1
|
Wu F, Ge C, Pan H, Han Y, Mishina Y, Kaartinen V, Franceschi RT. Discoidin domain receptor 2 is an important modulator of BMP signaling during heterotopic bone formation. Bone Res 2025; 13:7. [PMID: 39746922 PMCID: PMC11696679 DOI: 10.1038/s41413-024-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity. As will be shown, induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice. In addition, Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva. In cells migrating into BMP2 implants, DDR2 is co-expressed with GLI1, a skeletal stem cell marker, and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages. Consistent with this distribution, conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals. This response was explained by selective inhibition of Gli1+ cell proliferation without changes in apoptosis. The basis for this DDR2 requirement was explored further using bone marrow stromal cells. Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo, bone formation, early BMP responses including SMAD phosphorylation remained largely intact. Instead, Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates, YAP and TAZ. This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix, which subsequently affect BMP responsiveness. In summary, DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.
Collapse
Affiliation(s)
- Fashuai Wu
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxi Ge
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuanyuan Han
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zhao F, Qiu Y, Liu W, Zhang Y, Liu J, Bian L, Shao L. Biomimetic Hydrogels as the Inductive Endochondral Ossification Template for Promoting Bone Regeneration. Adv Healthc Mater 2024; 13:e2303532. [PMID: 38108565 DOI: 10.1002/adhm.202303532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Repairing critical size bone defects (CSBD) is a major clinical challenge and requires effective intervention by biomaterial scaffolds. Inspired by the fact that the cartilaginous template-based endochondral ossification (ECO) process is crucial to bone healing and development, developing biomimetic biomaterials to promote ECO is recognized as a promising approach for repairing CSBD. With the unique highly hydrated 3D polymeric network, hydrogels can be designed to closely emulate the physiochemical properties of cartilage matrix to facilitate ECO. In this review, the various preparation methods of hydrogels possessing the specific physiochemical properties required for promoting ECO are introduced. The materiobiological impacts of the physicochemical properties of hydrogels, such as mechanical properties, topographical structures and chemical compositions on ECO, and the associated molecular mechanisms related to the BMP, Wnt, TGF-β, HIF-1α, FGF, and RhoA signaling pathways are further summarized. This review provides a detailed coverage on the materiobiological insights required for the design and preparation of hydrogel-based biomaterials to facilitate bone regeneration.
Collapse
Affiliation(s)
- Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Jia Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, P. R. China
| |
Collapse
|
3
|
Qiu H, Wang J, Hu H, Song L, Liu Z, Xu Y, Liu S, Zhu X, Wang H, Bao C, Lin H. Preparation of an injectable and photocurable carboxymethyl cellulose/hydroxyapatite composite and its application in cranial regeneration. Carbohydr Polym 2024; 333:121987. [PMID: 38494238 DOI: 10.1016/j.carbpol.2024.121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Limited bone regeneration, uncontrollable degradation rate, mismatched defect zone and poor operability have plagued the reconstruction of irregular bone defect by tissue-engineered materials. A combination of biomimetic scaffolds with hydroxyapatite has gained great popularity in promoting bone regeneration. Therefore, we designed an injectable, photocurable and in-situ curing hydrogel by methacrylic anhydride -modified carboxymethyl cellulose (CMC-MA) loading with spherical hydroxyapatite (HA) to highly simulate the natural bony matrix and match any shape of damaged tissue. The prepared carboxymethyl cellulose-methacrylate/ hydroxyapatite(CMC-MA/HA) composite presented good rheological behavior, swelling ratio and mechanical property under light illumination. Meanwhile, this composite hydrogel promoted effectively proliferation, supported adhesion and upregulated the osteogenic-related genes expression of MC3T3-E1 cells in vitro, as well as the activity of the osteogenic critical protein, Integrin α1, β1, Myosin 9, Myosin 10, BMP-2 and Smad 1 in Integrin/BMP-2 signal pathway. Together, the composite hydrogels realized promotion of bone regeneration, deformity improvement, and the enhanced new bone strength in skull defect. It also displayed a good histocompatibility and stability of subcutaneous implantation in vivo. Overall, this study laid the groundwork for future research into developing a novel biomaterial and a minimally invasive therapeutic strategies for reconstructing bone defects and contour deficiencies.
Collapse
Affiliation(s)
- He Qiu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hong Hu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Lu Song
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
4
|
Zhang Y, Remy M, Leste-Lasserre T, Durrieu MC. Manipulating Stem Cell Fate with Disordered Bioactive Cues on Surfaces: The Role of Bioactive Ligand Selection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18474-18489. [PMID: 38581548 DOI: 10.1021/acsami.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
The development of 2D or 3D bioactive platforms for rapidly isolating pure populations of cells from adult stem cells holds promise for advancing the understanding of cellular mechanisms, drug testing, and tissue engineering. Over the years, methods have emerged to synthesize bioactive micro- and nanostructured 2D materials capable of directing stem cell fate. We introduce a novel method for randomly micro- or nanopatterning any protein/peptide onto both 2D and 3D scaffolds via spray technology. Our goal is to investigate the impact of arranging bioactive micropatterns (ordered vs disordered) on surfaces to guide human mesenchymal stem cell (hMSC) differentiation. The spray technology efficiently coats materials with controlled, cost-effective bioactive micropatterns in various sizes and shapes. BMP-2 mimetic peptides were covalently grafted, individually or in combination with RGD peptides, onto activated polyethylene terephthalate (PET) surfaces through a spraying process, incorporating nano/microscale parameters like size, shape, and composition. The study explores different peptide distributions on surfaces and various peptide combinations. Four surfaces were homogeneously functionalized with these peptides (M1 to M4 with various densities of peptides), and six surfaces with disordered micro- and nanopatterns of peptides (S0 to S5 with different sizes of peptide patterns) were synthesized. Fluorescence microscopy assessed peptide distribution, followed by hMSC culture for 2 weeks, and evaluated osteogenic differentiation via immunocytochemistry and RT-qPCR for osteoblast and osteocyte markers. Cells on uniformly peptide-functionalized surfaces exhibited cuboidal forms, while those on surfaces with disordered patterns tended toward columnar or cuboidal shapes. Surfaces S4 and S5 showed dendrite-like formations resembling an osteocyte morphology. S5 showed significant overexpression of osteoblast (OPN) and osteocyte markers (E11, DMP1, and SOST) compared to control surfaces and other micropatterned surfaces. Notably, despite sharing an equivalent quantity of peptides with a homogeneous functionalized surface, S5 displayed a distinct distribution of peptides, resulting in enhanced osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Yujie Zhang
- CNRS, Bordeaux INP, CBMN, Univ. Bordeaux, UMR 5248, Pessac33600,France
| | - Murielle Remy
- CNRS, Bordeaux INP, CBMN, Univ. Bordeaux, UMR 5248, Pessac33600,France
| | | | | |
Collapse
|
5
|
Boscaro D, Sikorski P. Spheroids as a 3D in vitro model to study bone and bone mineralization. BIOMATERIALS ADVANCES 2024; 157:213727. [PMID: 38101067 DOI: 10.1016/j.bioadv.2023.213727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Traumas, fractures, and diseases can severely influence bone tissue. Insight into bone mineralization is essential for the development of therapies and new strategies to enhance bone regeneration. 3D cell culture systems, in particular cellular spheroids, have gained a lot of interest as they can recapitulate crucial aspects of the in vivo tissue microenvironment, such as the extensive cell-cell and cell-extracellular matrix (ECM) interactions found in tissue. The potential of combining spheroids and various classes of biomaterials opens also new opportunities for research within bone tissue engineering. Characterizing cellular organization, ECM structure, and ECM mineralization is a fundamental step for understanding the biological processes involved in bone tissue formation in a spheroid-based model system. Still, many experimental techniques used in this field of research are optimized for use with monolayer cell cultures. There is thus a need to develop new and improving existing experimental techniques, for applications in 3D cell culture systems. In this review, bone composition and spheroids properties are described. This is followed by an insight into the techniques that are currently used in bone spheroids research and how these can be used to study bone mineralization. We discuss the application of staining techniques used with optical and confocal fluorescence microscopy, molecular biology techniques, second harmonic imaging microscopy, Raman spectroscopy and microscopy, as well as electron microscopy-based techniques, to evaluate osteogenic differentiation, collagen production and mineral deposition. Challenges in the applications of these methods in bone regeneration and bone tissue engineering are described. STATEMENT OF SIGNIFICANCE: 3D cell cultures have gained a lot of interest in the last decades as a possible technique that can be used to recreate in vitro in vivo biological process. The importance of 3D environment during bone mineralization led scientists to use this cell culture to study this biological process, to obtain a better understanding of the events involved. New and improved techniques are also required for a proper analysis of this cell model and the process under investigation. This review summarizes the state of the art of the techniques used to study bone mineralization and how 3D cell cultures, in particular spheroids, are tested and analysed to obtain better resolved results related to this complex biological process.
Collapse
Affiliation(s)
- Diamante Boscaro
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim 7034, Norway.
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim 7034, Norway.
| |
Collapse
|
6
|
Qiu X, Deng Z, Wang M, Feng Y, Bi L, Li L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum Cell 2023; 36:540-553. [PMID: 36580272 DOI: 10.1007/s13577-022-00853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Piezo ion channel is a mechanosensitive protein on the cell membrane, which contains Piezo1 and Piezo2. Piezo channels are activated by mechanical forces, including stretch, matrix stiffness, static pressure, and shear stress. Piezo channels transmit mechanical signals that cause different downstream responses in the differentiation process, including integrin signaling pathway, ERK1/2 MAPK signaling pathway, Notch signaling, and WNT signaling pathway. In the fate of stem cell differentiation, scientists found differences in Piezo channel expression and found that Piezo channel expression is related to developmental diseases. Here, we briefly review the structure and function of Piezo channels and the relationship between Piezo and mechanical signals, discussing the current understanding of the role of Piezo channels in stem cell fate and associated molecules and developmental diseases. Ultimately, we believe this review will help identify the association between Piezo channels and stem cell fate.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhuoyue Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meijing Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuqi Feng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
7
|
miR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway. J Biol Chem 2022; 298:102116. [PMID: 35691339 PMCID: PMC9257423 DOI: 10.1016/j.jbc.2022.102116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis affects approximately 200 million people and severely affects quality of life, but the exact pathological mechanisms behind this disease remain unclear. Various miRNAs have been shown to play a predominant role in the regulation of osteoclast formation. In this study, we explored the role of miR-134-5p in osteoclastogenesis both in vivo and in vitro. We constructed an ovariectomized (OVX) mouse model and performed microarray analysis using bone tissue from OVX mice and their control counterparts. Quantitative RT-PCR data from bone tissue and bone marrow macrophages (BMMs) confirmed the decreased expression of miR-134-5p in OVX mice observed in microarray analysis. In addition, a decrease in miR-134-5p was also observed during induced osteoclastogenesis of BMMs collected from C57BL/6N mice. Through transfection with miR-134-5p agomirs and antagomirs, we found that miR-134-5p knockdown significantly accelerated osteoclast formation and cell proliferation and inhibited apoptosis. Furthermore, a luciferase reporter assay showed that miR-134-5p directly targets the integrin surface receptor gene Itgb1. Cotransfection with Itgb1 siRNA reversed the effect of the miR-134-5p antagomir in promoting osteoclastogenesis. Moreover, the abundance levels of MAPK pathway proteins phosphorylated-p38 (p-p38) and phosphorylated-ERK (p-ERK) were significantly increased after transfection with the miR-134-5p antagomir but decreased after transfection with the miR-134-5p agomir or Itgb1 siRNA, which indicated a potential relationship between the miR-134-5p/Itgb1 axis and the MAPK pathway. Collectively, these results revealed that miR-134-5p inhibits osteoclast differentiation of BMMs both in vivo and in vitro and that the miR-134-5p/Itgb1/MAPK pathway might be a potential target for osteoporosis therapy.
Collapse
|
8
|
Sun Y, Yuan Y, Wu W, Lei L, Zhang L. The effects of locomotion on bone marrow mesenchymal stem cell fate: insight into mechanical regulation and bone formation. Cell Biosci 2021; 11:88. [PMID: 34001272 PMCID: PMC8130302 DOI: 10.1186/s13578-021-00601-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) refer to a heterogeneous population of cells with the capacity for self-renewal. BMSCs have multi-directional differentiation potential and can differentiate into chondrocytes, osteoblasts, and adipocytes under specific microenvironment or mechanical regulation. The activities of BMSCs are closely related to bone quality. Previous studies have shown that BMSCs and their lineage-differentiated progeny (for example, osteoblasts), and osteocytes are mechanosensitive in bone. Thus, a goal of this review is to discuss how these ubiquious signals arising from mechanical stimulation are perceived by BMSCs and then how the cells respond to them. Studies in recent years reported a significant effect of locomotion on the migration, proliferation and differentiation of BMSCs, thus, contributing to our bone mass. This regulation is realized by the various intersecting signaling pathways including RhoA/Rock, IFG, BMP and Wnt signalling. The mechanoresponse of BMSCs also provides guidance for maintaining bone health by taking appropriate exercises. This review will summarize the regulatory effects of locomotion/mechanical loading on BMSCs activities. Besides, a number of signalling pathways govern MSC fate towards osteogenic or adipocytic differentiation will be discussed. The understanding of mechanoresponse of BMSCs makes the foundation for translational medicine.
Collapse
Affiliation(s)
- Yuanxiu Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Yuan
- School of Sport and Health, Guangzhou Sport University, Guangzhou, 510500, Guangdong, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Le Lei
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Lingli Zhang
- School of Physical Education & Sports Science, South China Normal University, 55 Zhongshan Road West, Tianhe District, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
9
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
10
|
Kyyak S, Blatt S, Schiegnitz E, Heimes D, Staedt H, Thiem DGE, Sagheb K, Al-Nawas B, Kämmerer PW. Activation of Human Osteoblasts via Different Bovine Bone Substitute Materials With and Without Injectable Platelet Rich Fibrin in vitro. Front Bioeng Biotechnol 2021; 9:599224. [PMID: 33681155 PMCID: PMC7925396 DOI: 10.3389/fbioe.2021.599224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/21/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The aim of the in vitro study was to compare the effect of four bovine bone substitute materials (XBSM) with and without injectable platelet-reach fibrin for viability and metabolic activity of human osteoblasts (HOB) as well as expression of alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2), and osteonectin (OCN). MATERIALS AND METHODS Cerabone® (CB), Bio-Oss® (BO), Creos Xenogain® (CX) and MinerOss® X (MO) ± i-PRF were incubated with HOB. At day 3, 7, and 10, cell viability and metabolic activity as well as expression of ALP, OCN, and BMP-2, was examined. RESULTS For non-i-PRF groups, the highest values concerning viability were seen for CB at all time points. Pre-treatment with i-PRF increased viability in all groups with the highest values for CB-i-PRF after 3 and 7 and for CX-i-PRF after 10 days. For metabolic activity, the highest rate among non-i-PRF groups was seen for MO at day 3 and for CB at day 7 and 10. Here, i-PRF groups showed higher values than non-i-PRF groups (highest values: CB + i-PRF) at all time points. There was no difference in ALP-expression between groups. For OCN expression in non-i-PRF groups, CB showed the highest values after day 3, CX after day 7 and 10. Among i-PRF-groups, the highest values were seen for CX + i-PRF. At day 3, the highest BMP-2 expression was observed for CX. Here, for i-PRF groups, the highest increase was seen for CX + i-PRF at day 3. At day 7 and 10, there was no significant difference among groups. CONCLUSION XBSM sintered under high temperature showed increased HOB viability and metabolic activity through the whole period when compared to XBSM manufactured at lower temperatures. Overall, the combination of XBSM with i-PRF improved all cellular parameters, ALP and BMP-2 expression at earlier stages as well as OCN expression at later stages.
Collapse
Affiliation(s)
- Solomiya Kyyak
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Eik Schiegnitz
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Diana Heimes
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Henning Staedt
- Private Practice, University Medical Center Rostock, Rostock, Germany
- Department of Prosthodontics and Materials Science, University Medical Center Rostock, Rostock, Germany
| | - Daniel G. E. Thiem
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Keyvan Sagheb
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
11
|
Jain E, Neal S, Graf H, Tan X, Balasubramaniam R, Huebsch N. Copper-Free Azide-Alkyne Cycloaddition for Peptide Modification of Alginate Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:1229-1237. [PMID: 35014476 DOI: 10.1021/acsabm.0c00976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alginate, a biocompatible polymer naturally derived from algae, is widely used as a synthetic analogue of the extracellular matrix in tissue engineering. Integrin-binding peptide motifs, including RGD, a derivative of fibronectin, are typically grafted to the alginate polymer through carbodiimide reactions between peptide amines and alginate uronic acids. However, lack of chemo-selectivity of carbodiimide reactions can lead to side reactions that lower peptide bioactivity. To overcome these limitations, we developed an approach for copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC)-mediated conjugation of azide-modified adhesive peptides (azido-cyclo-RGD, Az-cRGD) onto alginate. Successful conjugation of azide-reactive cyclooctynes onto alginates using a heterobifunctional crosslinker was confirmed by azido-coumarin fluorescent assay, NMR, and through click reactions with azide-modified fluorescent probes. Compared to cyclo-RGD peptides directly conjugated to alginate polymers with standard carbodiimide chemistry, Az-cyclo-RGD peptides exhibited higher bioactivity, as demonstrated by cell adhesion and proliferation assays. Finally, Az-cRGD peptides enhanced the effects of recombinant bone morphogenetic proteins on inducing osteogenesis of osteoblasts and bone marrow stromal stem cells in 3D alginate gels. SPAAC-mediated click approaches for peptide-alginate bioconjugation overcome the limitations of previous alginate bioconjugation approaches and potentially expand the range of ligands that can be grafted to alginate polymers for tissue engineering applications.
Collapse
Affiliation(s)
- Era Jain
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis 63130, United States
| | - Sydney Neal
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis 63130, United States
| | - Hannah Graf
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis 63130, United States
| | - Xiaohong Tan
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis 63130, United States
| | - Rama Balasubramaniam
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis 63130, United States
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis 63130, United States.,Center for Cardiovascular Research, Center for Regenerative Medicine, Center for Investigation of Membrane Excitability Diseases, Washington University in Saint Louis, St. Louis 63130, United States
| |
Collapse
|
12
|
Fibronectin 1 activates WNT/β-catenin signaling to induce osteogenic differentiation via integrin β1 interaction. J Transl Med 2020; 100:1494-1502. [PMID: 32561820 DOI: 10.1038/s41374-020-0451-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease leading to fragility fractures and is a major health issue globally. WNT/β-catenin signaling regulates bone-remodeling processes and plays vital roles in OP development. However, the underlying regulatory mechanisms behind WNT/β-catenin signaling in OP requires clarification, as further studies are required to identify novel alternate therapeutic agents to improve OP. Here we report that fibronectin 1 (FN-1) promoted differentiation and mineralization of osteoblasts by activating WNT/β-catenin pathway, in cultured pre-osteoblasts. With isobaric tags for relative and absolute quantitation labeling proteomics analysis, we investigated protein changes in bone samples from OP patients and normal controls. FN-1 accumulated in osteoblasts in bone samples from OP patients and age-related OP mice compared to control group. In addition, we observed that integrin β1 (ITGB1) acts as an indispensable signaling molecule for the interplay between FN-1 and β-catenin, and that FN-1 expression increased, but ITGB1 expression decreased in osteoblasts during OP progression. Therefore, our study reveals a novel explanation for WNT/β-catenin pathway inactivation in OP pathology. Supplying of FN-1 and ITGB1 may provide a potential therapeutic strategy in improving bone formation during OP.
Collapse
|
13
|
Charlier E, Deroyer C, Neuville S, Plener Z, Malaise O, Ciregia F, Gillet P, Reuter G, Salvé M, Withofs N, Hustinx R, de Seny D, Malaise MG. Toward diagnostic relevance of the α Vβ 5, α Vβ 3, and α Vβ 6 integrins in OA: expression within human cartilage and spinal osteophytes. Bone Res 2020; 8:35. [PMID: 33083095 PMCID: PMC7527564 DOI: 10.1038/s41413-020-00110-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/06/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
We previously reported 18FPRGD2 uptake by the coxofemoral lining, intervertebral discs and facet joint osteophytes in OA using PET/SCAN imaging. However, the molecular mechanism by which the PRGD2 tracer interacts with joint tissues and osteophytes in OA remains unclear. As PRGD2 ligands are expected to belong to the RGD-specific integrin family, the purpose of this study was (i) to determine which integrin complexes display the highest affinity for PRGD2-based ligands, (ii) to analyze integrin expression in relevant tissues, and (iii) to test integrin regulation in chondrocytes using OA-related stimuli to increase the levels of fibrosis and ossification markers. To this end, the affinity of PRGD2-based ligands for five heterodimeric integrins was measured by competition with 125I-echistatin. In situ analyses were performed in human normal vs. OA cartilage and spinal osteophytes. Osteophytes were characterized by (immuno-)histological staining. Integrin subunit expression was tested in chondrocytes undergoing dedifferentiation, osteogenic differentiation, and inflammatory stimulation. The integrins αVβ5, αVβ3, and αVβ6 presented the highest affinity for PRGD2-based ligands. In situ, the expression of these integrins was significantly increased in OA compared to normal cartilage. Within osteophytes, the mean integrin expression score was significantly higher in blood vessels, fibrous areas, and cells from the bone lining than in osteocytes and cartilaginous zones. In vitro, the levels of integrin subunits were significantly increased during chondrocyte dedifferentiation (except for β6), fibrosis, and osteogenic differentiation as well as under inflammatory stimuli. In conclusion, anatomical zones (such as OA cartilage, intervertebral discs, and facet joint osteophytes) previously reported to show PRGD2 ligand uptake in vivo expressed increased levels of αVβ5, αVβ3, and β6 integrins, whose subunits are modulated in vitro by OA-associated conditions that increase fibrosis, inflammation, and osteogenic differentiation. These results suggest that the increased levels of integrins in OA compared to normal tissues favor PRGD2 uptake and might explain the molecular mechanism of OA imaging using the PRGD2-based ligand PET/CT.
Collapse
Affiliation(s)
- Edith Charlier
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Céline Deroyer
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Sophie Neuville
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Zelda Plener
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Olivier Malaise
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Federica Ciregia
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | | | - Gilles Reuter
- Department of Neurosurgery, CHULiège, Liège, Belgium
| | - Mallory Salvé
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Michel G. Malaise
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| |
Collapse
|
14
|
Jann J, Drevelle O, Lauzon MA, Faucheux N. Adhesion, intracellular signalling and osteogenic differentiation of mesenchymal progenitor cells and preosteoblasts on poly(epsilon)caprolactone films functionalized by peptides derived from fibronectin and/or BMP-9. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111088. [DOI: 10.1016/j.msec.2020.111088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/14/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
15
|
Zhang D, Ni N, Wang Y, Tang Z, Gao H, Ju Y, Sun N, He X, Gu P, Fan X. CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression. Cell Death Differ 2020; 28:283-302. [PMID: 32814879 PMCID: PMC7853044 DOI: 10.1038/s41418-020-0600-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are promising candidate for regenerative medicine to repair non-healing bone defects due to their high and easy availability. However, the limited osteogenic differentiation potential greatly hinders the clinical application of ADSCs in bone repair. Accumulating evidences demonstrate that circular RNAs (circRNAs) are involved in stem/progenitor cell fate determination, but their specific role in stem/progenitor cell osteogenesis, remains mostly undescribed. Here, we show that circRNA-vgll3 originating from the vgll3 locus markedly enhances osteogenic differentiation of ADSCs; nevertheless, silencing of circRNA-vgll3 dramatically attenuates ADSC osteogenesis. Furthermore, we validate that circRNA-vgll3 functions in ADSC osteogenesis through a circRNA-vgll3/miR-326-5p/integrin α5 (Itga5) pathway. Itga5 promotes ADSC osteogenic differentiation and miR-326-5p suppresses Itga5 translation. CircRNA-vgll3 directly sequesters miR-326-5p in the cytoplasm and inhibits its activity to promote osteogenic differentiation. Moreover, the therapeutic potential of circRNA-vgll3-modified ADSCs with calcium phosphate cement (CPC) scaffolds was systematically evaluated in a critical-sized defect model in rats. Our results demonstrate that circRNA-vgll3 markedly enhances new bone formation with upregulated bone mineral density, bone volume/tissue volume, trabeculae number, and increased new bone generation. This study reveals the important role of circRNA-vgll3 during new bone biogenesis. Thus, circRNA-vgll3 engineered ADSCs may be effective potential therapeutic targets for bone regenerative medicine.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Na Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| |
Collapse
|
16
|
Wei Q, Holle A, Li J, Posa F, Biagioni F, Croci O, Benk AS, Young J, Noureddine F, Deng J, Zhang M, Inman GJ, Spatz JP, Campaner S, Cavalcanti‐Adam EA. BMP-2 Signaling and Mechanotransduction Synergize to Drive Osteogenic Differentiation via YAP/TAZ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902931. [PMID: 32775147 PMCID: PMC7404154 DOI: 10.1002/advs.201902931] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/28/2020] [Indexed: 05/15/2023]
Abstract
Growth factors and mechanical cues synergistically affect cellular functions, triggering a variety of signaling pathways. The molecular levels of such cooperative interactions are not fully understood. Due to its role in osteogenesis, the growth factor bone morphogenetic protein 2 (BMP-2) is of tremendous interest for bone regenerative medicine, osteoporosis therapeutics, and beyond. Here, contribution of BMP-2 signaling and extracellular mechanical cues to the osteogenic commitment of C2C12 cells is investigated. It is revealed that these two distinct pathways are integrated at the transcriptional level to provide multifactorial control of cell differentiation. The activation of osteogenic genes requires the cooperation of BMP-2 pathway-associated Smad1/5/8 heteromeric complexes and mechanosensitive YAP/TAZ translocation. It is further demonstrated that the Smad complexes remain bound onto and active on target genes, even after BMP-2 removal, suggesting that they act as a "molecular memory unit." Thus, synergistic stimulation with BMP-2 and mechanical cues drives osteogenic differentiation in a programmable fashion.
Collapse
Affiliation(s)
- Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Andrew Holle
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Jie Li
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Francesca Posa
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
- Department of Clinical and Experimental MedicineMedical SchoolUniversity of FoggiaFoggia71122Italy
| | - Francesca Biagioni
- Center for Genomic Science of IIT@SEMMIstituto Italiano di Tecnologia (IIT)Via Adamello 16Milan20139Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT@SEMMIstituto Italiano di Tecnologia (IIT)Via Adamello 16Milan20139Italy
| | - Amelie S. Benk
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Jennifer Young
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Fatima Noureddine
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Jie Deng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Man Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Gareth J. Inman
- Growth Factor Signalling and Squamous CancersCancer Research UK Beatson InstituteGarscube EstateGlasgowG61 1BDUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Joachim P. Spatz
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMMIstituto Italiano di Tecnologia (IIT)Via Adamello 16Milan20139Italy
| | - Elisabetta A. Cavalcanti‐Adam
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
- Department of Biophysical ChemistryHeidelberg UniversityINF 253Heidelberg69120Germany
- Central Scientific Facility “Cellular Biotechnology,”MPI for Medical ResearchJahnstr. 29Heidelberg69120Germany
| |
Collapse
|
17
|
Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML. Biochem Soc Trans 2020; 47:1307-1325. [PMID: 31551354 DOI: 10.1042/bst20190221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukaemia (CML) is a paradigm of precision medicine, being one of the first cancers to be treated with targeted therapy. This has revolutionised CML therapy and patient outcome, with high survival rates. However, this now means an ever-increasing number of patients are living with the disease on life-long tyrosine kinase inhibitor (TKI) therapy, with most patients anticipated to have near normal life expectancy. Unfortunately, in a significant number of patients, TKIs are not curative. This low-level disease persistence suggests that despite a molecularly targeted therapeutic approach, there are BCR-ABL1-independent mechanisms exploited to sustain the survival of a small cell population of leukaemic stem cells (LSCs). In CML, LSCs display many features akin to haemopoietic stem cells, namely quiescence, self-renewal and the ability to produce mature progeny, this all occurs through intrinsic and extrinsic signals within the specialised microenvironment of the bone marrow (BM) niche. One important avenue of investigation in CML is how the disease highjacks the BM, thereby remodelling this microenvironment to create a niche, which enables LSC persistence and resistance to TKI treatment. In this review, we explore how changes in growth factor levels, in particular, the bone morphogenetic proteins (BMPs) and pro-inflammatory cytokines, impact on cell behaviour, extracellular matrix deposition and bone remodelling in CML. We also discuss the challenges in targeting LSCs and the potential of dual targeting using combination therapies against BMP receptors and BCR-ABL1.
Collapse
|
18
|
Wang J, Chen X, Yang X, Guo B, Li D, Zhu X, Zhang X. Positive role of calcium phosphate ceramics regulated inflammation in the osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2020; 108:1305-1320. [PMID: 32064734 DOI: 10.1002/jbm.a.36903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/05/2023]
Abstract
Recently, researches have confirmed the crucial role of inflammatory response in Ca-P ceramic-induced osteogenesis, however, the underlying mechanism has not yet been fully understood. In this study, BCP and β-TCP ceramics were used as material models to investigate the effect of physicochemical properties on inflammatory response in vitro. The results showed that BCP and β-TCP could support macrophages attachment, proliferation, and spreading favorably, as well as promote gene expressions of inflammatory related cytokines (IL-1, IL-6, MCP-1, and TNF-α) and growth factors (TGF-β, FGF, PDGF, VEGF, IGF, and EGF). BCP showed a facilitating function on the gene expressions earlier than β-TCP. Further coculture experiments performed in vitro demonstrated that the CMs containing various increased cytokines for macrophages pre-culture could significantly promote MSCs osteogenic differentiation, which was confirmed by the gene expressions of osteogenic specific markers and the intracellular OCN product accumulation under the stimulation of BCP and β-TCP ceramics. Further evidence was found from the formation of mineralized nodules in BCM and TCM. In addition, this study showed a concise relationship between Ca-P ceramic induced inflammation and its osteoinductivity that the increased cytokines and growth factors from macrophages could promote MSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Bo Guo
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Danyang Li
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med 2020; 24:3271-3281. [PMID: 32045092 PMCID: PMC7131929 DOI: 10.1111/jcmm.15052] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas , c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.
Collapse
Affiliation(s)
- Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiaobin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Liang Yan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
20
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
21
|
Ettelt V, Belitsky A, Lehnert M, Loidl-Stahlhofen A, Epple M, Veith M. Enhanced selective cellular proliferation by multi-biofunctionalization of medical implant surfaces with heterodimeric BMP-2/6, fibronectin, and FGF-2. J Biomed Mater Res A 2019; 106:2910-2922. [PMID: 30447103 DOI: 10.1002/jbm.a.36480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 11/07/2022]
Abstract
Increasing cell adhesion on implant surfaces is an issue of high biomedical importance. Early colonization with endogenous cells reduces the risk of bacterial contamination and enhances the integration of an implant into the diverse cellular tissues surrounding it. In vivo integration of implants is controlled by a complex spatial and temporal interplay of cytokines and adhesive molecules. The concept of a multi-biofunctionalized TiO2 surface for stimulating bone and soft tissue growth is presented here. All supramolecular architectures were built with a biotin-streptavidin coupling system. Biofunctionalization of TiO2 with immobilized FGF-2 and heparin could be shown to selectively increase the proliferation of fibroblasts while immobilized BMP-2 only stimulated the growth of osteoblasts. Furthermore, TiO2 surfaces biofunctionalized with either the BMP-2 or BMP-2/6 growth factor and the cell adhesion-enhancing protein fibronectin showed higher osteoblast adhesion than a TiO2 surface functionalized with only one of these proteins. In conclusion, the presented immobilization strategy is applicable in vivo for a selective surface coating of implants in both hard and connective tissue. The combined immobilization of different extracellular proteins on implants has the potential to further influence cell-specific reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2910-2922, 2018.
Collapse
Affiliation(s)
- Volker Ettelt
- Laboratory of Biophysics, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany.,Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), Faculty of Chemistry, University of Duisburg-Essen, D-45141, Essen, Germany
| | - Alice Belitsky
- Laboratory of Biophysics, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany
| | - Michael Lehnert
- Laboratory of Biophysics, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany
| | - Angelika Loidl-Stahlhofen
- Laboratory of Protein Chemistry, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), Faculty of Chemistry, University of Duisburg-Essen, D-45141, Essen, Germany
| | - Michael Veith
- Laboratory of Biophysics, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany
| |
Collapse
|
22
|
New Insights on Properties and Spatial Distributions of Skeletal Stem Cells. Stem Cells Int 2019; 2019:9026729. [PMID: 31281389 PMCID: PMC6589297 DOI: 10.1155/2019/9026729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Skeletal stem cells (SSCs) are postnatal self-renewing, multipotent, and skeletal lineage-committed progenitors that are capable of giving rise to cartilage, bone, and bone marrow stroma including marrow adipocytes and stromal cells in vitro and in an exogenous environment after transplantation in vivo. Identifying and isolating defined SSCs as well as illuminating their spatiotemporal properties contribute to our understating of skeletal biology and pathology. In this review, we revisit skeletal stem cells identified most recently and systematically discuss their origin and distributions.
Collapse
|
23
|
Singhatanadgit W, Sungkhaphan P, Theerathanagorn T, Patntirapong S, Janvikul W. Analysis of sequential dual immobilization of type I collagen and BMP-2 short peptides on hydrolyzed poly(buthylene succinate)/ β-tricalcium phosphate composites for bone tissue engineering. J Biomater Appl 2019; 34:351-364. [PMID: 31137998 DOI: 10.1177/0885328219852820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Weerachai Singhatanadgit
- 1 Craniofacial Reconstruction Cluster, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | | | | | - Somying Patntirapong
- 3 Department of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Wanida Janvikul
- 2 National Metal and Materials Technology Center, Pathum Thani, Thailand
| |
Collapse
|
24
|
Lopes HB, Freitas GP, Fantacini DMC, Picanço‐Castro V, Covas DT, Rosa AL, Beloti MM. Titanium with nanotopography induces osteoblast differentiation through regulation of integrin αV. J Cell Biochem 2019; 120:16723-16732. [DOI: 10.1002/jcb.28930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Helena Bacha Lopes
- Bone Res Lab, School of Dentistry of Ribeirao Preto University of São Paulo Ribeirao Preto Brazil
| | - Gileade Pereira Freitas
- Bone Res Lab, School of Dentistry of Ribeirao Preto University of São Paulo Ribeirao Preto Brazil
| | | | | | - Dimas Tadeu Covas
- Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirao Preto Brazil
| | - Adalberto Luiz Rosa
- Bone Res Lab, School of Dentistry of Ribeirao Preto University of São Paulo Ribeirao Preto Brazil
| | - Marcio Mateus Beloti
- Bone Res Lab, School of Dentistry of Ribeirao Preto University of São Paulo Ribeirao Preto Brazil
| |
Collapse
|
25
|
Cheng CH, Lai YH, Chen YW, Yao CH, Chen KY. Immobilization of bone morphogenetic protein-2 to gelatin/avidin-modified hydroxyapatite composite scaffolds for bone regeneration. J Biomater Appl 2019; 33:1147-1156. [PMID: 30739563 DOI: 10.1177/0885328218820636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone scaffold surface characterization is important for improving cell adhesion, migration, and differentiation. In this study, bone morphogenetic protein-2 (BMP-2) was immobilized to the surface of the gelatin/hydroxyapatite composite using avidin–biotin binding system to produce a bone-tissue engineering scaffold. Firstly, hydroxyapatite particles reacted with hexamethylene diisocyanate and then the terminal group was converted into a primary amine group. Avidin was then immobilized on the surfaces of hydroxyapatite particles using N-ethyl-N′-(3-(dimethylamino)propyl) carbodiimide and N-hydroxysuccinimide as coupling agents. Gelatin was blended with avidin-modified hydroxyapatite and pure hydroxyapatite to obtain gelain/hydroxyapatite composite. The composite was then cross-linked with glutaraldehyde. Finally, biotin-conjugated BMP-2 was immobilized on the surface of the composite via avidin–biotin binding. In vitro study indicated that BMP-2-immobilized composite film had a higher ALP activity than that composite film without BMP-2. The composite scaffolds were then implanted into rabbit skulls to check bone-tissue regeneration. Ultrasound and micro-CT scans demonstrated that neovascularization and new bone formation in the BMP-2-immobilized composite scaffolds were higher than those in composite scaffolds without BMP-2. Histological evaluation result was similar to that of the micro-CT. Therefore, the surface immobilization of BMP-2 could effectively improve osteogenesis in the gelatin/hydroxyapatite composite scaffold.
Collapse
Affiliation(s)
- Cheng-Hsin Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung
- Department of Neurosurgery, An Nan Hospital, China Medical University, Tainan
| | - Yi-Hui Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung
- School of Chinese Medicine, China Medical University, Taichung
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin
| |
Collapse
|
26
|
Xu Z, Chen H, Wang Z, Fan F, Shi P, Tu M, Du M. Isolation and Characterization of Peptides from Mytilus edulis with Osteogenic Activity in Mouse MC3T3-E1 Preosteoblast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1572-1584. [PMID: 30614690 DOI: 10.1021/acs.jafc.8b06530] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Seafood provides a range of health benefits because of its high protein levels. In this study, a novel peptide, YPRKDETGAERT, was identified from NHA-2 of Mytilus edulis by capillary-electrophoresis electrospray ionization-quadrupole-time of flight (CESI-Q-TOF). Peptide YPRKDETGAERT showed the highest affinity among all the peptides, with -CDOCKER energy values of 204.482 kcal/mol on one integrin (PDB: 3VI4 ) and 210.16 kcal/mol on another integrin (PDB: 1L5G ). The secondary mass spectrogram at the m/ z of peptide YPRKDETGAERT was 1422.53 Da, which was determined by CESI-Q-TOF. Peptide YPRKDETGAERT induced an increase of 28.27 ± 3.66% in mouse-MC3T3-E1-preosteoblast-cell growth. The alkaline-phosphatase activity of peptide YPRKDETGAERT was 2.79 ± 0.07 mU, which was an increase of 21.25% compared with that of the control. These results provide theoretical and practical insights for the preparation and application of osteogenic peptides in the functional-foods industry.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Fengjiao Fan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Pujie Shi
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Maolin Tu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| |
Collapse
|
27
|
Nguyen HT, Ono M, Oida Y, Hara ES, Komori T, Akiyama K, Nguyen HTT, Aung KT, Pham HT, Tosa I, Takarada T, Matsuo K, Mizoguchi T, Oohashi T, Kuboki T. Bone Marrow Cells Inhibit BMP-2-Induced Osteoblast Activity in the Marrow Environment. J Bone Miner Res 2019; 34:327-332. [PMID: 30352125 DOI: 10.1002/jbmr.3598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 01/04/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is widely known as a potent growth factor that promotes bone formation. However, an increasing number of studies have demonstrated side effects of BMP-2 therapy. A deeper understanding of the effect of BMP-2 on cells other than those involved directly in bone remodeling is of fundamental importance to promote a more effective delivery of BMP-2 to patients. In this study, we aimed to investigate the effect of BMP-2 in the marrow environment. First, BMP-2 adsorbed onto titanium implants was delivered at the tooth extraction socket (marrow-absent site) or in the mandible marrow of beagle dogs. BMP-2 could induce marked bone formation around the implant at the tooth extraction socket. Surprisingly, however, no bone formation was observed in the BMP-2-coated titanium implants inserted in the mandible marrow. In C57BL/6 mice, BMP-2 adsorbed in freeze-dried collagen pellets could induce bone formation in marrow-absent calvarial bone. However, similar to the canine model, BMP-2 could not induce bone formation in the femur marrow. Analysis of osteoblast differentiation using Col1a1(2.3)-GFP transgenic mice revealed a scarce number of osteoblasts in BMP-2-treated femurs, whereas in the control group, osteoblasts were abundant. Ablation of femur marrow recovered the BMP-2 ability to induce bone formation. In vitro experiments analyzing luciferase activity of C2C12 cells with the BMP-responsive element and alkaline phosphatase activity of MC3T3-E1 osteoblasts further revealed that bone marrow cells inhibit the BMP-2 effect on osteoblasts by direct cell-cell contact. Collectively, these results showed that the effect of BMP-2 in inducing bone formation is remarkably repressed by marrow cells via direct cell-cell contact with osteoblasts; this opens new perspectives on the clarification of the side-effects associated with BMP-2 application. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasutaka Oida
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ha Thi Thu Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kyaw Thu Aung
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hai Thanh Pham
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | | | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
28
|
Cheng ZA, Alba‐Perez A, Gonzalez‐Garcia C, Donnelly H, Llopis‐Hernandez V, Jayawarna V, Childs P, Shields DW, Cantini M, Ruiz‐Cantu L, Reid A, Windmill JFC, Addison ES, Corr S, Marshall WG, Dalby MJ, Salmeron‐Sanchez M. Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800361. [PMID: 30693176 PMCID: PMC6343071 DOI: 10.1002/advs.201800361] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/28/2018] [Indexed: 05/05/2023]
Abstract
While new biomaterials for regenerative therapies are being reported in the literature, clinical translation is slow. Some existing regenerative approaches rely on high doses of growth factors, such as bone morphogenetic protein-2 (BMP-2) in bone regeneration, which can cause serious side effects. An ultralow-dose growth factor technology is described yielding high bioactivity based on a simple polymer, poly(ethyl acrylate) (PEA), and mechanisms to drive stem cell differentiation and bone regeneration in a critical-sized murine defect model with translation to a clinical veterinary setting are reported. This material-based technology triggers spontaneous fibronectin organization and stimulates growth factor signalling, enabling synergistic integrin and BMP-2 receptor activation in mesenchymal stem cells. To translate this technology, plasma-polymerized PEA is used on 2D and 3D substrates to enhance cell signalling in vitro, showing the complete healing of a critical-sized bone injury in mice in vivo. Efficacy is demonstrated in a Münsterländer dog with a nonhealing humerus fracture, establishing the clinical translation of advanced ultralow-dose growth factor treatment.
Collapse
Affiliation(s)
- Zhe A. Cheng
- Centre for the Cellular MicroenvironmentUniversity of GlasgowG12 8LTGlasgowUK
| | - Andres Alba‐Perez
- Centre for the Cellular MicroenvironmentUniversity of GlasgowG12 8LTGlasgowUK
| | | | - Hannah Donnelly
- Centre for the Cellular MicroenvironmentUniversity of GlasgowG12 8LTGlasgowUK
| | | | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowG12 8LTGlasgowUK
| | - Peter Childs
- Centre for the Cellular MicroenvironmentUniversity of GlasgowG12 8LTGlasgowUK
| | - David W. Shields
- Centre for the Cellular MicroenvironmentUniversity of GlasgowG12 8LTGlasgowUK
| | - Marco Cantini
- Centre for the Cellular MicroenvironmentUniversity of GlasgowG12 8LTGlasgowUK
| | - Laura Ruiz‐Cantu
- Centre for Additive ManufacturingUniversity of NottinghamNottinghamUK
| | - Andrew Reid
- Centre for Ultrasonic EngineeringDepartment of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK
| | - James F. C. Windmill
- Centre for Ultrasonic EngineeringDepartment of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK
| | | | - Sandra Corr
- Small Animal HospitalUniversity of GlasgowGlasgowUK
| | | | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowG12 8LTGlasgowUK
| | | |
Collapse
|
29
|
Yan L, Jiang J, Ma C, Li R, Xia Y. [Effect of knocking down Piezo1 mechanically sensitive protein on migration of MC3T3-E1 osteoblast cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:28-34. [PMID: 30644257 PMCID: PMC8337238 DOI: 10.7507/1002-1892.201806121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/10/2018] [Indexed: 01/22/2023]
Abstract
Objective To discuss the effect of Piezo1 mechanically sensitive protein in migration process of mouse MC3T3-E1 osteoblast cells. Methods The 5th-10th generation mouse MC3T3-E1 osteoblasts were divided into Piezo1-small interfering RNA (siRNA) transfection group (group A), negative control group (group B), and blank control group (group C). Piezo1-siRNA or negative control siRNA was transfected into mouse MC3T3-E1 osteoblasts by siRNA transfection reagent, respectively; group C was only added with siRNA transfection reagent; and the cell morphology was observed under inverted phase contrast microscope and fluorescence microscope, and the transfection efficiency was calculated. The expression of Piezo1 protein was detected by immunofluorescence staining and Western blot. Transwell cell migration assay and cell scratch assay were used to detect the migration of MC3T3-E1 osteoblasts after Piezo1-siRNA transfection. Results After 48 hours of transfection, group A showed a slight increase in cell volume and mutant growth, but cell colonies decreased, suspension cells increased and cell fragments increased when compared with untransfected cells. Under fluorescence microscope, green fluorescence was observed in MC3T3-E1 osteoblasts of group B, and the transfection efficiency was 68.56%±4.12%. Immunofluorescence staining and Western blot results showed that the expression level of Piezo1 protein in group A was significantly lower than that in groups B and C ( P<0.05); there was no significant difference between group B and group C ( P>0.05). Transwell cell migration assay and cell scratch assay showed that the number of cells per hole and the scratch healing rate of cells cultured for 1-4 days in group A were significantly lower than those in groups B and C ( P<0.05); there was no significant difference between group B and group C ( P>0.05). Conclusion Piezo1 knocked down by siRNA can inhibit the migration ability of MC3T3-E1 osteoblast cells.
Collapse
Affiliation(s)
- Liang Yan
- Department of Orthopedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Jin Jiang
- Department of Orthopedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Chongwen Ma
- Department of Orthopedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Rui Li
- Department of Orthopedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Yayi Xia
- Department of Orthopedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, 730000,
| |
Collapse
|
30
|
Chen R, Yu Y, Zhang W, Pan Y, Wang J, Xiao Y, Liu C. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies. Acta Biomater 2018; 80:108-120. [PMID: 30218780 DOI: 10.1016/j.actbio.2018.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) involved therapy is of great potential for bone regeneration. However, its clinical application is restricted due to the undesirable bioactivity and relevant complications in vivo. Immobilization of recombinant BMP-2 (rhBMP-2) is an efficient strategy to mimic natural microenvironment and retain its bioactivity. Herein, we present evidences indicating that osteoinductive capacity of rhBMP-2 can be regulated via variant immobilizing approaches. Three representative superficial immobilizing models were employed to fabricate rhBMP-2-immobilized surfaces including physical adsorption (Au/rhBMP-2), covalent grafting (rhBMP-2-SAM-Au) and heparin binding (Hep-SAM-Au/rhBMP-2) (SAM: self-assembled monolayer). Loading capacity, releasing behavior, osteogenic differentiation and signaling pathways involved, as well as the cellular recognition of rhBMP-2 under various immobilization modes were systematically investigated. As a result, disparate immobilizing approaches not only have effects on loading capacity, but also lead to disparity of osteoinduction at the same dosage. Notably, heparin could reinforce the recognition between rhBMP-2 and its receptors (BMPRs) whereas weaken its binding to its antagonist Noggin. Owing to this "selective" binding feature, the favorable osteoinduction and maximum ectopic bone formation can be achieved with the heparin-binding approach. In particular, manipulation of orientation-mediated BMP-2-cell recognition efficiency may be a potential target to design more therapeutic efficient rhBMP-2 delivery system. STATEMENT OF SIGNIFICANCE: Bone morphogenetic protein-2 (BMP-2) is crucial in bone regeneration. However, its clinical application is challenged due to its shorten half-life and supra-physiological dose associated complications. In this study, three representative superficial immobilizing patterns were fabricated through physical adsorption, covalent grafting and electrostatic interaction with heparin respectively. We provided evidences indicating an dose-dependent osteoinductive capacity of immobilized BMP-2. Further, a possible mechanism of rhBMP-2-cell recognition at the interface was presented, highlighting the superior effect of heparin on rhBMP-2 bioactivity. Finally, We proposed a dual mechanism of tuning the bioactivity of immobilized rhBMP-2 through surface immobilization approaches: regulation of the saturated loading capacity and orientation-mediated rhBMP-2-cell recognition. These results provide novel insights into designing criterion of efficient delivery vehicle for rhBMP-2.
Collapse
|
31
|
Gan D, Liu M, Xu T, Wang K, Tan H, Lu X. Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanoparticles and RGD for bone regeneration. J Biomed Mater Res A 2018; 106:2613-2624. [PMID: 29790251 DOI: 10.1002/jbm.a.36453] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
Advancements in bone tissue engineering require the improvement of tissue scaffolds, which should not only exhibit suitable mechanical properties and highly porous structures, but also effectively carry signaling molecules that can mediate bone formation and tissue regeneration. In the present study, we established chitosan/biphasic calcium phosphate (CS/BCP) scaffolds functionalized with Arg-Gly-Asp (RGD) and BMP-2-loaded nanoparticles. The resulting scaffolds were highly similar to natural bone extracellular matrix (ECM) in terms of composition and structural properties. First, we synthesized CS/BCP composite bionic scaffolds via the freeze-drying method. Then, RGD peptides were covalently conjugated onto the scaffolds via the EDC/NHS method. The BMP-2-encapsulated BSA nanoparticles were prepared via a desolvation method and then coated with CS and oxidized alginate to achieve sustained release of BMP-2. In vitro cell culture and in vivo implantation tests confirmed that RGD and BMP-2 synergistically enhanced cell attachment and spreading by providing integrin binding surface and facilitating osteogenic differentiation. In summary, the bioceramic/biopolymer scaffolds functionalized with signaling biomolecules successfully provided a favorable microenvironment for bone formation and thus serve as potential candidates for use in bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2613-2624, 2018.
Collapse
Affiliation(s)
- Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Min Liu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Tong Xu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hui Tan
- Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
32
|
Zhao C, Wang X, Gao L, Jing L, Zhou Q, Chang J. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Acta Biomater 2018; 73:509-521. [PMID: 29678674 DOI: 10.1016/j.actbio.2018.04.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
The micro/nano hybrid structure is considered to be a biomaterial characteristic to stimulate osteogenesis by mimicking the three-dimensional structure of the bone matrix. However, the mechanism of the hybrid structure induced osteogenic differentiation of stem cells is still unknown. For elucidating the mechanisms, one of the challenge is to directly fabricate micro/nano hybrid structure on bioceramics because of its brittleness. In this study, hydroxyapatite (HA) bioceramics with the micro/nano hybrid structure were firstly fabricated via a hydrothermal treatment and template method, and the effect of the different surface structures on the expression of integrins, BMP2 signaling pathways and cell-cell communication was investigated. Interestingly, the results suggested that the osteogenic differentiation induced by micro/nano structures was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, while activated BMP2 could in turn activate integrins and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. STATEMENT OF SIGNIFICANCE The micro/nano hybrid structure has been found to have synergistic bioactivity on osteogenesis. However, it is still a challenge to fabricate the hybrid structure directly on the bioceramics, and the role of micro- and nano-structure, in particular the mechanism of the micro/nano-hybrid structure induced stem cell differentiation is still unknown. In this study, we firstly fabricated hydroxyapatite bioceramics with the micro/nano hybrid structure, and then investigated the effect of different surface structure on expression of integrins, BMP2 signaling pathways and cell-cell communication. Interestingly, we found that the osteogenic differentiation induced by structure was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, and activated BMP2 could in turn activate some integrin subunits and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect.
Collapse
|
33
|
Brunner M, Mandier N, Gautier T, Chevalier G, Ribba AS, Guardiola P, Block MR, Bouvard D. β1 integrins mediate the BMP2 dependent transcriptional control of osteoblast differentiation and osteogenesis. PLoS One 2018; 13:e0196021. [PMID: 29677202 PMCID: PMC5909894 DOI: 10.1371/journal.pone.0196021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/05/2022] Open
Abstract
Osteoblast differentiation is a highly regulated process that requires coordinated information from both soluble factors and the extracellular matrix. Among these extracellular stimuli, chemical and physical properties of the matrix are sensed through cell surface receptors such as integrins and transmitted into the nucleus to drive specific gene expression. Here, we showed that the conditional deletion of β1 integrins in the osteo-precursor population severely impacts bone formation and homeostasis both in vivo and in vitro. Mutant mice displayed a severe bone deficit characterized by bone fragility and reduced bone mass. We showed that β1 integrins are required for proper BMP2 dependent signaling at the pre-osteoblastic stage, by positively modulating Smad1/5-dependent transcriptional activity at the nuclear level. The lack of β1 integrins results in a transcription modulation that relies on a cooperative defect with other transcription factors rather than a plain blunted BMP2 response. Our results point to a nuclear modulation of Smad1/5 transcriptional activity by β1 integrins, allowing a tight control of osteoblast differentiation.
Collapse
Affiliation(s)
- Molly Brunner
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Noémie Mandier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Thierry Gautier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Genevieve Chevalier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Anne-Sophie Ribba
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Philippe Guardiola
- Centre Hospitalier Universitaire and University of Angers, SNP Plateform, Institute for Biological Health, Transcriptome and Epigenomic, Angers, France
| | - Marc R. Block
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Daniel Bouvard
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
- * E-mail:
| |
Collapse
|
34
|
Vitamin D Promotes MSC Osteogenic Differentiation Stimulating Cell Adhesion and αV β3 Expression. Stem Cells Int 2018; 2018:6958713. [PMID: 29681950 PMCID: PMC5851411 DOI: 10.1155/2018/6958713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/15/2018] [Indexed: 01/17/2023] Open
Abstract
Vitamin D (Vit D) by means of its biological active form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), has a protective effect on the skeleton by acting on calcium homeostasis and bone formation. Furthermore, Vit D has a direct effect on mesenchymal stem cells (MSCs) in stimulating their osteogenic differentiation. In this work, we present for the first time the effect of 1,25(OH)2D3 on MSC adhesion. Considering that cell adhesion to the substrate is fundamental for cell commitment and differentiation, we focused on the expression of αVβ3 integrin, which has a key role in the commitment of MSCs to the osteoblastic lineage. Our data indicate that Vit D increases αVβ3 integrin expression inducing the formation of focal adhesions (FAs). Moreover, we assayed MSC commitment in the presence of the extracellular matrix (ECM) glycoprotein fibronectin (FN), which is able to favor cell adhesion on surfaces and also to induce osteopontin (OPN) expression: this suggests that Vit D and FN synergize in supporting cell adhesion. Taken together, our findings provide evidence that Vit D can promote osteogenic differentiation of MSCs through the modulation of αVβ3 integrin expression and its subcellular organization, thus favoring binding with the matrix protein (FN).
Collapse
|
35
|
Tang Z, Li X, Tan Y, Fan H, Zhang X. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater 2018; 5:43-59. [PMID: 29423267 PMCID: PMC5798025 DOI: 10.1093/rb/rbx024] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems.
Collapse
Affiliation(s)
- Zhurong Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
36
|
Dejaeger M, Böhm AM, Dirckx N, Devriese J, Nefyodova E, Cardoen R, St-Arnaud R, Tournoy J, Luyten FP, Maes C. Integrin-Linked Kinase Regulates Bone Formation by Controlling Cytoskeletal Organization and Modulating BMP and Wnt Signaling in Osteoprogenitors. J Bone Miner Res 2017; 32:2087-2102. [PMID: 28574598 DOI: 10.1002/jbmr.3190] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022]
Abstract
Cell-matrix interactions constitute a fundamental aspect of skeletal cell biology and play essential roles in bone homeostasis. These interactions are primarily mediated by transmembrane integrin receptors, which mediate cell adhesion and transduce signals from the extracellular matrix to intracellular responses via various downstream effectors, including integrin-linked kinase (ILK). ILK functions as adaptor protein at focal adhesion sites, linking integrins to the actin cytoskeleton, and has been reported to act as a kinase phosphorylating signaling molecules such as GSK-3β and Akt. Thereby, ILK plays important roles in cellular attachment, motility, proliferation and survival. To assess the in vivo role of ILK signaling in osteoprogenitors and the osteoblast lineage cells descending thereof, we generated conditional knockout mice using the Osx-Cre:GFP driver strain. Mice lacking functional ILK in osterix-expressing cells and their derivatives showed no apparent developmental or growth phenotype, but by 5 weeks of age they displayed a significantly reduced trabecular bone mass, which persisted into adulthood in male mice. Histomorphometry and serum analysis indicated no alterations in osteoclast formation and activity, but provided evidence that osteoblast function was impaired, resulting in reduced bone mineralization and increased accumulation of unmineralized osteoid. In vitro analyses further substantiated that absence of ILK in osteogenic cells was associated with compromised collagen matrix production and mineralization. Mechanistically, we found evidence for both impaired cytoskeletal functioning and reduced signal transduction in osteoblasts lacking ILK. Indeed, loss of ILK in primary osteogenic cells impaired F-actin organization, cellular adhesion, spreading, and migration, indicative of defective coupling of cell-matrix interactions to the cytoskeleton. In addition, BMP/Smad and Wnt/β-catenin signaling was reduced in the absence of ILK. Taken together, these data demonstrate the importance of integrin-mediated cell-matrix interactions and ILK signaling in osteoprogenitors in the control of osteoblast functioning during juvenile bone mass acquisition and adult bone remodeling and homeostasis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marian Dejaeger
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Anna-Marei Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Naomi Dirckx
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Joke Devriese
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Elena Nefyodova
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ruben Cardoen
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - René St-Arnaud
- Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Jos Tournoy
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Zeng Y, Zhang L, Zhu W, He H, Sheng H, Tian Q, Deng FY, Zhang LS, Hu HG, Deng HW. Network based subcellular proteomics in monocyte membrane revealed novel candidate genes involved in osteoporosis. Osteoporos Int 2017; 28:3033-3042. [PMID: 28741036 PMCID: PMC5812280 DOI: 10.1007/s00198-017-4146-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/04/2017] [Indexed: 01/18/2023]
Abstract
UNLABELLED In this study, label-free-based quantitative subcellular proteomics integrated with network analysis highlighted several candidate genes including P4HB, ITGB1, CD36, and ACTN1 that may be involved in osteoporosis. All of them are predicted as significant membrane proteins with high confidence and enriched in bone-related biological process. The results were further verified in transcriptomic and genomic levels. INTRODUCTION Osteoporosis is a metabolic bone disease mainly characterized by low bone mineral density (BMD). As the precursors of osteoclasts, peripheral blood monocytes (PBMs) are supported to be important candidates for identifying genes related to osteoporosis. We performed subcellular proteomics study to identify significant membrane proteins that involved in osteoporosis. METHODS To investigate the association between monocytes, membrane proteins, and osteoporosis, we performed label-free quantitative subcellular proteomics in 59 male subjects with discordant BMD levels, with 30 high vs. 29 low BMD subjects. Subsequently, we performed integrated gene enrichment analysis, functional annotation, and pathway and network analysis based on multiple bioinformatics tools. RESULTS A total of 1070 membrane proteins were identified and quantified. By comparing the proteins' expression level, we found 36 proteins that were differentially expressed between high and low BMD groups. Protein localization prediction supported the notion that the differentially expressed proteins, P4HB (p = 0.0021), CD36 (p = 0.0104), ACTN1 (p = 0.0381), and ITGB1 (p = 0.0385), are significant membrane proteins. Functional annotation and pathway and network analysis highlighted that P4HB, ITGB1, CD36, and ACTN1 are enriched in osteoporosis-related pathways and terms including "ECM-receptor interaction," "calcium ion binding," "leukocyte transendothelial migration," and "reduction of cytosolic calcium levels." Results from transcriptomic and genomic levels provided additional supporting evidences. CONCLUSION Our study strongly supports the significance of the genes P4HB, ITGB1, CD36, and ACTN1 to the etiology of osteoporosis risk.
Collapse
Affiliation(s)
- Y Zeng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - L Zhang
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - W Zhu
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - H He
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - H Sheng
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Q Tian
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - F-Y Deng
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Laboratory of Proteins and Proteomics, Department of Epidemiology, Soochow University School of Public Health, Suzhou, Jiangsu, 205123, China
| | - L-S Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - H-G Hu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - H-W Deng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
38
|
Oralova V, Matalova E, Killinger M, Knopfova L, Smarda J, Buchtova M. Osteogenic Potential of the Transcription Factor c-MYB. Calcif Tissue Int 2017; 100:311-322. [PMID: 28012106 DOI: 10.1007/s00223-016-0219-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/10/2016] [Indexed: 12/30/2022]
Abstract
The transcription factor c-MYB is a well-known marker of undifferentiated cells such as haematopoietic cell precursors, but recently it has also been observed in differentiated cells that produce hard tissues. Our previous findings showed the presence of c-MYB in intramembranous bones and its involvement in the chondrogenic steps of endochondral ossification, where the up-regulation of early chondrogenic markers after c-myb overexpression was observed. Since we previously detected c-MYB in osteoblasts, we aimed to analyse the localisation of c-MYB during later stages of endochondral bone formation and address its function during bone matrix production. c-MYB-positive cells were found in the chondro-osseous junction zone in osteoblasts of trabecular bone as well as deeper in the zone of ossification in cells of spongy bone. To experimentally evaluate the osteogenic potential of c-MYB during endochondral bone formation, micromasses derived from embryonic mouse limb buds were established. Nuclear c-MYB protein expression was observed in long-term micromasses, especially in the areas around nodules. c-myb overexpression induced the expression of osteogenic-related genes such as Bmp2, Comp, Csf2 and Itgb1. Moreover, alizarin red staining and osteocalcin labelling promoted mineralised matrix production in c-myb-overexpressing cultures, whereas downregulation of c-myb by siRNA reduced mineralised matrix production. In conclusion, c-Myb plays a role in the osteogenesis of long bones by inducing osteogenic genes and causing the enhancement of mineral matrix production. This action of the transcription factor c-Myb might be of interest in the future for the establishment of novel approaches to tissue regeneration.
Collapse
Affiliation(s)
- V Oralova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium.
| | - E Matalova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - M Killinger
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - L Knopfova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - J Smarda
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - M Buchtova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
39
|
Felgueiras HP, Decambron A, Manassero M, Tulasne L, Evans MDM, Viateau V, Migonney V. Bone tissue response induced by bioactive polymer functionalized Ti6Al4V surfaces: In vitro and in vivo study. J Colloid Interface Sci 2016; 491:44-54. [PMID: 28012912 DOI: 10.1016/j.jcis.2016.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022]
Abstract
Ti6Al4V is commonly used for orthopedic applications. This study was designed to test the potentially added benefit of Ti6Al4V functionalized with a bioactive polymer poly(sodium styrene sulfonate) both in vitro and in vivo. Cell-based assays with MC3T3-E1 osteoblast-like cells were used to measure the cell adhesion strength, cell spreading, focal contact formation, cell differentiation and the mineralization of extracellular matrix on grafted and ungrafted Ti6Al4V discs in combination with FBS and collagen type I. Bone morphogenetic protein-2 (BMP-2) was also included in the cell differentiation assay. Results showed that the grafted surface combined with collagen I gave superior levels in every parameter tested with cell-based assays and was almost equivalent to BMP-2 for cell differentiation. In vivo testing was conducted in rabbits (n=42) with cylinders of grafted and ungrafted Ti6Al4V implanted in defects made to the femoral and lateral condyles and animals that were maintained to 1, 3 and 12months. Hydroxyapatite coated Ti6Al4V cylinders were included as a clinical reference control. Osseointegration was assessed post-mortem using histomorphometric analysis conducted on resin sections of explanted undecalcified bone. Two histomorphometric parameters, that of bone-to-implant contact and the bone area, were analyzed by a trained observer blinded to sample identity. Results showed osseointegration on grafted Ti6Al4V was marginally better than both ungrafted and hydroxyapatite coated Ti6Al4V. Overall, the study found that the grafted Ti6Al4V significantly promoted all aspects of osteogenesis tested in vitro and, although in vivo outcomes were less compelling, histomorphometry showed osseointegration of grafted Ti6Al4V implants was equivalent or better than controls.
Collapse
Affiliation(s)
- Helena P Felgueiras
- Laboratory of Biomaterials and Polymers of Specialty, LBPS-CSPBAT CNRS UMR 7244, Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France.
| | - Adeline Decambron
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-articulaires (B2OA), UMR 7052, Université Paris Diderot, 75010 Paris, France; École Nationale Vétérinaire d'Alfort, Service de Chirurgie, Université Paris Est, 94700 Maisons-Alfort, France
| | - Mathieu Manassero
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-articulaires (B2OA), UMR 7052, Université Paris Diderot, 75010 Paris, France; École Nationale Vétérinaire d'Alfort, Service de Chirurgie, Université Paris Est, 94700 Maisons-Alfort, France
| | - Louise Tulasne
- École Nationale Vétérinaire d'Alfort, Service de Chirurgie, Université Paris Est, 94700 Maisons-Alfort, France
| | - Margaret D M Evans
- CSIRO Biomedical Materials Program, 11 Julius Avenue, North Ride, Sydney, NSW 2113, Australia
| | - Véronique Viateau
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-articulaires (B2OA), UMR 7052, Université Paris Diderot, 75010 Paris, France; École Nationale Vétérinaire d'Alfort, Service de Chirurgie, Université Paris Est, 94700 Maisons-Alfort, France
| | - Véronique Migonney
- Laboratory of Biomaterials and Polymers of Specialty, LBPS-CSPBAT CNRS UMR 7244, Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| |
Collapse
|
40
|
Modulation of BMP signalling by integrins. Biochem Soc Trans 2016; 44:1465-1473. [DOI: 10.1042/bst20160111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022]
Abstract
The bone morphogenetic protein (BMP) pathway is a major conserved signalling pathway with diverse roles in development and homeostasis. Given that cells exist in three-dimensional environments, one important area is to understand how the BMP pathway operates within such complex cellular environments. The extracellular matrix contains information regarding tissue architecture and its mechanical properties that is transmitted to the cell via integrin receptors. In this review, I describe various examples of modulation of the BMP pathway by integrins. In the case of the Drosophila embryo and some cell line-based studies, integrins have been found to enhance BMP responses through different mechanisms, such as enhancement of BMP ligand–receptor binding and effects on Smad phosphorylation or stability. In these contexts, BMP-dependent activation of integrins is a common theme. However, I also discuss examples where integrins inhibit the BMP pathway, highlighting the context-dependent nature of integrin–BMP cross-talk.
Collapse
|
41
|
Xu W, Liu B, Liu X, Chiang MYM, Li B, Xu Z, Liao X. Regulation of BMP2-induced intracellular calcium increases in osteoblasts. J Orthop Res 2016; 34:1725-1733. [PMID: 26890302 DOI: 10.1002/jor.23196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/09/2016] [Indexed: 02/04/2023]
Abstract
Although bone morphogenetic protein-2 (BMP2) is a well-characterized regulator that stimulates osteoblast differentiation, little is known about how it regulates intracellular Ca2+ signaling. In this study, intracellular Ca2+ concentration ([Ca2+ ]i ) upon BMP2 application, focal adhesion kinase (FAK) and Src activities were measured in the MC3T3-E1 osteoblast cell line using fluorescence resonance energy transfer-based biosensors. Increase in [Ca2+ ]i , FAK, and Src activities were observed during BMP2 stimulation. The removal of extracellular calcium, the application of membrane channel inhibitors streptomycin or nifedipine, the FAK inhibitor PF-573228 (PF228), and the alkaline phosphatase (ALP) siRNA all blocked the BMP2-stimulated [Ca2+ ]i increase, while the Src inhibitor PP1 did not. In contrast, a gentle decrease of endoplasmic reticulum calcium concentration was found after BMP2 stimulation, which could be blocked by both streptomycin and PP1. Further experiments revealed that BMP2-induced FAK activation could not be inhibited by PP1, ALP siRNA or the calcium channel inhibitor nifedipine. PF228, but not PP1 or calcium channel inhibitors, suppressed ALP elevation resulting from BMP2 stimulation. Therefore, our results suggest that BMP2 can increase [Ca2+ ]i through extracellular calcium influx regulated by FAK and ALP and can deplete ER calcium through Src signaling simultaneously. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1725-1733, 2016.
Collapse
Affiliation(s)
- Wenfeng Xu
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, People's Republic of China
| | - Xue Liu
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Martin Y M Chiang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, 20899, Maryland
| | - Bo Li
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Zichen Xu
- Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
42
|
Osteogenic signaling on silk-based matrices. Biomaterials 2016; 97:133-53. [DOI: 10.1016/j.biomaterials.2016.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
|
43
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating. Angew Chem Int Ed Engl 2016; 55:7048-67. [PMID: 27258759 DOI: 10.1002/anie.201509782] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/21/2022]
Abstract
Engineering biomaterials with integrin-binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface-coating molecules in this field: from peptides and proteins with relatively low integrin-binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1. The functionalization of surfaces with such peptidomimetics opens the way for a new generation of highly specific cell-instructive surfaces to dissect the biological role of integrin subtypes and for application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain.
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tobias G Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
44
|
Lim HC, Nam OH, Kim MJ, El-Fiqi A, Yun HM, Lee YM, Jin GZ, Lee HH, Kim HW, Kim EC. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways. Int J Nanomedicine 2016; 11:2557-67. [PMID: 27354790 PMCID: PMC4907710 DOI: 10.2147/ijn.s97846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Therapeutically relevant design of scaffolds is of special importance in the repair and regeneration of tissues including dentin and pulp. Here we exploit nanofiber matrices that incorporate bioactive glass nanoparticles (BGNs) and deliver the odontogenic drug dexamethasone (DEX) to stimulate the odontogenic differentiation of human dental pulp cells (HDPCs). DEX molecules were first loaded onto the BGN, and then the DEX-BGN complex was incorporated within the biopolymer nanofiber matrix through electrospinning. The release of DEX continued over a month, showing a slow releasing profile. HDPCs cultured on the DEX-releasing BGN matrices were viable, proliferating well up to 14 days. The odontogenic differentiation, as assessed by alkaline phosphatase activity, mRNA expression of genes, and mineralization, was significantly stimulated on the matrices incorporating BGN and further on those releasing DEX. The DEX-releasing BGN matrices highly upregulated the expression of the integrin subsets α1, α5, and β3 as well as integrin downstream signaling molecules, including focal adhesion kinase (FAK), Paxillin, and RhoA, and activated bone morphogenetic protein mRNA and phosphorylation of Smad1/5/8. Furthermore, the DEX-releasing BGN-matrices stimulated Akt and mammalian target of rapamycin (mTOR), which was proven by the inhibition study. Collectively, the designed therapeutic nanofiber matrices that incorporate BGN and deliver DEX were demonstrated to promote odontogenesis of HDPCs, and the integrins, bone morphogenetic protein, and mTOR signaling pathways are proposed to be the possible molecular mechanisms. While further in vivo studies are still needed, the DEX-releasing bioactive scaffolds are considered as a potential therapeutic nanomatrix for regenerative endodontics and tissue engineering.
Collapse
Affiliation(s)
- Hyun-Chang Lim
- Department of Periodontology, Kyung Hee University, Seoul, Republic of Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Mi-joo Kim
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ahmed El-Fiqi
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Yoo-Mi Lee
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Guang-Zhen Jin
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- oder α5β1-Integrin-selektive Peptidmimetika für die Oberflächenbeschichtung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Tobias G. Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
46
|
RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Acta Biomater 2016; 36:132-42. [PMID: 27000551 DOI: 10.1016/j.actbio.2016.03.032] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Human bone marrow mesenchymal stem cells (hBMSCs) commitment and differentiation are dictated by bioactive molecules sequestered within their Extra Cellular Matrix (ECM). One common approach to mimic the physiological environment is to functionalize biomaterial surfaces with ECM-derived peptides able to recruit stem cells and trigger their linage-specific differentiation. The objective of this work was to investigate the effect of RGD and BMP-2 ligands crosstalk and density on the extent of hBMSCs osteogenic commitment, without recourse to differentiation medium. RGD peptide promotes cell adhesion via cell transmembrane integrin receptors, while BMP-2 peptide, corresponding to residues 73-92 of Bone Morphogenetic Protein-2, was shown to induce hBMSCs osteoblast differentiation. The immobilization of peptides on aminated glass was ascertained by X-ray Photoelectron Spectroscopy (XPS), the density of grafted peptides was quantified by fluorescence microscopy and the surface roughness was evaluated using Atomic Force Microscopy (AFM). The osteogenic commitment of hBMSCs cultured on RGD and/or BMP-2 surfaces was characterized by immunohistochemistry using STRO-1 as specific stem cells marker and Runx-2 as an earlier osteogenic marker. Biological results showed that the osteogenic commitment of hBMSCs was enhanced on bifunctionalized surfaces as compared to surfaces containing BMP-2, while on RGD surfaces cells mainly preserved their stemness character. These results demonstrated that RGD and BMP-2 mimetic peptides act synergistically to enhance hBMSCs osteogenesis without supplementing the media with osteogenic factors. These findings contribute to the development of biomimetic materials, allowing a deeper understanding of signaling pathways that govern the transition of stem cells towards the osteoblastic lineage. STATEMENT OF SIGNIFICANCE For a long time, scientists thought that the differentiation of Mesenchymal Stem Cells (MSCs) into bone cells was dictated by growth factors. This manuscript shed light on other ligands that play a crucial role in regulating MSCs fate. In concrete terms, it was demonstrated that the osteoinductive effect of BMP-2 peptide is 2 folds improved in the presence of adhesive RGD peptide. Compared to previous works highlighting this synergistic cooperation between RGD and BMP-2 peptides, the main strength of this work lies to the use of primitive human cells (hMSCs) and well-defined biomimetic material surfaces (controlled surface roughness and peptide densities). This work provides valuable insights to develop custom-designed in vitro cell culture models, capable of targeting the desired cell response.
Collapse
|
47
|
Hoon JL, Tan MH, Koh CG. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells 2016; 5:cells5020017. [PMID: 27058559 PMCID: PMC4931666 DOI: 10.3390/cells5020017] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli.
Collapse
Affiliation(s)
- Jing Ling Hoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Mei Hua Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- Mechanobiology Institute, Singapore 117411, Singapore.
| |
Collapse
|
48
|
Chen X, Wang J, Chen Y, Cai H, Yang X, Zhu X, Fan Y, Zhang X. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J Mater Chem B 2016; 4:2280-2289. [DOI: 10.1039/c6tb00349d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BCP ceramics mediated MSC's integrin expression to realize “outside-in signaling” transduction and then activated MAPK signaling to induce osteogenesis.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Ying Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hanxu Cai
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
49
|
Ehrlich M. Endocytosis and trafficking of BMP receptors: Regulatory mechanisms for fine-tuning the signaling response in different cellular contexts. Cytokine Growth Factor Rev 2015; 27:35-42. [PMID: 26776724 DOI: 10.1016/j.cytogfr.2015.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Signaling by bone morphogenetic protein (BMP) receptors is regulated at multiple levels in order to ensure proper interpretation of BMP stimuli in different cellular settings. As with other signaling receptors, regulation of the amount of exposed and signaling-competent BMP receptors at the plasma-membrane is predicted to be a key mechanism in governing their signaling output. Currently, the endocytosis of BMP receptors is thought to resemble that of the structurally related transforming growth factor-β (TGF-β) receptors, as BMP receptors are constitutively internalized (independently of ligand binding), with moderate kinetics, and mostly via clathrin-mediated endocytosis. Also similar to TGF-β receptors, BMP receptors are able to signal from the plasma membrane, while internalization to endosomes may have a signal modulating effect. When at the plasma membrane, BMP receptors localize to different membrane domains including cholesterol rich domains and caveolae, suggesting a complex interplay between membrane distribution and internalization. An additional layer of complexity stems from the putative regulatory influence on the signaling and trafficking of BMP receptors exerted by ligand traps and/or co-receptors. Furthermore, the trafficking and signaling of BMP receptors are subject to alterations in cellular context. For example, genetic diseases involving changes in the expression of auxiliary factors of endocytic pathways hamper retrograde BMP signals in neurons, and perturb the regulation of synapse formation. This review summarizes current understanding of the trafficking of BMP receptors and discusses the role of trafficking in regulation of BMP signals.
Collapse
Affiliation(s)
- Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
50
|
Migliorini E, Valat A, Picart C, Cavalcanti-Adam EA. Tuning cellular responses to BMP-2 with material surfaces. Cytokine Growth Factor Rev 2015; 27:43-54. [PMID: 26704296 DOI: 10.1016/j.cytogfr.2015.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications.
Collapse
Affiliation(s)
- Elisa Migliorini
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany, Tel: +49-6221-54 5064
| | - Anne Valat
- CNRS-UMR 5628, LMGP, 3 parvis L.Néel, F-38 016 Grenoble, France
- University Grenoble Alpes, Grenoble Institute of Technology, LMGP, 3 parvis Louis Néel, F-28016 Grenoble, France
- INSERM U823, ERL CNRS5284, Université de Grenoble Alpes, Institut Albert Bonniot, Site Santé, BP170, 38042 Grenoble cedex 9, France, Tel: +33-04-56529311
| | - Catherine Picart
- CNRS-UMR 5628, LMGP, 3 parvis L.Néel, F-38 016 Grenoble, France
- University Grenoble Alpes, Grenoble Institute of Technology, LMGP, 3 parvis Louis Néel, F-28016 Grenoble, France
| | - Elisabetta Ada Cavalcanti-Adam
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany, Tel: +49-6221-54 5064
| |
Collapse
|