1
|
Gibson FG, Paggiosi MA, Handforth C, Brown JE, Li X, Dall'Ara E, Verbruggen SW. Altered vertebral biomechanical properties in prostate cancer patients following androgen deprivation therapy. Bone 2025; 195:117465. [PMID: 40118263 DOI: 10.1016/j.bone.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Androgen deprivation therapy (ADT) for localised and metastatic prostate cancer (PCa) is known to improve survival in patients but has been associated with negative long-term impacts on the skeleton, including decreased bone mineral density (BMD) and increased fracture risk. Generally, dual-enery X-ray absorptiometry (DXA) measurements of areal BMD (aBMD) of vertebrae are used clinically to assess bone health. However, a prediction of vertebral bone strength requires information that aBMD cannot provide, such as geometry and volumetric BMD (vBMD). This study aims to investigate the effect of ADT on the densitometric (aBMD, trabecular vBMD, integral vBMD) and mechanical integrity (failure load and failure strength) of vertebrae, using a combination of DXA, quantitative computed tomography (QCT) and finite element (FE) modelling. For the FE analyses, 3D models were reconstructed from QCT images of 26 ADT treated patients, and their matched controls, collected as part of the ANTELOPE clinical trial. The ADT treated group experienced significantly decreased trabecular and integral vBMD (trabecular vBMD: -18 %, p < 0.001, integral vBMD: -11 %, p < 0.001) compared to control patients that showed no significant temporal changes (trabecular vBMD p = 0.037, integral vBMD p = 0.56). A similar trend was seen in the ADT treated group for the failure load and failure strength, where a decrease of 14 % was observed (p < 0.001). When comparing the proficiency in predicting the mechanical properties from densitometric properties, the integral vBMD performed best in the pooled data (r = 0.86-0.87, p < 0.001) closely followed by trabecular vBMD (r = 0.73-0.75, p < 0.001) with aBMD having a much weaker predictive ability (r = 0.19-0.21, p < 0.01). In conclusion, ADT significantly reduced both the densitometric properties and the mechanical strength of vertebrae. A stronger relationship between both trabecular vBMD and integral vBMD with the mechanical properties than the aBMD was observed, suggesting that such clinical measurements could improve predictions of fracture risk in prostate cancer patients treated with ADT.
Collapse
Affiliation(s)
- Fiona G Gibson
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Margaret A Paggiosi
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Catherine Handforth
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Janet E Brown
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Xinshan Li
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall'Ara
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom; Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Stefaan W Verbruggen
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom; Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
2
|
Luan S, Morgan EF. A data-driven framework for developing a unified density-modulus relationship for the human lumbar vertebral body. J Mech Behav Biomed Mater 2025; 163:106888. [PMID: 39823784 DOI: 10.1016/j.jmbbm.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Despite the broad agreement that bone stiffness is heavily dependent on the underlying bone density, there is no consensus on a unified relationship that applies to both cancellous and cortical compartments. Bone from the two compartments is generally assessed separately, and few mechanical test data are available for samples from the transitional regions between them. In this study, we present a data-driven framework integrating experimental testing and numerical modeling of the human lumbar vertebra through an energy balance criterion, to develop a unified density-modulus relationship across the entire vertebral body, without the necessity of differentiation between trabecular and cortical regions. A dataset of 25 spinal segments harvested from fresh-frozen human spines consisting of L1 vertebrae with adjacent intervertebral disks and neighboring T12 and L2 endplates was examined through a systematic process. Each specimen was subjected to axial compression using a custom-designed radiolucent device, and the deformation at multiple points during the ramp was quantified using digital volume correlation applied to the time-lapse series of microcomputed tomography images acquired during loading. A finite element model of each specimen was constructed from quantitative computed tomography images, with the experimental displacement fields imposed to replicate the observed deformation. The optimal density-modulus relationship, both in exponential and polynomial forms, was then determined by using data-driven techniques to match the numerical strain energy with the experimental external work. The resulting relationships effectively recovered bone tissue modulus at the microscale. Subsequently, the unified relationships were applied to investigate the vertebral structure-property correlations at the macroscale: as expected, compressive stiffness exhibited a moderate correlation with bone mineral density, whereas bending stiffness was revealed to correlate strongly with bone mineral content. These findings support the accuracy of the developed density-modulus relationships for the vertebral body and indicate the potential of the proposed framework to extend to other properties of interest such as vertebral strength and toughness.
Collapse
Affiliation(s)
- Shengzhi Luan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA 02215, USA.
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Cavazzoni G, Dall’Ara E, Palanca M. Microstructure of the human metastatic vertebral body. Front Endocrinol (Lausanne) 2025; 15:1508504. [PMID: 39835261 PMCID: PMC11743553 DOI: 10.3389/fendo.2024.1508504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Bone spinal metastases disrupt the bone homeostasis, inducing a local imbalance in the bone formation and/or resorption, with consequent loss of the structural optimisation of the vertebrae and increase of the risk of fracture. Little is known about the microstructure of the metastatic tissue, the microstructure of the tissue surrounding the lesion, and how it does compare with vertebrae with no lesions observed on the biomedical images. A comprehensive assessment of the microstructural properties of the entire vertebral body can be obtained with micro computed tomography. In this study, we evaluated to what extent the vertebral body is affected by the presence of a metastatic lesion, the properties of the metastatic lesions, and whether the tissue surrounding the lesion has microstructural features similar to those of healthy tissue. Methods A total of 30 metastatic vertebrae, including lytic (N = 12), blastic (N = 10), and mixed (N = 8) metastases, and 20 control vertebrae with no visible lesions on computed tomography were scanned using micro computed tomography (voxel size = 39 mm). The images were segmented and analysed to evaluate the microstructural properties in the entire vertebral body, in the lesion, and in the bone surrounding the lesion. Results The microstructural properties evaluated on the entire vertebral bodies showed remarkable differences between metastatic and control vertebral bodies (p < 0.034) in terms of bone volume fraction, trabecular thickness, degree of anisotropy, connectivity density, and trabecular pattern factor. On the other hand, when the tissue surrounding the lesion was considered, no differences were found between metastatic and control vertebral bodies, except for differences in the degree of anisotropy (p = 0.008). All microstructural parameters measured in the regions including the lytic or the blastic metastases significantly differed (p < 0.001) from those in the tissues surrounding the lesions. The lytic lesions minimally affected the regions closest to the metastases, with significant differences only in the connectivity density. On the other hand, blastic metastases also affected the trabecular separation, the bone surface density, and the connectivity density in the closest tissue surrounding the lesion. Discussion Most of the microstructural features of the trabecular bone in metastatic vertebrae were locally affected by lytic and blastic metastases, whereas the surrounding tissue showed a microstructure similar to that of adjacent vertebrae without visible lesions.
Collapse
Affiliation(s)
- Giulia Cavazzoni
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Tomé-Bermejo F, Bartolomé Gómez JF. [Translated article] Anatomical and biomechanical factors of osteoporotic vertebral fracture and the occurrence of cascade fractures. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024:S1888-4415(24)00150-4. [PMID: 39271012 DOI: 10.1016/j.recot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis weakens the structural strength of bone to such an extent that normal daily activity may exceed the capacity of the vertebra to bear this load. Vertebral fracture and deformity is a hallmark of osteoporosis. The detriment of trabecular bone properties alone cannot explain the occurrence of osteoporotic vertebral fracture. The ability of the spine to bear and resist loads depends on the structural capacity of the vertebrae, but also on loading conditions arising from activities of daily living or low-energy trauma. This review describes the mechanical properties of the vertebral bone, the structural load-bearing capacity of the various elements forming the spine, the neuromuscular control of the trunk, as well as the biomechanics of the loads to which the spine is subjected in relation to the presence of osteoporosis and the risk of vertebral fracture. A better understanding of biomechanical factors may help to explain both the high incidence of osteoporotic vertebral fractures and their mechanism of production. Consideration of these issues may be important in the development of prevention and management strategies.
Collapse
Affiliation(s)
- F Tomé-Bermejo
- Hospital Universitario General de Villalba, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
| | - J F Bartolomé Gómez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
5
|
Sharma S, Shankar V, Rajender S, Mithal A, Rao SD, Chattopadhyay N. Impact of anti-fracture medications on bone material and strength properties: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1426490. [PMID: 39257899 PMCID: PMC11384599 DOI: 10.3389/fendo.2024.1426490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Background and aims Reduced bone mineral density (BMD) and microarchitectural deterioration contribute to increased fracture risk. Although the effects of anti-fracture medications (AFMs) on BMD are well-documented, their impact on bone material properties (BMPs) remains poorly characterized. Accordingly, we conducted a systematic review and meta-analysis to evaluate the effects of AFMs on BMPs. Based on data availability, we further categorized AFMs into anti-resorptives, bisphosphonates alone, and strontium ranelate subgroups to perform additional analyses of BMPs in osteoporotic patients. Methods We did a comprehensive search of three databases, namely, PubMed, Web of Science, and Google Scholar, using various permutation combinations, and used Comprehensive Meta-Analysis software to analyze the extracted data. Results The 15 eligible studies (randomized and non-randomized) compared the following: (1) 301 AFM-treated patients with 225 on placebo; (2) 191 patients treated with anti-resorptives with 131 on placebo; (3) 86 bisphosphonate-treated patients with 66 on placebo; and (4) 84 strontium ranelate-treated patients with 70 on placebo. Pooled analysis showed that AFMs significantly decreased cortical bone crystallinity [standardized difference in means (SDM) -1.394] and collagen maturity [SDM -0.855], and collagen maturity in cancellous bone [SDM -0.631]. Additionally, anti-resorptives (bisphosphonates and denosumab) significantly increased crystallinity [SDM 0.387], mineral-matrix ratio [SDM 0.771], microhardness [SDM 0.858], and contact hardness [SDM 0.952] of cortical bone. Anti-resorptives increased mineral-matrix ratio [SDM 0.543] and microhardness [SDM 0.864] and decreased collagen maturity [SDM -0.539] in cancellous bone. Restricted analysis of only bisphosphonate-treated studies showed a significant decrease in collagen maturity [SDM -0.650] in cancellous bone and an increase in true hardness [SDM 1.277] in cortical bone. In strontium ranelate-treated patients, there was no difference in BMPs compared to placebo. Conclusion Collectively, our study suggests that AFMs improve bone quality, which explains their anti-fracture ability that is not fully accounted for by increased BMD in osteoporosis patients.
Collapse
Affiliation(s)
- Shivani Sharma
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay Shankar
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| | - Singh Rajender
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, New Delhi, India
| | - Sudhaker D. Rao
- Division of Endocrinology Diabetes and Bone & Mineral Disorders, and Bone and Mineral Research Laboratory, Henry Ford Health/Michigan State University College of Human Medicine, Detroit, MI, United States
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Tomé-Bermejo F, Bartolomé Gómez JF. Anatomical and biomechanical factors of osteoporotic vertebral fracture and the occurrence of cascade fractures. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024:S1888-4415(24)00112-7. [PMID: 38925424 DOI: 10.1016/j.recot.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis weakens the structural strength of bone to such an extent that normal daily activity may exceed the capacity of the vertebra to bear this load. Vertebral fracture and deformity is a hallmark of osteoporosis. The detriment of trabecular bone properties alone cannot explain the occurrence of osteoporotic vertebral fracture. The ability of the spine to bear and resist loads depends on the structural capacity of the vertebrae, but also on loading conditions arising from activities of daily living or low-energy trauma. This review describes the mechanical properties of the vertebral bone, the structural load-bearing capacity of the various elements forming the spine, the neuromuscular control of the trunk, as well as the biomechanics of the loads to which the spine is subjected in relation to the presence of osteoporosis and the risk of vertebral fracture. A better understanding of biomechanical factors may help to explain both the high incidence of osteoporotic vertebral fractures and their mechanism of production. Consideration of these issues may be important in the development of prevention and management strategies.
Collapse
Affiliation(s)
- F Tomé-Bermejo
- Hospital Universitario General de Villalba. Hospital Universitario Fundación Jiménez Díaz, Madrid, España.
| | - J F Bartolomé Gómez
- Instituto de Ciencia de Materiales de Madrid. Consejo Superior de Investigaciones Científicas, Madrid, España
| |
Collapse
|
7
|
Zhou Y, Isaksson P, Persson C. An improved trabecular bone model based on Voronoi tessellation. J Mech Behav Biomed Mater 2023; 148:106172. [PMID: 37852087 DOI: 10.1016/j.jmbbm.2023.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND AND OBJECTIVE Accurate numerical and physical models of trabecular bone, correctly representing its complexity and variability, could be highly advantageous in the development of e.g. new bone-anchored implants due to the limited availability of real bone. Several Voronoi tessellation-based porous models have been reported in the literature, attempting to mimic the trabecular bone. However, these models have been limited to lattice rod-like structures, which are only structurally representative of very high-porosity trabecular bone. The objective of this study was to provide an improved model, more representative of trabecular bone of different porosity. METHODS Boolean operations were utilized to merge scaled Voronoi cells, thereby introducing different structural patterns, controlling porosity and to some extent anisotropy. The mechanical properties of the structures were evaluated using analytical estimations, numerical simulations, and experimental compression tests of 3D-printed versions of the structures. The capacity of the developed models to represent trabecular bone was assessed by comparing some key geometric features with trabecular bone characterized in previous studies. RESULTS The models gave the possibility to provide pore interconnectivity at relatively low porosities as well as both plate- and rod-like structures. The mechanical properties of the generated models were predictable with numerical simulations as well as an analytical approach. The permeability was found to be better than Sawbones at the same porosity. The models also showed the capability of matching e.g. some vertebral structures for key geometric features. CONCLUSIONS An improved numerical model for mimicking trabecular bone structures was successfully developed using Voronoi tessellation and Boolean operations. This is expected to benefit both computational and experimental studies by providing a more diverse and representative structure of trabecular bone.
Collapse
Affiliation(s)
- Yijun Zhou
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 75121, Sweden.
| | - Per Isaksson
- Division of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 75121, Sweden.
| | - Cecilia Persson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 75121, Sweden.
| |
Collapse
|
8
|
Yeni YN, Dix MR, Xiao A, Oravec DJ. Uniaxial compressive properties of human lumbar 1 vertebrae loaded beyond compaction and their relationship to cortical and cancellous microstructure, size and density properties. J Mech Behav Biomed Mater 2022; 133:105334. [DOI: 10.1016/j.jmbbm.2022.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
|
9
|
Smith SM, Angielczyk KD. A Shrewd Inspection of Vertebral Regionalization in Large Shrews (Soricidae: Crocidurinae). Integr Org Biol 2022; 4:obac006. [PMID: 35291671 PMCID: PMC8915212 DOI: 10.1093/iob/obac006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The regionalization of the mammalian spinal column is an important evolutionary, developmental, and functional hallmark of the clade. Vertebral column regions are usually defined using transitions in external bone morphology, such as the presence of transverse foraminae or rib facets, or measurements of vertebral shape. Yet the internal structure of vertebrae, specifically the trabecular (spongy) bone, plays an important role in vertebral function, and is subject to the same variety of selective, functional, and developmental influences as external bone morphology. Here, we investigated regionalization of external and trabecular bone morphology in the vertebral column of a group of shrews (family Soricidae). The primary goals of this study were to: (1) determine if vertebral trabecular bone morphology is regionalized in large shrews, and if so, in what configuration relative to external morphology; (2) assess correlations between trabecular bone regionalization and functional or developmental influences; and (3) determine if external and trabecular bone regionalization patterns provide clues about the function of the highly modified spinal column of the hero shrew Scutisorex. Trabecular bone is regionalized along the soricid vertebral column, but the configuration of trabecular bone regions does not match that of the external vertebral morphology, and is less consistent across individuals and species. The cervical region has the most distinct and consistent trabecular bone morphology, with dense trabeculae indicative of the ability to withstand forces in a variety of directions. Scutisorex exhibits an additional external morphology region compared to unmodified shrews, but this region does not correspond to a change in trabecular architecture. Although trabecular bone architecture is regionalized along the soricid vertebral column, and this regionalization is potentially related to bone functional adaptation, there are likely aspects of vertebral functional regionalization that are not detectable using trabecular bone morphology. For example, the external morphology of the Scutisorex lumbar spine shows signs of an extra functional region that is not apparent in trabecular bone analyses. It is possible that body size and locomotor mode affect the degree to which function is manifest in trabecular bone, and broader study across mammalian size and ecology is warranted to understand the relationship between trabecular bone morphology and other measures of vertebral function such as intervertebral range of motion.
Collapse
Affiliation(s)
- Stephanie M Smith
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 S DuSable Lake Shore Drive, Chicago IL 60605, USA
| | - Kenneth D Angielczyk
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 S DuSable Lake Shore Drive, Chicago IL 60605, USA
| |
Collapse
|
10
|
Sopon M, Oleksik V, Roman M, Cofaru N, Oleksik M, Mohor C, Boicean A, Fleaca R. Biomechanical Study of the Osteoporotic Spine Fracture: Optical Approach. J Pers Med 2021; 11:jpm11090907. [PMID: 34575684 PMCID: PMC8469636 DOI: 10.3390/jpm11090907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Background and objectives: Osteoporotic spine fractures represent a significant factor for decreasing quality of life in the elderly female population. Understanding the mechanisms involved in producing these fractures can improve their prevention and treatment. This study presents a biomechanical method to produce a vertebral fracture, conducted on a human spine segment, observing the displacements and strains in the intervertebral disc, endplate, and vertebral body. Materials and Methods: We performed two tests, one corresponding to an extension loading, and the second to an axial loading. Results: The maximum displacement in the target vertebral body presented higher values in the case of the extension as compared to the axial strain where it mainly occurred after the fracture was produced. The strains occurred simultaneously on both discs. In the case of the axial strain, due to the occurrence of the fracture, the maximum value was recorded in the spine body, while in the case of the extensions, it occurred in the neural part of the upper disc. The advantage of this method was that the entire study was an experiment, using optical methods, increasing the precision of the material data input. Conclusions: The research method allowed recording in real time of a larger amount of data from the different components of the spine segment. If there was an extension component of the compression force at the moment of the initial loading, part of this load was absorbed by the posterior column with higher mechanical resistance. After the maximum capacity of the absorption was reached, in both situations the behavior was similar.
Collapse
Affiliation(s)
- Mircea Sopon
- Orthopaedic-Traumatology Surgery Department, Sibiu Emergency Clinical Hospital, 550024 Sibiu, Romania;
| | - Valentin Oleksik
- Department of Industrial Machinery and Equipments, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
- Correspondence: ; Tel.: +40-729-844535
| | - Mihai Roman
- Department of Surgery, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (M.R.); (R.F.)
| | - Nicolae Cofaru
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (N.C.); (M.O.)
| | - Mihaela Oleksik
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (N.C.); (M.O.)
| | - Cosmin Mohor
- Department of Basic Science, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| | - Adrian Boicean
- Department of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| | - Radu Fleaca
- Department of Surgery, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (M.R.); (R.F.)
| |
Collapse
|
11
|
Fu J, Meng H, Zhang C, Liu Y, Chen D, Wang A, Main RP, Yang H. Effects of tissue heterogeneity on trabecular micromechanics examined by microCT-based finite element analysis and digital volume correlation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Moore AJ. Vertebral pneumaticity is correlated with serial variation in vertebral shape in storks. J Anat 2021; 238:615-625. [PMID: 32981054 PMCID: PMC7855073 DOI: 10.1111/joa.13322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/23/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022] Open
Abstract
Birds and their ornithodiran ancestors are unique among vertebrates in exhibiting air-filled sinuses in their postcranial bones, a phenomenon called postcranial skeletal pneumaticity. The factors that account for serial and interspecific variation in postcranial skeletal pneumaticity are poorly understood, although body size, ecology, and bone biomechanics have all been implicated as influencing the extent to which pneumatizing epithelia invade the skeleton and induce bone resorption. Here, I use high-resolution computed-tomography to holistically quantify vertebral pneumaticity in members of the neognath family Ciconiidae (storks), with pneumaticity measured as the relative volume of internal air space. These data are used to describe serial variation in extent of pneumaticity and to assess whether and how pneumaticity varies with the size and shape of a vertebra. Pneumaticity increases dramatically from the middle of the neck onwards, contrary to previous predictions that cervical pneumaticity should decrease toward the thorax to maintain structural integrity as the mass and bending moments of the neck increase. Although the largest vertebrae sampled are also the most pneumatic, vertebral size cannot on its own account for serial or interspecific variation in extent of pneumaticity. Vertebral shape, as quantified by three-dimensional geometric morphometrics, is found to be significantly correlated with extent of pneumaticity, with elongate vertebrae being less pneumatic than craniocaudally short and dorsoventrally tall vertebrae. Considered together, the results of this study are consistent with the hypothesis that shape- and position-specific biomechanics influence the amount of bone loss that can be safely tolerated. These results have potentially important implications for the evolution of vertebral morphology in birds and their extinct relatives.
Collapse
Affiliation(s)
- Andrew J. Moore
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA,Department of Anatomical SciencesStony Brook UniversityStony BrookNYUSA
| |
Collapse
|
13
|
Lin X, Zhao J, Gao L, Zhang C, Gao H. Ratcheting-fatigue behavior of trabecular bone under cyclic tensile-compressive loading. J Mech Behav Biomed Mater 2020; 112:104003. [PMID: 32823002 DOI: 10.1016/j.jmbbm.2020.104003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
This study aims to investigate the ratcheting-fatigue behaviors of trabecular bone under cyclic tension-compression, which are produced due to the accumulations of residual strain in trabecular bone. Simultaneously, the effects of different loading conditions on ratcheting behaviors of trabecular bone were probed. It is found that the gap between ratcheting strains under three stress amplitudes will gradually widen. As the stress amplitude increases, the ratcheting strain also increases. Mean stress has a significant effect on the ratcheting strain. When the mean stress is 0 MPa and 0.155 MPa, the ratcheting strain increases with the number of cycles. However, when the mean stress is -0.155 MPa, the ratcheting strain decreases as the cycle goes on. The existence of double stress peak holding time causes the creep deformation of trabecular bone, which leads to the increase of ratcheting strain. It is also noted that the ratcheting strain is greatly increased with prolongation of stress peak holding time. The digital image correlation (DIC) technique was applied to analyze the fatigue failure of trabecular bone under cyclic tension-compression. It is found that the increase of stress amplitude accelerates the damage of sample and further reduces its fatigue life. Cracks are observed in trabecular bone sample, and it is noted that the crack propagation is rapid during cyclic loading.
Collapse
Affiliation(s)
- Xianglong Lin
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Jie Zhao
- Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan, 030001, PR China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Sadoughi S, Vom Scheidt A, Nawathe S, Zhu S, Moini A, Keaveny TM. Effect of variations in tissue-level ductility on human vertebral strength. Bone 2020; 137:115445. [PMID: 32454256 DOI: 10.1016/j.bone.2020.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/28/2022]
Abstract
Although the ductility of bone tissue is a unique element of bone quality and varies with age and across the population, the extent to which and mechanisms by which typical population-variations in tissue-level ductility can alter whole-bone strength remains unclear. To provide insight, we conducted a finite element analysis parameter study of whole-vertebral (monotonic) compressive strength on six human L1 vertebrae. Each model was generated from micro-CT scans, capturing the trabecular micro-architecture in detail, and included a non-linear constitutive model for the bone tissue that allowed for plastic yielding, different strengths in tension and compression, large deformations, and, uniquely, localized damage once a specified limit in tissue-level ultimate strain was exceeded. Those strain limits were based on reported (mean ± SD) values from cadaver experiments (8.8 ± 3.7% strain for trabecular tissue and 2.2 ± 0.9% for cortical tissue). In the parameter study, the strain limits were varied by ±1 SD from their mean values, for a combination of nine analyses per specimen; bounding values of zero and unlimited post-yield strain were also modeled. The main outcomes from the finite element analysis were the vertebral compressive strength and the amount of failed (yielded or damaged) tissue at the overall structure-level failure. Compared to a reference case of using the mean values of ultimate strain, we found that varying both trabecular and cortical tissue ultimate strains by ±1 SD changed the computed vertebral strength by (mean ± SD) ±6.9 ± 1.1% on average. Mechanistically, that modest effect arose because the proportion of yielded tissue (without damage) was 0.9 ± 0.3% of all the bone tissue across the nine cases and the proportion of damaged tissue (i.e. tissue exceeding the prescribed tissue-level ultimate strain) was 0.2 ± 0.1%. If the types of variations in tissue-level ductility investigated here accurately represent real typical variations in the population, the consistency of our results across specimens and the modest effect size together suggest that typical variations in tissue-level ductility only have a modest impact on vertebral compressive strength, in large part because so few trabeculae are damaged at the load capacity of the bone.
Collapse
Affiliation(s)
- Saghi Sadoughi
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Annika Vom Scheidt
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shashank Nawathe
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Shan Zhu
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Ariana Moini
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
15
|
Al‐Barghouthi A, Lee S, Solitro GF, Latta L, Travascio F. Relationships Among Bone Morphological Parameters and Mechanical Properties of Cadaveric Human Vertebral Cancellous Bone. JBMR Plus 2020; 4:e10351. [PMID: 37780057 PMCID: PMC10540741 DOI: 10.1002/jbm4.10351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
Mechanical properties and morphological features of the vertebral cancellous bone are related to resistance to fracture and capability of withstanding surgical treatments. In particular, vertebral strength is related to its elastic properties, whereas the ease of fluid motion, related to the success of incorporation orthopedic materials (eg, bone cement), is regulated by the hydraulic permeability (K). It has been shown that both elastic modulus and permeability of a material are affected by its morphology. The objective of this study was to establish relations between local values of K and the aggregate modulus (H), and parameters descriptive of the bone morphology. We hypothesized that multivariate statistical models, by including the contribution of several morphology parameters at once, would provide a strong correlation with K and H of the vertebral cancellous bone. Hence, μCT scans of human lumbar vertebra were used to determine a set of bone morphology descriptors. Subsequently, indentation tests on the bone samples were conducted to determine local values of K and H. Finally, a multivariate approach supported by principal component analysis was adopted to develop predictive statistical models of bone permeability and aggregate modulus as a function of bone morphology descriptors. It was found that linear combinations of bone volume fraction, trabecular thickness, trabecular spacing, structure model index, connectivity density, and degree of anisotropy provide a strong correlation (R 2 ~ 76%) with K and a weaker correlation (R 2 ~ 47%) with H. The results of this study can be exploited in computational mechanics frameworks for investigating the potential mechanical behavior of human vertebra and to develop strategies to treat or prevent pathological conditions such as osteoporosis, age-related bone loss, and vertebral compression fractures. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Abeer Al‐Barghouthi
- Department of Orthopaedic Surgery, Max Biedermann Institute for BiomechanicsMount Sinai Medical CenterMiami BeachFLUSA
| | - Seokgi Lee
- Department of Industrial EngineeringUniversity of MiamiCoral GablesFLUSA
| | - Giovanni Francesco Solitro
- Department of Orthopaedic SurgeryLouisiana State University Health Science Center‐ShreveportShreveportLOUSA
| | - Loren Latta
- Department of Orthopaedic Surgery, Max Biedermann Institute for BiomechanicsMount Sinai Medical CenterMiami BeachFLUSA
- Department of Orthopaedic SurgeryUniversity of MiamiMiamiFLUSA
| | - Francesco Travascio
- Department of Orthopaedic Surgery, Max Biedermann Institute for BiomechanicsMount Sinai Medical CenterMiami BeachFLUSA
- Department of Industrial EngineeringUniversity of MiamiCoral GablesFLUSA
- Department of Orthopaedic SurgeryUniversity of MiamiMiamiFLUSA
| |
Collapse
|
16
|
Bonnheim NB, Keaveny TM. Load-transfer in the human vertebral body following lumbar total disc arthroplasty: Effects of implant size and stiffness in axial compression and forward flexion. JOR Spine 2020; 3:e1078. [PMID: 32211590 PMCID: PMC7084059 DOI: 10.1002/jsp2.1078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/07/2022] Open
Abstract
Adverse clinical outcomes for total disc arthroplasty (TDA), including subsidence, heterotopic ossification, and adjacent-level vertebral fracture, suggest problems with the underlying biomechanics. To gain insight, we investigated the role of size and stiffness of TDA implants on load-transfer within a vertebral body. Uniquely, we accounted for the realistic multi-scale geometric features of the trabecular micro-architecture and cortical shell. Using voxel-based finite element analysis derived from a micro-computed tomography scan of one human L1 vertebral body (74-μm-sized elements), a series of generic elliptically shaped implants were analyzed. We parametrically modeled three implant sizes (small, medium [a typical clinical size], and large) and three implant materials (metallic, E = 100 GPa; polymeric, E = 1 GPa; and tissue-engineered, E = 0.01 GPa). Analyses were run for two load cases: 800 N in uniform compression and flexion-induced anterior impingement. Results were compared to those of an intact model without an implant and loaded instead via a disc-like material. We found that TDA implantation increased stress in the bone tissue by over 50% in large portions of the vertebra. These changes depended more on implant size than material, and there was an interaction between implant size and loading condition. For the small implant, flexion increased the 98th-percentile of stress by 32 ± 24% relative to compression, but the overall stress distribution and trabecular-cortical load-sharing were relatively insensitive to loading mode. In contrast, for the medium and large implants, flexion increased the 98th-percentile of stress by 42 ± 9% and 87 ± 29%, respectively, and substantially re-distributed stress within the vertebra; in particular overloading the anterior trabecular centrum and cortex. We conclude that TDA implants can substantially alter stress deep within the lumbar vertebra, depending primarily on implant size. For implants of typical clinical size, bending-induced impingement can substantially increase stress in local regions and may therefore be one factor driving subsidence in vivo.
Collapse
Affiliation(s)
- Noah B. Bonnheim
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Tony M. Keaveny
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
17
|
Acciaioli A, Falco L, Baleani M. Measurement of apparent mechanical properties of trabecular bone tissue: Accuracy and limitation of digital image correlation technique. J Mech Behav Biomed Mater 2020; 103:103542. [DOI: 10.1016/j.jmbbm.2019.103542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/21/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
|
18
|
Nguyen C, Peetz D, Elbanna AE, Carlson JM. Characterization of fracture in topology-optimized bioinspired networks. Phys Rev E 2019; 100:042402. [PMID: 31770939 DOI: 10.1103/physreve.100.042402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Designing strong and robust bioinspired structures requires an understanding of how function arises from the architecture and geometry of materials found in nature. We draw from trabecular bone, a lightweight bone tissue that exhibits a complex, anisotropic microarchitecture, to generate networked structures using multiobjective topology optimization. Starting from an identical volume, we generate multiple different models by varying the objective weights for compliance, surface area, and stability. We examine the relative effects of these objectives on how resultant models respond to simulated mechanical loading and element failure. We adapt a network-based method developed initially in the context of modeling trabecular bone to describe the topology-optimized structures with a graph-theoretical framework, and we use community detection to characterize locations of fracture. This complementary combination of computational methods can provide valuable insights into the strength of bioinspired structures and mechanisms of fracture.
Collapse
Affiliation(s)
- Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Darin Peetz
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
19
|
FEM-Based Compression Fracture Risk Assessment in Osteoporotic Lumbar Vertebra L1. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents a finite element method (FEM)-based fracture risk assessment in patient-specific osteoporotic lumbar vertebra L1. The influence of osteoporosis is defined by variation of parameters such as thickness of the cortical shell, the bone volume–total volume ratio (BV/TV), and the trabecular bone score (TBS). The mechanical behaviour of bone is defined using the Ramberg–Osgood material model. This study involves the static and nonlinear dynamic calculations of von Mises stresses and follows statistical processing of the obtained results in order to develop the patient-specific vertebra reliability. In addition, different scenarios of parameters show that the reliability of the proposed model of human vertebra highly decreases with low levels of BV/TV and is critical due to the thinner cortical bone, suggesting high trauma risk by reason of osteoporosis.
Collapse
|
20
|
Guenoun D, Pithioux M, Souplet JC, Guis S, Le Corroller T, Fouré A, Pauly V, Mattei JP, Bernard M, Guye M, Chabrand P, Champsaur P, Bendahan D. Assessment of proximal femur microarchitecture using ultra-high field MRI at 7 Tesla. Diagn Interv Imaging 2019; 101:45-53. [PMID: 31331831 DOI: 10.1016/j.diii.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate bone microarchitecture of cadaveric proximal femurs using ultra-high field (UHF) 7-Tesla magnetic resonance imaging (MRI) and to compare the corresponding metrics with failure load assessed during mechanical compression test and areal bone mineral density (ABMD) measured using dual-energy X-ray absorptiometry. MATERIALS AND METHODS ABMD of ten proximal femurs from five cadavers (5 women; mean age=86.2±3.8 (SD) years; range: 82.5-90 years) were investigated using dual-energy X-ray absorptiometry and the bone volume fraction, trabecular thickness, trabecular spacing, fractal dimension, Euler characteristics, connectivity density and degree of anisotropy of each femur was quantified using UHF MRI. The whole set of specimens underwent mechanical compression tests to failure. The inter-rater reliability of microarchitecture characterization was assessed with the intraclass correlation coefficient (ICC). Associations were searched using correlation tests and multiple regression analysis. RESULTS The inter-rater reliability for bone microarchitecture parameters measurement was good with ICC ranging from 0.80 and 0.91. ABMD and the whole set of microarchitecture metrics but connectivity density significantly correlated with failure load. Microarchitecture metrics correlated to each other but did not correlate with ABMD. Multiple regression analysis disclosed that the combination of microarchitecture metrics and ABMD improved the association with failure load. CONCLUSION Femur bone microarchitecture metrics quantified using UHF MRI significantly correlated with biomechanical parameters. The multimodal assessment of ABMD and trabecular bone microarchitecture using UHF MRI provides more information about fracture risk of femoral bone and might be of interest for future investigations of patients with undetected osteoporosis.
Collapse
Affiliation(s)
- D Guenoun
- Department of Radiology, Institute for Locomotion, Sainte-Marguerite Hospital, APHM, 13009 Marseille, France; CNRS, ISM, Institute Movement Sci, Aix-Marseille Université, 13000 Marseille, France.
| | - M Pithioux
- CNRS, ISM, Institute Movement Sci, Aix-Marseille Université, 13000 Marseille, France
| | - J-C Souplet
- CNRS, CRMBM UMR 7339, Aix-Marseille Université, 13385 Marseille, France
| | - S Guis
- CNRS, CRMBM UMR 7339, Department of Rheumatology, Aix-Marseille Université, AP-HM, 13000 Marseille, France
| | - T Le Corroller
- Department of Radiology, Institute for Locomotion, Sainte-Marguerite Hospital, APHM, 13009 Marseille, France; CNRS, ISM, Institute Movement Sci, Aix-Marseille Université, 13000 Marseille, France
| | - A Fouré
- CNRS, CRMBM UMR 7339, Aix-Marseille Université, 13385 Marseille, France
| | - V Pauly
- Unité de recherche EA3279, santé publique et maladies chroniques: qualité de vie concepts, usages et limites, déterminants, Aix-Marseille Université, 13005 Marseille, France; Service de santé publique et d'information médicale, Hôpital de la Conception, APHM, 13000 Marseille, France
| | - J-P Mattei
- CNRS, CRMBM UMR 7339, Department of Rheumatology, Aix-Marseille Université, AP-HM, 13000 Marseille, France
| | - M Bernard
- CNRS, CRMBM UMR 7339, Aix-Marseille Université, 13385 Marseille, France
| | - M Guye
- CNRS, CRMBM UMR 7339, Aix-Marseille Université, 13385 Marseille, France
| | - P Chabrand
- CNRS, ISM, Institute Movement Sci, Aix-Marseille Université, 13000 Marseille, France
| | - P Champsaur
- Department of Radiology, Institute for Locomotion, Sainte-Marguerite Hospital, APHM, 13009 Marseille, France; CNRS, ISM, Institute Movement Sci, Aix-Marseille Université, 13000 Marseille, France
| | - D Bendahan
- CNRS, CRMBM UMR 7339, Aix-Marseille Université, 13385 Marseille, France
| |
Collapse
|
21
|
Mondal A, Nguyen C, Ma X, Elbanna AE, Carlson JM. Network models for characterization of trabecular bone. Phys Rev E 2019; 99:042406. [PMID: 31108725 DOI: 10.1103/physreve.99.042406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Trabecular bone is a lightweight, compliant material organized as a web of struts and rods (trabeculae) that erode with age and the onset of bone diseases like osteoporosis, leading to increased fracture risk. The traditional diagnostic marker of osteoporosis, bone mineral density (BMD), has been shown in ex vivo experiments to correlate poorly with fracture resistance when considered on its own, while structural features in conjunction with BMD can explain more of the variation in trabecular bone strength. We develop a network-based model of trabecular bone by creating graphs from micro-computed tomography images of human bone, with weighted links representing trabeculae and nodes representing branch points. These graphs enable calculation of quantitative network metrics to characterize trabecular structure. We also create finite element models of the networks in which each link is represented by a beam, facilitating analysis of the mechanical response of the bone samples to simulated loading. We examine the structural and mechanical properties of trabecular bone at the scale of individual trabeculae (of order 0.1 mm) and at the scale of selected volumes of interest (approximately a few mm), referred to as VOIs. At the VOI scale, we find significant correlations between the stiffness of VOIs and 10 different structural metrics. Individually, the volume fraction of each VOI is most strongly correlated to the stiffness of the VOI. We use multiple linear regression to identify the smallest subset of variables needed to capture the variation in stiffness. In a linear fit, we find that node degree, weighted node degree, Z-orientation, weighted Z-orientation, trabecular spacing, link length, and the number of links are the structural metrics that are most significant (p<0.05) in capturing the variation of stiffness in trabecular networks.
Collapse
Affiliation(s)
- Avik Mondal
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Xiao Ma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
22
|
Gatenholm B, Lindahl C, Brittberg M, Stadelmann VA. Spatially matching morphometric assessment of cartilage and subchondral bone in osteoarthritic human knee joint with micro-computed tomography. Bone 2019; 120:393-402. [PMID: 30529213 DOI: 10.1016/j.bone.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The objective of this study was to develop a reproducible and semi-automatic method based on micro computed tomography (microCT) to analyze cartilage and bone morphology of human osteoarthritic knee joints in spatially matching regions of interest. MATERIALS AND METHODS Tibial plateaus from randomly selected patients with advanced osteoarthritis (OA) who underwent total knee arthroplasty surgery were microCT scanned once fresh and once after staining with Hexabrix. The articular surface was determined manually in the first scan. Total articular surface, defect surface and cartilage surface were computed by triangulation of the cartilage surface and the spatially corresponding subchondral bone regions were automatically generated and the standard cortical bone and trabecular bone morphometric indices were computed. RESULTS The method to identify cartilage surface and defects was successfully validated against photographic examinations. The microCT measurements of the cartilage defect were also verified by conventional histopathology using safranin O-stained sections. Cartilage thickness and volume was significantly lower for OA condyle compared with healthy condyle. Bone fraction, bone tissue mineral density, cortical density and trabecular thickness differed significantly depending on the level of cartilage damage. CONCLUSION This new microCT imaging workflow can be used for reproducible quantitative evaluation of articular cartilage damage and the associated changes in subchondral bone morphology in osteoarthritic joints with a relatively high throughput compared to manual contouring. This methodology can be applied to gain better understanding of the OA disease progress in large cohorts.
Collapse
Affiliation(s)
- Birgitta Gatenholm
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Orthopaedics, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Carl Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Brittberg
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Region Halland Orthopaedics, Hallands Sjukhus, Kungsbacka, Sweden
| | - Vincent A Stadelmann
- SCANCO Medical AG, Brüttisellen, Switzerland; Department of Research and Development, Schulthess Klinik, Zürich, Switzerland.
| |
Collapse
|
23
|
Yamada S, Chiba K, Okazaki N, Era M, Nishino Y, Yokota K, Yonekura A, Tomita M, Tsurumoto T, Osaki M. Correlation between vertebral bone microstructure and estimated strength in elderly women: An ex-vivo HR-pQCT study of cadaveric spine. Bone 2019; 120:459-464. [PMID: 30553854 DOI: 10.1016/j.bone.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE A vertebral fracture is the most common complication of osteoporosis, and various factors are involved in its occurrence. The purpose of this study was to investigate the role of trabecular and cortical bone microstructure on vertebral strength using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS Three female cadaveric spines were investigated (average age: 80.3 years). The whole spine (T1-L4) was scanned by second-generation HR-pQCT at a voxel size of 60.7 μm. Bone microstructure analysis and micro finite element analysis were performed after excluding the upper and lower endplates and posterior elements of a total of 48 vertebrae. Correlations between trabecular and cortical bone microstructure parameters and estimated vertebral strength were analyzed by univariate and multivariate regression models. RESULTS Cortical thickness (Ct.Th) and trabecular thickness (Tb.Th) were strongly correlated with estimated failure load on univariate analysis (r = 0.89, 0.82). Trabecular volumetric bone mineral density (Tb.vBMD), bone volume fraction (BV/TV), trabecular number (Tb.N), and Ct.Th were correlated with estimated failure load on multivariate regression analysis. CONCLUSIONS It was suggested that, in addition to trabecular bone (Tb.vBMD, BV/TV, Tb.N), cortical bone (Ct.Th) contributed significantly to vertebral strength in elderly women.
Collapse
Affiliation(s)
- Shuta Yamada
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | - Narihiro Okazaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Makoto Era
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yuichiro Nishino
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Kazuaki Yokota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Akihiko Yonekura
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Masato Tomita
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Toshiyuki Tsurumoto
- Department of Macroscopic Anatomy, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
24
|
Disc degeneration promotes regional inhomogeneity in the trabecular morphology of loaded rat tail vertebrae. J Orthop Translat 2018; 15:104-111. [PMID: 30564552 PMCID: PMC6286468 DOI: 10.1016/j.jot.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023] Open
Abstract
Background There is a close relationship between the vertebral trabecular morphology and the condition of the associated disc. Objective The relationship between disc degeneration and vertebral trabecular inhomogeneity is unclear. This study aimed to analyse the regional changes of vertebral trabecular morphology after disc degeneration. Methods Thirty male Sprague–Dawley rats were randomly assigned to five groups. Group 1 served as an experimental group for the assessment of disc degeneration induced by needle puncture. Group 2 served as a sham group for trabecular morphology analysis. In Group 3, rats had their tail bent between the eighth and tenth coccygeal vertebrae. In Group 4, the tail of rats was bent with a compression load of 4.5 N. In Group 5, rats first underwent disc degeneration induced by a needle puncture before their tail was bent with a compressive load of 4.5 N. Magnetic resonance imaging was performed on all groups, and histological examination was performed on rodents from Group 1. The ninth coccygeal vertebrae of rats from Groups 2–5 were scanned by Micro-computed tomography. Trabecular morphologic changes were assessed in the concave and convex regions by bone volume fraction, trabecular number, trabecular thickness and trabecular separation. Results Vertebral trabecular morphology in the concave region improved significantly, whereas the convex region was of significantly lower trabecular morphologic parameters with disc degeneration. The difference in trabecular morphologic parameters between the convex and concave regions increased significantly after disc degeneration. Conclusion Disc degeneration promotes regional inhomogeneity in the vertebral trabecular morphology, with the convex region of the vertebrae having the worse trabecular bone morphology than the concave region. The translational potential of this article Our study indicates that disc degeneration promotes regional inhomogeneity in the vertebral trabecular morphology. Regional variations in trabecular microarchitecture are helpful to predict vertebral fragility. This may help to elucidate the mechanisms by which disc degeneration contributes to vertebral fracture.
Collapse
|
25
|
Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study. J Mech Behav Biomed Mater 2018; 87:190-196. [DOI: 10.1016/j.jmbbm.2018.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022]
|
26
|
Yeni YN, Kim W, Oravec D, Nixon M, Divine GW, Flynn MJ. Assessment of vertebral wedge strength using cancellous textural properties derived from digital tomosynthesis and density properties from dual energy X-ray absorptiometry and high resolution computed tomography. J Biomech 2018; 79:191-197. [PMID: 30173933 DOI: 10.1016/j.jbiomech.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023]
Abstract
The purpose of this study was to examine the potential of digital tomosynthesis (DTS) derived cancellous bone textural measures to predict vertebral strength under conditions simulating a wedge fracture. 40 vertebral bodies (T6, T8, T11, and L3 levels) from 5 male and 5 female cadaveric donors were utilized. The specimens were scanned using dual energy X-ray absorptiometry (DXA) and high resolution computed tomography (HRCT) to obtain measures of bone mineral density (BMD) and content (BMC), and DTS to obtain measures of bone texture. Using a custom loading apparatus designed to deliver a nonuniform displacement resulting in a wedge deformity similar to those observed clinically, the specimens were loaded to fracture and their fracture strength was recorded. Mixed model regressions were used to determine the associations between wedge strength and DTS derived textural variables, alone and in the presence of BMD or BMC information. DTS derived fractal, lacunarity and mean intercept length variables correlated with wedge strength, and individually explained up to 53% variability. DTS derived textural variables, notably fractal dimension and lacunarity, contributed to multiple regression models of wedge strength independently from BMC and BMD. The model from a scan orientation transverse to the spine axis and in the anterior-posterior view resulted in highest explanatory capability (R2adj = 0.91), with a scan orientation parallel to the spine axis and in the lateral view offering an alternative (R2adj = 0.88). In conclusion, DTS can be used to examine cancellous texture relevant to vertebral wedge strength, and potentially complement BMD in assessment of vertebral fracture risk.
Collapse
Affiliation(s)
- Yener N Yeni
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States.
| | - Woong Kim
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Daniel Oravec
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Mary Nixon
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - George W Divine
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Michael J Flynn
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
27
|
Mirzaali MJ, Libonati F, Ferrario D, Rinaudo L, Messina C, Ulivieri FM, Cesana BM, Strano M, Vergani L. Determinants of bone damage: An ex-vivo study on porcine vertebrae. PLoS One 2018; 13:e0202210. [PMID: 30114229 PMCID: PMC6095531 DOI: 10.1371/journal.pone.0202210] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/29/2018] [Indexed: 02/07/2023] Open
Abstract
Bone's resistance to fracture depends on several factors, such as bone mass, microarchitecture, and tissue material properties. The clinical assessment of bone strength is generally performed by Dual-X Ray Photon Absorptiometry (DXA), measuring bone mineral density (BMD) and trabecular bone score (TBS). Although it is considered the major predictor of bone strength, BMD only accounts for about 70% of fragility fractures, while the remaining 30% could be described by bone "quality" impairment parameters, mainly related to tissue microarchitecture. The assessment of bone microarchitecture generally requires more invasive techniques, which are not applicable in routine clinical practice, or X-Ray based imaging techniques, requiring a longer post-processing. Another important aspect is the presence of local damage in the bony tissue that may also affect the prediction of bone strength and fracture risk. To provide a more comprehensive analysis of bone quality and quantity, and to assess the effect of damage, here we adopt a framework that includes clinical, morphological, and mechanical analyses, carried out by means of DXA, μCT and mechanical compressive testing, respectively. This study has been carried out on trabecular bones, taken from porcine trabecular vertebrae, for the similarity with human lumbar spine. This study confirms that no single method can provide a complete characterization of bone tissue, and the combination of complementary characterization techniques is required for an accurate and exhaustive description of bone status. BMD and TBS have shown to be complementary parameters to assess bone strength, the former assessing the bone quantity and resistance to damage, and the latter the bone quality and the presence of damage accumulation without being able to predict the risk of fracture.
Collapse
Affiliation(s)
| | - Flavia Libonati
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Davide Ferrario
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Luca Rinaudo
- TECHNOLOGIC S.r.l. Hologic Italia, Torino, Italy
| | - Carmelo Messina
- Istituto Ortopedico Galeazzi IRCCS, Radiodiagnostic Unit, Milan, Italy
| | - Fabio M. Ulivieri
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Nuclear Medicine-Bone Metabolic Unit, Milan, Italy
| | - Bruno M. Cesana
- Department of Clinical Sciences and Community Health, Unit of Medical Statistics, Biometry and Bioinformatics "Giulio A. Maccacaro", Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Matteo Strano
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Laura Vergani
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
28
|
Nguyen C, Schlesinger KJ, James TW, James KM, Sah RL, Masuda K, Carlson JM. Novel magnetic resonance technique for characterizing mesoscale structure of trabecular bone. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180563. [PMID: 30225048 PMCID: PMC6124118 DOI: 10.1098/rsos.180563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis, characterized by increased fracture risk and bone fragility, impacts millions of adults worldwide, but effective, non-invasive and easily accessible diagnostic tests of the disease remain elusive. We present a magnetic resonance (MR) technique that overcomes the motion limitations of traditional MR imaging to acquire high-resolution frequency-domain data to characterize the texture of biological tissues. This technique does not involve obtaining full two-dimensional or three-dimensional images, but can probe scales down to the order of 40 μm and in particular uncover structural information in trabecular bone. Using micro-computed tomography data of vertebral trabecular bone, we computationally validate this MR technique by simulating MR measurements of a 'ratio metric' determined from a few k-space values corresponding to trabecular thickness and spacing. We train a support vector machine classifier on ratio metric values determined from healthy and simulated osteoporotic bone data, which we use to accurately classify osteoporotic bone.
Collapse
Affiliation(s)
- Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, UC Santa Barbara, Santa Barbara, CA 93106-9530, USA
| | - Kimberly J. Schlesinger
- Department of Physics, University of California, Santa Barbara, UC Santa Barbara, Santa Barbara, CA 93106-9530, USA
| | - Timothy W. James
- BioProtonics, LLC, 3090 Old Calzada Rd, Santa Ynez, CA 93460, USA
| | - Kristin M. James
- BioProtonics, LLC, 3090 Old Calzada Rd, Santa Ynez, CA 93460, USA
| | - Robert L. Sah
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jean M. Carlson
- Department of Physics, University of California, Santa Barbara, UC Santa Barbara, Santa Barbara, CA 93106-9530, USA
| |
Collapse
|
29
|
Szulc P, Boutroy S, Chapurlat R. Prediction of Fractures in Men Using Bone Microarchitectural Parameters Assessed by High-Resolution Peripheral Quantitative Computed Tomography-The Prospective STRAMBO Study. J Bone Miner Res 2018; 33:1470-1479. [PMID: 29694676 DOI: 10.1002/jbmr.3451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Areal bone mineral density (aBMD) poorly identifies men at high fracture risk. Our aim was to assess prediction of fractures in men by bone microarchitectural measures. At baseline, 825 men aged 60 to 87 years had the assessment of bone microarchitecture at distal radius and distal tibia by high-resolution peripheral QCT (HR-pQCT; XtremeCT-I, Scanco Medical, Brüttisellen, Switzerland). Bone strength was estimated by micro-finite element analysis. During the prospective 8-year follow-up, 105 men sustained fractures (59 vertebral fractures in 49 men and 70 nonvertebral fractures in 68 men). After adjustment for age, body mass index (BMI), prior falls, and fractures, most HR-pQCT measures at both skeletal sites predicted fractures. After further adjustment for aBMD, low distal radius trabecular number (Tb.N) was most strongly associated with higher fracture risk (hazard ratio [HR] = 1.63 per SD, 95% confidence interval [CI] 1.31-2.03, p < 0.001). In similar models, low Tb.N was associated with higher risk of major osteoporotic fracture (HR = 1.80 per SD, p < 0.001), vertebral fracture (HR = 1.78 per SD, p < 0.01) and nonvertebral fracture (HR = 1.46 per SD, p < 0.01). In comparison with the reference model (age, BMI, falls, fractures, aBMD), the adjustment for distal radius Tb.N increased the estimated fracture probability in men who sustained fractures versus those who did not have ones (difference = 4.1%, 95% CI 1.9-6.3%, p < 0.001). However, the adjustment for distal radius Tb.N did not increase the area under the curve (AUC, p = 0.37). Similar results were found for distal radius trabecular separation (Tb.Sp) and connectivity density (Conn. D). They were predictive of all fracture types and increased the estimated fracture risk, but not AUC, in men who had incident fractures. Thus, poor distal radius trabecular microarchitecture is predictive of fracture after adjustment for age, BMI, falls, fractures, and aBMD. Although distal radius Tb.N, Conn. D, and Tb.Sp improve the discrimination between men who will or who will not have fracture, they do not provide clinically relevant improvement of fracture prediction in older men. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pawel Szulc
- INSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Stéphanie Boutroy
- INSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Roland Chapurlat
- INSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
30
|
Acevedo C, Sylvia M, Schaible E, Graham JL, Stanhope KL, Metz LN, Gludovatz B, Schwartz AV, Ritchie RO, Alliston TN, Havel PJ, Fields AJ. Contributions of Material Properties and Structure to Increased Bone Fragility for a Given Bone Mass in the UCD-T2DM Rat Model of Type 2 Diabetes. J Bone Miner Res 2018; 33:1066-1075. [PMID: 29342321 PMCID: PMC6011658 DOI: 10.1002/jbmr.3393] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
Adults with type 2 diabetes (T2D) have a higher fracture risk for a given bone quantity, but the mechanisms remain unclear. Using a rat model of polygenic obese T2D, we demonstrate that diabetes significantly reduces whole-bone strength for a given bone mass (μCT-derived BMC), and we quantify the roles of T2D-induced deficits in material properties versus bone structure; ie, geometry and microarchitecture. Lumbar vertebrae and ulnae were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days; blood glucose >200 mg/dL). Both obese rats and those with diabetes had reduced whole-bone strength for a given BMC. In obese rats, this was attributable to structural deficits, whereas in UCD-T2DM rats, this was attributable to structural deficits and to deficits in tissue material properties. For the vertebra, deficits in bone structure included thinner and more rod-like trabeculae; for the ulnae, these deficits included inefficient distribution of bone mass to resist bending. Deficits in ulnar material properties in UCD-T2DM rats were associated with increased non-enzymatic crosslinking and impaired collagen fibril deformation. Specifically, small-angle X-ray scattering revealed that diabetes reduced collagen fibril ultimate strain by 40%, and those changes coincided with significant reductions in the elastic, yield, and ultimate tensile properties of the bone tissue. Importantly, the biomechanical effects of these material property deficits were substantial. Prescribing diabetes-specific tissue yield strains in high-resolution finite element models reduced whole-bone strength by a similar amount (and in some cases a 3.4-fold greater amount) as the structural deficits. These findings provide insight into factors that increase bone fragility for a given bone mass in T2D; not only does diabetes associate with less biomechanically efficient bone structure, but diabetes also reduces tissue ductility by limiting collagen fibril deformation, and in doing so, reduces the maximum load capacity of the bone. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Claire Acevedo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Meghan Sylvia
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, CA, USA
| | - James L Graham
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Lionel N Metz
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW, Australia
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Robert O Ritchie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tamara N Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
31
|
Larger vertebral endplate concavities cause higher failure load and work at failure under high-rate impact loading of rabbit spinal explants. J Mech Behav Biomed Mater 2018; 80:104-110. [DOI: 10.1016/j.jmbbm.2018.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
|
32
|
Doyle N, Varela A, Haile S, Guldberg R, Kostenuik PJ, Ominsky MS, Smith SY, Hattersley G. Abaloparatide, a novel PTH receptor agonist, increased bone mass and strength in ovariectomized cynomolgus monkeys by increasing bone formation without increasing bone resorption. Osteoporos Int 2018; 29:685-697. [PMID: 29260289 PMCID: PMC5834552 DOI: 10.1007/s00198-017-4323-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/20/2017] [Indexed: 01/21/2023]
Abstract
UNLABELLED Abaloparatide, a novel PTH1 receptor agonist, increased bone formation in osteopenic ovariectomized cynomolgus monkeys while increasing cortical and trabecular bone mass. Abaloparatide increased bone strength and maintained or enhanced bone mass-strength relationships, indicating preserved or improved bone quality. INTRODUCTION Abaloparatide is a selective PTH1R activator that is approved for the treatment of postmenopausal osteoporosis. The effects of 16 months of abaloparatide administration on bone formation, resorption, density, and strength were assessed in adult ovariectomized (OVX) cynomolgus monkeys (cynos). METHODS Sixty-five 9-18-year-old female cynos underwent OVX surgery, and 15 similar cynos underwent sham surgery. After a 9-month period without treatments, OVX cynos were allocated to four groups that received 16 months of daily s.c. injections with either vehicle (n = 17) or abaloparatide (0.2, 1, or 5 μg/kg/day; n = 16/dose level), while Sham controls received s.c. vehicle (n = 15). Bone densitometry (DXA, pQCT, micro-CT), qualitative bone histology, serum calcium, bone turnover markers, bone histomorphometry, and bone strength were among the key measures assessed. RESULTS At the end of the 9-month post-surgical bone depletion period, just prior to the treatment phase, the OVX groups exhibited increased bone turnover markers and decreased bone mass compared with sham controls. Abaloparatide administration to OVX cynos led to increased bone formation parameters, including serum P1NP and endocortical bone formation rate. Abaloparatide administration did not influence serum calcium levels, bone resorption markers, cortical porosity, or eroded surfaces. Abaloparatide increased bone mass at the whole body, lumbar spine, tibial diaphysis, femoral neck, and femoral trochanter. Abaloparatide administration was associated with greater lumbar vertebral strength, and had no adverse effects on bone mass-strength relationships for the vertebrae, femoral neck, femoral diaphysis, or humeral cortical beams. CONCLUSIONS Abaloparatide administration was associated with increases in bone formation, bone mass and bone strength, and with maintenance of bone quality in OVX cynos, without increases in serum calcium or bone resorption parameters.
Collapse
Affiliation(s)
- N Doyle
- Charles River Laboratories, Montreal, QC, Canada
| | - A Varela
- Charles River Laboratories, Montreal, QC, Canada
| | - S Haile
- Charles River Laboratories, Montreal, QC, Canada
| | - R Guldberg
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - P J Kostenuik
- University of Michigan, Ann Arbor, MI, USA
- Phylon Pharma Services, Newbury Park, CA, USA
| | - M S Ominsky
- Radius Health Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | - S Y Smith
- Charles River Laboratories, Montreal, QC, Canada
| | - G Hattersley
- Radius Health Inc., 950 Winter Street, Waltham, MA, 02451, USA.
| |
Collapse
|
33
|
Danesi V, Erani P, Brandolini N, Juszczyk MM, Cristofolini L. Effect of the In Vitro Boundary Conditions on the Surface Strain Experienced by the Vertebral Body in the Elastic Regime. J Biomech Eng 2017; 138:2543312. [PMID: 27496676 DOI: 10.1115/1.4034383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/08/2022]
Abstract
The vertebral strength and strain can be assessed in vitro by both using isolated vertebrae and sets of three adjacent vertebrae (the central one is loaded through the disks). Our goal was to elucidate if testing single-vertebra-specimens in the elastic regime provides different surface strains to three-vertebrae-segments. Twelve three-vertebrae sets were extracted from thoracolumbar human spines. To measure the principal strains, the central vertebra of each segment was prepared with eight strain-gauges. The sets were tested mechanically, allowing comparison of the surface strains between the two boundary conditions: first when the same vertebra was loaded through the disks (three-vertebrae-segment) and then with the endplates embedded in cement (single-vertebra). They were all subjected to four nondestructive tests (compression, traction, torsion clockwise, and counterclockwise). The magnitude of principal strains differed significantly between the two boundary conditions. For axial loading, the largest principal strains (along vertebral axis) were significantly higher when the same vertebra was tested isolated compared to the three-vertebrae-segment. Conversely, circumferential strains decreased significantly in the single vertebrae compared to the three-vertebrae-segment, with some variations exceeding 100% of the strain magnitude, including changes from tension to compression. For torsion, the differences between boundary conditions were smaller. This study shows that, in the elastic regime, when the vertebra is loaded through a cement pot, the surface strains differ from when it is loaded through the disks. Therefore, when single vertebrae are tested, surface strain should be taken with caution.
Collapse
|
34
|
Ramos-Infante SJ, Pérez MA. In vitro and in silico characterization of open-cell structures of trabecular bone. Comput Methods Biomech Biomed Engin 2017; 20:1562-1570. [DOI: 10.1080/10255842.2017.1390086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. J. Ramos-Infante
- M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain
| | - M. A. Pérez
- M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain
| |
Collapse
|
35
|
Correlative Analysis of Vertebral Trabecular Bone Microarchitecture and Mechanical Properties: A Combined Ultra-high Field (7 Tesla) MRI and Biomechanical Investigation. Spine (Phila Pa 1976) 2017; 42:E1165-E1172. [PMID: 28338579 DOI: 10.1097/brs.0000000000002163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN High-resolution imaging and biomechanical investigation of ex-vivo vertebrae. OBJECTIVE The aim of this study was to assess bone microarchitecture of cadaveric vertebrae using ultra-high field (UHF) 7 Tesla magnetic resonance imaging (MRI) and to determine whether the corresponding microarchitecture parameters were related to bone mineral density (BMD) and bone strength assessed by dual-energy x-ray absorptiometry (DXA) and mechanical compression tests. SUMMARY OF BACKGROUND DATA Limitations of DXA for the assessment of bone fragility and osteoporosis have been recognized and criteria of microarchitecture alteration have been included in the definition of osteoporosis. Although vertebral fracture is the most common osteoporotic fracture, no study has assessed directly vertebral trabecular bone microarchitecture. METHODS BMD of 24 vertebrae (L2, L3, L4) from eight cadavers was investigated using DXA. The bone volume fraction (BVF), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp) of each vertebra were quantified using UHF MRI. Measurements were performed by two operators to characterize the inter-rater reliability. The whole set of specimens underwent mechanical compression tests to failure and the corresponding failure stress was calculated. RESULTS The inter-rater reliability for bone microarchitecture parameters was good with intraclass correlation coefficients ranging from 0.82 to 0.94. Failure load and stress were significantly correlated with BVF, Tb.Sp, and BMD (P < 0.05). Tb.Th was only correlated with the failure stress (P < 0.05). Multiple regression analysis demonstrated that the combination of BVF and BMD improved the prediction of the failure stress from an adjusted R = 0.384 for BMD alone to an adjusted R = 0.414. CONCLUSION We demonstrated for the first time that the vertebral bone microarchitecture assessed with UHF MRI was significantly correlated with biomechanical parameters. Our data suggest that the multimodal assessment of BMD and trabecular bone microarchitecture with UHF MRI provides additional information on the risk of vertebral bone fracture and might be of interest for the future investigation of selected osteoporotic patients. LEVEL OF EVIDENCE N /A.
Collapse
|
36
|
Roberts BC, Thewlis D, Solomon LB, Mercer G, Reynolds KJ, Perilli E. Systematic mapping of the subchondral bone 3D microarchitecture in the human tibial plateau: Variations with joint alignment. J Orthop Res 2017; 35:1927-1941. [PMID: 27891668 DOI: 10.1002/jor.23474] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/28/2016] [Indexed: 02/04/2023]
Abstract
Tibial subchondral bone plays an important role in knee osteoarthritis (OA). Microarchitectural characterization of subchondral bone plate (SBP), underlying subchondral trabecular bone (STB) and relationships between these compartments, however, is limited. The aim of this study was to characterize the spatial distribution of SBP thickness, SBP porosity and STB microarchitecture, and relationships among them, in OA tibiae of varying joint alignment. Twenty-five tibial plateaus from end-stage knee-OA patients, with varus (n = 17) or non-varus (n = 8) alignment were micro-CT scanned (17 μm/voxel). SBP and STB microarchitecture was quantified via a systematic mapping in 22 volumes of interest per knee (11 medial, 11 lateral). Significant within-condylar and between-condylar (medial vs. lateral) differences (p < 0.05) were found. In varus, STB bone volume fraction (BV/TV) was consistently high throughout the medial condyle, whereas in non-varus, medially, it was more heterogeneously distributed. Regions of high SBP thickness were co-located with regions of high STB BV/TV underneath. In varus, BV/TV was significantly higher medially than laterally, however, not so in non-varus. Moreover, region-specific significant associations between the SBP thickness and SBP porosity and the underlying STB microarchitecture were detected, which in general were not captured when considering the values averaged for each condyle. As subchondral bone changes reflect responses to local mechanical and biochemical factors within the joint, our results suggest that joint alignment influences both the medial-to-lateral and the within-condyle distribution of force across the tibia, generating corresponding local bony responses (adaptation) of both the subchondral bone plate and underlying subchondral trabecular bone microarchitecture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1927-1941, 2017.
Collapse
Affiliation(s)
- Bryant C Roberts
- The Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Dominic Thewlis
- Alliance for Research in Exercise, Nutrition and Activity, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.,Centre for Orthopaedic and Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Graham Mercer
- Department of Orthopaedic Surgery, Repatriation General Hospital, Daws Park, South Australia, Australia
| | - Karen J Reynolds
- The Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Egon Perilli
- The Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
37
|
Walterscheid Z, O'Neill C, Ochs A, D'Averso A, Dew C, Huntington A, Ma G, Behrend C, De Vita R, Carmouche J. Anterior Cervical Discectomy With Fusion Using a Local Source for Cancellous Autograft: A Biomechanical Analysis of Vertebral Body Stability in an Osteopenic Bone Model. Geriatr Orthop Surg Rehabil 2017; 8:128-134. [PMID: 28835868 PMCID: PMC5557196 DOI: 10.1177/2151458517715739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 04/19/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anterior cervical discectomy with fusion is an effective treatment for patients having cervical radiculopathy and myelopathy. To reduce morbidity associated with autograft taken from the iliac crest without sacrificing high fusion rates, a novel technique that harvests bone from the vertebral body adjacent to the operative disc space has been proposed. The effects of square and round bone graft harvest techniques on the mechanical stability of the osteopenic donor vertebrae are unknown. We analyzed the biomechanical implications of the technique by subjecting osteopenic models to uniaxial compression to compare yield strengths of surgically altered and unaltered specimens. METHODS Biomechanical grade polyurethane foam was cut into 60 different 12 mm × 17 mm × 20 mm blocks. The foam had a density of 10 pounds per cubic foot, simulating osteoporotic bone. Rectangular prism (4 mm × 4 mm × 6 mm) and cylindrical cores (r = 2 mm, h = 8 mm) were removed from 20 blocks per group. Twenty samples were left intact as a control group. Anterior plate screws were applied to the models and a Polyether ether ketone (PEEK) interbody spacer was placed on top. Samples underwent uniaxial compression at 0.1 mm/s until mechanical failure. Points of structural failure were determined using a 0.1% offset on a force-displacement curve and compared to determine the reductions in compressive strength. RESULTS The mean force eliciting structural failure for intact samples was 450.6 N. Average failure forces for rectangular prisms and cylindrical cores removed were 383.2 and 395.4 N, respectively. Removal of a rectangular prismatic core of the necessary volume resulted in a 15.0% reduction in compressive strength, while removal of a cylindrical core of comparable volume facilitated a reduction of 12.2%. CONCLUSION Local autograft harvested from adjacent vertebrae reduces morbidity associated with a second surgical site while minimally reducing the compressive strength of the donor vertebra in an osteopenic model, lending credence to the efficacy of this technique in elderly patient populations.
Collapse
Affiliation(s)
- Zakk Walterscheid
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA
| | - Conor O'Neill
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA
| | - Alex Ochs
- Virginia Tech College of Engineering, Blacksburg, VA, USA
| | | | | | | | - Grace Ma
- Virginia Tech College of Engineering, Blacksburg, VA, USA
| | - Caleb Behrend
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA.,Department of Orthopaedic Surgery, Carilion Clinic, Roanoke, VA, USA
| | | | - Jonathan Carmouche
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA.,Department of Orthopaedic Surgery, Carilion Clinic, Roanoke, VA, USA
| |
Collapse
|
38
|
Trabecular Microstructure and Damage Affect Cement Leakage From the Basivertebral Foramen During Vertebral Augmentation. Spine (Phila Pa 1976) 2017; 42:E939-E948. [PMID: 28098744 DOI: 10.1097/brs.0000000000002073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective study on cadaver specimens. OBJECTIVE To explore why cement leakage from basivertebral foramen (BF) easily occurs during vertebral augmentation procedures. SUMMARY OF BACKGROUND DATA Type B (through BF, basivertebral foramen) cement leakage is the most common type after vertebral augmentation, but the mechanism of this is still controversial. The contribution of vertebral trabecular bone orientation and trabecular damage during compression fracture to cement leakage is still unknown. METHODS In this study, 12 fresh-frozen human lumbar spines (T12-L5) were collected and divided into 24 three-segment units. Mechanical testing was performed to simulate a compression fracture. MicroCT were performed on all segments before and after mechanical testing, and trabecular microstructure of the superior, middle (containing BF), and inferior 1/3 of each vertebral body was analyzed. The diameter variation of intertrabecular space before and after compression fracture was used to quantify trabecular injury. After mechanical testing, vertebral augmentation, and imaging-based diagnosis were used to evaluate cement leakage. RESULTS Trabecular bone microstructural parameters in middle region (containing BF) were lower than those of the superior or inferior regions (P < 0.01). After compressive failure, 3D-reconstruction of the vertebral body by MicroCT demonstrated that intertrabecular distance in the middle region was markedly increased. Type B cement leakage was the most common type after vertebral augmentation, as found previously in Wang et al. (Spine J 2014;14: 1551-1558). CONCLUSION The presence of the BF and the relative sparsity of trabecular bone make the middle region of the vertebral body the mechanically weakest region. Trabecular bone in middle region suffered the most severe damage during compressive failure of the vertebral body, which resulted in the greatest intervertebral spacing, and subsequently the highest percentage of type B cement leakage. These data suggest specific mechanisms by which cement may leak from the BF, and the contribution of trabecular microstructure and trabecular injury. LEVEL OF EVIDENCE 4.
Collapse
|
39
|
Beauchesne P, Agarwal SC. A multi-method assessment of bone maintenance and loss in an Imperial Roman population: Implications for future studies of age-related bone loss in the past. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:41-61. [DOI: 10.1002/ajpa.23256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Patrick Beauchesne
- Department of Behavioral Sciences; University of Michigan; Dearborn Michigan
| | - Sabrina C. Agarwal
- Department of Anthropology; University of California; Berkeley California
| |
Collapse
|
40
|
Kim W, Oravec D, Divine GW, Flynn MJ, Yeni YN. Effect of View, Scan Orientation and Analysis Volume on Digital Tomosynthesis (DTS) Based Textural Analysis of Bone. Ann Biomed Eng 2017; 45:1236-1246. [DOI: 10.1007/s10439-017-1792-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
|
41
|
Nishimura AC, Russo GA. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:757-767. [PMID: 28075029 DOI: 10.1002/ajpa.23167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/11/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. MATERIALS AND METHODS Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. RESULTS Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. CONCLUSIONS Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories.
Collapse
Affiliation(s)
- Abigail C Nishimura
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Gabrielle A Russo
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
42
|
Campbell GM, Peña JA, Giravent S, Thomsen F, Damm T, Glüer CC, Borggrefe J. Assessment of Bone Fragility in Patients With Multiple Myeloma Using QCT-Based Finite Element Modeling. J Bone Miner Res 2017; 32:151-156. [PMID: 27454865 DOI: 10.1002/jbmr.2924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell disease associated with severe bone destruction. Surgical intervention is often required to prevent vertebral body collapse and resulting neurological complications; however, its necessity is determined by measuring lesion size or number, without considering bone biomechanics. Finite element (FE) modeling, which simulates the physiological loading, may improve the prediction of fragility. To test this, we developed a quantitative computed tomography (QCT)-based FE model of the vertebra and applied it to a dataset of MM patients with and without prevalent fracture. FE models were generated from vertebral QCT scans of the T12 (T11 if T12 was fractured) of 104 MM patients, 45 with fracture and 59 without, using a low-dose scan protocol (1.5 mm slice thickness, 4.0 to 6.5 mSv effective dose). A calibration phantom enabled the conversion of the CT Hounsfield units to FE material properties. Compressive loading of the vertebral body was simulated and the stiffness, yield load, and work to yield determined. To compare the parameters between fracture and nonfracture groups, t tests were used, and standardized odds ratios (sOR, normalized to standard deviation) and 95% confidence intervals were calculated. FE parameters were compared to mineral and structural parameters using linear regression. Patients with fracture showed lower vertebral stiffness (-15.2%; p = 0.010; sOR = 1.73; 95% CI, 1.11 to 2.70), yield force (-21.5%; p = 0.002; sOR = 2.09; 95% CI, 1.27 to 3.43), and work to yield (-27.4%; p = 0.001; sOR = 2.28; 95% CI, 1.33 to 3.92) compared to nonfracture patients. All parameters correlated significantly with vBMD (stiffness: R2 = 0.57, yield force: R2 = 0.59, work to yield: R2 = 0.50, p < 0.001), BV/TV (stiffness: R2 = 0.56, yield force: R2 = 0.58, work to yield: R2 = 0.49, p < 0.001), and Tb.Sp (stiffness: R2 = 0.51, yield force: R2 = 0.53, work to yield: R2 = 0.45, p < 0.001). FE modeling identified MM patients with compromised mechanical integrity of the vertebra. Higher sOR values were obtained for the biomechanical compared to structural or mineral measures, suggesting that FE modeling improves fragility assessment in these patients. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Graeme M Campbell
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Institute of Biomechanics, Hamburg University of Technology, Hamburg, Germany
| | - Jaime A Peña
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sarah Giravent
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Felix Thomsen
- National Scientific and Technical Research Council (CONICET), National University of the South, Bahía Blanca, Argentina
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claus-C Glüer
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jan Borggrefe
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Institut und Poliklinik für Diagnostische Radiologie, Uniklinik Köln, Köln, Germany
| |
Collapse
|
43
|
Abstract
Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.
Collapse
Affiliation(s)
- Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - Philippe K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.
| |
Collapse
|
44
|
Badilatti SD, Christen P, Parkinson I, Müller R. Load-adaptive bone remodeling simulations reveal osteoporotic microstructural and mechanical changes in whole human vertebrae. J Biomech 2016; 49:3770-3779. [PMID: 27793404 DOI: 10.1016/j.jbiomech.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 02/04/2023]
Abstract
Osteoporosis is a major medical burden and its impact is expected to increase in our aging society. It is associated with low bone density and microstructural deterioration. Treatments are available, but the critical factor is to define individuals at risk from osteoporotic fractures. Computational simulations investigating not only changes in net bone tissue volume, but also changes in its microstructure where osteoporotic deterioration occur might help to better predict the risk of fractures. In this study, bone remodeling simulations with a mechanical feedback loop were used to predict microstructural changes due to osteoporosis and their impact on bone fragility from 50 to 80 years of age. Starting from homeostatic bone remodeling of a group of seven, mixed sex whole vertebrae, five mechanostat models mimicking different biological alterations associated with osteoporosis were developed, leading to imbalanced bone formation and resorption with a total net loss of bone tissue. A model with reduced bone formation rate and cell sensitivity led to the best match of morphometric indices compared to literature data and was chosen to predict postmenopausal osteoporotic bone loss in the whole group. Thirty years of osteoporotic bone loss were predicted with changes in morphometric indices in agreement with experimental measurements, and only showing major deviations in trabecular number and trabecular separation. In particular, although being optimized to match to the morphometric indices alone, the predicted bone loss revealed realistic changes on the organ level and on biomechanical competence. While the osteoporotic bone was able to maintain the mechanical stability to a great extent, higher fragility towards error loads was found for the osteoporotic bones.
Collapse
Affiliation(s)
| | | | - Ian Parkinson
- SA Pathology and University of Adelaide, Adelaide, South Australia, Australia
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Griffin LM, Honig S, Chen C, Saha PK, Regatte R, Chang G. 7T MRI of distal radius trabecular bone microarchitecture: How trabecular bone quality varies depending on distance from end-of-bone. J Magn Reson Imaging 2016; 45:872-878. [PMID: 27439146 DOI: 10.1002/jmri.25398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 07/07/2016] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To use 7T magnetic resonance imaging (MRI) to determine how trabecular bone microarchitecture varies at the epiphysis, metaphysis, and diaphysis of the distal radius. MATERIALS AND METHODS The distal radius of 24 females (mean age = 56 years, range = 24-78 years) was scanned on a 7T MRI using a 3D fast low-angle shot sequence (0.169 × 0.169 × 1 mm). Digital topological analysis was applied at the epiphysis, metaphysis, and diaphysis to compute: total trabecular bone volume; trabecular thickness, number, connectivity, and erosion index (a measure of network resorption). Differences and correlations were assessed using standard statistical methods. RESULTS The metaphysis and epiphysis had 83-123% greater total bone volume and 14-16% greater trabecular number than the diaphysis (both P < 0.0001). The erosion index was significantly higher at the diaphysis than the metaphysis and epiphysis (both P < 0.01). The most elderly volunteers had lower trabecular number (<66 years mean 0.29 ± 0.01; ≥66 years, 0.27 ± 0.02, P < 0.05) and higher erosion index (<66 years mean 1.18 ± 0.17; age ≥66 years, mean 1.42 ± 0.46, P < 0.05) at the epiphysis; differences not detected by total trabecular bone volume. CONCLUSION 7T MRI reveals trabecular bone microarchitecture varies depending on scan location at the end-of-bone, being of overall higher quality distally (epiphysis) than proximally (diaphysis). Age-related differences in trabecular microarchitecture can be detected by 7T MRI. The results highlight the potential sensitivity of 7T MRI to microarchitectural differences and the potential importance of standardizing scan location for future clinical studies of fracture risk or treatment response. LEVEL OF EVIDENCE 3 J. Magn. Reson. Imaging 2017;45:872-878.
Collapse
Affiliation(s)
- Lindsay M Griffin
- Department of Radiology, New York University, New York, New York, USA
| | - Stephen Honig
- Department of Medicine, New York University, New York, New York, USA
| | - Cheng Chen
- University of Iowa, Iowa City, Iowa, USA
| | | | - Ravinder Regatte
- Department of Radiology, New York University, New York, New York, USA
| | - Gregory Chang
- Department of Radiology, New York University, New York, New York, USA
| |
Collapse
|
46
|
Segev G, Meltzer H, Shipov A. Does Secondary Renal Osteopathy Exist in Companion Animals? Vet Clin North Am Small Anim Pract 2016; 46:1151-62. [PMID: 27436331 DOI: 10.1016/j.cvsm.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Secondary renal hyperparathyroidism is an inevitable consequence of chronic kidney disease. In human patients, the disease is associated with decreased bone quality and increased fracture risk. Recent evidence suggests that bone quality is also decreased in companion animals, more pronouncedly in cats compared with dogs, likely because of a longer disease course. The clinical significance of these findings is yet to be determined. However, clinicians should keep in mind that animals with chronic kidney disease have decreased bone quality and increased fracture risk.
Collapse
Affiliation(s)
- Gilad Segev
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel.
| | - Hagar Meltzer
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel
| |
Collapse
|
47
|
Huang CC, Jiang CC, Hsieh CH, Tsai CJ, Chiang H. Local bone quality affects the outcome of prosthetic total knee arthroplasty. J Orthop Res 2016. [PMID: 26222735 DOI: 10.1002/jor.23003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoporosis and osteoarthritis commonly coexist in the elderly. In patients undergoing prosthetic total knee arthroplasty (TKA), the bone quality around the knee joint may affect the safety of prosthetic implantation and consequently satisfaction with the surgical outcome. We recruited 50 postmenopausal women undergoing TKA for primary osteoarthritis; 43 completed the study protocol. The bone quality parameters of the operated knee, including bone mineral density assessed using dual-energy X-ray absorptiometry and microarchitecture variables assessed using micro-computed tomography, were determined. Surgical outcomes were assessed according to immediate (<1 week) postoperative pain quantified using the visual analog scale and knee function quantified using the Knee Injury and Osteoarthritis Outcome Score (KOOS) at 2 and 6 months postoperatively. The influence of bone quality parameters on surgical outcomes was analyzed using simple and multiple regression analyses. Volumetric bone mineral density (R(2) = 0.187-0.234, p < 0.01), the structural model index (R(2) = 0.103-0.181, p < 0.05), and trabecular separation (R(2) = 0.289-0.424, p < 0.05) were significantly associated with postoperative pain and improvement according to the KOOS. In conclusion, local bone quality, including mineral content and microarchitecture, affects the surgical outcome of TKA.
Collapse
Affiliation(s)
- Chuan-Ching Huang
- Department of Orthopaedic Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Ching-Chuan Jiang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hsun Hsieh
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Jung Tsai
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hongsen Chiang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
48
|
Abstract
Vertebral fractures are one of the most common fractures associated with skeletal fragility and can cause as much morbidity as hip fractures. However, the epidemiology of vertebral fractures differs from that of osteoporotic fractures at other skeletal sites in important ways, largely because only one quarter to one-third of vertebral fractures are recognized clinically at the time of their occurrence and otherwise require lateral spine imaging to be recognized. This article first reviews the prevalence and incidence of clinical and radiographic vertebral fractures in populations across the globe and secular trends in the incidence of vertebral fracture over time. Next, associations of vertebral fractures with measures of bone mineral density and bone microarchitecture are reviewed followed by associations of vertebral fracture with various textural measures of trabecular bone, including trabecular bone score. Finally, the article reviews clinical risk factors for vertebral fracture and the association of vertebral fractures with morbidity, mortality, and other subsequent adverse health outcomes.
Collapse
Affiliation(s)
- John T Schousboe
- Park Nicollet Osteoporosis Center, Park Nicollet Clinic, HealthPartners, Minneapolis, MN, USA; Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MD, USA.
| |
Collapse
|
49
|
Badilatti SD, Christen P, Levchuk A, Marangalou JH, van Rietbergen B, Parkinson I, Müller R. Large-scale microstructural simulation of load-adaptive bone remodeling in whole human vertebrae. Biomech Model Mechanobiol 2015; 15:83-95. [PMID: 26255055 DOI: 10.1007/s10237-015-0715-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Identification of individuals at risk of bone fractures remains challenging despite recent advances in bone strength assessment. In particular, the future degradation of the microstructure and load adaptation has been disregarded. Bone remodeling simulations have so far been restricted to small-volume samples. Here, we present a large-scale framework for predicting microstructural adaptation in whole human vertebrae. The load-adaptive bone remodeling simulations include estimations of appropriate bone loading of three load cases as boundary conditions with microfinite element analysis. Homeostatic adaptation of whole human vertebrae over a simulated period of 10 years is achieved with changes in bone volume fraction (BV/TV) of less than 5%. Evaluation on subvolumes shows that simplifying boundary conditions reduces the ability of the system to maintain trabecular structures when keeping remodeling parameters unchanged. By rotating the loading direction, adaptation toward new loading conditions could be induced. This framework shows the possibility of using large-scale bone remodeling simulations toward a more accurate prediction of microstructural changes in whole human bones.
Collapse
Affiliation(s)
- Sandro D Badilatti
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Patrik Christen
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Alina Levchuk
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Javad Hazrati Marangalou
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ian Parkinson
- SA Pathology and University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
50
|
Lekadir K, Hoogendoorn C, Hazrati-Marangalou J, Taylor Z, Noble C, van Rietbergen B, Frangi AF. A Predictive Model of Vertebral Trabecular Anisotropy From Ex Vivo Micro-CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1747-1759. [PMID: 25561590 DOI: 10.1109/tmi.2014.2387114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spine-related disorders are amongst the most frequently encountered problems in clinical medicine. For several applications such as 1) to improve the assessment of the strength of the spine, as well as 2) to optimize the personalization of spinal interventions, image-based biomechanical modeling of the vertebrae is expected to play an important predictive role. However, this requires the construction of computational models that are subject-specific and comprehensive. In particular, they need to incorporate information about the vertebral anisotropic micro-architecture, which plays a central role in the biomechanical function of the vertebrae. In practice, however, accurate personalization of the vertebral trabeculae has proven to be difficult as its imaging in vivo is currently infeasible. Consequently, this paper presents a statistical approach for accurate prediction of the vertebral fabric tensors based on a training sample of ex vivo micro-CT images. To the best of our knowledge, this is the first predictive model proposed and validated for vertebral datasets. The method combines features selection and partial least squares regression in order to derive optimal latent variables for the prediction of the fabric tensors based on the more easily extracted shape and density information. Detailed validation with 20 ex vivo T12 vertebrae demonstrates the accuracy and consistency of the approach for the personalization of trabecular anisotropy.
Collapse
|