMP, Matrix metallopeptidases
- MS, Metabolic syndrome
- Metabolic syndrome
- NAFLD, Non-alcoholic fatty liver disease
- NF-кB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK cell, Natural killer cell
- NMDA-NR1, N-methyl-D-aspartate NR1
- NO, nitric oxide
- NRF1, Nuclear respiratory factor 1
- Non-alcoholic fatty liver disease
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OLETF rat, Otsuka Long-Evans Tokushima fatty rat
- PCG-1α, PPAR-γ coactivator-1α
- PI3K, phosphoinositide 3-kinase
- PPAR, peroxisome proliferator-activated receptors
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- Panax ginseng
- REKRG, Rg3-enriched KRG
- ROS, Reactive oxygen species
- Rg3-KGE, Rg3-enriched KRG extract
- SBP, systolic blood pressure
- SCD, Stearoyl-Coenzyme A desaturase
- SHR, spontaneously hypertensive rat
- SREBP-1C, Sterol regulatory element-binding protein 1
- STAT5, Signal transducer and activator of transcription 5
- STZ, streptozotocin
- TBARS, thiobarbituric acid reactive substances
- TC, total cholesterol
- TG, triglyceride
- TNF, tumor necrosis factor
- UCP, Mitochondrial uncoupling proteins
- VLDL, very low-density lipoprotein
- iNOS, inducible nitric oxide synthase
- t-BHP, tert-butyl hyperoxide
- tGST, total glutathione
Collapse
Affiliation(s)
- Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seul Ki Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ye Rin Choi
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyeong Seob Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hotaik Sung
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
15
|
Lee HJ, Kim BM, Lee SH, Sohn JT, Choi JW, Cho CW, Hong HD, Rhee YK, Kim HJ. Ginseng-Induced Changes to Blood Vessel Dilation and the Metabolome of Rats. Nutrients 2020; 12:nu12082238. [PMID: 32727012 PMCID: PMC7468881 DOI: 10.3390/nu12082238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/03/2023] Open
Abstract
Ginseng consumption has been shown to prevent and reduce many health risks, including cardiovascular disease. However, the ginseng-induced changes in biofluids and tissue metabolomes associated with blood health remain poorly understood. In this study, healthy rats were orally administered ginseng extracts or water for one month. Biofluid and tissue metabolites along with steroid hormones, plasma cytokines, and blood pressure factors were determined to elucidate the relationship between ginseng intake and blood vessel health. Moreover, the effect of ginseng extract on blood vessel tension was measured from the thoracic aorta. Ginseng intake decreased the levels of blood phospholipids, lysophosphatidylcholines and related enzymes, high blood pressure factors, and cytokines, and induced vasodilation. Moreover, ginseng intake decreased the level of renal oxidized glutathione. Overall, our findings suggest that ginseng intake can improve blood vessel health via modulation of vasodilation, oxidation stress, and pro-inflammatory cytokines. Moreover, the decrease in renal oxidized glutathione indicated that ginseng intake is positively related with the reduction in oxidative stress-induced renal dysfunction.
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do 52828, Korea; (H.-J.L.); (B.-M.K.)
| | - Bo-Min Kim
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do 52828, Korea; (H.-J.L.); (B.-M.K.)
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 79 Gangnam-ro, Jinju, Gyeongsangnam-do 52727, Korea; (S.H.L.); (J.-T.S.)
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 79 Gangnam-ro, Jinju, Gyeongsangnam-do 52727, Korea; (S.H.L.); (J.-T.S.)
- Institute of Health Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do 52828, Korea
| | - Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
- Correspondence: (Y.K.R.); (H.-J.K.); Tel.: +82-63-219-9319 (Y.K.R.); +82-55-772-1908 (H.-J.K.); Fax: +82-63-219-9876 (Y.K.R.); +82-55-772-1909 (H.-J.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do 52828, Korea; (H.-J.L.); (B.-M.K.)
- Department of Food Science & Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea
- Correspondence: (Y.K.R.); (H.-J.K.); Tel.: +82-63-219-9319 (Y.K.R.); +82-55-772-1908 (H.-J.K.); Fax: +82-63-219-9876 (Y.K.R.); +82-55-772-1909 (H.-J.K.)
| |
Collapse
|
16
|
Jeong E, Lim Y, Kim KJ, Ki HH, Lee D, Suh J, So SH, Kwon O, Kim JY. A Systems Biological Approach to Understanding the Mechanisms Underlying the Therapeutic Potential of Red Ginseng Supplements against Metabolic Diseases. Molecules 2020; 25:E1967. [PMID: 32340247 PMCID: PMC7221703 DOI: 10.3390/molecules25081967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022] Open
Abstract
Red ginseng has been widely used in health-promoting supplements in Asia and is becoming increasingly popular in Western countries. However, its therapeutic mechanisms against most diseases have not been clearly elucidated. The aim of the present study was to provide the biological mechanisms of red ginseng against various metabolic diseases. We used a systems biological approach to comprehensively identify the component-target and target-pathway networks in order to explore the mechanisms underlying the therapeutic potential of red ginseng against metabolic diseases. Of the 23 components of red ginseng with target, 5 components were linked with 37 target molecules. Systematic analysis of the constructed networks revealed that these 37 targets were mainly involved in 9 signaling pathways relating to immune cell differentiation and vascular health. These results successfully explained the mechanisms underlying the efficiency of red ginseng for metabolic diseases, such as menopausal symptoms in women, blood circulation, diabetes mellitus, and hyperlipidemia.
Collapse
Affiliation(s)
- Eunseon Jeong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (O.K.)
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Hyeon-Hui Ki
- Bio-Synergy Research Center, Daejeon 34141, Korea; (H.-H.K.); (D.L.)
| | - Doheon Lee
- Bio-Synergy Research Center, Daejeon 34141, Korea; (H.-H.K.); (D.L.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jaehyun Suh
- R&D Headquarter, Korea Ginseng Corporation, Daejeon 34128, Korea; (J.S.); (S.-H.S.)
| | - Seung-Ho So
- R&D Headquarter, Korea Ginseng Corporation, Daejeon 34128, Korea; (J.S.); (S.-H.S.)
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (O.K.)
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea;
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| |
Collapse
|
17
|
Nagar H, Kang SK, Choi SW, Song HJ, Choi SJ, Piao S, Kim S, Lee I, Kim CS. Antihypertensive Effects of Rg3-Enriched Korean Vitamin Ginseng in Spontaneously Hypertensive Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x19900712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ginseng is well known to treat various diseases. Ginsenoside Rg3 exhibits a variety of pharmacological activities including cardiovascular protective effects. Vitamins utilized as supplements have minimal interactions with other drugs making them attractive targets for therapeutics. Here, we prepared Rg3-enriched Korean ginseng catalyzed by vitamin (REKVG) and evaluated its ability to improve hypertension in spontaneously hypertensive rats (SHRs). The ginsenoside content in both Korean Red ginseng (KRG) and REKVG were analyzed using high-performance liquid chromatography (HPLC). Male SHRs and Wistar-Kyoto rats (WKYs) were randomly divided into 6 groups (WKY saline, WKY KRG, WKY REKVG, SHR saline, SHR KRG, and SHR REKVG). KRG and REKVG were orally administered once daily to the rats at a dose of 10 mg/kg for 6 weeks, and blood pressure was measured in live rats using the tail-cuff method. Human umbilical vein endothelial cells were used for the in vitro experiment. HPLC chromatograms revealed that the concentration of ginsenoside Rg3 in REKVG was much higher than that in KRG. The administration of REKVG significantly decreased the systolic blood pressure in SHRs at the end of 6 weeks as compared to KRG. Further, REKVG use resulted in a dose-dependent increase in Akt and endothelial nitric oxide synthase (eNOS) phosphorylation and NO production in endothelial cells. In addition, the administration of REKVG significantly increased Akt and eNOS phosphorylation and increased plasma NO levels in SHRs. We conclude that REKVG effectively lowers the blood pressure in rats and therefore could be considered for use in preventing or improving hypertension.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Si Wan Choi
- Division of Cardiology, Internal Medicine, School of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, School of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shuyu Piao
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Zhou T, Sun L, Yang S, Lv Y, Cao Y, Gang X, Wang G. 20(S)-Ginsenoside Rg3 Protects Kidney from Diabetic Kidney Disease via Renal Inflammation Depression in Diabetic Rats. J Diabetes Res 2020; 2020:7152176. [PMID: 32258169 PMCID: PMC7106937 DOI: 10.1155/2020/7152176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/26/2020] [Accepted: 02/15/2020] [Indexed: 02/04/2023] Open
Abstract
20(S)-Ginsenoside Rg3 (20(S)-Rg3) has been shown to induce apoptosis by interfering with several signaling pathways. Furthermore, it has been reported to have anticancer and antidiabetic effects. In order to detect the protective effect of 20(S)-Rg3 on diabetic kidney disease (DKD), diabetic rat models which were established by administering high-sugar, high-fat diet combined with intraperitoneal injection of streptozotocin (STZ), and age-matched wild-type (WT) rat were given 20(S)-Rg3 for 12 weeks, with three groups: control group (normal adult rats with saline), diabetic group (diabetic rats with saline), and 20(S)-Rg3 treatment group (diabetic rats with 20(S)-Rg3 (10 mg/kg body weight/day)). The biochemical indicators and the changes in glomerular basement membrane and mesangial matrix were detected. TUNEL staining was used to detect glomerular and renal tubular cell apoptosis. Immunohistochemical staining was used to detect the expression of fibrosis factors and inflammation factors in rat kidney tissues. Through periodic acid-Schiff staining, we observed that the change in renal histology was improved and renal tubular epithelial cell apoptosis decreased significantly by treatment with 20(S)-Rg3. Plus, the urine protein decreased in the rats with the 20(S)-Rg3 treatment. Fasting blood glucose, creatinine, total cholesterol, and triglyceride levels in the 20(S)-Rg3 treatment group were all lower than those in the diabetic group. Mechanistically, 20(S)-Rg3 dramatically downregulated the expression of TGF-β1, NF-κB65, and TNF-α in the kidney. These resulted in a significant prevention of renal damage from the inflammation. The results of the current study suggest that 20(S)-Rg3 could potentially be used as a novel treatment against DKD.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Yue Cao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| |
Collapse
|
19
|
Parlakpinar H, Ozhan O, Ermis N, Vardi N, Cigremis Y, Tanriverdi LH, Colak C, Acet A. Acute and Subacute Effects of Low Versus High Doses of Standardized Panax ginseng Extract on the Heart: An Experimental Study. Cardiovasc Toxicol 2019; 19:306-320. [DOI: 10.1007/s12012-019-09512-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Park CR, Pyo MK, Lee H, Hong SY, Kim SH, Park CB, Oh SM. Acute and genetic toxicity of GS-E3D, a new pectin lyase-modified red ginseng extract. Regul Toxicol Pharmacol 2019; 104:157-162. [PMID: 30904430 DOI: 10.1016/j.yrtph.2019.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 11/28/2022]
Abstract
Korean red ginseng and its extract have been used as traditional medicines and functional foods in countries worldwide. Pectin lyase-modified red ginseng extract (GS-E3D) was newly developed as a dietary supplement for obesity, diabetes-related renal dysfunction, etc. In this study, the safety of GS-E3D on acute toxicity and genotoxicity was evaluated. For acute study, Sprague-Dawley rats were administrated by oral gavage at a dose of 5000 mg/kg GS-E3D. To evaluate genotoxicity of GS-E3D, we conducted three-battery tests, which are Ames test using Escherichia coli (WP2uvrA pKM101) and Salmonella typhimurium strains (TA98, TA100, TA1535 and TA1537), chromosomal aberration test -using Chinese hamster lung cells, and micronucleus test using ICR mice. In acute toxicity studies, there were no dead animals or abnormal necropsy findings in the control group and GS-E3D (5000 mg/kg) treated group. GS-E3D did not induce mutagenicity in the bacterial test, chromosomal aberrations in Chinese hamster lung cells and micronuclei in bone marrow cells of mice. Conclusively, the approximate lethal dose of GS-E3D was greater than 5000 mg/kg bw and GS-E3D has no genotoxic potential in the three-battery tests on genotoxicity.
Collapse
Affiliation(s)
| | - Mi Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan, 312-804, South Korea
| | - Hwan Lee
- International Ginseng and Herb Research Institute, Geumsan, 312-804, South Korea
| | | | - Su Hwan Kim
- Biotoxtech. Co. Ltd, Cheongju, 13000, South Korea
| | | | - Seung Min Oh
- Department of Nanofusion Technology, Hoseo University, Asan, 31499, South Korea.
| |
Collapse
|
21
|
Han X, Li M, Zhao Z, Zhang Y, Zhang J, Zhang X, Zhang Y, Guan S, Chu L. Mechanisms underlying the cardio-protection of total ginsenosides against myocardial ischemia in rats in vivo and in vitro: Possible involvement of L-type Ca 2+ channels, contractility and Ca 2+ homeostasis. J Pharmacol Sci 2019; 139:240-248. [PMID: 30826245 DOI: 10.1016/j.jphs.2019.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/17/2022] Open
Abstract
Here we aimed to observe the effects of total ginsenosides (TG) against isoproterenol (ISO) induced myocardial ischemia (MI) and to explore its underlying mechanisms based on L-type Ca2+ current (ICa-L), intracellular Ca2+ ([Ca2+]i) and contraction in isolated rat myocytes. Rat model of MI was induced by subcutaneously injection of ISO (85 mg/kg) for 2 consecutive days. J-point elevation, heart rate, serum levels of creatine kinase (CK) and lactated dehydrogenase (LDH), and heart morphology changes were observed. Influences of TG on ICa-L, [Ca2+]i and contraction in isolated rat myocytes were observed by the patch-clamp technique and IonOptix detection system. TG significantly reduced J-point elevation, heart rate, serum levels of CK and LDH, and improved heart pathologic morphology. TG decreased ICa-L in concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 31.65 μg/mL. TG (300 μg/mL) decreased ICa-L of normal and ischemic ventricular myocytes by 64.33 ± 1.28% and 61.29 ± 1.38% respectively. At 30 μg/mL, TG reduced Ca2+ transient by 21.67 ± 0.94% and cell shortening by 38.43 ± 6.49%. This study showed that TG displayed cardioprotective effects on ISO-induced MI rats and the underlying mechanisms may be related to inhibition of ICa-L, damping of [Ca2+]i and decrease of contractility.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Mengying Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Zhifeng Zhao
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xuan Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Ying Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Shengjiang Guan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
22
|
Ogawa-Ochiai K, Kawasaki K. Panax ginseng for Frailty-Related Disorders: A Review. Front Nutr 2019; 5:140. [PMID: 30705884 PMCID: PMC6344463 DOI: 10.3389/fnut.2018.00140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023] Open
Abstract
This review aims to understand the clinical efficacy of Panax ginseng (PG) for managing frailty-related disorders by reviewing meta-analyses, systematic reviews, and randomized clinical trial data. PG is widely used in traditional medicine, mainly in East Asia. It has traditionally been indicated for the collapse of qi or for abandoned conditions that manifest as shallow breathing, shortness of breath, cold limbs, profuse sweating, a low pulse rate, or weakness. In accordance with these indications, PG is used for managing conditions such as aging, inflammation, and cancer. PG is also used in some functional foods or supplements. Some studies have shown the effects of ginsenosides, which are the major constituents of PG. With regard to pharmacological activities of ginseng saponins, it has been presumed that these ginsenosides are metabolized into active forms by human intestinal microbiota after being taken orally. Therefore, we focused on reviewing the data of clinical studies on PG. Although there has been no study that directly investigated the effect of PG on frailty, a number of clinical studies have been conducted to investigate the efficacy and safety of PG and its interactions with other modern ginseng medications and ginseng-containing formulas. We searched the randomized controlled trial data from 1995 to 2018 and reviewed the potential effects of PG on frailty-related disorders. We reviewed the effects of PG on glucose metabolism, fatigue, hypertension, cardiovascular disorders, chronic obstructive pulmonary disease, renal function, cognitive function, and immune function. Our review showed some evidence for the usefulness of ginseng, which suggests that it has the potential to be used for the management of aging-related and frailty symptoms, such as fatigue and hypertension. The main limitation of this review is that no study has directly investigated the effect of PG on frailty. Instead we investigated frailty-related disorders, and the limitations of the available studies were small sample sizes and a poor methodological quality; besides, only a few studies targeted elderly people, and few included placebo controls. Larger, well-designed studies are needed to determine the effect of PG on frailty in the future.
Collapse
Affiliation(s)
- Keiko Ogawa-Ochiai
- Department of Japanese-Traditional (Kampo) Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Kanji Kawasaki
- Department of Japanese-Traditional (Kampo) Medicine, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
23
|
Choi JY, Hong JH, Dang YM, Jamila N, Khan N, Jo CH, Chun HS, Kim KS. Identification Markers of Adulteration in Korean Red Ginseng (Panax Ginseng) Products Using High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography–Mass Spectrometry (LC-MS). ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1443340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ji Yeon Choi
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Joon Ho Hong
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Yun Mi Dang
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Nargis Jamila
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- Department of Chemistry, Shaheed Benazir Bhutto Women University Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Cheon Ho Jo
- New Hazardous Substances Team, National Institute of Food and Drug Safety Evaluation, Cheongju, Republic of Korea
| | - Hyang Sook Chun
- School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Kyong Su Kim
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
24
|
Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018; 42:264-269. [PMID: 29983607 PMCID: PMC6026386 DOI: 10.1016/j.jgr.2017.10.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023] Open
Abstract
Panax ginseng, also called Asian or Korean ginseng, has long been traditionally used in Korea and China to treat various diseases. The major active ingredients of P. ginseng are ginsenosides, which have been shown to have a variety of therapeutic effects, including antioxidation, anti-inflammatory, vasorelaxation, antiallergic, antidiabetic, and anticancer. To date, approximately 40 ginsenoside components have been reported. Current research is concentrating on using a single ginseng compound, one of the ginsenosides, instead of the total ginseng compounds, to determine the mechanisms of ginseng and ginsenosides. Recent in vitro and in vivo results show that ginseng has beneficial effects on cardiac and vascular diseases through efficacy, including antioxidation, control of vasomotor function, modulation of ion channels and signal transduction, improvement of lipid profiles, adjustment of blood pressure, improvement in cardiac function, and reduction in platelet adhesion. This review aims to provide valuable information on the traditional uses of ginseng and ginsenosides, their therapeutic applications in animal models and humans, and the pharmacological action of ginseng and ginsenosides.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
25
|
Thomford NE, Dzobo K, Chimusa E, Andrae-Marobela K, Chirikure S, Wonkam A, Dandara C. Personalized Herbal Medicine? A Roadmap for Convergence of Herbal and Precision Medicine Biomarker Innovations. ACTA ACUST UNITED AC 2018; 22:375-391. [DOI: 10.1089/omi.2018.0074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- School of Medical Sciences, University of Cape Coast, Cape Coast, PMB, Ghana
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology, Cape Town component, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Science, Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile Chimusa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kerstin Andrae-Marobela
- Molecular Cell Biology, Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Shadreck Chirikure
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
MAJORI S, PILATI S, GAZZANI D, PAIANO J, FERRARI S, SANNINO A, CHECCHIN E. Energy drink and ginseng consumption by Italian university students: a cross-sectional study. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2018; 59:E63-E74. [PMID: 29938240 PMCID: PMC6009075 DOI: 10.15167/2421-4248/jpmh2018.59.1.813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The consumption of energy drinks (ED) and ginseng by young people to enhance their mental and physical performance has become widespread. Reported side-effects of ED have raised doubts regarding their safety. This cross-sectional study investigates the phenomenon. METHODS An anonymous questionnaire was administered to a representative sample of Verona university students. The resulting data were analyzed with Excel 2013, STATA 13 software. RESULTS ED and ginseng consumption was reported by 38.6% and 37.4% of the students, respectively. More than 70% of ED and ginseng users were 18 to 22 years old. Excluding non-responders, ED consumers were mostly males (51.8% vs 33.0%), contrary to ginseng consumers (females 40.4% vs 30.9%). Being a working student was significantly positively associated both to EDs (OR 1.5) and ginseng use (OR 1.4). The most frequently reported academic and other reasons for ED use were: "to study longer" (47.5%), and "to socialize" (29.1%). The most often used combinations were ED containing alcohol (65.6%) and ginseng-coffee beverages (71.8%). CONCLUSIONS The diffusion of ED and ginseng consumption warrants prevention and monitoring measures, and deserves further analysis.
Collapse
Affiliation(s)
- S. MAJORI
- Department of Diagnostics and Public Health, Section of Hygiene and Preventive, Environmental and Occupational Medicine, Verona University, Postgraduate Specialization in Hygiene and Preventive Medicine, Verona University, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
A Review of Ginseng Clinical Trials Registered in the WHO International Clinical Trials Registry Platform. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1843142. [PMID: 29546050 PMCID: PMC5818925 DOI: 10.1155/2018/1843142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022]
Abstract
Although ginseng has long been broadly used in clinical settings around the world, few clinical trials on ginseng have been conducted. The objective of this study was to provide a comprehensive evaluation of the characteristics of ginseng clinical trials registered in the WHO International Clinical Trials Registry Platform (ICTRP) as of December 2017 regarding their frequency, design, type of ginseng, dosage, duration, condition, funding sources, and publication status. A total of 134 ginseng clinical studies were registered from 2002 to 2017, of which 60.4% were completed and 23.1% are actively recruiting participants. A large number of trials were associated with aspects of high-quality trial design. Overall, 94% of the trials employed randomized allocation to study arms, 78.4% were double-blind studies using placebo as one of the control groups, and 71% were published as completed trials. Trials whose sample size was restricted to fewer than 100 participants accounted for 74.7% of the total. Of the primary funding sources for ginseng studies, 67.2% were nonindustry organizations. The ginseng clinical trials were heterogeneous with respect to ginseng species and variety, indications, dose, duration, and participant characteristics. Clearly, stricter and methodologically suitable studies are needed to demonstrate the efficacy and safety of ginseng.
Collapse
|
28
|
Schultz WM, Mahlof EN, Dhindsa DS, Varghese T, Heinl RE, Cai HC, Sandesara PB, Eapen DJ, Sperling LS. Cardiovascular disease risk reduction in diabetes through conventional and natural approaches. Cardiovasc Endocrinol 2017; 6:128-135. [PMID: 31646130 PMCID: PMC6768523 DOI: 10.1097/xce.0000000000000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a significant cause of premature complications and mortality in patients with cardiovascular disease (CVD). In addition to lifestyle modifications, conventional treatment of DM consists of oral hypoglycemic agents, insulin sensitizers, and subcutaneous insulin. In diabetic individuals with or at risk for CVD, aspirin and statin therapy reduce CVD morbidity and mortality. Several natural or herbal supplements have shown potential benefit in patients with CVD and DM. We provide an overview of the current guidelines for treatment of DM and CVD. We then review the literature to describe the efficacy of natural approaches to CVD risk reduction in diabetic patients, with a focus on physical activity, dietary modification, and natural/herbal supplements. Activity and diet improve cardiovascular outcomes in patients with CVD and DM. Natural and herbal supplements have potential for benefit but require further research to determine their efficacy and safety.
Collapse
Affiliation(s)
| | | | | | - Tina Varghese
- Department of Medicine, Emory University School of Medicine
| | | | | | - Pratik B. Sandesara
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Danny J. Eapen
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Laurence S. Sperling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Zheng P, Chen Y, Fu Y, Wang H, Wang J, Zheng S, Xiao S, Wang Y. Influence of B-Complex Vitamins on the Pharmacokinetics of Ginsenosides Rg1, Rb1, and Ro After Oral Administration. J Med Food 2017; 20:1127-1132. [DOI: 10.1089/jmf.2017.3922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peihe Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yinbin Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yangyang Fu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hecheng Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jia Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Siwen Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shengyuan Xiao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yingping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
30
|
Lee HW, Lee MS, Kim T, Alraek T, Zaslawski C, Kim JW, Moon DG. Ginseng for erectile dysfunction. Cochrane Database Syst Rev 2017; 2017:CD012654. [PMCID: PMC6481484 DOI: 10.1002/14651858.cd012654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the effects of ginseng on erectile dysfunction (ED).
Collapse
Affiliation(s)
- Hye Won Lee
- Korea Institute of Oriental MedicineHerbal Medicine Research Division461‐24 Jeonmin‐dong, Yuseong‐guDaejeonKorea, South305‐811
| | - Myeong Soo Lee
- Korea Institute of Oriental MedicineClinical Research Division461‐24 Jeonmin‐dong, Yuseong‐guDaejeonKorea, South34054
| | - Tae‐Hun Kim
- College of Korean Medicine, Kyung Hee UniversityKorean Medicine Clinical Trial Center#23 Kyungheedae‐roDongdaemun‐guSeoulKorea, South130‐872
| | - Terje Alraek
- Kristiania University CollegeInstitute of Health SciencesN ‐ 0107 OsloNorway
| | - Chris Zaslawski
- University of TechnologyCollege of Traditional Chinese MedicineDepartment of Medical and Molecular BiosciencesFaculty of ScienceSydneyAustralia
| | - Jong Wook Kim
- Korea University Guro HospitalDepartment of Urology#148, Gurodong‐ro, Guro‐guSeoulKorea, South152‐703
| | - Du Geon Moon
- Korea University Guro HospitalDepartment of Urology#148, Gurodong‐ro, Guro‐guSeoulKorea, South152‐703
| |
Collapse
|
31
|
Feng L, Xu C, Li Z, Li J, Dai Y, Han H, Yu S, Liu S. Microbial conversion of ginsenoside Rd from Rb1 by the fungus mutant Aspergillus niger strain TH-10a. Prep Biochem Biotechnol 2017; 46:336-41. [PMID: 25831478 DOI: 10.1080/10826068.2015.1031391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ginsenoside Rd, one of the ginsenosides with significant pharmaceutical activities, is getting more and more attractions on its biotransformation. In this study, a novel fungus mutant, the Aspergillus niger strain TH-10a, which can efficiently convert ginsenoside Rd from Rb1, was obtained through screening survival library of LiCl and ultraviolet (UV) irradiation. The transformation product ginsenoside Rd, generated by removing the outer glucose residue from the position C20 of ginsenoside Rb1, was identified through high-performance liquid chromatography (HPLC) analysis. Factors for the microbial culture and biotransformation were investigated in terms of the carbon sources, the nitrogen sources, pH values, and temperatures. This showed that maximum mycelia growth could be obtained at 28°C and pH 6.0 with cellobiose and tryptone as the carbon source and the nitrogen source, respectively. The highest transformation rate (∼86%) has been achieved at 32°C and pH 5.0 with the feeding time of substrate 48 hr. Also, Aspergillus niger strain TH-10a could tolerate even 40 mg/mL ginseng root extract as substrate with 60% bioconversion rate after 72 hr of treatment at the optimal condition. Our results highlight a novel ginsenoside Rd transformation fungus and illuminate its potentially practical application in the pharmaceutical industries.
Collapse
Affiliation(s)
- Li Feng
- a Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , China
| | - Chunchun Xu
- a Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , China
| | - Zhuo Li
- b The Affiliated Hospital of Changchun University of Chinese Medicine , Changchun , China
| | - Jing Li
- a Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , China
| | - Yulin Dai
- a Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , China
| | | | - Shanshan Yu
- a Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , China
| | - Shuying Liu
- a Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , China.,d Changchun Center of Mass Spectrometry , Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun , China
| |
Collapse
|
32
|
Huang BM, Xiao SY, Chen TB, Xie Y, Luo P, Liu L, Zhou H. Purity assessment of ginsenoside Rg1 using quantitative 1H nuclear magnetic resonance. J Pharm Biomed Anal 2017; 139:193-204. [PMID: 28285072 DOI: 10.1016/j.jpba.2017.02.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 11/18/2022]
Abstract
Ginseng herbs comprise a group of the most popular herbs, including Panax ginseng, P. notoginseng and P. quinquefolius (Family Araliaceae), which are used as traditional Chinese medicine (TCM) and are some of the best-selling natural products in the world. The accurate quantification of ginsenoside Rg1 is one of the major aspects of its quality control. However, the purity of the commercial Rg1 chemical reference substance (CRS) is often measured with high-performance chromatography coupled with an ultraviolet detector (HPLC-UV), which is a selective detector with unequal responses to different compounds; thus, this detector introduces probable error to purity assessments. In the present study, quantitative nuclear magnetic resonance (qNMR), due to its absolute quantification ability, was applied to accurately assess the purity of Rg1 CRS. Phenylmethyl phthalate was used as the internal standard (IS) to calibrate the purity of Rg1 CRS. The proton signal of Rg1 CRS in methanol-d4 at 4.37ppm was selected to avoid interfering signals, enabling accurate quantitative analysis. The relaxation delay, number of scans, and NMR windowing were optimized for data acquisition. For post-processing, the Lorentz/Gauss deconvolution method was employed to increase the signal accuracy by separating the impurities and noise in the integrated region of the quantitative proton. The method validation showed that the developed method has acceptable sensitivity, linearity, precision, and accuracy. The purity of the commercial Rg1 CRS examined with the method developed in this research was 90.34±0.21%, which was obviously lower than that reported by the manufacturer (>98.0%, HPLC-UV). The cross-method validation shows that the commonly used HPLC-UV, HPLC-ELSD (evaporative light scattering detector) and even LC-MS (mass spectrometry) methods provide significantly higher purity values of Rg1 CRS compared with the qNMR method, and the accuracy of these LC-based methods largely depend on the amount of the sample that was loaded and the properties of the impurities.
Collapse
Affiliation(s)
- Bao-Ming Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Sheng-Yuan Xiao
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Ting-Bo Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Liang Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China.
| |
Collapse
|
33
|
Lee MY, Singh D, Kim SH, Lee SJ, Lee CH. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng. Molecules 2016; 21:E816. [PMID: 27338333 PMCID: PMC6273588 DOI: 10.3390/molecules21060816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022] Open
Abstract
Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.
Collapse
Affiliation(s)
- Mee Youn Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Sung Han Kim
- Nutrex Technology Co., Seongnam, Gyeonggi-do 13494, Korea.
| | - Sang Jun Lee
- Holistic Bio Co., Seongnam, Gyeonggi-do 13494, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
34
|
Cha TW, Kim M, Kim M, Chae JS, Lee JH. Blood pressure-lowering effect of Korean red ginseng associated with decreased circulating Lp-PLA2 activity and lysophosphatidylcholines and increased dihydrobiopterin level in prehypertensive subjects. Hypertens Res 2016; 39:449-56. [PMID: 26843120 DOI: 10.1038/hr.2016.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/06/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
We evaluated the effects of red ginseng consumption on blood pressure (BP) and the fasting plasma metabolome. This randomized, double-blind, placebo-controlled study included nonobese, nondiabetic, prehypertensive subjects consuming 10 capsules daily containing 5 g red ginseng (n=31) or placebo (n=31). Fasting plasma metabolome profiles were obtained using ultra performance liquid chromatography-linear trap quadrupole Orbitrap MS. After 12 weeks, participants consuming red ginseng showed reductions of 6.5 and 5.0 mm Hg in systolic and diastolic BP, respectively. Compared with controls, those consuming red ginseng showed greater reductions in changed values of systolic BP, diastolic BP and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, after adjusting for baseline values. In addition, the red ginseng group showed a greater increase in dihydrobiopterin levels and greater decrease in palmitic amide and lysophosphatidylcholines (lysoPCs). The change in diastolic BP positively correlated with changes in lysoPCs and Lp-PLA2 activity. The BP-lowering effect of red ginseng is associated with decreased Lp-PLA2 and lysoPCs and increased dihydrobiopterin levels in prehypertensive subjects (ClinicalTrials.gov: NCT02326766).
Collapse
Affiliation(s)
- Tae Woong Cha
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Minkyung Kim
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Jey Sook Chae
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
35
|
The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation. Nutrients 2016; 8:nu8050244. [PMID: 27120618 PMCID: PMC4882657 DOI: 10.3390/nu8050244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O), has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu) and Cat D inhibitor (pepA) inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p < 0.05) in lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.
Collapse
|
36
|
Komishon AM, Shishtar E, Ha V, Sievenpiper JL, de Souza RJ, Jovanovski E, Ho HVT, Duvnjak LS, Vuksan V. The effect of ginseng (genus Panax) on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. J Hum Hypertens 2016; 30:619-26. [PMID: 27074879 DOI: 10.1038/jhh.2016.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 01/21/2023]
Abstract
Pre-clinical evidence indicates the potential for ginseng to reduce cardiovascular disease risk and acutely aid in blood pressure (BP) control. Clinical evidence evaluating repeated ginseng exposure, however, is controversial, triggering consumer and clinician concern. A systematic review and meta-analysis were conducted to assess whether ginseng has an effect on BP. MEDLINE, EMBASE, Cochrane and CINAHL were searched for relevant randomized controlled trials ⩾4 weeks that compared the effect of ginseng on systolic (SBP), diastolic (DBP) and/or mean arterial (MAP) BPs to control. Two independent reviewers extracted data and assessed methodological quality and risk of bias. Data were pooled using random-effects models and expressed as mean differences (MD) with 95% confidence intervals (CIs). Heterogeneity was assessed and quantified. Seventeen studies satisfied eligibility criteria (n=1381). No significant effect of ginseng on SBP, DBP and MAP was found. Stratified analysis, although not significant, appears to favour systolic BP improvement in diabetes, metabolic syndrome and obesity (MD=-2.76 mm Hg (95% CI=-6.40, 0.87); P=0.14). A priori subgroup analyses revealed significant association between body mass index and treatment differences (β=-0.95 mm Hg (95% CI=-1.56, -0.34); P=0.007). Ginseng appears to have neutral vascular affects; therefore, should not be discouraged for concern of increased BP. More high-quality, randomized, controlled trials assessing BP as a primary end point, and use of standardized ginseng root or extracts are warranted to limit evidence of heterogeneity in ginseng research and to better understand its cardiovascular health potential.
Collapse
Affiliation(s)
- A M Komishon
- Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - E Shishtar
- Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - V Ha
- Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - J L Sievenpiper
- Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Pathology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - R J de Souza
- Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - E Jovanovski
- Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - H V T Ho
- Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - L S Duvnjak
- School of Medicine University of Zagreb, University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Zagreb, Croatia
| | - V Vuksan
- Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Lee J, Kwon G, Park J, Kim JK, Choe SY, Seo Y, Lim YH. An ethanol extract of Ramulus mori improves blood circulation by inhibiting platelet aggregation. Biosci Biotechnol Biochem 2016; 80:1410-5. [PMID: 26967156 DOI: 10.1080/09168451.2016.1156479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inappropriate platelet aggregation can cause blood coagulation and thrombosis. In this study, the effect of an ethanol extract of Ramulus mori (ERM) on blood circulation was investigated. The antithrombotic activity of ERM on rat carotid arterial thrombosis was evaluated in vivo, and the effect of ERM on platelet aggregation and blood coagulation time was evaluated ex vivo. To evaluate the safety of ERM, its cytotoxicity to platelets and its effect on tail bleeding time were assessed; ERM was not toxic to rat platelets and did not prolong bleeding time. Moreover, administering ERM to rats had a significant preventive effect on carotid arterial thrombosis in vivo, and significantly inhibited adenosine diphosphate- and collagen-induced platelet aggregation ex vivo, whereas it did not prolong coagulation periods, such as prothrombin time and activated partial thromboplastin time. The results suggest that ERM is effective in improving blood circulation via antiplatelet activity rather than anticoagulation activity.
Collapse
Affiliation(s)
- Jiyun Lee
- a Departmentof Public Health Science (BK21 PLUS Program) , Graduate School, Korea University , Seoul , Republic of Korea
| | - Gayeung Kwon
- a Departmentof Public Health Science (BK21 PLUS Program) , Graduate School, Korea University , Seoul , Republic of Korea
| | - Jieun Park
- a Departmentof Public Health Science (BK21 PLUS Program) , Graduate School, Korea University , Seoul , Republic of Korea
| | - Jeong-Keun Kim
- b Department of Chemical Engineering and Biotechnology , Korea Polytechnic University , Shihung-si , Republic of Korea
| | - Soo Young Choe
- c Department of Biology , Chungbuk National University , Chungbuk , Republic of Korea
| | - Yoonhee Seo
- c Department of Biology , Chungbuk National University , Chungbuk , Republic of Korea
| | - Young-Hee Lim
- a Departmentof Public Health Science (BK21 PLUS Program) , Graduate School, Korea University , Seoul , Republic of Korea.,d School of Biosystem and Biomedical Science, College of Health Science , Korea University , Seoul , Republic of Korea
| |
Collapse
|
38
|
Ye J, Yao JP, Wang X, Zheng M, Li P, He C, Wan JB, Yao X, Su H. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep 2016; 13:3083-91. [PMID: 26935530 PMCID: PMC4805061 DOI: 10.3892/mmr.2016.4914] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Ginsenosides exhibit various neuroprotective effects against oxidative stress. However, which ginsenoside provides optimal effects for the treatment of neurological disorders as a potent antioxidant remains to be elucidated. Therefore, the present study investigated and compared the neuroprotective effects of the Rb1, Rd, Rg1 and Re ginsenosides on neural progenitor cells (NPCs) following tert-Butylhydroperoxide (t-BHP)-induced oxidative injury. Primary rat embryonic cortical NPCs were prepared from E14.5 embryos of Sprague-Dawley rats. The oxidative injury model was established with t-BHP. A lactate dehydrogenase assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used to measure the viability of the NPCs pre-treated with ginsenosides under oxidative stress. Reverse transcription-quantitative polymerase chain reaction analysis was used to determine the activation of intracellular signaling pathways triggered by the pretreatment of ginsenosides. Among the four ginsenosides, only Rb1 attenuated t-BHP toxicity in the NPCs, and the nuclear factor (erythroizd-derived 2)-like 2/heme oxygenase-1 pathway was found to be key in the intracellular defense against oxidative stress. The present study demonstrated the anti-oxidative effects of ginsenoside Rb1 on NPCs, and suggested that Rb1 may offer potential as a potent antioxidant for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jun Ye
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310016, P.R. China
| | - Jian-Ping Yao
- Department of Cardiac Surgery II, The First Affiliated Hospital Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Minying Zheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| |
Collapse
|
39
|
Jovanovski E, Peeva V, Sievenpiper JL, Jenkins AL, Desouza L, Rahelic D, Sung MK, Vuksan V. Modulation of endothelial function by Korean red ginseng (Panax ginseng C.A. Meyer) and its components in healthy individuals: a randomized controlled trial. Cardiovasc Ther 2015; 32:163-9. [PMID: 24758417 DOI: 10.1111/1755-5922.12077] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Ginseng root and its derivatives remain atop the most widely used medicinal herbs in cardiovascular disease, despite inadequate substantiation of efficacy. We previously reported the potential of Korean red ginseng (KRG) to affect vascular tone by decreasing arterial wave reflection via an unknown mechanism. Given the preclinical link between ginseng intake and vasoactivity related to nitric oxide (NO) production, we sought to directly evaluate the effects of KRG root and its major root components, on an established noninvasive measure of endothelial function. METHODS In an acute, randomized, placebo-controlled, double-blind, crossover design, 16 healthy participants (9M:7F, age:30 ± 9y, BMI: 24 kg ±3 kg/m(2) , systolicBP/diastolicBP: 109 ± 11/66 ± 8 mmHg) on four occasions were administered: KRG root (3 g), KRG ginsenosides extract, KRG polysaccharides extract, and cornstarch control. Extracted fractions were delivered at doses bioequivalent to those found in 3 g of KRG. Flow-mediated vasodilatation (FMD) assessment, preceding a brachial blood pressure measurement, was performed at baseline and at 90 and 180 min posttreatment to assess endothelial function. RESULTS KRG significantly improved FMD posttreatment. Maximal vasodilatation of Δ2.57 ± 2.8% occurred at 180 min compared with control (Δ-0.83 ± 2.7%, P = 0.003 for all comparisons). The ginsenoside extract produced a comparable response (Δ1.75 ± 2.6%), but not the polysaccharide fraction (Δ0.10 ± 2.7%). Brachial blood pressure remained unchanged for all treatments (P = 0.45). CONCLUSIONS KRG acutely improved endothelial function in healthy individuals, which appears to be attributable to its ginsenoside containing fraction. Our data confirm preclinical data and support the potential for these compounds as targets for therapeutic strategies in disorders involving endothelial dysfunction.
Collapse
Affiliation(s)
- Elena Jovanovski
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Glickman-Simon R, Lepper LT. Panax ginseng for psychomotor performance and cognition, spinal manipulation for lumbar disk herniation, ginger for migraines, music therapy for mental illness, and acupuncture for diabetic peripheral neuropathy. Explore (NY) 2014; 10:404-7. [PMID: 25262288 DOI: 10.1016/j.explore.2014.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
The effect of ginseng (the genus panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS One 2014; 9:e107391. [PMID: 25265315 PMCID: PMC4180277 DOI: 10.1371/journal.pone.0107391] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
Importance Despite the widespread use of ginseng in the management of diabetes, supporting evidence of its anti-hyperglycemic efficacy is limited, necessitating the need for evidence-based recommendations for the potential inclusion of ginseng in diabetes management. Objective To elucidate the effect of ginseng on glycemic control in a systematic review and meta-analysis of randomized controlled trials in people with and without diabetes. Data sources MEDLINE, EMBASE, CINAHL and the Cochrane Library (through July 3, 2013). Study selection Randomized controlled trials ≥30 days assessing the glycemic effects of ginseng in people with and without diabetes. Data extraction Relevant data were extracted by 2 independent reviewers. Discrepancies were resolved by consensus. The Heyland Methodological Quality Score and the Cochrane risk of bias tool were used to assess study quality and risk of bias respectively. Data synthesis Sixteen trials were included, in which 16 fasting blood glucose (n = 770), 10 fasting plasma insulin (n = 349), 9 glycated hemoglobin (n = 264), and 7 homeostasis model assessment of insulin resistance (n = 305) comparisons were reported. Ginseng significantly reduced fasting blood glucose compared to control (MD = −0.31 mmol/L [95% CI: −0.59 to −0.03], P = 0.03). Although there was no significant effect on fasting plasma insulin, glycated hemoglobin, or homeostasis model assessment of insulin resistance, a priori subgroup analyses did show significant reductions in glycated hemoglobin in parallel compared to crossover trials (MD = 0.22% [95%CI: 0.06 to 0.37], P = 0.01). Limitations Most trials were of short duration (67% trials<12wks), and included participants with a relatively good glycemic control (median HbA1c non-diabetes = 5.4% [2 trials]; median HbA1c diabetes = 7.1% [7 trials]). Conclusions Ginseng modestly yet significantly improved fasting blood glucose in people with and without diabetes. In order to address the uncertainty in our effect estimates and provide better assessments of ginseng's anti-diabetic efficacy, larger and longer randomized controlled trials using standardized ginseng preparations are warranted. Trial Registration ClinicalTrials.gov NCT01841229
Collapse
|
42
|
Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014; 38:161-6. [PMID: 25378989 PMCID: PMC4213864 DOI: 10.1016/j.jgr.2014.03.001] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Ginseng is widely used for its promising healing and restorative properties as well as for its possible tonic effect in traditional medicine. Nowadays, many studies focus on purified individual ginsenoside, an important constituent in ginseng, and study its specific mechanism of action instead of whole-plant extracts on cardiovascular diseases (CVDs). Of the various ginsenosides, purified ginsenosides such as Rb1, Rg1, Rg3, Rh1, Re, and Rd are the most frequently studied. Although there are many reports on the molecular mechanisms and medical applications of ginsenosides in the treatment of CVDs, many concerns exist in their application. This review discusses current works on the countless pharmacological functions and the potential benefits of ginseng in the area of CVDs. RESULTS Both in vitro and in vivo results indicate that ginseng has potentially positive effects on heart disease through its various properties including antioxidation, reduced platelet adhesion, vasomotor regulation, improving lipid profiles, and influencing various ion channels. To date, approximately 40 ginsenosides have been identified, and each has a different mechanism of action owing to the differences in chemical structure. This review aims to present comprehensive information on the traditional uses, phytochemistry, and pharmacology of ginseng, especially in the control of hypertension and cardiovascular function. In addition, the review also provides an insight into the opportunities for future research and development on the biological activities of ginseng.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
43
|
Lee KH, Morris-Natschke S, Qian K, Dong Y, Yang X, Zhou T, Belding E, Wu SF, Wada K, Akiyama T. Recent Progress of Research on Herbal Products Used in Traditional Chinese Medicine: the Herbs belonging to The Divine Husbandman's Herbal Foundation Canon ( Shén Nóng Běn Cǎo Jīng). J Tradit Complement Med 2014; 2:6-26. [PMID: 24716110 PMCID: PMC3943012 DOI: 10.1016/s2225-4110(16)30066-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This article will review selected herbal products from Chinese Materia Medica that are used in Traditional Chinese Medicine. The herbs come from the upper, middle, and lower class medicines as listed in The Divine Husbandman's Herbal Foundation Canon (神農本草經 Shén Nóng Běn Cǎo Jīng). The review will focus on the active constituents of the herbs and their bioactivities, with emphasis on the most recent progress in research for the period of 2003 to 2011.
Collapse
Affiliation(s)
- Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA ; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Susan Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Keduo Qian
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Yizhou Dong
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Xiaoming Yang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Ting Zhou
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Eileen Belding
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Shou-Fang Wu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Koji Wada
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Toshiyuki Akiyama
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| |
Collapse
|
44
|
Du J, Cui CH, Park SC, Kim JK, Yu HS, Jin FX, Sun C, Kim SC, Im WT. Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg2(S). PLoS One 2014; 9:e96914. [PMID: 24911166 PMCID: PMC4049585 DOI: 10.1371/journal.pone.0096914] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
The ginsenoside Rg2(S), which is one of the pharmaceutical components of ginseng, is known to have neuroprotective, anti-inflammation, and anti-diabetic effects. However, the usage of ginsenoside Rg2(S) is restricted owing to the small amounts found in white and red ginseng. To enhance the production of ginsenoside Rg2(S) as a 100 gram unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the recombinant glycoside hydrolase (BglPC28), which is a ginsenoside-transforming recombinant β-glucosidase from Pseudonocardia sp. strain Gsoil 1536. The gene, termed bglPC28, encoding β-glucosidase (BglPC28) belonging to the glycoside hydrolase family 3 was cloned. bglPC28 consists of 2,232 bp (743 amino acid residues) with a predicted molecular mass of 78,975 Da. This enzyme was overexpressed in Escherichia coli BL21(DE3) using a GST-fused pGEX 4T-1 vector system. The optimum conditions of the recombinant BglPC28 were pH 7.0 and 37°C. BglPC28 can effectively transform the ginsenoside Re to Rg2(S); the Km values of PNPG and Re were 6.36±1.10 and 1.42±0.13 mM, respectively, and the Vmax values were 40.0±2.55 and 5.62±0.21 µmol min−1 mg−1 of protein, respectively. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 7.0 and 30°C for 12 hours with a concentration of 20 mg/ml of ginsenoside Re from American ginseng roots. Finally, 113 g of Rg2(S) was produced from 150 g of Re with 84.0±1.1% chromatographic purity. These results suggest that this enzymatic method could be usefully exploited in the preparation of ginsenoside Rg2(S) in the cosmetics, functional food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Juan Du
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Chang-Hao Cui
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung Chul Park
- Intelligent Synthetic Biology Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-Kwang Kim
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hong-Shan Yu
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Feng-Xie Jin
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Changkai Sun
- Institute for Brain Disorders, Dalian Medical University, Dalian, P.R. China
| | - Sun-Chang Kim
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Wan-Taek Im
- Department of Biotechnology, Hankyoung National University, Chungang-no Anseong-si, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
Biaggioni I. Ginseng for cardiovascular disease. Not yet the panacea. ACTA ACUST UNITED AC 2014; 8:599-600. [PMID: 25151321 DOI: 10.1016/j.jash.2014.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Italo Biaggioni
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
Norelli LJ, Xu C. Manic Psychosis Associated With Ginseng: A Report of Two Cases and Discussion of the Literature. J Diet Suppl 2014; 12:119-25. [DOI: 10.3109/19390211.2014.902001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Zhang B, Ye H, Zhu XM, Hu JN, Li HY, Tsao R, Deng ZY, Zheng YN, Li W. Esterification enhanced intestinal absorption of ginsenoside Rh2 in Caco-2 cells without impacts on its protective effects against H₂O₂-induced cell injury in human umbilical vein endothelial cells (HUVECs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2096-2103. [PMID: 24524563 DOI: 10.1021/jf404738s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ginsenoside Rh2 and its octyl ester derivative (Rh2-O) were investigated for their transcellular transport in the Caco-2 cell system and their protective effect against oxidative stress in human umbilical vein endothelial cells (HUVECs). Results showed that the transport rates for apical-to-basolateral (AP-BL) flux of Rh2 (0.21 × 10⁻⁶ cm/s) was enhanced by the synthesis of its esterified derivative Rh2-O (1.93 × 10⁻⁶ cm/s) over the concentrations of 10-50 μM. In addition, both Rh2 and its esterified derivative Rh2-O exhibited similar protective effects against oxidative damage induced by H₂O₂. Pretreatment of Rh2 and Rh2-O significantly decreased the activation of caspase-3 known to play a key role in H₂O₂-induced cell apoptosis. These results were consistent with that of a flow cytometry assay analyzing HUVECs apoptosis. The present study demonstrated that the absorption of ginsenoside Rh2 in vitro can be significantly enhanced by synthesis of its ester derivative. Meanwhile, no significant discrepancy between Rh2 and Rh2-O on their bioactivities against the oxidative damage induced by H₂O₂ was observed, which means that esterification of Rh2 might have a higher bioavailability than Rh2 in vitro without impacts on pharmaceutical actions.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University , Nanchang, Jiangxi 330047, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Park SJ, Lim KH, Noh JH, Jeong EJ, Kim YS, Han BC, Lee SH, Moon KS. Subacute oral toxicity study of korean red ginseng extract in sprague-dawley rats. Toxicol Res 2014; 29:285-92. [PMID: 24578799 PMCID: PMC3936181 DOI: 10.5487/tr.2013.29.4.285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/04/2023] Open
Abstract
Ginseng is a well-known traditional medicine used in Asian countries for several thousand years, and it is currently applied to medicine, cosmetics, and nutritional supplements due to its many healing and energygiving properties. It is well demonstrated that ginsenosides, the main ingredient of ginseng, produce a variety of pharmacological and therapeutic effects on central nerve system (CNS) disorders, cardiovascular disease, endocrine secretions, aging, and immune function. Korean red ginseng extract is a dietary supplement containing ginsenoside Rb1 and ginsenoside Rg1 extracted from Panax ginseng. While the pharmacokinetics and bioavailability of the extract have been well established, its toxicological properties remain obscure. Thus, four-week oral toxicity studies in rats were conducted to investigate whether Korean red ginseng extract could have a potential toxicity to humans. The test article was administered once daily by oral gavage to four groups of male and female Sprague-Dawley (SD) rats at dose levels of 0, 500, 1,000, and 2,000 mg/kg/day for four weeks. Neither deaths nor clinical symptoms were observed in any group during the experiment. Furthermore, no abnormalities in body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross findings, organ weights, or histopathology were revealed related to the administration of the test article in either sex of any dosed group. Therefore, a target organ was not determined in this study, and the no observed adverse effect level (NOAEL) of Korean red ginseng extract was established to be 2,000 mg/kg/day.
Collapse
Affiliation(s)
- Sang-Jin Park
- Division of Non-clinical Studies, Korea Institute of Toxicology, Daejeon, Korea
| | - Kwang-Hyun Lim
- Division of Non-clinical Studies, Korea Institute of Toxicology, Daejeon, Korea
| | - Jeong-Ho Noh
- Division of Non-clinical Studies, Korea Institute of Toxicology, Daejeon, Korea
| | - Eun Ju Jeong
- Division of Non-clinical Studies, Korea Institute of Toxicology, Daejeon, Korea
| | - Yong-Soon Kim
- Botanical Drug Laboratory, R&D Headquarters, Korea Ginseng Corp., Daejeon, Korea
| | - Byung-Cheol Han
- Botanical Drug Laboratory, R&D Headquarters, Korea Ginseng Corp., Daejeon, Korea
| | - Seung-Ho Lee
- Botanical Drug Laboratory, R&D Headquarters, Korea Ginseng Corp., Daejeon, Korea
| | - Kyoung-Sik Moon
- Division of Non-clinical Studies, Korea Institute of Toxicology, Daejeon, Korea
| |
Collapse
|
49
|
Korean red ginseng combined with nattokinase ameliorates dyslipidemia and the area of aortic plaques in high cholesterol-diet fed rabbits. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-014-0039-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Li KR, Zhang ZQ, Yao J, Zhao YX, Duan J, Cao C, Jiang Q. Ginsenoside Rg-1 protects retinal pigment epithelium (RPE) cells from cobalt chloride (CoCl2) and hypoxia assaults. PLoS One 2013; 8:e84171. [PMID: 24386346 PMCID: PMC3873980 DOI: 10.1371/journal.pone.0084171] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022] Open
Abstract
Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chloride (CoCl2) assaults, and to understand the underlying mechanisms. We found that Rg-1 pre-administration significantly inhibited CoCl2- and hypoxia-induced RPE cell death and apoptosis. Reactive oxygen specisis (ROS)-dependent p38 and c-Jun NH(2)-terminal kinases (JNK) MAPK activation was required for CoCl2-induced RPE cell death, and Rg-1 pre-treatment significantly inhibited ROS production and following p38/JNK activation. Further, CoCl2 suppressed pro-survival mTOR complex 1 (mTORC1) activation in RPE cells through activating of AMP-activated protein kinase (AMPK), while Rg-1 restored mTORC1 activity through inhibiting AMPK activation. CoCl2-induced AMPK activation was also dependent on ROS production, and anti-oxidant N-acetylcysteine (NAC) prevented AMPK activation and RPE cell death by CoCl2. Our results indicated that Rg-1 could be further investigated as a novel cell-protective agent for retinal ischemia.
Collapse
Affiliation(s)
- Ke-ran Li
- Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-qing Zhang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Jin Yao
- Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-xia Zhao
- Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Duan
- The Center for Safety Evaluation of Drugs, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Qin Jiang
- Department of Eye, the Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|