1
|
Zhang Z, Di W, Wang Y, Song T, Yin N, Wang Y. Prediction of Alveolar Cleft Reconstruction Outcomes: From the Perspective of Systemic Inflammatory Status and Local Structural Characteristics. J Craniofac Surg 2025:00001665-990000000-02739. [PMID: 40387847 DOI: 10.1097/scs.0000000000011452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/05/2025] [Indexed: 05/20/2025] Open
Abstract
INTRODUCTION To promote alveolar cleft reconstruction outcomes, it is crucial to identify the factors that may influence postoperative bone formation. Both local structural characteristics and systemic inflammatory status are closely related to bone formation, requiring comprehensive investigation. This study aimed to investigate the impact of these potential influencing factors on the bone formation percentage (BFP) of alveolar bone grafting. MATERIALS AND METHODS A retrospective study was conducted on patients who underwent alveolar bone grafting by the same surgeon between 2017 and 2023. Demographic data, preoperative blood test results, and various local structural characteristics were investigated as independent variables. The BFP was considered as a dependent variable. Correlation and multiple linear regression analyses were performed to determine the key factors influencing BFP. The ROC curve analysis was utilized to evaluate the predictive efficacy. RESULTS Fifty-five patients met the inclusion criteria. The mean BFP was 39.75%±19.68%. The initial bone bridge was an independent positive influencing factor of BFP, whereas the preoperative lymphocyte percentage (L%) was negative. According to ROC curve analysis, a value of L% equal to 34.9% was the optimal cutoff point for whether the BFP was >39.75%. Other parameters were nonsignificantly correlated with BFP. CONCLUSION The presence of the bone bridge and a lower value of L% may indicate a better postoperative bone formation outcome. These findings can help surgeons identify patients who are more likely to achieve favorable bone grafting results based on readily available CT images and preoperative blood tests.
Collapse
Affiliation(s)
- Zhilu Zhang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
2
|
Guo J, Ouyang XY, Liu JR, Liu WY, Wang YB. miR-508-5p suppresses osteogenic differentiation of human periodontal ligament stem cells via targeting sex-determining region Y-related HMG-box 11. J Dent Sci 2025; 20:201-211. [PMID: 39873049 PMCID: PMC11763229 DOI: 10.1016/j.jds.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/19/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Purpose The local inflammatory microenvironment created by periodontitis negatively impacts periodontal tissue regeneration, necessitating the development of methods to enhance the regenerative capacity of stem cells. This study explored the regulatory role and underlying mechanism of miR-508-5p in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). Materials and methods The regulatory roles of miR-508-5p in osteogenic differentiation of hPDLSCs were investigated through its inhibition or overexpression. Expression of the sex-determining region Y-related HMG-box 11 (SOX11) and osteogenic markers was analyzed using Western blot and real-time PCR. Osteogenesis was measured using alizarin red S (ARS) staining and alkaline phosphatase (ALP) staining. A dual luciferase reporter assay was performed to confirm SOX11 as a target of miR-508-5p. Results During the osteogenic differentiation of hPDLSCs, miR-508-5p expression level gradually decreased, while that of SOX11 increased. miR-508-5p inhibition significantly promoted osteogenesis in hPDLSCs, while overexpression inhibited the process. SOX11 overexpression reversed the suppressive effects of miR-508-5p on the osteogenic differentiation of hPDLSCs. miR-508-5p downregulation significantly increased SOX11; a dual luciferase reporter assay provided evidence for their direct targeting. Conclusion miR-508-5p downregulation promotes the osteogenic differentiation of hPDLSCs by targeting SOX11.
Collapse
Affiliation(s)
- Jing Guo
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Xiang-Ying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Jian-Ru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Wen-Yi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Yuan-Bo Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| |
Collapse
|
3
|
Zhang Z, Wang Y, Di W, Ma C, Wang Y. Influence of Preoperative Inflammatory Status on Outcomes of Alveolar Bone Grafting in Patients With Cleft Lip. J Craniofac Surg 2024; 35:2105-2109. [PMID: 39418509 DOI: 10.1097/scs.0000000000010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024] Open
Abstract
After secondary alveolar bone grafting, the outcome of bone formation is always a problem that leads to repeat surgery. Bone formation is closely related to the inflammatory and immune status of patients. To achieve better bone formation results, this study aimed to investigate the influence of preoperative inflammatory indicators on the bone survival ratio (BSR) of secondary alveolar bone grafting. A retrospective study was conducted on 62 patients who underwent surgery by the same surgeon between January 2016 to December 2022. Demographic and laboratory data were included as independent variables. The BSR calculated from computed tomography data was included as the dependent variable. Pearson correlation analysis, Spearman correlation analysis, and multiple linear regression analysis were performed. The analysis results revealed significant correlations between BSR and preoperative inflammatory markers, including neutrophil percentage, neutrophil-to-lymphocyte ratio, lymphocyte percentage (L%), lymphocyte count, and monocyte-to-lymphocyte ratio. Multiple linear regression identified L% as an independent factor of BSR, with lower L% associated with higher BSR. Preoperative inflammatory markers may influence BSR after alveolar bone grating. A lower value of L% indicates a better postoperative bone formation outcome. Understanding these associations can aid clinicians in treatment planning and patient stratification.
Collapse
Affiliation(s)
- Zhilu Zhang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjun Di
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenhao Ma
- Research Ward, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongqian Wang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Apaza Ticona L, Hervás Povo B, Sánchez Sánchez-Corral J, Rumbero Sánchez Á. Anti-inflammatory effects of TNF-α and ASK1 inhibitory compounds isolated from Schkuhria pinnata used for the treatment of dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117051. [PMID: 37598765 DOI: 10.1016/j.jep.2023.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The Andean Schkuhria pinnata species commonly known as 'Canchalagua' is used as an infusion in Andean countries to treat various anti-inflammatory and skin-related pathologies. AIM OF THE STUDY This study determined the anti-inflammatory activity of the aqueous extract from Schkuhria pinnata, identified compounds with high biological activity and performed a structure-activity relationship analysis to determine their binding mechanism. MATERIALS AND METHODS A bio-guided isolation of the active compounds of Schkuhria pinnata was carried out by selecting the most active sub-extracts and fractions to test their anti-inflammatory activity against the ASK1 and TNF-α cytokines. RESULTS Three compounds were obtained, and their structures were elucidated by nuclear magnetic resonance. The compounds were (3R,4R)-4-(3,4-dimethoxybenzyl)-3-(4-hydroxy-3-methoxybenzyl) dihydrofuran-2(3H)-one (1), N-[2,3-dihydro-1,3-dimethyl-6-[(2R)-2-methyl-1-piperazinyl]-2-oxo-1H-benzimidazol-5-yl]-2-methoxybenzamide (2), and N-hydroxy-1-cyclopentene-1-carboxamide (3). Regarding their anti-inflammatory activity, the three compounds inhibited the TNF-α and ASK1 cytokines, however, compound 2 was the most active, with an IC50 of 19.08 and 8.94 nM, respectively. CONCLUSION The anti-inflammatory activity of the aqueous extract of Schkuhria pinnata was evaluated, followed by the isolation of three compounds and the study of their pharmacological activity. The three compounds have been shown as promising treatment against dermatitis, confirming at the same time their traditional use.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid. Plza. Ramón y Cajal S/n, 28040 Madrid, Spain; Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049 Madrid, Spain.
| | - Belén Hervás Povo
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049 Madrid, Spain
| | - Javier Sánchez Sánchez-Corral
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049 Madrid, Spain
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Bian X, Jin L, Wang Y, Yuan M, Yao Z, Ning B, Gao W, Guo C. Riboflavin deficiency reduces bone mineral density in rats by compromising osteoblast function. J Nutr Biochem 2023; 122:109453. [PMID: 37788723 DOI: 10.1016/j.jnutbio.2023.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Insufficient riboflavin intake has been associated with poor bone health. This study aimed to investigate the effect of riboflavin deficiency on bone health in vivo and in vitro. Riboflavin deficiency was successfully developed in rats and osteoblasts. The results indicated that bone mineral density, serum bone alkaline phosphatase, bone phosphorus, and bone calcium were significantly decreased while serum ionized calcium and osteocalcin were significantly increased in the riboflavin-deficient rats. Riboflavin deficiency also induced the reduction of Runx2, Osterix, and BMP-2/Smad1/5/9 cascade in the femur. These results were further verified in cellular experiments. Our findings demonstrated that alkaline phosphatase activities and calcified nodules were significantly decreased while intracellular osteocalcin and pro-collagen I c-terminal propeptide were significantly increased in the riboflavin-deficient osteoblasts. Additionally, the protein expression of Osterix, Runx2, and BMP-2/Smad1/5/9 cascade were significantly decreased while the protein expression of p-p38 MAPK were significantly increased in the riboflavin-deficient cells compared to the control cells. Blockage of p38 MAPK signaling pathway with SB203580 reversed these effects in riboflavin-deficient osteoblastic cells. Our data suggest that riboflavin deficiency causes osteoblast malfunction and retards bone matrix mineralization via p38 MAPK/BMP-2/Smad1/5/9 signaling pathway.
Collapse
Affiliation(s)
- Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Lu Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Yanxian Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Man Yuan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| |
Collapse
|
6
|
Sun L, Yao C, Li X, Wang Y, Wang R, Wang M, Liu Q, Montell DJ, Shao C, Gong Y, Sun G. Anastasis confers ovarian cancer cells increased malignancy through elevated p38 MAPK activation. Cell Death Differ 2023; 30:809-824. [PMID: 36447048 PMCID: PMC9984481 DOI: 10.1038/s41418-022-01081-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Activation of executioner caspases was once considered as a point of no return in apoptosis. However, in recent years, accumulating evidence has demonstrated that cells can survive executioner caspase activation in response to apoptotic stimuli through a process called anastasis. In this study, we developed a reporter system, mCasExpress, to track mammalian cells that survive executioner caspase activation. We demonstrate that anastatic ovarian cancer cells acquire enhanced migration following their transient exposure to apoptotic stimulus TRAIL or Paclitaxel. Moreover, anastatic cancer cells secrete more pro-angiogenic factors that enable tumor angiogenesis, growth and metastasis. Mechanistically, we demonstrate that activation of p38 MAPK, which occurs in a caspase-dependent manner in response to apoptotic stress to promote anastasis, persists at a higher level in anastatic cancer cells even after removal of apoptotic stimuli. Importantly, p38 is essential for the elevated migratory and angiogenic capacity in the anastatic cells. Our work unveils anastasis as a potential driver of tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Yao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaojiao Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, 215123, Jiangsu, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Oranger A, Zerlotin R, Buccoliero C, Sanesi L, Storlino G, Schipani E, Kozloff KM, Mori G, Colaianni G, Colucci S, Grano M. Irisin Modulates Inflammatory, Angiogenic, and Osteogenic Factors during Fracture Healing. Int J Mol Sci 2023; 24:1809. [PMID: 36768133 PMCID: PMC9915346 DOI: 10.3390/ijms24031809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Bone fractures are a widespread clinical event due to accidental falls and trauma or bone fragility; they also occur in association with various diseases and are common with aging. In the search for new therapeutic strategies, a crucial link between irisin and bone fractures has recently emerged. To explore this issue, we subjected 8-week-old C57BL/6 male mice to tibial fracture, and then we treated them with intra-peritoneal injection of r-Irisin (100 µg/kg/weekly) or vehicle as control. At day 10 post fracture, histological analysis showed a significant reduced expression of inflammatory cytokines as tumor necrosis factor-alpha (TNFα) (p = 0.004) and macrophage inflammatory protein-alpha (MIP-1α) (p = 0.015) in the cartilaginous callus of irisin-treated mice compared to controls, supporting irisin's anti-inflammatory role. We also found increased expressions of the pro-angiogenic molecule vascular endothelial growth factor (VEGF) (p = 0.002) and the metalloproteinase MMP-13 (p = 0.0006) in the irisin-treated mice compared to the vehicle ones, suggesting a myokine involvement in angiogenesis and cartilage matrix degradation processes. Moreover, the bone morphogenetic protein (BMP2) expression was also upregulated (p = 0.002). Taken together, our findings suggest that irisin can contribute to fracture repair by reducing inflammation and promoting vessel invasion, matrix degradation, and bone formation, supporting its possible role as a novel molecule for fracture treatment.
Collapse
Affiliation(s)
- Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70124 Bari, Italy
| | - Lorenzo Sanesi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Giuseppina Storlino
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Kenneth Michael Kozloff
- Departments of Orthopedic Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| |
Collapse
|
8
|
Na H, Song Y, Lee HW. Emphasis on Adipocyte Transformation: Anti-Inflammatory Agents to Prevent the Development of Cancer-Associated Adipocytes. Cancers (Basel) 2023; 15:cancers15020502. [PMID: 36672449 PMCID: PMC9856688 DOI: 10.3390/cancers15020502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Of the various cell types in the tumor microenvironment (TME), adipocytes undergo a dynamic transformation when activated by neighboring cancer cells. Although these adipocytes, known as cancer-associated adipocytes (CAAs), have been reported to play a crucial role in tumor progression, the factors that mediate their transformation remain elusive. In this review, we discuss the hypothesis that inflammatory signals involving NF-ĸB activation can induce lipolysis and adipocyte dedifferentiation. This provides a mechanistic understanding of CAA formation and introduces the concept of preventing adipocyte transformation via anti-inflammatory agents. Indeed, epidemiological studies indicate a higher efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) in obese patients with cancer, suggesting that NSAIDs can modulate the TME. Inhibition of cyclooxygenase-2 (COX-2) and prostaglandin production leads to the suppression of inflammatory signals such as NF-ĸB. Thus, we suggest the use of NSAIDs in cancer patients with metabolic disorders to prevent the transformation of TME components. Moreover, throughout this review, we attempt to expand our knowledge of CAA transformation to improve the clinical feasibility of targeting CAAs.
Collapse
Affiliation(s)
- Heeju Na
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yaechan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Corporation, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2123-7642
| |
Collapse
|
9
|
Guo R, Zhuang H, Chen X, Ben Y, Fan M, Wang Y, Zheng P. Tissue engineering in growth plate cartilage regeneration: Mechanisms to therapeutic strategies. J Tissue Eng 2023; 14:20417314231187956. [PMID: 37483459 PMCID: PMC10359656 DOI: 10.1177/20417314231187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
The repair of growth plate injuries is a highly complex process that involves precise spatiotemporal regulation of multiple cell types. While significant progress has been made in understanding the pathological mechanisms underlying growth plate injuries, effectively regulating this process to regenerate the injured growth plate cartilage remains a challenge. Tissue engineering technology has emerged as a promising therapeutic approach for achieving tissue regeneration through the use of functional biological materials, seed cells and biological factors, and it is now widely applied to the regeneration of bone and cartilage. However, due to the unique structure and function of growth plate cartilage, distinct strategies are required for effective regeneration. Thus, this review provides an overview of current research on the application of tissue engineering to promote growth plate regeneration. It aims to elucidates the underlying mechanisms by which tissue engineering promotes growth plate regeneration and to provide novel insights and therapeutic strategies for future research on the regeneration of growth plate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
11
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
13
|
Ran R, Yang H, Cao Y, Yan W, Jin L, Zheng Y. Depletion of EREG enhances the osteo/dentinogenic differentiation ability of dental pulp stem cells via the p38 MAPK and Erk pathways in an inflammatory microenvironment. BMC Oral Health 2021; 21:314. [PMID: 34154572 PMCID: PMC8215766 DOI: 10.1186/s12903-021-01675-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epiregulin (EREG) is an important component of EGF and was demonstrated to promote the osteo/dentinogenic differentiation of stem cells from dental apical papilla (SCAPs). Whether EREG can stimulate the osteo/dentinogenic differentiation of dental pulp stem cells (DPSCs) in inflammatory environment is not clear. The purpose of the present study is to investigate the role of EREG on the osteo/dentinogenic differentiation ability of DPSCs in inflammatory environment. METHODS DPSCs were isolated from human third molars. Short hairpin RNAs (shRNAs) were used to knock down EREG expression in DPSCs. Recombinant human EREG (rhEREG) protein was used in the rescue experiment. TNF-α was employed to mimic the inflammatory environment in vitro. Alkaline phosphatase (ALP) staining, Alizarin red staining, quantitative calcium analysis, and real-time RT-PCR were performed to detect osteo/dentinogenic differentiation markers and related signalling pathways under normal and inflammatory conditions. RESULTS EREG depletion promoted the ALP activity and mineralization ability of DPSCs. The expression of BSP, DMP-1, and DSPP was also enhanced. Moreover, 50 ng/mL rhEREG treatment decreased the osteo/dentinogenic differentiation potential of DPSCs, while treatment with 10 ng/mL TNF-α for 4 h increased the expression of EREG in DPSCs. Conversely, EREG knockdown rescued the impaired osteo/dentinogenic differentiation ability caused by TNF-α treatment. Further mechanistic studies showed that EREG depletion activated the p38 MAPK and Erk signalling pathways in DPSCs under normal and inflammatory conditions. CONCLUSIONS Our results demonstrated that EREG could inhibit the osteo/dentinogenic differentiation potential of DPSCs via the p38 MAPK and Erk signalling pathways. Under inflammatory environment, EREG depletion enhanced osteo/dentinogenic differentiation potential of DPSCs by improving the expression of p-p38 MAPK and p-Erk.
Collapse
Affiliation(s)
- Ran Ran
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Wanhao Yan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, China.
| | - Ying Zheng
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
14
|
Wang X, Li Z, Wang C, Bai H, Wang Z, Liu Y, Bao Y, Ren M, Liu H, Wang J. Enlightenment of Growth Plate Regeneration Based on Cartilage Repair Theory: A Review. Front Bioeng Biotechnol 2021; 9:654087. [PMID: 34150725 PMCID: PMC8209549 DOI: 10.3389/fbioe.2021.654087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
The growth plate (GP) is a cartilaginous region situated between the epiphysis and metaphysis at the end of the immature long bone, which is susceptible to mechanical damage because of its vulnerable structure. Due to the limited regeneration ability of the GP, current clinical treatment strategies (e.g., bone bridge resection and fat engraftment) always result in bone bridge formation, which will cause length discrepancy and angular deformity, thus making satisfactory outcomes difficult to achieve. The introduction of cartilage repair theory and cartilage tissue engineering technology may encourage novel therapeutic approaches for GP repair using tissue engineered GPs, including biocompatible scaffolds incorporated with appropriate seed cells and growth factors. In this review, we summarize the physiological structure of GPs, the pathological process, and repair phases of GP injuries, placing greater emphasis on advanced tissue engineering strategies for GP repair. Furthermore, we also propose that three-dimensional printing technology will play a significant role in this field in the future given its advantage of bionic replication of complex structures. We predict that tissue engineering strategies will offer a significant alternative to the management of GP injuries.
Collapse
Affiliation(s)
- Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yirui Bao
- Department of Orthopedics, Chinese PLA 965 Hospital, Jilin, China
| | - Ming Ren
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
15
|
Asiedu SO, Kwofie SK, Broni E, Wilson MD. Computational Identification of Potential Anti-Inflammatory Natural Compounds Targeting the p38 Mitogen-Activated Protein Kinase (MAPK): Implications for COVID-19-Induced Cytokine Storm. Biomolecules 2021; 11:653. [PMID: 33946644 PMCID: PMC8146027 DOI: 10.3390/biom11050653] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Severely ill coronavirus disease 2019 (COVID-19) patients show elevated concentrations of pro-inflammatory cytokines, a situation commonly known as a cytokine storm. The p38 MAPK receptor is considered a plausible therapeutic target because of its involvement in the platelet activation processes leading to inflammation. This study aimed to identify potential natural product-derived inhibitory molecules against the p38α MAPK receptor to mitigate the eliciting of pro-inflammatory cytokines using computational techniques. The 3D X-ray structure of the receptor with PDB ID 3ZS5 was energy minimized using GROMACS and used for molecular docking via AutoDock Vina. The molecular docking was validated with an acceptable area under the curve (AUC) of 0.704, which was computed from the receiver operating characteristic (ROC) curve. A compendium of 38,271 natural products originating from Africa and China together with eleven known p38 MAPK inhibitors were screened against the receptor. Four potential lead compounds ZINC1691180, ZINC5519433, ZINC4520996 and ZINC5733756 were identified. The compounds formed strong intermolecular bonds with critical residues Val38, Ala51, Lys53, Thr106, Leu108, Met109 and Phe169. Additionally, they exhibited appreciably low binding energies which were corroborated via molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The compounds were also predicted to have plausible pharmacological profiles with insignificant toxicity. The molecules were also predicted to be anti-inflammatory, kinase inhibitors, antiviral, platelet aggregation inhibitors, and immunosuppressive, with probable activity (Pa) greater than probable inactivity (Pi). ZINC5733756 is structurally similar to estradiol with a Tanimoto coefficient value of 0.73, which exhibits anti-inflammatory activity by targeting the activation of Nrf2. Similarly, ZINC1691180 has been reported to elicit anti-inflammatory activity in vitro. The compounds may serve as scaffolds for the design of potential biotherapeutic molecules against the cytokine storm associated with COVID-19.
Collapse
Affiliation(s)
- Seth O. Asiedu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; (S.O.A); (M.D.W)
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana;
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana;
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; (S.O.A); (M.D.W)
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
16
|
Su YW, Wong DSK, Fan J, Chung R, Wang L, Chen Y, Xian CH, Yao L, Wang L, Foster BK, Xu J, Xian CJ. Enhanced BMP signalling causes growth plate cartilage dysrepair in rats. Bone 2021; 145:115874. [PMID: 33548573 DOI: 10.1016/j.bone.2021.115874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/25/2020] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
Growth plate cartilage injuries often result in bony repair at the injury site and premature mineralisation at the uninjured region causing bone growth defects, for which underlying mechanisms are unclear. With the prior microarray study showing upregulated bone morphogenetic protein (BMP) signalling during the injury site bony repair and with the known roles of BMP signalling in bone healing and growth plate endochondral ossification, this study used a rat tibial growth plate drill-hole injury model with or without systemic infusion of BMP antagonist noggin to investigate roles of BMP signalling in injury repair responses within the injury site and in the adjacent "uninjured" cartilage. At days 8, 14 and 35 post-injury, increased expression of BMP members and receptors and enhanced BMP signalling (increased levels of phosphorylated (p)-Smad1/5/8) were found during injury site bony repair. After noggin treatment, injury site bony repair at days 8 and 14 was reduced as shown by micro-CT and histological analyses and lower mRNA expression of osteogenesis-related genes Runx2 and osteocalcin (by RT-PCR). At the adjacent uninjured cartilage, the injury caused increases in the hypertrophic zone/proliferative zone height ratio and in mRNA expression of hypertrophy marker collagen-10, but a decrease in chondrogenesis marker Sox9 at days 14 and/or 35, which were accompanied by increased BMP signalling (increased levels of pSmad1/5/8 protein and BMP7, BMPR1a and target gene Dlx5 mRNA). Noggin treatment reduced the hypertrophic zone/proliferative zone height ratio and collagen-10 mRNA expression, but increased collagen-2 mRNA levels at the adjacent growth plate. This study has identified critical roles of BMP signalling in the injury site bony repair and in the hypertrophic degeneration of the adjacent growth plate in a growth plate drill-hole repair model. Moreover, suppressing BMP signalling can potentially attenuate the undesirable bony repair at injury site and suppress the premature hypertrophy but potentially rescue chondrogenesis at the adjacent growth plate.
Collapse
Affiliation(s)
- Yu-Wen Su
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia
| | - Derick S K Wong
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Rosa Chung
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia
| | - Liping Wang
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia; Ningbo No. 6 Hospital, Ningbo University, Ningbo 315040, China
| | - Yuhui Chen
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopaedics of Guangdong Province, Guangzhou 510630, Guangdong, China
| | - Claire H Xian
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lufeng Yao
- Ningbo No. 6 Hospital, Ningbo University, Ningbo 315040, China
| | - Liang Wang
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopaedics of Guangdong Province, Guangzhou 510630, Guangdong, China
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia
| | - Cory J Xian
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia; Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai 200065, China; Ningbo No. 6 Hospital, Ningbo University, Ningbo 315040, China.
| |
Collapse
|
17
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
18
|
Takahara S, Lee SY, Iwakura T, Oe K, Fukui T, Okumachi E, Arakura M, Sakai Y, Matsumoto T, Matsushita T, Kuroda R, Niikura T. Altered microRNA profile during fracture healing in rats with diabetes. J Orthop Surg Res 2020; 15:135. [PMID: 32264968 PMCID: PMC7140490 DOI: 10.1186/s13018-020-01658-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression. There is increasing evidence that some miRNAs are involved in the pathology of diabetes mellitus (DM) and its complications. We hypothesized that the functions of certain miRNAs and the changes in their patterns of expression may contribute to the pathogenesis of impaired fractures due to DM. Methods In this study, 108 male Sprague–Dawley rats were divided into DM and control groups. DM rats were created by a single intravenous injection of streptozotocin. Closed transverse femoral shaft fractures were created in both groups. On post-fracture days 5, 7, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was conducted with miRNA samples from each group on post-fracture days 5 and 11. The microarray findings were validated by real-time polymerase chain reaction (PCR) analysis at each time point. Results Microarray analysis revealed that, on days 5 and 11, 368 and 207 miRNAs, respectively, were upregulated in the DM group, compared with the control group. The top four miRNAs on day 5 were miR-339-3p, miR451-5p, miR-532-5p, and miR-551b-3p. The top four miRNAs on day 11 were miR-221-3p, miR376a-3p, miR-379-3p, and miR-379-5p. Among these miRNAs, miR-221-3p, miR-339-3p, miR-376a-3p, miR-379-5p, and miR-451-5p were validated by real-time PCR analysis. Furthermore, PCR analysis revealed that these five miRNAs were differentially expressed with dynamic expression patterns during fracture healing in the DM group, compared with the control group. Conclusions Our findings will aid in understanding the pathology of impaired fracture healing in DM and may support the development of molecular therapies using miRNAs for the treatment of impaired fracture healing in patients with DM.
Collapse
Affiliation(s)
- Shunsuke Takahara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Orthopaedic Surgery, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, 675-8555, Japan
| | - Sang Yang Lee
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Takashi Iwakura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Etsuko Okumachi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Michio Arakura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
19
|
Teplen'kiy MP, Chepeleva MV, Kuznetsova EI. [Perthes disease: immunological aspects.]. Klin Lab Diagn 2020; 65:239-243. [PMID: 32227730 DOI: 10.18821/0869-2084-2020-65-4-239-243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 11/17/2022]
Abstract
The values of cellular, humoral immunity, cytokine status, those of phagocytic activity of neutrophils (PAN) have been studied in patients with Perthes disease II and III Stages. Considering a stage of the pathological process patients (boys at the age of 8-12 years) were divided into two (2) groups. Group I included 14 patients with the fragmentation stage (Perthes disease Stage II). Group 2 include d 15 children with Perthes disease Stage III (the stage of re-ossification). Perthes disease regardless of the stage of the disease was characterized by the increase in oxygendependent and lysosomal phagocytic activity of neutrophils, the increase in the number of early extracellular traps, as well as by increased concentrations of pro-inflammatory cytokines (IL-1β and TNFa), IgЕ, decreased concentrations of IL-18. The fragmentation stage was characterized by moderate activation of cellular immunity with a prevailing increase in the number of T-lymphocytes with early activation markers (CD25). At the re-ossification stage the predominance of T-lymphocytes was observed with late activation markers (HLADR), being accompanied by moderate activation of humoral immunity (increased concentrations of class A and G serum immunoglobulins). The obtained data can be used as additional criteria for clarifying Perthes disease stage, predicting osteonecrosis development when making decision of the feasibility of performing reconstructive surgeries on the joint.
Collapse
Affiliation(s)
- M P Teplen'kiy
- FSBI Russian Ilizarov Scientific Centre «Restorative Traumatology and Orthopaedics» of the RF Ministry of Health, 640014, Kurgan, Russian Federation
| | - M V Chepeleva
- FSBI Russian Ilizarov Scientific Centre «Restorative Traumatology and Orthopaedics» of the RF Ministry of Health, 640014, Kurgan, Russian Federation
| | - E I Kuznetsova
- FSBI Russian Ilizarov Scientific Centre «Restorative Traumatology and Orthopaedics» of the RF Ministry of Health, 640014, Kurgan, Russian Federation
| |
Collapse
|
20
|
Chen X, Wang M, Chen F, Wang J, Li X, Liang J, Fan Y, Xiao Y, Zhang X. Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater 2020; 103:318-332. [PMID: 31857257 DOI: 10.1016/j.actbio.2019.12.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
Abstract
The host immune response is critical for in situ osteogenesis, but correlations between local inflammatory reactions and biomaterial osteoinduction are still poorly understood. This study used a murine intramuscular implantation model to demonstrate that calcium phosphate ceramics with different phase compositions exhibited divergent osteoinductivities. The osteoinductive potential of each ceramic was closely associated with the immunomodulatory capacity of the material, and especially with the regulation of macrophage polarization and functional status. Biphasic calcium phosphate (BCP) ceramics with superior osteoinductive potential enhanced the fraction of CD206+ M2 macrophages, up-regulated expression of M2 phenotypic markers in vitro, and increased the ARG+ M2 population in vivo. This suggested that BCP ceramics could ameliorate long-term inflammation and build a pro-osteogenic microenvironment. However, β-tricalcium phosphate (β-TCP) ceramics with no obvious osteoinductivity increased the fraction of CCR7+ M1 macrophages, promoted the secretion of M1 phenotypic markers in vitro, and maintained a high proportion of iNOS+ M1 macrophages in vivo. It indicated that β-TCP ceramics could exacerbate inflammation and inhibit ectopic bone formation. Hydroxyapatite ceramics with an intermediate osteoinductivity exhibited a moderate amount of both M1 and M2 macrophages. These findings highlight the critical role of macrophage polarization in biomaterial-dependent osteoinduction, which not only deepens our understanding of osteoinductive mechanisms but also provides a strategy to design bone substitutes by endowing materials with the proper immunomodulatory abilities to achieve the desired clinic performance. STATEMENT OF SIGNIFICANCE: Calcium phosphate (CaP) ceramics with osteoinductive capacities are able to induce ectopic bone formation in non-osseous sites. However, its underlying mechanism is largely unknown. Previous studies have demonstrated an indispensable role of macrophages in osteogenesis, inspiring us that local inflammatory reaction may affect material-dependent osteoinduction. This study indicated that CaP ceramics with different phase composition could present divergent osteoinductive capacities through modulating polarization and functional status of macrophages, as biphasic calcium phosphate with potent osteoinductivity ameliorated long-term inflammation and induced a healing-associated M2 phenotype to initiate bone formation. These findings not only get an insight into the mechanism of CaP-involved osteoinduction, but also help the design of tissue-inducing implants by endowing biomaterials with proper immunomodulatory ability.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Fuying Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Ewendt F, Föller M. p38MAPK controls fibroblast growth factor 23 (FGF23) synthesis in UMR106-osteoblast-like cells and in IDG-SW3 osteocytes. J Endocrinol Invest 2019; 42:1477-1483. [PMID: 31201665 DOI: 10.1007/s40618-019-01073-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND p38 mitogen-activated protein kinase (p38MAPK) is a serine/threonine kinase activated by cellular stress stimuli including radiation, osmotic shock, and inflammation and influencing apoptosis, cell proliferation, and autophagy. Moreover, p38MAPK induces transcriptional activity of the transcription factor complex NFκB mediating multiple pro-inflammatory cellular responses. Fibroblast growth factor 23 (FGF23) is produced by bone cells, and regulates renal phosphate and vitamin D metabolism as a hormone. FGF23 expression is enhanced by NFκB. Here, we analyzed the relevance of p38MAPK activity for the production of FGF23. METHODS Fgf23 expression was analyzed by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast-like cells and in IDG-SW3 osteocytes. RESULTS Inhibition of p38MAPK with SB203580 or SB202190 significantly down-regulated Fgf23 expression and FGF23 protein expression. Conversely, p38MAPK activator anisomycin increased the abundance of Fgf23 mRNA. NFκB inhibitors wogonin and withaferin A abrogated the stimulatory effect of anisomycin on Fgf23 gene expression. CONCLUSION p38MAPK induces FGF23 formation, an effect at least in part dependent on NFκB activity.
Collapse
Affiliation(s)
- F Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - M Föller
- Institute of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
22
|
Liu X, Cui H, Niu H, Wang L, Li X, Sun J, Wei Q, Dong J, Liu L, Xian CJ. Hydrocortisone Suppresses Early Paraneoplastic Inflammation And Angiogenesis To Attenuate Early Hepatocellular Carcinoma Progression In Rats. Onco Targets Ther 2019; 12:9481-9493. [PMID: 31807025 PMCID: PMC6850701 DOI: 10.2147/ott.s224618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Inflammation is implicated in both hepatic cirrhosis development and hepatocellular carcinogenesis, and treatment with long-acting glucocorticoid dexamethasone prevented liver carcinogenesis in mice. However, it is unclear whether glucocorticoids have anti-inflammatory effect on hepatocellular carcinoma (HCC) and if short-acting glucocorticoids (with fewer adverse effects) inhibit paraneoplastic inflammation and HCC progression. Methods To investigate whether different types of anti-inflammatory agents attenuate HCC progression, the current study compared effects of treatments with hydrocortisone (a short-acting glucocorticoid) or aspirin on HCC progression. HCC was induced in diethylnitrosamine-treated rats which were randomly divided into 4 groups (n=8), respectively receiving orally once daily vehicle, glucuronolactone, glucuronolactone+hydrocortisone, and glucuronolactone+aspirin. Diethylnitrosamine (DEN) was given to rats in drinking water (100mg/L) to induce HCC. At weeks 12 and 16 post-induction, effects were compared on HCC nodule formation, microvessel density, and macrophage infiltration, and levels of paraneoplastic protein expression of tumor necrosis factor (TNF)-α, p38 mitogen-activated protein kinase (p38), phosphorylated p38 (p-p38), nuclear factor (NF)-κB, interleukin (IL)-10, hepatocyte growth factor (HGF), transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF). Results Compared to the model and glucuronolactone alone groups, HCC nodule number and microvessel density in the glucuronolactone+hydrocortisone group were significantly lower at week 12. At week 12 but not week 16, significantly lower levels of macrophages, TNF-α, p-p38, NF-κB, IL-10, HGF, TGF-β1 and VEGF were observed in the paraneoplastic tissue of the glucuronolactone+hydrocortisone group when compared with the control and glucuronolactone groups. Conclusion The results suggest that hydrocortisone treatment reduces macrophage polarization, expression of inflammatory and anti-inflammatory cytokines, and angiogenesis in paraneoplastic tissue, and attenuates early HCC progression. Although hydrocortisone did not have attenuation effect on advanced solid tumor, the current study shows the potential benefits and supports potential clinical use of hydrocortisone in attenuating early progression of HCC, which is through suppressing paraneoplastic inflammation and angiogenesis.
Collapse
Affiliation(s)
- Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Haiyan Cui
- Department of Internal Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Hongling Niu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Liping Wang
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Xiangzhi Li
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jingbo Sun
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jianghui Dong
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
23
|
PKR Promotes Oxidative Stress and Apoptosis of Human Articular Chondrocytes by Causing Mitochondrial Dysfunction through p38 MAPK Activation-PKR Activation Causes Apoptosis in Human Chondrocytes. ANTIOXIDANTS (BASEL, SWITZERLAND) 2019. [PMID: 31484360 DOI: 10.3390/antiox8090370.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteoarthritis (OA) is one of the most common types of arthritis in the elderly people. It has been known that chondrocyte apoptosis occurs in OA cartilage; however, the detailed molecular mechanism remains unclear. In the current study, we aimed to elucidate the role of double-stranded RNA-dependent protein kinase R (PKR) in the TNF-α-caused apoptosis in chondrocytes. Human articular chondrocytes were digested from cartilages of OA subjects who accepted arthroplastic knee surgery. Our results showed that phosphorylation of p38 MAPK was increased after TNF-α stimulation or PKR activation using poly (I:C), and TNF-α-induced p38 MAPK upregulation was inhibited by PKR inhibition, suggesting phosphor-p38 MAPK was regulated by PKR. Moreover, we found that PKR participated in the p53-dependent destruction of AKT following activation of p38 MAPK. The inhibition of AKT led to the reduced expression of PGC-1α, which resulted in mitochondrial dysfunction and increased oxidative stress. We showed that the reduction of oxidative stress using antioxidant Mito TEMPO lowered the TNF-α-induced caspase-3 activation and TUNEL-positive apoptotic cells. The diminished apoptotic response was also observed after repression of PKR/p38 MAPK/p53/AKT/PGC-1α signaling. Taken together, we demonstrated that the aberrant mitochondrial biogenesis and increased oxidative stress in chondrocytes after TNF-α stimulation were mediated by PKR, which may contribute to the chondrocyte apoptosis and cartilage degeneration in OA.
Collapse
|
24
|
PKR Promotes Oxidative Stress and Apoptosis of Human Articular Chondrocytes by Causing Mitochondrial Dysfunction through p38 MAPK Activation-PKR Activation Causes Apoptosis in Human Chondrocytes. Antioxidants (Basel) 2019; 8:antiox8090370. [PMID: 31484360 PMCID: PMC6769915 DOI: 10.3390/antiox8090370] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common types of arthritis in the elderly people. It has been known that chondrocyte apoptosis occurs in OA cartilage; however, the detailed molecular mechanism remains unclear. In the current study, we aimed to elucidate the role of double-stranded RNA-dependent protein kinase R (PKR) in the TNF-α-caused apoptosis in chondrocytes. Human articular chondrocytes were digested from cartilages of OA subjects who accepted arthroplastic knee surgery. Our results showed that phosphorylation of p38 MAPK was increased after TNF-α stimulation or PKR activation using poly (I:C), and TNF-α-induced p38 MAPK upregulation was inhibited by PKR inhibition, suggesting phosphor-p38 MAPK was regulated by PKR. Moreover, we found that PKR participated in the p53-dependent destruction of AKT following activation of p38 MAPK. The inhibition of AKT led to the reduced expression of PGC-1α, which resulted in mitochondrial dysfunction and increased oxidative stress. We showed that the reduction of oxidative stress using antioxidant Mito TEMPO lowered the TNF-α-induced caspase-3 activation and TUNEL-positive apoptotic cells. The diminished apoptotic response was also observed after repression of PKR/p38 MAPK/p53/AKT/PGC-1α signaling. Taken together, we demonstrated that the aberrant mitochondrial biogenesis and increased oxidative stress in chondrocytes after TNF-α stimulation were mediated by PKR, which may contribute to the chondrocyte apoptosis and cartilage degeneration in OA.
Collapse
|
25
|
Fang B, Wang D, Zheng J, Wei Q, Zhan D, Liu Y, Yang X, Wang H, Li G, He W, Xu L. Involvement of tumor necrosis factor alpha in steroid-associated osteonecrosis of the femoral head: friend or foe? Stem Cell Res Ther 2019; 10:5. [PMID: 30606261 PMCID: PMC6318982 DOI: 10.1186/s13287-018-1112-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background The etiology and pathology osteonecrosis of the femoral head (ONFH) are not completely clarified. As a cytokine participating in systemic inflammation, tumor necrosis factor alpha (TNFα) has been shown to be involved in the pathogenesis of ONFH. However, the role of TNFα in ONFH is not clearly clarified. In the present study, we investigated the effects of TNFα on proliferation, angiogenesis, and osteogenic differentiation of rat bone mesenchymal stem cells (rMSCs) and the underlying mechanisms. Methods All femoral bone tissues were separated in surgeries. After extracting total RNA and protein, we evaluated TNFα content by ELISA and the relative expression levels of genes by quantitative real-time PCR and western blot. Also, immunohistochemistry staining was performed to observe the expression of Runx2 in the bone samples. Chick embryo chorioallantoic membrane (CAM) assay was performed to observe the effect of TNFα on angiogenesis. The genomic DNAs were treated by bisulfite modification, and methylation status of CpG sites in the CpG islands of human and rat Runx2 gene promoter was determined by DNA sequencing. The binding of H3K4me3 and H3K27me3 in Runx2 promoter was checked by ChIP assay. RNA-seq analysis was used to find out the genes and pathways changed by TNFα in rMSCs. Results The results demonstrate TNFα promotes cell proliferation and angiogenesis whereas inhibits osteogenesis. Epigenetic regulations including DNA methylation and histone modifications play important roles in mediating the effect of TNFα on osteogenic differentiation. We find an increased rate of CpG methylation in rat Runx2 promoter in TNFα-treated rMSCs, as well as significantly increased occupancy of H3K27me3 in Runx2 gene promoter. The content of TNFα in necrotic tissue is much lower than that of normal tissue. And relevantly, human Runx2 promoter is demethylated in necrotic tissue using bone samples from patient with ONFH. In addition, we have observed that Wnt signaling pathway is inhibited by TNFα as multiple Wnts are markedly decreased in TNFα-treated rMSCs by RNA-seq analysis. Conclusion Taken together, our study shows that TNFα plays complicated roles in the pathogenesis of ONFH, including proliferation, angiogenesis, and osteogenesis. Targeting TNFα should not be considered as an applicable strategy to inhibit the progression of ONFH. Electronic supplementary material The online version of this article (10.1186/s13287-018-1112-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Fang
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Ding Wang
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Jiaqian Zheng
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Qiushi Wei
- Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dongxiang Zhan
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Haibin Wang
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.
| | - Wei He
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China. .,Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| | - Liangliang Xu
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China. .,Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
26
|
Jie Z, Shen S, Zhao X, Xu W, Zhang X, Huang B, Tang P, Qin A, Fan S, Xie Z. Activating β-catenin/Pax6 axis negatively regulates osteoclastogenesis by selectively inhibiting phosphorylation of p38/MAPK. FASEB J 2018; 33:4236-4247. [PMID: 30526042 DOI: 10.1096/fj.201801977r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Balance of osteoclast formation is regulated by the receptor activator of NF-κB ligand and extracellular negative regulators such as IFN-γ and IFN-β. However, very little is known about the intrinsic negative regulatory factors of osteoclast differentiation. Recently, the paired-box homeodomain transcription factor Pax6 was shown to negatively regulate receptor activator of NF-κB ligand-mediated osteoclast differentiation. However, the mechanism underlying this regulation is still unclear. In this study, we show that a p38 inhibitor (VX-745) up-regulates the expression of Pax6 during osteoclast differentiation. Subsequently, we found that β-catenin could bind to the proximal region of Pax6 promoter to induce its expression, and this action could be impaired by p38-induced ubiquitin-mediated degradation of β-catenin. Our results suggest that Pax6 is regulated by a novel p38/β-catenin pathway. Pax6 can further regulate the nuclear translocation of NF of activated T cells, cytoplasmic 1. Our study indicates that this novel p38/β-catenin/Pax6 axis contributes to negative regulation of osteoclastogenesis. In addition, our study proposes a novel approach to treat osteoclast-related diseases through the use of VX-745 complemented with the β-catenin activator SKL2001.-Jie, Z., Shen, S., Zhao, X., Xu, W., Zhang, X., Huang, B., Tang, P., Qin, A., Fan, S., Xie, Z. Activating β-catenin/Pax6 axis negatively regulates osteoclastogenesis by selectively inhibiting phosphorylation of p38/MAPK.
Collapse
Affiliation(s)
- Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Pan Tang
- Department of Orthopaedics, Huzhou Hospital, Zhejiang University, Hangzhou, China; and
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Su YW, Chim SM, Zhou L, Hassanshahi M, Chung R, Fan C, Song Y, Foster BK, Prestidge CA, Peymanfar Y, Tang Q, Butler LM, Gronthos S, Chen D, Xie Y, Chen L, Zhou XF, Xu J, Xian CJ. Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone 2018; 116:232-247. [PMID: 30125729 PMCID: PMC6550307 DOI: 10.1016/j.bone.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
Faulty bony repair causes dysrepair of injured growth plate cartilage and bone growth defects in children; however, the underlying mechanisms are unclear. Recently, we observed the prominent induction of neurotrophin‑3 (NT-3) and its important roles as an osteogenic and angiogenic factor promoting the bony repair. The current study investigated its roles in regulating injury site remodelling. In a rat tibial growth plate drill-hole injury repair model, NT-3 was expressed prominently in osteoblasts at the injury site. Recombinant NT-3 (rhNT-3) systemic treatment enhanced, but NT-3 immunoneutralization attenuated, expression of cartilage-removal proteases (MMP-9 and MMP-13), presence of bone-resorbing osteoclasts and expression of osteoclast protease cathepsin K, and remodelling at the injury site. NT-3 was also highly induced in cultured mineralizing rat bone marrow stromal cells, and the conditioned medium augmented osteoclast formation and resorptive activity, an ability that was blocked by presence of anti-NT-3 antibody. Moreover, NT-3 and receptor TrkC were induced during osteoclastogenesis, and rhNT-3 treatment activated TrkC downstream kinase Erk1/2 in differentiating osteoclasts although rhNT-3 alone did not affect activation of osteoclastogenic transcription factors NF-κB or NFAT in RAW264.7 osteoclast precursor cells. Furthermore, rhNT-3 treatment increased, but NT-3 neutralization reduced, expression of osteoclastogenic cytokines (RANKL, TNF-α, and IL-1) in mineralizing osteoblasts and in growth plate injury site, and rhNT-3 augmented the induction of these cytokines caused by RANKL treatment in RAW264.7 cells. Thus, injury site osteoblast-derived NT-3 is important in promoting growth plate injury site remodelling, as it induces cartilage proteases for cartilage removal and augments osteoclastogenesis and resorption both directly (involving activing Erk1/2 and substantiating RANKL-induced increased expression of osteoclastogenic signals in differentiating osteoclasts) and indirectly (inducing osteoclastogenic signals in osteoblasts).
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Chiaming Fan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, SA 5006, Australia.
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Qian Tang
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Lisa M Butler
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Stan Gronthos
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
28
|
Jakhar R, Sharma C, Paul S, Kang SC. Immunosuppressive potential of astemizole against LPS activated T cell proliferation and cytokine secretion in RAW macrophages, zebrafish larvae and mouse splenocytes by modulating MAPK signaling pathway. Int Immunopharmacol 2018; 65:268-278. [PMID: 30359933 DOI: 10.1016/j.intimp.2018.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
In this study, the immunomodulatory effects of astemizole (AST) against lipopolysaccharide (LPS) mediated T cell proliferation and induction of inflammation in RAW macrophages (in vitro), and zebrafish larvae (in vivo) were determined. AST significantly suppressed the phagocytic activity of macrophages (3.303 ± 0.115) and inhibited lysosomal enzyme secretion (13.27 ± 2.52) induced by LPS (100 ng/ml). Moreover, AST subdued the morphological deformities such as yolk sac edema (YSE) and spinal curvature curving (SC) by inhibiting ROS generation in zebrafish larvae 24 h after microinjection of LPS (0.5 mg/ml). AST was also shown to inhibit the production of the major cytokines TNF-α (150.8 ± 0.6), IL-1β (276.5 ± 1.6), and PGE2 (194.6 ± 0.6) pg/ml in RAW macrophages. It also subdued the ROS induced iNOS and COX-2 generated in response to LPS mediated immune dysfunctions in zebrafish larvae. These results suggested the immunosuppression effect of AST. Furthermore, induction of immune-suppression due to AST resulted in significant down-regulation of innate immunity directed by MAPK (p38, ERK and JNK), which was found to be associated with decreased production of acute inflammatory mediators both in vitro and in vivo. To confirm its activity, splenocytes were prepared using BALB/c mice and a mitogen activated splenocyte proliferation assay was also performed. Our findings suggest that AST has the ability to inhibit T cell proliferation and cytokine secretion both in vitro and in vivo by interfering with MAPK signaling pathway. Taken together, our results showed the potential of AST as a countermeasure to immune dysfunction and suggest its use as immunosuppressant compound in inflammatory disease.
Collapse
Affiliation(s)
- Rekha Jakhar
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Chanchal Sharma
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Souren Paul
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
29
|
Carvalho FR, Calado SM, Silva GA, Diogo GS, Moreira da Silva J, Reis RL, Cancela ML, Gavaia PJ. Altered bone microarchitecture in a type 1 diabetes mouse model
Ins2
Akita. J Cell Physiol 2018; 234:9338-9350. [DOI: 10.1002/jcp.27617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Filipe R. Carvalho
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- PhD Program in Biomedical Sciences, Universidade do Algarve Faro Portugal
| | - Sofia M. Calado
- PhD Program in Biomedical Sciences, Universidade do Algarve Faro Portugal
- Centre for Biomedical Research (CBMR), University of Algarve Faro Portugal
| | - Gabriela A. Silva
- Centre for Biomedical Research (CBMR), University of Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| | | | | | - Rui L. Reis
- ICVS/3B’s – PT Government Associate Laboratory Guimarães Portugal
- 3B’s Research Group‐Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Guimarães Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| |
Collapse
|
30
|
Hairul-Islam MI, Saravanan S, Thirugnanasambantham K, Chellappandian M, Simon Durai Raj C, Karikalan K, Gabriel Paulraj M, Ignacimuthu S. Swertiamarin, a natural steroid, prevent bone erosion by modulating RANKL/RANK/OPG signaling. Int Immunopharmacol 2018; 53:114-124. [PMID: 29078090 DOI: 10.1016/j.intimp.2017.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Bone erosion is a central feature of rheumatoid arthritis (RA) that is characterized by the infiltration of the synovial lining by osteoclasts and lymphocytes. In the present study, swertiamarin a major secoiridoid glycoside was evaluated for anti-osteoclastogenic property to prevent bone erosion in Freund's complete adjuvant (FCA) induced in-vivo model, in-vitro osteoblast and osteoclasts as well as in co-culture system and in-silico molecular docking analysis. The swertiamarin treatment decreased the expression of TRAP, RANKL, and RANK levels and increased the levels of OPG levels significantly in both in vitro and in vivo models. In in vitro, the compound treatment significantly increased the cell proliferation and ALP levels in osteoblast cells; the high proliferation (153.8600±5.23%) and ALP release (165.6033±4.13%) were observed at 50μg/ml concentration of swertiamarin treatment. At the same time the treatment decreased the TRAP positive cells in osteoclast cells; the high reductions of TRAP positive cells (39.32±3.19%) were observed at 50μg/ml of swertiamarin treatment. The treatment modulated the levels of pro-inflammatory cytokines, MMPs and NF-κB levels in osteoblast and osteoclast co-culture system. In in silico analysis swertiamarin had affinity towards the proteins RANK, RANKL and OPG residues with low binding energy -4.5, -3.92 and -5.77kcal/mol respectively. Thus, the results of this study revealed the anti-osteoclastogenic activity of swertiamarin on the prevention of bone destruction.
Collapse
Affiliation(s)
- M I Hairul-Islam
- Biology Department, College of Science, King Faisal University, Hofouf, Saudi Arabia; Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605 005, India
| | - S Saravanan
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India; Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605 005, India
| | - K Thirugnanasambantham
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605 005, India
| | - M Chellappandian
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - C Simon Durai Raj
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, Tamil Nadu, India
| | - K Karikalan
- School of Bioscience and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - M Gabriel Paulraj
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - S Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India.
| |
Collapse
|
31
|
Wei F, Zhou Y, Wang J, Liu C, Xiao Y. The Immunomodulatory Role of BMP-2 on Macrophages to Accelerate Osteogenesis. Tissue Eng Part A 2018; 24:584-594. [DOI: 10.1089/ten.tea.2017.0232] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Fei Wei
- The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| | - Yinghong Zhou
- The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| | - Jing Wang
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Changsheng Liu
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yin Xiao
- The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
32
|
miR-142-5p in Bone Marrow-Derived Mesenchymal Stem Cells Promotes Osteoporosis Involving Targeting Adhesion Molecule VCAM-1 and Inhibiting Cell Migration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3274641. [PMID: 29789783 PMCID: PMC5896351 DOI: 10.1155/2018/3274641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/27/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
Osteoporosis is a systemic bone metabolic disease that is highly prevalent in the elderly population, particularly in postmenopausal women, which results in enhanced bone fragility and an increased susceptibility to fractures. However, the underlying molecular pathogenesis mechanisms still remain to be further elucidated. In this study, in a rat ovariectomy- (OVX-) induced postmenopausal osteoporosis model, aberrant expression of a microRNA miR-142-5p and vascular cell adhesion molecule 1 (VCAM-1) was found by RNA sequencing analysis and qRT-PCR. Using a dual-luciferase reporter assay, we found that miR-142-5p can bind to and decrease expression of VCAM-1 mRNA. Such reduction was prohibited when the miR-142-5p binding site in VCAM-1 3′UTR was deleted, and Western blotting analyses validated the fact that miR-142-5p inhibited the expression of VCAM-1 protein. Bone marrow-derived mesenchymal stem cells (BMMSCs) transfected with miR-142-5p showed a significantly decreased migration ability in a Transwell migration assay. Collectively, these data indicated the important role of miR-142-5p in osteoporosis development involving targeting VCAM-1 and inhibiting BMMSC migration.
Collapse
|
33
|
Chen Z, Bachhuka A, Wei F, Wang X, Liu G, Vasilev K, Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. NANOSCALE 2017; 9:18129-18152. [PMID: 29143002 DOI: 10.1039/c7nr05913b] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immune cells play vital roles in regulating bone dynamics. Successful bone regeneration requires a favourable osteo-immune environment. The high plasticity and diversity of immune cells make it possible to manipulate the osteo-immune response of immune cells, thus modulating the osteoimmune environment and regulating bone regeneration. With the advancement in nanotechnology, nanotopographies with different controlled surface properties can be fabricated. On tuning the surface properties, the osteo-immune response can be precisely modulated. This highly tunable characteristic and immunomodulatory effects make nanotopography a promising strategy to precisely manipulate osteoimmunomdulation for bone tissue engineering applications. This review first summarises the effects of the immune response during bone healing to show the importance of regulating the immune response for the bone response. The plasticity of immune cells is then reviewed to provide rationales for manipulation of the osteoimmune response. Subsequently, we highlight the current types of nanotopographies applied in bone biomaterials and their fabrication techniques, and explain how these nanotopographies modulate the immune response and the possible underlying mechanisms. The effects of immune cells on nanotopography-mediated osteogenesis are emphasized, and we propose the concept of "nano-osteoimmunomodulation" to provide a valuable strategy for the development of nanotopographies with osteoimmunomodulatory properties that can precisely regulate bone dynamics.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 2017; 233:2937-2948. [DOI: 10.1002/jcp.26042] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center; Urmia University of Medical Sciences; Urmia Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Molecular Targeting Therapy Research Group; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Stem cell and Regenerative Medicine Institute; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
35
|
Erickson CB, Shaw N, Hadley-Miller N, Riederer MS, Krebs MD, Payne KA. A Rat Tibial Growth Plate Injury Model to Characterize Repair Mechanisms and Evaluate Growth Plate Regeneration Strategies. J Vis Exp 2017. [PMID: 28715376 DOI: 10.3791/55571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A third of all pediatric fractures involve the growth plate and can result in impaired bone growth. The growth plate (or physis) is cartilage tissue found at the end of all long bones in children that is responsible for longitudinal bone growth. Once damaged, cartilage tissue within the growth plate can undergo premature ossification and lead to unwanted bony repair tissue, which forms a "bony bar." In some cases, this bony bar can result in bone growth deformities, such as angular deformities, or it can completely halt longitudinal bone growth. There is currently no clinical treatment that can fully repair an injured growth plate. Using an animal model of growth plate injury to better understand the mechanisms underlying bony bar formation and to identify ways to inhibit it is a great opportunity to develop better treatments for growth plate injuries. This protocol describes how to disrupt the rat proximal tibial growth plate using a drill-hole defect. This small animal model reliably produces a bony bar and can result in growth deformities similar to those seen in children. This model allows for investigation into the molecular mechanisms of bony bar formation and serves as a means to test potential treatment options for growth plate injuries.
Collapse
Affiliation(s)
- Christopher B Erickson
- Department of Bioengineering, Department of Orthopedics, University of Colorado Anschutz Medical Campus
| | - Nichole Shaw
- Department of Orthopedics, University of Colorado Anschutz Medical Campus
| | | | - Michael S Riederer
- Department of Chemical & Biological Engineering, Colorado School of Mines
| | - Melissa D Krebs
- Department of Chemical & Biological Engineering, Colorado School of Mines
| | - Karin A Payne
- Department of Orthopedics, Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus;
| |
Collapse
|
36
|
Su YW, Zhou XF, Foster BK, Grills BL, Xu J, Xian CJ. Roles of neurotrophins in skeletal tissue formation and healing. J Cell Physiol 2017; 233:2133-2145. [PMID: 28370021 DOI: 10.1002/jcp.25936] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
Neurotrophins and their receptors are key molecules that are known to be critical in regulating nervous system development and maintenance and have been recognized to be also involved in regulating tissue formation and healing in skeletal tissues. Studies have shown that neurotrophins and their receptors are widely expressed in skeletal tissues, implicated in chondrogenesis, osteoblastogenesis, and osteoclastogenesis, and are also involved in regulating tissue formation and healing events in skeletal tissue. Increased mRNA expression for neurotrophins NGF, BDNF, NT-3, and NT-4, and their Trk receptors has been observed in injured bone tissues, and NT-3 and its receptor, TrkC, have been identified to have the highest induction at the injury site in a drill-hole injury repair model in both bone and the growth plate. In addition, NT-3 has also recently been shown to be both an osteogenic and angiogenic factor, and this neurotrophin can also enhance expression of the key osteogenic factor, BMP-2, as well as the major angiogenic factor, VEGF, to promote bone formation, vascularization, and healing of the injury site. Further studies, however, are needed to investigate if different neurotrophins have differential roles in skeletal repair, and if NT-3 can be a potential target of intervention for promoting bone fracture healing.
Collapse
Affiliation(s)
- Yu-Wen Su
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Brian L Grills
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cory J Xian
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Zhou T, Guo S, Zhang Y, Weng Y, Wang L, Ma J. GATA4 regulates osteoblastic differentiation and bone remodeling via p38-mediated signaling. J Mol Histol 2017; 48:187-197. [PMID: 28393293 DOI: 10.1007/s10735-017-9719-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/20/2017] [Indexed: 12/16/2022]
Abstract
Osteoblasts play a major role in bone remodeling and are regulated by transcription factors. GATA4, a zinc finger transcription factor from the GATA family, has an unclear role in osteoblast differentiation. In this study, the role of GATA4 in osteoblast differentiation was studied both in vitro and in vivo by GATA4 knockdown. GATA4 expression increased during osteoblast differentiation. GATA4 knockdown in osteoblast precursor cells reduced alkaline phosphatase activity and decreased the formation of calcified nodule in an osteogenic-induced cell culture system. In vivo, micro-CT showed that local injection of lentivirus-delivered GATA4 shRNA caused reduced new bone formation during tooth movement. Histological analyses such as total collagen and Goldner's trichrome staining confirmed these results. In vivo immunohistochemical analysis showed reduced expression of osterix (OSX), osteopontin (OPN), and osteocalcin (OCN) in the shGATA4 group (P < 0.05). Consistently, both western blotting and quantitative reverse-transcription PCR proved that expression of osteogenesis-related genes, including OSX, OPN, and OCN, was significantly repressed in the shGATA4 group in vitro (P < 0.01). For further analysis of the pathways involved in this process, we examined the MAPK signaling pathway, and found knockdown of GATA4, downregulated p38 signaling pathways (P < 0.01). Collectively, these results imply GATA4 is a regulator of osteoblastic differentiation via the p38 signaling pathways.
Collapse
Affiliation(s)
- Tingting Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
38
|
Przekora A, Ginalska G. Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:225-233. [DOI: 10.1016/j.msec.2016.12.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/04/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
|
39
|
Rampichová M, Buzgo M, Míčková A, Vocetková K, Sovková V, Lukášová V, Filová E, Rustichelli F, Amler E. Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors. Int J Nanomedicine 2017; 12:347-361. [PMID: 28123295 PMCID: PMC5229261 DOI: 10.2147/ijn.s120206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone and cartilage are tissues of a three-dimensional (3D) nature. Therefore, scaffolds for their regeneration should support cell infiltration and growth in all 3 dimensions. To fulfill such a requirement, the materials should possess large, open pores. Centrifugal spinning is a simple method for producing 3D fibrous scaffolds with large and interconnected pores. However, the process of bone regeneration is rather complex and requires additional stimulation by active molecules. In the current study, we introduced a simple composite scaffold based on platelet adhesion to poly-ε-caprolactone 3D fibers. Platelets were used as a natural source of growth factors and cytokines active in the tissue repair process. By immobilization in the fibrous scaffolds, their bioavailability was prolonged. The biological evaluation of the proposed system in the MG-63 model showed improved metabolic activity, proliferation and alkaline phosphatase activity in comparison to nonfunctionalized fibrous scaffold. In addition, the response of cells was dose dependent with improved biocompatibility with increasing platelet concentration. The results demonstrated the suitability of the system for bone tissue.
Collapse
Affiliation(s)
- Michala Rampichová
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Matej Buzgo
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad
| | - Andrea Míčková
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Karolína Vocetková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Sovková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Lukášová
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Filová
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Franco Rustichelli
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Evžen Amler
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
40
|
Al-Daghri NM, Aziz I, Yakout S, Aljohani NJ, Al-Saleh Y, Amer OE, Sheshah E, Younis GZ, Al-Badr FBM. Inflammation as a contributing factor among postmenopausal Saudi women with osteoporosis. Medicine (Baltimore) 2017; 96:e5780. [PMID: 28121926 PMCID: PMC5287950 DOI: 10.1097/md.0000000000005780] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Postmenopausal osteoporosis is an important metabolic bone disease characterized by rapid bone loss occurring in the postmenopausal period. Recently, the most prevalent form of clinically significant osteopenia and osteoporosis involves various inflammatory conditions. The aim of the study is to evaluate the association between proinflammatory markers (interleukin [IL]-1β, IL-6, TNF-α) with bone turnover markers (BTMs) in postmenopausal Saudi women with and without osteoporosis. A total of 200 postmenopausal Saudi women ≥50 years old, 100 with osteoporosis and 100 without osteoporosis (control) were recruited under the supervision of qualified physicians in King Salman Hospital and King Fahd Medical City, Riyadh, Saudi Arabia. Serum tumor necrosis factor alpha (TNF-α), IL-1, IL-4, IL-6, and parathyroid hormone (PTH) were determined using Luminex xMAP technology. N-telopeptides of collagen type I (NTx) was assessed using ELISA, 25(OH) vitamin D and osteocalcin were determined using electrochemiluminescence, serum calcium and inorganic phosphate (Pi) were measured by a chemical analyzer. Serum IL-1β, IL-6, NTx, and PTH levels in women with osteoporosis were significantly higher than controls. Although IL-4 and osteocalcin were significantly lower than controls. IL-1β and TNF-α were positively associated with NTx in osteoporosis women. TNF-α, IL-6, and TNF-α were positively correlated with IL-lβ in both groups. A significant negative correlation between osteocalcin and IL-1β in healthy women and women with osteoporosis were observed. Findings of the present study implicate a role for cytokine pattern-mediated inflammation in patients with osteoporosis.
Collapse
Affiliation(s)
- Nasser M. Al-Daghri
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University
| | - Ibrahim Aziz
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University
| | - Sobhy Yakout
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University
| | - Naji J. Aljohani
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University
- Obesity, Endocrine and Metabolism Center, King Fahad Medical City, Faculty of Medicine
| | - Yousef Al-Saleh
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences
| | - Osama E. Amer
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University
| | - Eman Sheshah
- Diabetes Care Center, King Salman Bin Abdulaziz Hospital
| | - Ghaida Zakaria Younis
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University
| | - Fahad Badr M. Al-Badr
- Department of Radiology and Medical Imaging, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
McConda DB, Karnes JM, Hamza T, Lindsey BA. A novel co-culture model of murine K12 osteosarcoma cells and S. aureus on common orthopedic implant materials: 'the race to the surface' studied in vitro. BIOFOULING 2016; 32:627-634. [PMID: 27142312 DOI: 10.1080/08927014.2016.1172572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Infection is a major cause of orthopedic implant failure. There are few studies assessing both tissue cell and bacterial adherence on common orthopedic implant materials in a co-culture environment. An in vitro co-culture model was created using K12 osteosarcoma cells and Staphylococcus aureus in a medium incubated over metal disks for 48 h. The results showed that, in the presence of S. aureus, there were fewer osteosarcoma cells attached to the disks for all substrata tested. There were significantly more osteosarcoma cells adhering to the cobalt chrome than the stainless steel and titanium disks. Overall, in the presence of osteosarcoma cells, there were more bacteria adhering to the disks for all the substrata tested, with significantly more bacteria adhering to the stainless steel disks compared to cobalt chrome and titanium disks. Scanning electron microscopy verified that osteosarcoma cells and bacteria were adherent to the metal disks after incubation for 48 h. Furthermore, the observation that more bacteria were in the co-culture than in the control sample suggests that the osteosarcoma cells serve as a nutrient source for the bacteria. Future models assessing the interaction of osteogenic cells with bacteria on a substratum would be improved if the model accounted for the role of the immune system in secondary bone healing.
Collapse
Affiliation(s)
- David B McConda
- a Department of Orthopaedics , West Virginia University , Morgantown , WV , USA
| | - Jonathan M Karnes
- a Department of Orthopaedics , West Virginia University , Morgantown , WV , USA
| | - Therwa Hamza
- a Department of Orthopaedics , West Virginia University , Morgantown , WV , USA
| | - Brock A Lindsey
- a Department of Orthopaedics , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
42
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
43
|
Wang H, Wang Y, Du Q, Lu P, Fan H, Lu J, Hu R. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells. Exp Cell Res 2016; 342:184-92. [PMID: 26968633 DOI: 10.1016/j.yexcr.2016.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Inflammasome NLRP3 plays a crucial role in the process of colitis and colitis--associated colon cancer. Even though much is known regarding the NLRP3 inflammasome that regulates pro-inflammatory cytokine release in innate immune cells, the role of NLRP3 in non-immune cells is still unclear. In this study, we showed that NLRP3 was highly expressed in mesenchymal-like colon cancer cells (SW620), and was upregulated by tumor necrosis factors-α (TNF-α) and transforming growth factor-β1 (TGF-β1) respectively, during EMT in colon cancer epithelial cells HCT116 and HT29. Knockdown of NLRP3 retained epithelial spindle-like morphology of HCT116 and HT29 cells and reversed the mesenchymal characteristic of SW620 cells, indicated by the decreased expression of vimentin and MMP9 and increased expression of E-cadherin. In addition, knockdown of NLRP3 in colorectal carcinoma cells displayed diminished cell migration and invasion. Interestingly, during the EMT process induced by TNF-α or TGF-β1, the cleaved caspase-1 and ASC speck were not detected, indicating that NLRP3 functions in an inflammasome-independent way. Further studies demonstrated that NLRP3 protein expression was regulated by NF-κB signaling in TNF-α or TGF-β1-induced EMT, as verified by the NF-κB inhibitor Bay 11-7082. Moreover, NLRP3 knockdown reduced the expression of Snail1, indicating that NLRP3 may promote EMT through regulating Snail1. In summary, our results showed that the NLRP3 expression, not the inflammasome activation, was required for EMT in colorectal cancer cells.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yajing Wang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Qianming Du
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ping Lu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Huimin Fan
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jinrong Lu
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
44
|
Waki T, Lee SY, Niikura T, Iwakura T, Dogaki Y, Okumachi E, Oe K, Kuroda R, Kurosaka M. Profiling microRNA expression during fracture healing. BMC Musculoskelet Disord 2016; 17:83. [PMID: 26879131 PMCID: PMC4754871 DOI: 10.1186/s12891-016-0931-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 02/06/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The discovery of microRNA (miRNA) has revealed a novel type of regulatory control for gene expression. Increasing evidence suggests that miRNA regulates chondrocyte, osteoblast, and osteoclast differentiation and function, indicating miRNA as key regulators of bone formation, resorption, remodeling, and repair. We hypothesized that the functions of certain miRNAs and changes to their expression pattern may play crucial roles during the process of fracture healing. METHODS Standard healing fractures and unhealing fractures produced by periosteal cauterization at the fracture site were created in femurs of seventy rats, with half assigned to the standard healing fracture group and half assigned to the nonunion group. At post-fracture days 3, 7, 10, 14, 21, and 28, total RNA including miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture day 14. For further analysis, we selected highly up-regulated five miRNAs in the standard healing fracture group from the microarray data. Real-time PCR was performed with miRNA samples at each time point above mentioned to compare the expression levels of the selected miRNAs between standard healing fractures and unhealing fractures and investigate their time-course changes. RESULTS Microarray and real-time polymerase chain reaction (PCR) analyses on day 14 revealed that five miRNAs, miR-140-3p, miR-140-5p, miR-181a-5p, miR-181d-5p, and miR-451a, were significantly highly expressed in standard healing fractures compared with unhealing fractures. Real-time PCR analysis further revealed that in standard healing fractures, the expression of all five of these miRNAs peaked on day 14 and declined thereafter. CONCLUSION Our results suggest that the five miRNAs identified using microarray and real-time PCR analyses may play important roles during fracture healing. These findings provide valuable information to further understand the molecular mechanism of fracture healing and may lead to the development of miRNA-based tissue engineering strategies to promote fracture healing.
Collapse
Affiliation(s)
- Takahiro Waki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Sang Yang Lee
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Takashi Iwakura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Yoshihiro Dogaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Etsuko Okumachi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
45
|
Chen X, Wang J, Wang J, Zhu X, Yang X, Fan Y, Zhang X. The positive role of macrophage secretion stimulated by BCP ceramic in the ceramic-induced osteogenic differentiation of pre-osteoblasts via Smad-related signaling pathways. RSC Adv 2016. [DOI: 10.1039/c6ra23362g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The present study demonstrated that material-mediated immune responses, particularly macrophage secretion might play a vital role in material-induced osteogenesis.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Jing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Jing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
46
|
Tarapore RS, Lim J, Tian C, Pacios S, Xiao W, Reid D, Guan H, Mattos M, Yu B, Wang CY, Graves DT. NF-κB Has a Direct Role in Inhibiting Bmp- and Wnt-Induced Matrix Protein Expression. J Bone Miner Res 2016; 31:52-64. [PMID: 26179215 PMCID: PMC4713353 DOI: 10.1002/jbmr.2592] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 11/08/2022]
Abstract
The host response to pathogens through nuclear factor κB (NF-κB) is an essential defense mechanism for eukaryotic organisms. NF-κB-mediated host responses inhibit bone and other connective tissue synthesis and are thought to affect the transcription of matrix proteins through multiple indirect pathways. We demonstrate that inhibiting NF-κB in osteoblasts increases osteocalcin expression in vivo in mice with periodontal disease. Mutating NF-κB binding sites on osteocalcin (OC) or bone sialoprotein (Bsp) promoters rescues the negative impact of NF-κB on their transcription and that NF-κB can inhibit Wnt- and Bmp-induced OC and Bsp transcription, even when protein synthesis is inhibited, indicating a direct effect of NF-κB. This inhibition depends on p65-p50 NF-κB heterodimer formation and deacetylation by HDAC1 but is not affected by the noncanonical NF-κB pathway. Moreover, NF-κB reduces Runx2 and β-catenin binding to OC/Bsp promoters independently of their nuclear localization. Thus, inflammatory signals stimulate the direct interaction of NF-κB with response elements to inhibit binding of β-catenin and Runx2 binding to nearby consensus sites and reduce expression of matrix proteins. This direct mechanism provides a new explanation for the rapid decrease in new bone formation after inflammation-related NF-κB activation.
Collapse
Affiliation(s)
- Rohinton S Tarapore
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Lim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chen Tian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Pacios
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenmei Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Daniel Reid
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hancheng Guan
- Division of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo Mattos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bo Yu
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Li CJ, Madhu V, Balian G, Dighe AS, Cui Q. Cross-Talk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells. J Cell Physiol 2015; 230:2671-82. [PMID: 25753222 DOI: 10.1002/jcp.24983] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/03/2015] [Indexed: 12/29/2022]
Abstract
Deficiency in vascular endothelial growth factor (VEGF) or bone morphogenetic proteins (BMPs) results in fracture non-unions. Therefore, it is indispensable to comprehend the combined effect of VEGF and BMPs on the osteogenic differentiation of osteoprogenitor mesenchymal stem cells (MSCs) that are either naturally occurring at the fracture repair site or exogenously added to enhance the bone repair. We found that the combination of VEGF and BMP-6 enhanced COL1A2 expression, which correlated with upregulated expression of osterix, Dlx5, and Msx2 in human adipose-derived stem cells (hADSCs). Cross-talk between VEGF and BMP-6 pathways upregulated activation of p38 mitogen-activated kinase (p38 MAPK) and inhibited activation of protein kinase B (PKB, also known as Akt), whereas phosphorylation of "mothers against decapentaplegic" homologs 1/5/8 (Smads 1/5/8) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2) was not affected. Consistent with these findings, p38 inhibitor SB203580, or siRNA knockdown of osterix, abrogated crosstalk between the VEGF and BMP-6 pathways and significantly reduced the observed upregulation of COL1A2. Nuclear translocation of the phosphorylated form of osterix was also inhibited by SB203580. Although crosstalk between the VEGF-BMP-6 pathways did not show an effect on the extent of mineralization, inhibition of any one of the three components that were upregulated through the cross-talk, i.e., osterix, Dlx5, and p38 activation, led to a complete inhibition of mineralization. Inhibition of PKB/Akt activation, which is attenuated through the cross-talk, significantly enhanced ALP gene expression. These observations imply that crosstalk between the VEGF and BMP-6 signaling pathways enhances osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Vedavathi Madhu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Gary Balian
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Abhijit S Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
48
|
Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. Loss of Bone and Wnt10b Expression in Male Type 1 Diabetic Mice Is Blocked by the Probiotic Lactobacillus reuteri. Endocrinology 2015; 156:3169-82. [PMID: 26135835 PMCID: PMC4541610 DOI: 10.1210/en.2015-1308] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes (T1D)-induced osteoporosis is characterized by a predominant suppression of osteoblast number and activity, as well as increased bone marrow adiposity but no change in osteoclast activity. The fundamental mechanisms and alternative anabolic treatments (with few side effects) for T1D bone loss remain undetermined. Recent studies by our laboratory and others indicate that probiotics can benefit bone health. Here, we demonstrate that Lactobacillus reuteri, a probiotic with anti-inflammatory and bone health properties, prevents T1D-induced bone loss and marrow adiposity in mice. We further found that L. reuteri treatment prevented the suppression of Wnt10b in T1D bone. Consistent with a role for attenuated bone Wnt10b expression in T1D osteoporosis, we observed that bone-specific Wnt10b transgenic mice are protected from T1D bone loss. To examine the mechanisms of this protection, we focused on TNF-α, a cytokine up-regulated in T1D that causes suppression of osteoblast Wnt10b expression in vitro. Addition of L. reuteri prevented TNF-α-mediated suppression of Wnt10b and osteoblast maturation markers. Taken together, our findings reveal a mechanism by which T1D causes bone loss and open new avenues for use of probiotics to benefit the bone.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Katherine J Motyl
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Regina Irwin
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Ormond A MacDougald
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Robert A Britton
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Laura R McCabe
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
49
|
Karnes JM, Daffner SD, Watkins CM. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone 2015; 78:87-93. [PMID: 25959413 DOI: 10.1016/j.bone.2015.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
Abstract
This review presents a summary of basic science evidence examining the influence of tumor necrosis factor-alpha (TNF-α) on secondary fracture healing. Multiple studies suggest that TNF-α, in combination with the host reservoir of peri-fracture mesenchymal stem cells, is a main determinant in the success of bone healing. Disease states associated with poor bone healing commonly have inappropriate TNF-α responses, which likely contributes to the higher incidence of delayed and nonunions in these patient populations. Appreciation of TNF-α in fracture healing may lead to new therapies to augment recovery and reduce the incidence of complications.
Collapse
Affiliation(s)
- Jonathan M Karnes
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| | - Scott D Daffner
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| | - Colleen M Watkins
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
50
|
Molina ER, Smith BT, Shah SR, Shin H, Mikos AG. Immunomodulatory properties of stem cells and bioactive molecules for tissue engineering. J Control Release 2015; 219:107-118. [PMID: 26307349 DOI: 10.1016/j.jconrel.2015.08.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023]
Abstract
The immune system plays a crucial role in the success of tissue engineering strategies. Failure to consider the interactions between implantable scaffolds, usually containing cells and/or bioactive molecules, and the immune system can result in rejection of the implant and devastating clinical consequences. However, recent research into mesenchymal stem cells, which are commonly used in many tissue engineering applications, indicates that they may play a beneficial role modulating the immune system. Likewise, direct delivery of bioactive molecules involved in the inflammatory process can promote the success of tissue engineering constructs. In this article, we will review the various mechanisms in which modulation of the immune system is achieved through delivered bioactive molecules and cells and contextualize this information for future strategies in tissue engineering.
Collapse
Affiliation(s)
- Eric R Molina
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Heungsoo Shin
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Hanyang University, Seoul 133-791, South Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 133-791, South Korea.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|