1
|
Wu XM, Mai YX, Wen YF, Li ZP, Sun YX, Chen JJ, Meng F, Pang FX, Li HM, Pan Y, Zhang JF, Pan XH. Silence of HOTAIR promotes osteogenic differentiation and accelerates distraction osteogenesis by mediating FTO ubiquitination. J Orthop Translat 2025; 50:248-256. [PMID: 39895868 PMCID: PMC11786163 DOI: 10.1016/j.jot.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 02/04/2025] Open
Abstract
Background Distraction osteogenesis(DO) is a valuable bone regeneration technique, yet its prolonged consolidation phase often entails pain, high costs, infection risks, and lifestyle disruptions. Finding adjunctive approaches to shorten treatment duration is thus of clinical significance. Long noncoding RNAs have been demonstrated to play pivotal roles in regulating bone formation, and homeobox transcript antisense intergenic RNA(HOTAIR) was also reported to regulate osteogenesis and bone formation. However, its role in DO remains unclear. Methods The effects of HOTAIR on osteogenesis were examined in rat bone marrow-derived mesenchymal stem cells(BMSCs) by asssessing ALP activity, calcification, and osteogenic gene expression with HOTAIR knockdown or overexpression. Using a tibial DO model, HOTAIR-stably silenced BMSCs or control cells were locally injected into the percutaneous distraction gap, and the effects were evaluated by micro-CT, dual-energy X-ray examination, mechanical testing, hematoxylin and eosin staining, and immunohistochemistry. Results In the present study, it was found that HOTAIR silence promoted while its overexpression suppressed the osteogenic differentiation of BMSCs. The Mechanistic study revealed that HOTAIR physically interacted with FTO, and disrupted FTO ubiquitination and degradation, leading to FTO up-regulation and suppressing osteogenesis. Using DO animal model, HOTAIR-silenced BMSCs stimulated new bone formation and accelerated DO healing in vivo. Conclusion Silence of HOTAIR enhanced osteogenesis in BMSCs and facilitated DO healing by recruiting FTO and inducing its degradation. Translational potential The findings generated from this study suggest that inhibitor of HOTAIR may be developed as a promising strategy for DO patients.
Collapse
Affiliation(s)
- Xiao-min Wu
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Yong-xin Mai
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yong-fa Wen
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Zhi-peng Li
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
| | - Yu-xin Sun
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Jun-jing Chen
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Fengzhen Meng
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - feng-xiang Pang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
| | - Huai-ming Li
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Yu Pan
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Jin-fang Zhang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Xiao-hua Pan
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| |
Collapse
|
2
|
Hu W, Guo Z, Tang W, Long J. Mechanoresponsive regulation of tissue regeneration during distraction osteogenesis. FASEB J 2024; 38:e70056. [PMID: 39282872 DOI: 10.1096/fj.202401303r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 03/17/2025]
Abstract
Distraction osteogenesis is widely used for bone tissue engineering. Mechanical stimulation plays a central role in the massive tissue regeneration observed during distraction osteogenesis. Although distraction osteogenesis has been a boon for patients with bone defects, we still have limited knowledge about the intrinsic mechanotransduction that converts physical forces into biochemical signals capable of inducing cell behavior changes and new tissue formation. In this review, we summarize the findings for mechanoresponsive factors, including cells, genes, and signaling pathways, during the distraction osteogenesis different phases. These elements function for coupling of osteogenesis and angiogenesis via the Integrin-FAK, TGF-β/BMP, Wnt/β-catenin, Hippo, MAPK, PI3K/Akt, and HIF-1α signaling pathways in a mechanoresponsive niche. The available evidence further suggests the existence of a balance between the epithelial-mesenchymal transition and mesenchymal-epithelial transition under hypoxic stress. We also briefly summarize the current in silico simulation algorithms and propose several future research directions that may advance understanding of distraction osteogenesis in the era of bioinformation, particularly the integration of artificial intelligence models with reliable single-cell RNA sequencing datasets. The objective of this review is to utilize established knowledge to further optimize existing distraction protocols and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Wenzhong Hu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City, China
| | - Zeyou Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City, China
| | - Weibing Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City, China
| |
Collapse
|
3
|
Schroeder ME, Batan D, Gonzalez Rodriguez A, Speckl KF, Peters DK, Kirkpatrick BE, Hach GK, Walker CJ, Grim JC, Aguado BA, Weiss RM, Anseth KS. Osteopontin activity modulates sex-specific calcification in engineered valve tissue mimics. Bioeng Transl Med 2023; 8:e10358. [PMID: 36684107 PMCID: PMC9842038 DOI: 10.1002/btm2.10358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with aortic valve stenosis (AVS) have sexually dimorphic phenotypes in their valve tissue, where male valvular tissue adopts a calcified phenotype and female tissue becomes more fibrotic. The molecular mechanisms that regulate sex-specific calcification in valvular tissue remain poorly understood. Here, we explored the role of osteopontin (OPN), a pro-fibrotic but anti-calcific bone sialoprotein, in regulating the calcification of female aortic valve tissue. Recognizing that OPN mediates calcification processes, we hypothesized that aortic valvular interstitial cells (VICs) in female tissue have reduced expression of osteogenic markers in the presence of elevated OPN relative to male VICs. Human female valve leaflets displayed reduced and smaller microcalcifications, but increased OPN expression relative to male leaflets. To understand how OPN expression contributes to observed sex dimorphisms in valve tissue, we employed enzymatically degradable hydrogels as a 3D cell culture platform to recapitulate male or female VIC interactions with the extracellular matrix. Using this system, we recapitulated sex differences observed in human tissue, specifically demonstrating that female VICs exposed to calcifying medium have smaller mineral deposits within the hydrogel relative to male VICs. We identified a change in OPN dynamics in female VICs in the presence of calcification stimuli, where OPN deposition localized from the extracellular matrix to perinuclear regions. Additionally, exogenously delivered endothelin-1 to encapsulated VICs increased OPN gene expression in male cells, which resulted in reduced calcification. Collectively, our results suggest that increased OPN in female valve tissue may play a sex-specific role in mitigating mineralization during AVS progression.
Collapse
Affiliation(s)
- Megan E. Schroeder
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Dilara Batan
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BiochemistryUniversity of Colorado BoulderBoulderColoradoUSA
| | - Andrea Gonzalez Rodriguez
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kelly F. Speckl
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Douglas K. Peters
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Medical Scientist Training ProgramUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Grace K. Hach
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Cierra J. Walker
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| | - Joseph C. Grim
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Brian A. Aguado
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Sanford Consortium for Regenerative MedicineLa JollaCaliforniaUSA
| | - Robert M. Weiss
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
4
|
Yang Y, Chen D, Li Y, Zou J, Han R, Li H, Zhang J. Effect of Puerarin on Osteogenic Differentiation in vitro and on New Bone Formation in vivo. Drug Des Devel Ther 2022; 16:2885-2900. [PMID: 36060929 PMCID: PMC9433167 DOI: 10.2147/dddt.s379794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Puerarin (C21H20O10) is a phytoestrogen that possesses various pharmacological effect, and several researches have revealed the relationship between puerarin and bone metabolism. This study was aimed to evaluate the potential influence of puerarin on the proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) as well as on new bone formation following rapid maxillary expansion (RME) model in rats. Methods Rat BMSCs were adopted, and the cell proliferation was detected by cell-counting kit-8 (CCK-8) assay in vitro experiments. Alkaline phosphatase (ALP) activity and alizarin red staining were analyzed quantitatively to show extracellular matrix mineralization. The mRNA and protein expression levels were used to detect osteogenic differentiation of BMSCs. In vivo bone regeneration was analyzed in a rat RME model. Eighteen 6-week-old male Wistar rats were divided into 3 groups: group 1 without any treatment, group 2 received RME and saline solution (15mg/kg), group 3 received RME and puerarin solution (15mg/kg). After 2 weeks, micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) staining, and Masson staining were used to detect the new bone formation and morphological changes. Besides, ALP and bone morphogenetic protein 2 (BMP2) expression levels in mid-palatal suture were evaluated by immunohistochemical staining. Results The results showed that puerarin upregulates cell proliferation dose-dependently. ALP activity and mineralized matrix generation were clearly enhanced at certain specific concentrations (10−5 and 10−6 mol/L); the expression levels of the osteoblast-related genes and proteins were increased. The measurement of micro-CT imaging revealed that puerarin significantly promoted new bone formation. Concomitantly, the histological examinations showed that puerarin solution enhanced osteogenesis in mid-palatal suture. Conclusion Those works indicated that puerarin regulates osteogenesis in vitro and exerts a beneficial impact on bone regeneration in vivo, revealing that puerarin treatment may become one of the potential keys for improving the stability and preventing relapse of RME.
Collapse
Affiliation(s)
- Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Daiyun Chen
- Department of Orthodontics, School of Stomatology, Shandong First Medical University, Jinan, People’s Republic of China
| | - Yilin Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jinghua Zou
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Hongkun Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, Tel +86 13953109816, Fax +86 53188382923, Email
| |
Collapse
|
5
|
Sohn DS, Kim JR, Kim HG, Choi HS, Moon YS. Comparison of immunohistochemical analysis on sinus augmentation using demineralized tooth graft and bovine bone. J Korean Assoc Oral Maxillofac Surg 2021; 47:269-278. [PMID: 34462384 PMCID: PMC8408643 DOI: 10.5125/jkaoms.2021.47.4.269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023] Open
Abstract
Objectives The purpose of this animal research was to compare bone regeneration in augmented rabbit maxillary sinuses treated with demineralized particulate human-tooth graft and anorganic bovine bone by immunohistochemical analysis. Materials and Methods Piezoelectric bilateral sinus augmentation was performed in eight adult rabbits. In the control group, anorganic bovine was grafted in the maxillary sinus following elevation of the sinus membrane. In the experimental group, demineralized human particulate tooth bone was grafted in the sinus. Bone regeneration in augmented sinuses was evaluated by immunohistochemical analysis using various markers of osteoprogenitor cells. Results The number of bromodeoxyuridine-labeled cells was significantly higher in the experimental group than in the control group at eight weeks. The immunoreactivity of proliferating-cell nuclear antigen was increased slightly in the experimental group relative to the control group at eight weeks. Other bone markers were expressed equally in the two groups. Conclusion In the rabbit maxillary sinus, higher osteoinduction was correlated with demineralized human particulate tooth bone grafting than with anorganic bovine grafting.
Collapse
Affiliation(s)
- Dong-Seok Sohn
- Department of Dentistry and Oral and Maxillofacial Surgery, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Ji-Rak Kim
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hyung-Gyun Kim
- Department of Dentistry and Oral and Maxillofacial Surgery, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Hyun-Suk Choi
- Department of Dentistry and Prosthodontics, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Yong-Suk Moon
- Department of Anatomy, School of Medicine, Daegu Catholic University, Daegu, Korea
| |
Collapse
|
6
|
Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Rev Dis Primers 2021; 7:57. [PMID: 34354083 DOI: 10.1038/s41572-021-00289-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
The human skeleton has remarkable regenerative properties, being one of the few structures in the body that can heal by recreating its normal cellular composition, orientation and mechanical strength. When the healing process of a fractured bone fails owing to inadequate immobilization, failed surgical intervention, insufficient biological response or infection, the outcome after a prolonged period of no healing is defined as non-union. Non-union represents a chronic medical condition not only affecting function but also potentially impacting the individual's psychosocial and economic well-being. This Primer provides the reader with an in-depth understanding of our contemporary knowledge regarding the important features to be considered when faced with non-union. The normal mechanisms involved in bone healing and the factors that disrupt the normal signalling mechanisms are addressed. Epidemiological considerations and advances in the diagnosis and surgical therapy of non-union are highlighted and the need for greater efforts in basic, translational and clinical research are identified.
Collapse
Affiliation(s)
- Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany. .,Julius Wolff Institute and BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Ulm, Baden Württemberg, Germany
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, the University of Hong Kong, Hong Kong, Hong Kong
| | - Lisa A Taitsman
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - R Malcolm Smith
- Orthopedic trauma service, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rodrigo Pesántez
- Departamento de Ortopedia Y Traumatología Fundación Santa Fé de Bogotá - Universidad de los Andes, Bogotá, Colombia
| | | | | | - Jesse B Jupiter
- Department of Orthopaedic surgery, Massachussets General Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Liu A, Huang J. Mechanical Tension-Stress in Alveolar Cleft Repaired With Autogenous Bone in Canine Models. Cleft Palate Craniofac J 2021; 59:442-452. [PMID: 34098764 DOI: 10.1177/10556656211018950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cleft lip and/or palate is a common birth defect worldwide, always accompanied by alveolar cleft. However, the success rate of secondary alveolar bone grafting is unsatisfactory. Rapid maxillary expansion (RME) often used after bone transplantation provides functional stimulation for bone graft area. This study aimed to investigate the effect of RME force on the bone graft area and midpalatal suture, and screen out the most suitable loaded force and loaded teeth, so as to provide a reference for clinical treatment. METHODS Fourteen 24-week-old male beagles were assigned randomly to 3 groups: blank control, autogenous, and autogenous with RME. Three-dimensional finite element analysis was conducted to evaluate the distribution and value of the stress in the model. The maxillae were collected and subjected to radiography and helical computed tomography to evaluate new bone formation in the graft area. Van Gieson's Picrofuchsin staining was performed for histomorphological observation. RESULTS After 8 weeks of RME treatment, new bone formation of the dogs was markedly accelerated, and bone resorption was significantly reduced compared with the untreated dogs or those only treated with autogenous iliac bone. The treatment with RME evidently made the bone trabecula more abundant and the area of bone formation larger. Three-dimensional finite element analysis showed that the clinical effect can be achieved by using canine teeth as the loaded teeth and applying force of 10 MPa. CONCLUSION Rapid maxillary expansion after bone grafting had a positive effect on osteogenesis in a canine model of alveolar cleft.
Collapse
Affiliation(s)
- Anqi Liu
- Department of Oral & Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Jialiang Huang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhao D, Wang X, Tie C, Cheng B, Yang S, Sun Z, Yin M, Li X, Yin M. Bio-functional strontium-containing photocrosslinked alginate hydrogels for promoting the osteogenic behaviors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112130. [PMID: 34082947 DOI: 10.1016/j.msec.2021.112130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022]
Abstract
In recent years, photocrosslinked alginate hydrogel has been widely studied in bone tissue engineering, owing to its numerous advantages. However, there are still some shortcomings like insufficient mechanical strength and lack of bone induction. To compensate for these deficiencies, in this work, a novel doped strontium (Sr) photocrosslinked methacrylated alginate (Sr-PMA) hydrogel was developed. Photocrosslinked alginate hydrogel fabricated via crosslinking methacrylate-modified alginate under ultraviolet (UV) light was placed into strontium solutions to prepare Sr-PMA gel by chelating reaction. The chemical structures, swelling behaviors, degradation profiles, elastic moduli, Sr2+ ion release and surface morphology of the Sr-PMA hydrogel were characterized, and we found that physical properties of the gels can be tailored by varying concentration of Sr2+ ions. And MC3T3-E1 cell viability, proliferation and mineralization outside the hydrogel were also investigated. Further research on cell survival, multiplication, osteogenic differentiation of the cells encapsulated in Sr-PMA hydrogels were explored. In vitro studies of biological properties revealed that incorporation of Sr2+ into photocrosslinked alginate gels significantly improved osteogenic differentiation capabilities and mineralization via stimulating expression of osteogenesis related genes and proteins of the cells compared to strontium-free photocrosslinked alginate gels. The research demonstrates that the innovative Sr-PMA hydrogels possessing adjustable physical performances, excellent biocompatibility and osteogenic differentiation capabilities could be potentially applied to bone tissue engineering and regenerative medicine. Meanwhile, it also provides a reference for the modification of biological properties of biomaterials.
Collapse
Affiliation(s)
- Delu Zhao
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China; Department of Prosthodontics, Hefei Stomatological Clinic Hospital, Anhui Medical University, & Hefei Stomatological Hospital, Hefei 230001, Anhui Province, China
| | - Xin Wang
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chaorong Tie
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Bo Cheng
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Sisi Yang
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhen Sun
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Miaomiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Xiaobao Li
- Department of Stomatology, Affiliated Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei Province, China
| | - Miao Yin
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
9
|
Gao WL, Lee YH, Tsai CY, Wu TJ, Lai JP, Lin SS, Chang YJ. One-Year Treatment Outcome of Profile Changes After Transcutaneous Maxillary Distraction Osteogenesis in Growing Children With Cleft Lip and Palate. Cleft Palate Craniofac J 2021; 59:299-306. [PMID: 33813912 DOI: 10.1177/10556656211005638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To evaluate the long-term stability of LeFort I osteotomy followed by distraction osteogenesis with a transcutaneous rigid external device for the treatment of severe maxillary hypoplasia in patients with cleft lip and palate. PATIENTS AND METHODS Nine patients with cleft lip and palate underwent rigid external distraction after a LeFort I osteotomy for maxillary advancement. Lateral cephalometric films were analyzed for assessment of treatment outcome and stability in 1 month, 6 months, and 1 year after distraction. RESULTS Significant maxillary advancement was observed in the horizontal direction, with the anterior nasal spine (ANS) distance of the maxilla increasing by an average of 20.5 ± 5.1 mm after distraction. The ANS relapse rates in 6 months and 1 year were 8.7% and 12.8%, respectively. The mean inclination of upper incisors to the palatal plane was almost unchanged (before: 109.8° ± 6.6°; after: 108.9° ± 7.5°). The movement ratios at the nasal tip/ANS, soft tissue A point/A point, and the upper vermilion border/upper incisor edge were 0.36:1, 0.72:1, and 0.83:1, respectively. CONCLUSION Considerable maxillary advancement was achieved with less change of incisors inclination after distraction. Moreover, the relapse rate after 1 year was minimal. The concave facial profile was improved as well as the facial balance and aesthetics.
Collapse
Affiliation(s)
- Wei-Ling Gao
- Department of Craniofacial Orthodontics, Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yi-Hao Lee
- Department of Craniofacial Orthodontics, Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Chi-Yu Tsai
- Department of Craniofacial Orthodontics, Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Te-Ju Wu
- Department of Craniofacial Orthodontics, Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jui-Pin Lai
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Shiu-Shiung Lin
- Department of Craniofacial Orthodontics, Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yu-Jen Chang
- Department of Craniofacial Orthodontics, Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| |
Collapse
|
10
|
Systemic Administration of G-CSF Accelerates Bone Regeneration and Modulates Mobilization of Progenitor Cells in a Rat Model of Distraction Osteogenesis. Int J Mol Sci 2021; 22:ijms22073505. [PMID: 33800710 PMCID: PMC8037338 DOI: 10.3390/ijms22073505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.
Collapse
|
11
|
Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater 2020; 112:75-86. [PMID: 32505802 DOI: 10.1016/j.actbio.2020.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Bone injuries are common and new strategies are desired for achieving ideal bone regeneration for bone defect repair. Scaffolds with bone-mimicking characteristics may provide an appropriate microenvironment to promote bone regeneration. Meanwhile, mechanical stimulation effectively regulates a wide range of cellular behaviors such as cell proliferation and differentiation. In this study, biomimetic multi-layer cell-collagen constructs with angle-ply structural feature were prepared by assembling micropatterned collagen membranes on which aligned MC3T3-E1 cells were cultured. The anisotropic microgrooved collagen membranes effectively guided the alignment of cells and promoted the osteogenic differentiation of them. To further promote cell differentiation and extracellular matrix production, the multi-layer cell-collagen constructs were cultured under mechanical conditioning through cyclic stretching. It was found that the constructs with both cell alignment and mechanical conditioning resulted in better osteogenic potential than those with cell alignment or mechanical conditioning alone. Upon implantation into the critical-sized calvarial defects of mice, the constructs with both cell alignment and mechanical conditioning achieved best new bone formation efficacy. Together, findings from this study reveal that synergized use of microstructural and mechanical cues may provide an effective new approach toward bone regeneration. STATEMENT OF SIGNIFICANCE: Biomimicking is an effective strategy to promote bone regeneration for repairing bone defects. Although numerous studies which micro-structurally mimicked native bone using various scaffolds, far less studies have paid attention to the mechanical environment of bone. In this study, angle-ply collagen membrane-supported cell sheets were prepared and pre-conditioned using mechanical loading prior to implantation at bone defects. The constructs with cell alignment and subjected to mechanical conditioning resulted in better osteogenic differentiation of cells in vitro and new bone formation in vivo than those with cell alignment or mechanical conditioning alone. Therefore, recapitulation of both microstructural and mechanical features of native bone may result in a synergistic effect and provides an effective approach toward bone regeneration.
Collapse
|
12
|
Abstract
Over the last decades, the association between vascular calcification (VC) and all-cause/cardiovascular mortality, especially in patients with high atherogenic status, such as those with diabetes and/or chronic kidney disease, has been repeatedly highlighted. For over a century, VC has been noted as a passive, degenerative, aging process without any treatment options. However, during the past decades, studies confirmed that mineralization of the arteries is an active, complex process, similar to bone genesis and formation. The main purpose of this review is to provide an update of the existing biomarkers of VC in serum and develop the various pathogenetic mechanisms underlying the calcification process, including the pivotal roles of matrix Gla protein, osteoprotegerin, bone morphogenetic proteins, fetuin-a, fibroblast growth-factor-23, osteocalcin, osteopontin, osteonectin, sclerostin, pyrophosphate, Smads, fibrillin-1 and carbonic anhydrase II.
Collapse
|
13
|
Ali D, Chen L, Kowal JM, Okla M, Manikandan M, AlShehri M, AlMana Y, AlObaidan R, AlOtaibi N, Hamam R, Alajez NM, Aldahmash A, Kassem M, Alfayez M. Resveratrol inhibits adipocyte differentiation and cellular senescence of human bone marrow stromal stem cells. Bone 2020; 133:115252. [PMID: 31978617 DOI: 10.1016/j.bone.2020.115252] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Bone marrow adipose tissue (BMAT) is a unique adipose depot originating from bone marrow stromal stem cells (BMSCs) and regulates bone homeostasis and energy metabolism. An increased BMAT volume is observed in several conditions e.g. obesity, type 2 diabetes, osteoporosis and is known to be associated with bone fragility and increased risk for fracture. Therapeutic approaches to decrease the accumulation of BMAT are clinically relevant. In a screening experiment of natural compounds, we identified Resveratrol (RSV), a plant-derived antioxidant mediating biological effects via sirtuin- related mechanisms, to exert significant effects of BMAT formation. Thus, we examined in details the effects RSV on adipocytic and osteoblastic differentiation of tolermerized human BMSCs (hBMSC-TERT). RSV (1.0 μM) enhanced osteoblastic differentiation and inhibited adipocytic differentiation of hBMSC-TERT when compared with control and Sirtinol (Sirtuin inhibitor). Global gene expression profiling and western blot analysis revealed activation of a number of signaling pathways including focal adhesion kinase (FAK). Pharmacological inhibition of FAK using (PF-573228) and AKT inhibitor (LY-294002) (5μM), diminished RSV-induced osteoblast differentiation. In addition, RSV reduced the levels of senescence-associated secretory phenotype (SASP), gene markers associated with senescence (P53, P16, and P21), intracellular ROS levels and increased gene expression of enzymes protecting cells from oxidative damage (HMOX1 and SOD3). In vitro treatment of primary hBMSCs from aged patients characterized with high adipocytic and low osteoblastic differentiation ability with RSV, significantly enhanced osteoblast and decreased adipocyte formation when compared to hBMSCs from young donors. RSV targets hBMSCs and inhibits adipogenic differentiation and senescence-associated phenotype and thus a potential agent for treating conditions of increased BMAT formation.
Collapse
Affiliation(s)
- Dalia Ali
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology & Metabolism, University Hospital of Odense and University of Southern Denmark, Odense, Denmark.
| | - Li Chen
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology & Metabolism, University Hospital of Odense and University of Southern Denmark, Odense, Denmark.
| | - Justyna M Kowal
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology & Metabolism, University Hospital of Odense and University of Southern Denmark, Odense, Denmark.
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Muthurangan Manikandan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Moayad AlShehri
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Yousef AlMana
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Reham AlObaidan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Najd AlOtaibi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia.
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology & Metabolism, University Hospital of Odense and University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Klüter T, Hassan R, Rasch A, Naujokat H, Wang F, Behrendt P, Lippross S, Gerdesmeyer L, Eglin D, Seekamp A, Fuchs S. An Ex Vivo Bone Defect Model to Evaluate Bone Substitutes and Associated Bone Regeneration Processes. Tissue Eng Part C Methods 2020; 26:56-65. [DOI: 10.1089/ten.tec.2019.0274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tim Klüter
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rywan Hassan
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Alexander Rasch
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fanlu Wang
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Peter Behrendt
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sebastian Lippross
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ludger Gerdesmeyer
- Department of Trauma and Orthopedic Surgery, Section for Oncological and Rheumatological Orthopedics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - David Eglin
- AO Research Institute Davos, Davos, Switzerland
| | - Andreas Seekamp
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sabine Fuchs
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
15
|
Hao M, He J, Wang C, Wang C, Ma B, Zhang S, Duan J, Liu F, Zhang Y, Han L, Liu H, Sang Y. Effect of Hydroxyapatite Nanorods on the Fate of Human Adipose-Derived Stem Cells Assessed In Situ at the Single Cell Level with a High-Throughput, Real-Time Microfluidic Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905001. [PMID: 31697037 DOI: 10.1002/smll.201905001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The fate of stem cells at the single cell level with limited communication with other cells is still unknown due to the lack of an efficient tool for highly accurate molecular detection. Moreover, the conditional sensitivity of biological experiments requires a sufficient number of parallel experiments to support a conclusion. In this work, a microfluidic single cell chip is designed for use with a protein chip to investigate the effect of hydroxyapatite (HAp) on the osteogenic differentiation of human adipose-derived stem cells (hADSCs) in situ at the single cell level. By successfully detecting secretory proteins in situ, it is found that the HAp nanorods enhance osteogenic differentiation at the single cell level. In the chip, the single cell seeding approach confirms the osteogenic differentiation of the hADSCs, which endocytoses HAp, by reducing the influence of the factors secreted by neighboring differentiating cells. Most importantly, more than 7000 microchambers provide a sufficient number of parallel experiments for statistical analysis, which ensure a high level of repeatability of the HAp nanorod-induced osteogenic differentiation. The microfluidic chip comprising single cell culture microchambers with in situ detection capability is a promising tool for research on cell behavior or cell fate at the single cell level.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jianlong He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Baojin Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
16
|
Osagie-Clouard L, Kaufmann J, Blunn G, Coathup M, Pendegrass C, Meeson R, Briggs T, Moazen M. Biomechanics of two external fixator devices used in rat femoral fractures. J Orthop Res 2019; 37:293-298. [PMID: 29727021 DOI: 10.1002/jor.24034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
The use of external fixators allows for the direct investigation of newly formed interfragmentary bone, and the radiographic evaluation of the fracture. We validated the results of a finite element (FE) model with the in vitro stiffness' of two widely used external fixator devices used for in vivo analysis of fracture healing in rat femoral fractures with differing construction (Ti alloy ExFix1 and PEEK ExFix2). Rat femoral fracture fixation was modeled using two external fixators. For both constructs an osteotomy of 2.75 mm was used, and offset maintained at 5 mm. Tufnol, served as standardized substitutes for rat femora. Constructs were loaded under axial compression and torsion. Overall axial and torsional stiffness were compared between the in vitro models and FE results. FE models were also used to compare the fracture movement and overall pattern of von Mises stress across the external fixators. In vitro axial stiffness of ExFix1 was 29.26 N/mm ± 3.83 compared to ExFix2 6.31 N/mm ± 0.67 (p* < 0.05). Torsional stiffness of ExFix1 was 47.5 Nmm/° ± 2.71 compared to ExFix2 at 19.1 Nmm/° ±1.18 (p* < 0.05). FE results predicted similar comparative ratios between the ExFix1 and 2 as the in vitro studies. FE results predicted considerably larger interfragmentary motion in the ExFix2 comparing to ExFix1. We demonstrated significant differences in the stiffness' of the two external fixators as one would expect from such variable designs; yet, importantly we validated the utility of an FE model for the analysis and prediction of changes in fracture mechanics dependent on fixator choice. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:293-298, 2019.
Collapse
Affiliation(s)
| | - Joshua Kaufmann
- Division of Surgery, University College London, Stanmore, UK
| | - Gordon Blunn
- Division of Surgery, University College London, Stanmore, UK.,University of Portsmouth, Portsmouth, UK
| | | | | | - Richard Meeson
- Division of Surgery, University College London, Stanmore, UK
| | | | - Mehran Moazen
- Mechanical Engineering, University College London, London, UK
| |
Collapse
|
17
|
Roumeliotis S, Dounousi E, Eleftheriadis T, Liakopoulos V. Association of the Inactive Circulating Matrix Gla Protein with Vitamin K Intake, Calcification, Mortality, and Cardiovascular Disease: A Review. Int J Mol Sci 2019; 20:628. [PMID: 30717170 PMCID: PMC6387246 DOI: 10.3390/ijms20030628] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/07/2023] Open
Abstract
Matrix Gla Protein (MGP), a small Gla vitamin K-dependent protein, is the most powerful natural occurring inhibitor of calcification in the human body. To become biologically active, MGP must undergo vitamin K-dependent carboxylation and phosphorylation. Vitamin K deficiency leads to the inactive uncarboxylated, dephosphorylated form of MGP (dpucMGP). We aimed to review the existing data on the association between circulating dpucMGP and vascular calcification, renal function, mortality, and cardiovascular disease in distinct populations. Moreover, the association between vitamin K supplementation and serum levels of dpucMGP was also reviewed.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| | - Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | - Theodoros Eleftheriadis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| |
Collapse
|
18
|
Alshahrani I. Biomolecular phases in transverse palatal distraction: A review. Saudi J Biol Sci 2018; 25:1322-1325. [PMID: 30505176 PMCID: PMC6252022 DOI: 10.1016/j.sjbs.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 11/17/2022] Open
Abstract
Transverse palatal distraction is a biological process of regenerating new bone and enveloping soft tissues in the maxillary palate region. This technique is similar to Osteo-distraction (OD) procedure for bone lengthening in which gradual and controlled traction forces are applied on the osteotomy gaps to produce new bone in between the surgically separated bone segments. This review describes the different phases after osteotomy and the biological process involved during the new bone and soft tissue formation. The mechanical environment formed in the distraction area is due to the traction forces by the distractor appliance. This environment stimulates differentiation of pluripotent cells, neovascularization, osteogenesis and remodeling of newly formed bone. The role of different pro-inflammatory cytokines, interleukins, bone morphogenic proteins, transforming growth factors, fibroblast growth factors-2) and extracellular matrix proteins (osteonectin, osteopontin) during the distraction phases has been described in detail. Also, an important note on the nutritional aspect during Osteo-distraction will benefit the clinicians to guide their patients after osteotomy throughout the distraction process.
Collapse
|
19
|
Ikegame M, Ejiri S, Okamura H. Expression of Non-collagenous Bone Matrix Proteins in Osteoblasts Stimulated by Mechanical Stretching in the Cranial Suture of Neonatal Mice. J Histochem Cytochem 2018; 67:107-116. [PMID: 30113872 DOI: 10.1369/0022155418793588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the influence of mechanical stretching on the genetic expression pattern of non-collagenous bone matrix proteins in osteoblasts. The cranial sutures of neonatal mice were subjected to ex vivo mechanical stretching. In the non-stretched control group, as osteoblast differentiation progressed, the successive genetic expression of bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) was detected using in situ hybridization, in that order. In the stretched group, the sutures were widened, and after 24 hr of cultivation, a large number of osteoblasts and abundant new osteoid were observed on the borders of the parietal bones. All new osteoblasts expressed BSP and some of them expressed OPN, but very few of them expressed OCN. After 48 hr, more extensive presence of osteoid was noted on the borders of the parietal bones, and this osteoid was partially mineralized; all osteoblasts on the osteoid surface expressed BSP, and more osteoblasts expressed OPN than those after 24 hr cultivation. Surprisingly, many of the osteoblasts that did not express OPN, expressed OCN. This suggests that when osteoblast differentiation is stimulated by mechanical stress, the genetic expression pattern of non-collagenous proteins in the newly differentiated osteoblasts is affected.
Collapse
Affiliation(s)
- Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sadakazu Ejiri
- Department of Oral Anatomy, School of Dentistry, Asahi University, Gifu, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Biology of Bone Formation, Fracture Healing, and Distraction Osteogenesis. J Craniofac Surg 2017; 28:1380-1389. [DOI: 10.1097/scs.0000000000003625] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Xu ML, Bi CWC, Liu EYL, Dong TTX, Tsim KWK. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor. J Biol Chem 2017; 292:12667-12678. [PMID: 28607150 DOI: 10.1074/jbc.m117.777581] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2.
Collapse
Affiliation(s)
- Miranda L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, Guangdong Province, China
| | - Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, Guangdong Province, China
| | - Etta Y L Liu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, Guangdong Province, China
| | - Tina T X Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, Guangdong Province, China
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518000, Guangdong Province, China.
| |
Collapse
|
22
|
Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells. Colloids Surf B Biointerfaces 2017; 154:1-9. [PMID: 28268191 DOI: 10.1016/j.colsurfb.2017.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment.
Collapse
|
23
|
Abstract
Distraction osteogenesis biologically resembles fracture healing with distinctive characteristics notably in the distraction phase of osteogenesis. In the latency phase of bone lengthening, like in the inflammatory phase of fracture repair, interleukines are released and act with growth factors released from platelets in the local haematoma, leading to attraction, proliferation and differentiation of mesenchymal stem cells into osteoblasts and other differentiated mesenchymal cells. These in turn produce matrix, collagen fibers and growth factors. A callus containing cells, collagen fibers, osteoid and cartilage matrix is formed. Provided stable fixation, distraction will trigger intramembranous bone formation. As distraction proceeds, the distraction gap develops five distinctive zones with unmineralized bone in the middle, remodelling bone peripherally, and mineralizing bone in between. During consolidation, the high concentration of anabolic growth factors in the regenerate diminishes with time as remodelling takes over to form mature cortical and cancellous bone. Systemic disease, congenital bone deficiencies, medications and substance abuse can influence the quality and quantity of regenerate bone, usually in a negative way. The regenerate bone can be manipulated when needed by using injection of mesenchymal stem cells and platelets, growth factors (BMP-2 and -7), and systemic medications (bisphosphonates and parathyroid hormone). Growth factors and systemic anabolic and antiresorptive drugs are prescribed on special indications, while distraction osteogenesis is not an authorized indication. To some extent, however, these compounds can be used off-label. Use in children presents special problems since growth factors and specific anabolic medications may involve a risk of inducing cancer.
Collapse
Affiliation(s)
- Ivan Hvid
- Section of Pediatric and Reconstructive Orthopaedic Surgery, Department of Orthopaedic Surgery, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
| | - Joachim Horn
- Section of Pediatric and Reconstructive Orthopaedic Surgery, Department of Orthopaedic Surgery, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Stefan Huhnstock
- Section of Pediatric and Reconstructive Orthopaedic Surgery, Department of Orthopaedic Surgery, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Harald Steen
- Section of Pediatric and Reconstructive Orthopaedic Surgery, Department of Orthopaedic Surgery, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| |
Collapse
|
24
|
Frara N, Abdelmagid SM, Sondag GR, Moussa FM, Yingling VR, Owen TA, Popoff SN, Barbe MF, Safadi FF. Transgenic Expression of Osteoactivin/gpnmb Enhances Bone Formation In Vivo and Osteoprogenitor Differentiation Ex Vivo. J Cell Physiol 2016; 231:72-83. [PMID: 25899717 DOI: 10.1002/jcp.25020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/26/2023]
Abstract
Initial identification of osteoactivin (OA)/glycoprotein non-melanoma clone B (gpnmb) was demonstrated in an osteopetrotic rat model, where OA expression was increased threefold in mutant bones, compared to normal. OA mRNA and protein expression increase during active bone regeneration post-fracture, and primary rat osteoblasts show increased OA expression during differentiation in vitro. To further examine OA/gpnmb as an osteoinductive agent, we characterized the skeletal phenotype of transgenic mouse overexpressing OA/gpnmb under the CMV-promoter (OA-Tg). Western blot analysis showed increased OA/gpnmb in OA-Tg osteoblasts, compared to wild-type (WT). In OA-Tg mouse femurs versus WT littermates, micro-CT analysis showed increased trabecular bone volume and thickness, and cortical bone thickness; histomorphometry showed increased osteoblast numbers, bone formation and mineral apposition rates in OA-Tg mice; and biomechanical testing showed higher peak moment and stiffness. Given that OA/gpnmb is also over-expressed in osteoclasts in OA-Tg mice, we evaluated bone resorption by ELISA and histomorphometry, and observed decreased serum CTX-1 and RANK-L, and decreased osteoclast numbers in OA-Tg, compared to WT mice, indicating decreased bone remodeling in OA-Tg mice. The proliferation rate of OA-Tg osteoblasts in vitro was higher, compared to WT, as was alkaline phosphatase staining and activity, the latter indicating enhanced differentiation of OA-Tg osteoprogenitors. Quantitative RT-PCR analysis showed increased TGF-β1 and TGF-β receptors I and II expression in OA-Tg osteoblasts, compared to WT. Together, these data suggest that OA overexpression has an osteoinductive effect on bone mass in vivo and stimulates osteoprogenitor differentiation ex vivo.
Collapse
Affiliation(s)
- Nagat Frara
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Samir M Abdelmagid
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Fouad M Moussa
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Vanessa R Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, California
| | - Thomas A Owen
- School of Theoretical and Applied Science (TAS), Ramapo College of New Jersey, Mahwah, New Jersey
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
25
|
Biological basis of distraction osteogenesis – A review. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2016. [DOI: 10.1016/j.ajoms.2015.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Erazo C. C, Ríos V. M, Troncoso O. E, Quezada R. G. DISTRACCIÓN ÓSEA DEL TERCIO MEDIO FACIAL EN MALFORMACIONES CRÁNEO-MAXILOFACIALES. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
BMPs in bone regeneration: Less is more effective, a paradigm-shift. Cytokine Growth Factor Rev 2015; 27:141-8. [PMID: 26678813 DOI: 10.1016/j.cytogfr.2015.11.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022]
Abstract
Worldwide, the clinical application of BMP2 (bone morphogenetic protein 2) has helped an increasing number of patients achieve bone regeneration in a clinical area lacking simple solutions for difficult bone healing situations. In this review, the historical aspects and current critical clinical issues are summarized and positioned against new research findings on efficacy and function of BMP2. Knowledge concerning how the dose of this growth factor as well as its interaction with mechanical loading influences the efficacy of bone regeneration, might open possible future strategies in cases where bony bridging is unachievable so far. In conclusion, it is apparent that there is a substantial need for continued basic research to unravel the details of its function and the underlying signaling pathways involved, to make BMP2 even more relevant and safe in daily clinical use, even though this growth factor has been known for more than 125 years.
Collapse
|
28
|
Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:842975. [PMID: 26448947 PMCID: PMC4584039 DOI: 10.1155/2015/842975] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Bone is one of the most dynamic tissues in the human body that can heal following injury without leaving a scar. However, in instances of extensive bone loss, this intrinsic capacity of bone to heal may not be sufficient and external intervention becomes necessary. Several techniques are available to address this problem, including autogenous bone grafts and allografts. However, all these techniques have their own limitations. An alternative method is the technique of distraction osteogenesis, where gradual and controlled distraction of two bony segments after osteotomy leads to induction of new bone formation. Although distraction osteogenesis usually gives satisfactory results, its major limitation is the prolonged duration of time required before the external fixator is removed, which may lead to numerous complications. Numerous methods to accelerate bone formation in the context of distraction osteogenesis have been reported. A viable alternative to autogenous bone grafts for a source of osteogenic cells is mesenchymal stem cells from bone marrow. However, there are certain problems with bone marrow aspirate. Hence, scientists have investigated other sources for mesenchymal stem cells, specifically adipose tissue, which has been shown to be an excellent source of mesenchymal stem cells. In this paper, the potential use of adipose stem cells to stimulate bone formation is discussed.
Collapse
|
29
|
Compton J, Fragomen A, Rozbruch SR. Skeletal Repair in Distraction Osteogenesis: Mechanisms and Enhancements. JBJS Rev 2015; 3:01874474-201508000-00002. [PMID: 27490473 DOI: 10.2106/jbjs.rvw.n.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jocelyn Compton
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10031
| | - Austin Fragomen
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | - S Robert Rozbruch
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| |
Collapse
|
30
|
A comparison of stromal cell-derived factor-1 expression during distraction osteogenesis and bone fracture in the mandible. J Craniofac Surg 2015; 24:805-8. [PMID: 23714884 DOI: 10.1097/scs.0b013e31828f1ca7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Distraction osteogenesis (DO) has been a widely applied technique in orthopedics and craniofacial surgery. However, the exact molecular mechanism by which the mechanical stimulus is translated into biological signals is still poorly understood. In this study, we examined and compared the expression of stromal cell-derived factor-1 (SDF-1) during mandibular distraction osteogenesis and fracture in rats, respectively. Forty-eight male Sprague-Dawley rats were divided into 2 groups and received unilateral distraction osteogenesis and rigid internal fixation, respectively, after the osteotomy on the right mandible. The harvested mandibles were examined radiographically, histologically, and immunohistochemically. We found that the expression of SDF-1 was mainly detected in the osteoblasts and blood vessels, and there were more intensive expression of SDF-1 in DO zones than in bone fracture zones. The quantitative analysis by enzyme-linked immunosorbent assay showed that SDF-1 reached a greater peak and maintained a longer period of up-regulation in DO than in fracture healing (P < 0.05). These results suggest that the distraction procedure markedly promotes the high expression of SDF-1 which facilitates the induction of bone formation during DO.
Collapse
|
31
|
Lybrand K, Bragdon B, Gerstenfeld L. Mouse models of bone healing: fracture, marrow ablation, and distraction osteogenesis. ACTA ACUST UNITED AC 2015; 5:35-49. [PMID: 25727199 DOI: 10.1002/9780470942390.mo140161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Three commonly used murine surgical models of bone healing [closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming] are presented. Detailed surgical protocols for each model are outlined. The nature of the regenerative processes and the types of research questions that may be addressed with these models are briefly outlined. The relative strengths and weaknesses of these models are compared to a number of other surgical models that are used to address similar research questions.
Collapse
Affiliation(s)
- Kyle Lybrand
- Orthopaedic Research Laboratory, Boston University School of Medicine, Boston, Massachusetts.,Department of Orthopaedic Surgery, Boston Medical Center, Boston, Massachusetts
| | - Beth Bragdon
- Orthopaedic Research Laboratory, Boston University School of Medicine, Boston, Massachusetts
| | - Louis Gerstenfeld
- Orthopaedic Research Laboratory, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
32
|
Bragdon B, Lybrand K, Gerstenfeld L. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2015; 5:21-34. [PMID: 25727198 PMCID: PMC4358754 DOI: 10.1002/9780470942390.mo140166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fractures are one of the most common large-organ, traumatic injuries in humans, and osteoporosis-related fractures are the fastest growing health care problem of aging. Elective orthopedic surgeries of the bones and joints also represent some of most common forms of elective surgeries performed. Optimal repair of skeletal tissues is necessary for successful outcomes of these many different orthopedic surgical treatments. Research focused on post-natal skeletal repair is therefore of immense clinical importance and of particular relevance in situations in which bone tissue healing is compromised due to the extent of tissue trauma or specific medical co-morbidities. Three commonly used murine surgical models of bone healing, closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming, are presented. The biological aspects of these models are contrasted and the types of research questions that may be addressed with these models are presented.
Collapse
Affiliation(s)
- Beth Bragdon
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Kyle Lybrand
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Louis Gerstenfeld
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| |
Collapse
|
33
|
Fishero BA, Kohli N, Das A, Christophel JJ, Cui Q. Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 2014; 8:23-30. [PMID: 25709750 DOI: 10.1055/s-0034-1393724] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair.
Collapse
Affiliation(s)
- Brian Alan Fishero
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Nikita Kohli
- Department of Otolaryngology-Head and Neck Surgery, SUNY Downstate Medical Center, Brooklyn, New York
| | - Anusuya Das
- Orthopaedic Surgery Research Center, University of Virginia, Charlottesville, Virginia
| | - John Jared Christophel
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Quanjun Cui
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
34
|
Guo P, Zeng JJ, Zhou N. Nonvascular transport distraction osteogenesis in bone formation and regeneration. Is it an accidental phenomenon? J Craniomaxillofac Surg 2014; 43:21-7. [PMID: 25457741 DOI: 10.1016/j.jcms.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/03/2014] [Accepted: 10/10/2014] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To explore the osteogenic mechanism of nonvascular transport distraction osteogenesis (NTDO) by constructing mandibular defects in dogs. METHODS Sixty adult dogs were randomly divided into three groups with 20 dogs in each group. Canine mandibular defect models of NTDO were constructed. Animals were euthanized 1, 4 and 12 weeks after distraction, and the transport disc and surrounding tissue were collected and fixed. Histochemical staining using hematoxylin and eosin (H&E) and electron microscopic observations were used to examine bone regeneration. RESULTS Distraction bone regeneration was observed in the distraction gap and around the transport disc, and osseous connections had formed between new bone and the transport disc after one week. Osteoclasts gathered around the transport disc, and bone absorption pit formation could be seen. After 4 weeks of distraction, the new bone around the transport disc was close to maturity with thick sclerostin on the middle of the transport disc. After 12 weeks the new bone and the transport disc were fully integrated, and were difficult to distinguish by H&E staining and electron microscopy. CONCLUSIONS Canine mandibular defects were successfully repaired by NTDO resulting in ideal new bone formation and fully recovered mandibular physiological function. The surrounding tissues, including musculoskeletal tissues, the periosteum and other soft tissues and the nonvascular transport disc, together contribute to bone regeneration and neovascularization in NTDO.
Collapse
Affiliation(s)
- Peng Guo
- College of Stomatology, GuangXi Medical University, Nanning Guangxi, China
| | - Jing-Jing Zeng
- College of Stomatology, GuangXi Medical University, Nanning Guangxi, China
| | - Nuo Zhou
- College of Stomatology, GuangXi Medical University, Nanning Guangxi, China.
| |
Collapse
|
35
|
Xu F, Ding H, Song F, Wang J. Effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:2080-93. [PMID: 25324120 DOI: 10.1080/09205063.2014.970604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To investigate the effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres, coacervate precipitation method and emulsion cross-linking method were chosen to prepare chitosan microspheres, and then apatite coatings were deposited using simulated body fluid. Rat bone marrow-derived mesenchymal stem cells (BMSCs) were seeded on these microspheres. Cell adhesion, proliferation, and differentiation potential were monitored. For in vivo analysis, some cell/microsphere constructs were implanted in the subcutaneous pockets of male Wistar rats. After 3, 6, 12 weeks, the samples were retrieved and stained with hematoxylin and eosin (HE). Some cell/microsphere constructs were implanted in the calvarial defects of rats. Micro-CT and HE analysis were performed to analyze the new bone formation. It was found that BMSCs on apatite-coated emulsion cross-linked microspheres (EM1) exhibited better proliferation and differentiation than cells on apatite-coated coacervate-precipitated microspheres. The in vivo results showed that no bone was observed in ectopic areas. While in calvarial defects, both histological slices and Micro-CT images demonstrated that a substantial amount of new bone was formed in the EM1/BMSCs construct. These data suggest that preparation methods do exert great influence on the in vitro cell behaviors and in vivo orthotopic bone regeneration of apatite-coated chitosan microspheres. Appropriate method should be considered when preparing chitosan microspheres for bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Fei Xu
- a Hubei-MOST KLOS & KLOBM, School and Hospital of Stomatology, Wuhan University , Wuhan 430079 , P.R. China
| | | | | | | |
Collapse
|
36
|
Förster Y, Rentsch C, Schneiders W, Bernhardt R, Simon JC, Worch H, Rammelt S. Surface modification of implants in long bone. BIOMATTER 2014; 2:149-57. [PMID: 23507866 PMCID: PMC3549868 DOI: 10.4161/biom.21563] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.
Collapse
Affiliation(s)
- Yvonne Förster
- Department of Trauma and Reconstructive Surgery, Center for Translational Bone, Joint and Soft Tissue Research, Dresden University Hospital Carl Gustav Carus, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Jungner M, Cricchio G, Salata LA, Sennerby L, Lundqvist C, Hultcrantz M, Lundgren S. On the Early Mechanisms of Bone Formation after Maxillary Sinus Membrane Elevation: An Experimental Histological and Immunohistochemical Study. Clin Implant Dent Relat Res 2014; 17:1092-102. [DOI: 10.1111/cid.12218] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Måns Jungner
- Department of Oral and Maxillofacial Surgery; Karolinska University Hospital; Stockholm Sweden
- Department of Oral and Maxillofacial Surgery; Umeå University; Umeå Sweden
| | - Giovanni Cricchio
- Department of Oral and Maxillofacial Surgery; Umeå University; Umeå Sweden
| | - Luiz A. Salata
- Department of Oral & Maxillofacial Surgery and Periodontics; Faculty of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Lars Sennerby
- Department of Oral and Maxillofacial Surgery; Sahlgrenska Academy; Gothenburg University; Göteborg Sweden
| | - Carina Lundqvist
- Department of Oral and Maxillofacial Surgery; Umeå University; Umeå Sweden
| | - Malou Hultcrantz
- Department of Otorhinolaryngology; Karolinska University Hospital; Stockholm Sweden
| | - Stefan Lundgren
- Department of Oral and Maxillofacial Surgery; Umeå University; Umeå Sweden
| |
Collapse
|
38
|
Wang X, Schröder HC, Grebenjuk V, Diehl-Seifert B, Mailänder V, Steffen R, Schloßmacher U, Müller WEG. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 2014; 12:1131-1147. [PMID: 24566262 PMCID: PMC3944534 DOI: 10.3390/md12021131] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 01/03/2023] Open
Abstract
The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts) or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation). Both biosilica and polyP, applied as Ca²⁺ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP) in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that alginate, supplemented with polyP and/or biosilica, is a suitable biomaterial that promotes the growth and differentiation of hMSCs and might be beneficial for application in 3D tissue printing of hMSCs and for the delivery of hMSCs in fractures, surgically created during distraction osteogenesis.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Vladislav Grebenjuk
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | | | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany.
| | - Renate Steffen
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Ute Schloßmacher
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
39
|
Alzahrani MM, Anam EA, Makhdom AM, Villemure I, Hamdy RC. The effect of altering the mechanical loading environment on the expression of bone regenerating molecules in cases of distraction osteogenesis. Front Endocrinol (Lausanne) 2014; 5:214. [PMID: 25540639 PMCID: PMC4261813 DOI: 10.3389/fendo.2014.00214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022] Open
Abstract
Distraction osteogenesis (DO) is a surgical technique where gradual and controlled separation of two bony fragments following an osteotomy leads to the induction of new bone formation in the distracted gap. DO is used for limb lengthening, correction of bony deformities, and the replacement of bone loss secondary to infection, trauma, and tumors. Although DO gives satisfactory results in most cases, one major drawback of this technique is the prolonged period of time the external fixator has to be kept on until the newly formed bone consolidates thus leading to numerous complications. Numerous attempts at accelerating bone formation during DO have been reported. One specific approach is manipulation of the mechanical environment during DO by applying changes in the standard protocol of distraction. Attempts at changing this mechanical environment led to mixed results. Increasing the rate or applying acute distraction, led to poor bone formation in the distracted zone. On the other hand, the addition of compressive forces (such as weight bearing, alternating distraction with compression or by over-lengthening, and then shortening) has been reported to increase bone formation. It still remains unclear why these alterations may lead to changes in bone formation. While the cellular and molecular changes occurring during the standard DO protocol, specifically increased expression of transforming growth factor-β1, platelet-derived growth factor, insulin-like growth factor, basic fibroblast growth factor, vascular endothelial growth factor, and bone morphogenic proteins have been extensively investigated, the literature is sparse on the changes occurring when this protocol is altered. It is the purpose of this article to review the pertinent literature on the changes in the expression of various proteins and molecules as a result of changes in the mechanical loading technique in DO and try to define potential future research directions.
Collapse
Affiliation(s)
- Mohammad M. Alzahrani
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, University of Dammam, Dammam, Saudi Arabia
| | - Emad A. Anam
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asim M. Makhdom
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isabelle Villemure
- Department of Mechanical Engineering, École Polytechnique de Montreal, Montreal, QC, Canada
- Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Reggie Charles Hamdy
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Reggie Charles Hamdy, Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, 1529 Cedar Avenue, Montreal, QC H3G 1A6, Canada e-mail:
| |
Collapse
|
40
|
McManus MM, Weiss KR, Hughes DPM. Understanding the role of Notch in osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:67-92. [PMID: 24924169 DOI: 10.1007/978-3-319-04843-7_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Notch pathway has been described as an oncogene in osteosarcoma, but the myriad functions of all the members of this complex signaling pathway, both in malignant cells and nonmalignant components of tumors, make it more difficult to define Notch as simply an oncogene or a tumor suppressor. The cell-autonomous behaviors caused by Notch pathway manipulation may vary between cell lines but can include changes in proliferation, migration, invasiveness, oxidative stress resistance, and expression of markers associated with stemness or tumor-initiating cells. Beyond these roles, Notch signaling also plays a vital role in regulating tumor angiogenesis and vasculogenesis, which are vital aspects of osteosarcoma growth and behavior in vivo. Further, osteosarcoma cells themselves express relatively low levels of Notch ligand, making it likely that nonmalignant cells, especially endothelial cells and pericytes, are the major source of Notch activation in osteosarcoma tumors in vivo and in patients. As a result, Notch pathway expression is not expected to be uniform across a tumor but likely to be highest in those areas immediately adjacent to blood vessels. Therapeutic targeting of the Notch pathway is likewise expected to be complicated. Most pharmacologic approaches thus far have focused on inhibition of gamma secretase, a protease of the presenilin complex. This enzyme, however, has numerous other target proteins that would be expected to affect osteosarcoma behavior, including CD44, the WNT/β-catenin pathway, and Her-4. In addition, Notch plays a vital role in tissue and organ homeostasis in numerous systems, and toxicities, especially GI intolerance, have limited the effectiveness of gamma secretase inhibitors. New approaches are in development, and the downstream targets of Notch pathway signaling also may turn out to be good targets for therapy. In summary, a full understanding of the complex functions of Notch in osteosarcoma is only now unfolding, and this deeper knowledge will help position the field to better utilize novel therapies as they are developed.
Collapse
Affiliation(s)
- Madonna M McManus
- The Children's Cancer Hospital at MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
41
|
Cytotoxic agents are detrimental to bone formed by distraction osteogenesis. Strategies Trauma Limb Reconstr 2013; 8:173-80. [PMID: 24105429 PMCID: PMC3800511 DOI: 10.1007/s11751-013-0179-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/22/2013] [Indexed: 10/26/2022] Open
Abstract
UNLABELLED Distraction osteogenesis can be used to replace segmental bone loss when treating malignant bone tumors in children and adolescents. These patients often receive cytotoxic chemotherapy as part of their treatment regimen. The effect of cytotoxic drugs on the cellular processes during distraction osteogenesis and the structural and mechanical properties of regenerate bone is unknown. We therefore used a rabbit model of distraction osteogenesis to determine that cytotoxic agents had a detrimental effect on regenerate bone formed by this technique. We administered adriamycin and cisplatinum to 20 rabbits using two different simulated chemotherapy regimens. All rabbits underwent an osteotomy at 12 weeks of age. Distraction osteogenesis began 24 h later at a rate of 0.75 mm a day for 10 days, followed by 18 days without correction to allow for consolidation. Regenerate bone was assessed using plain radiographs, bone densitometry, and mechanical testing. Peri-operative chemotherapy decreased the mechanical properties of the regenerate with regard to yield strain (3.7 × 10(-2) vs. 5.2 × 10(-2)) and energy at yield (2.73 × 10(7) vs. 3.92 × 10(7)). Preoperative chemotherapy in isolation reduced bone mineral density (0.38 vs. 0.5 g/cm(2)), bone mineral content (0.24 vs. 0.36 g), and volumetric bone mineral density (0.57 vs. 0.65 g/cm(2)) with no alterations in the mechanical properties. CONCLUSIONS Preoperative chemotherapy appears to decrease the volume of regenerate bone, without affecting structural integrity, suggesting that the callus formed is of good quality. The converse appears true for peri-operative chemotherapy.
Collapse
|
42
|
Makhdom AM, Hamdy RC. The Role of Growth Factors on Acceleration of Bone Regeneration During Distraction Osteogenesis. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:442-53. [PMID: 23582172 DOI: 10.1089/ten.teb.2012.0717] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Asim M. Makhdom
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reggie C. Hamdy
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Wahl EC, Aronson J, Skinner RA, Lumpkin CK. Bromodeoxyuridine Trackng of Osteoblast Progenitors in Formalin-Fixed, Decalcified Regenerating Bone. J Histotechnol 2013. [DOI: 10.1179/his.2006.29.1.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Schwarz C, Wulsten D, Ellinghaus A, Lienau J, Willie BM, Duda GN. Mechanical load modulates the stimulatory effect of BMP2 in a rat nonunion model. Tissue Eng Part A 2012; 19:247-54. [PMID: 22861354 DOI: 10.1089/ten.tea.2012.0265] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Local application of bone morphogenetic proteins (BMPs) at the fracture site is known to stimulate bone regeneration. However, recent studies illustrate that the BMP-initiated mineralization may be enhanced by additional mechanical stimulation. Therefore, bone healing was monitored in vivo in order to investigate the effect of mechanical loading on the initiation and maturation of mineralization after cytokine treatment. We hypothesized that the mechanical stimulation would further enhance the efficacy of BMP2 treatment. METHOD Female Sprague-Dawley rats underwent a 5-mm defect, stabilized with an external fixator. Type I collagen scaffolds containing 50 μg of BMP2 diluted in a solvent or solvent only were placed into the defects. The BMP2-treated specimens and control specimens were then each divided into two groups: one that underwent mechanical loading and a nonloaded group. In vivo loading began immediately after surgery and continued once per week for the entire 6-week experimental period. For all groups, the newly formed callus tissue was quantitatively evaluated first by in vivo microcomputed tomography at 2, 4, and 6 weeks and further by histologic or histomorphometric analysis at 6 weeks postoperation. RESULTS Mechanical stimulation with BMP2 treatment significantly enhanced mineralized tissue volume and mineral content at 2 weeks. Histological analysis demonstrated a significantly greater area of fibrous connective tissue including bone marrow in the stimulated group, suggesting reconstitution of the endosteal canal and more advanced bone remodeling present in the mechanical loaded group. Both groups receiving BMP2 underwent massive bone formation, achieving bony bridging after only 2 weeks, while both control groups, receiving solvent only, revealed a persisting nonunion, filled with fibrous connective tissue, prolapsed muscle tissue, and a sealed medullary canal at week 6. CONCLUSION Mechanical loading further enhanced the efficacy of BMP2 application evidenced by increased mineralized tissue volume and mineralization at the stage of bony callus bridging. These data suggest that already a minimal amount of mechanical stimulation through load bearing or exercise may be a promising adjunct stimulus to enhance the efficacy of cytokine treatment in segmental defects. Further studies are required to elucidate the mechanistic interplay between mechanical and biological stimuli.
Collapse
Affiliation(s)
- Carolin Schwarz
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Lesaichot V, Leperlier D, Viateau V, Richarme D, Petite H, Sailhan F. The influence of Bone Morphogenic Protein-2 on the consolidation phase in a distraction osteogenesis model. Injury 2011; 42:1460-6. [PMID: 21726857 DOI: 10.1016/j.injury.2011.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 04/28/2011] [Accepted: 05/22/2011] [Indexed: 02/02/2023]
Abstract
We asked whether locally applied recombinant-Bone Morphogenic Protein-2 (rh-BMP-2) with an absorbable Type I collagen sponge (ACS) carrier could enhance the consolidation phase in a callotasis model. We performed unilateral transverse osteotomy of the tibia in 21 immature male rabbits. After a latency period of 7 days, a 3-weeks distraction was begun at a rate of 0.5mm/12h. At the end of the distraction period (Day 28) animals were randomly divided into three groups and underwent a second surgical procedure: 6 rabbits in Group I (Control group; the callus was exposed and nothing was added), 6 rabbits in Group II (ACS group; receiving the absorbable collagen sponge soaked with saline) and 9 rabbits in Group III (rh-BMP-2/ACS group; receiving the ACS soaked with 100μg/kg of rh-BMP-2, Inductos(®), Medtronic). Starting at Day 28 we assessed quantitative and qualitative radiographic parameters as well as densitometric parameters every two weeks (Days 28, 42, 56, 70 and 84). Animals were sacrificed after 8 weeks of consolidation (Day 84). Qualitative radiographic evaluation revealed hypertrophic calluses in the Group III animals. The rh-BMP-2/ACS also influenced the development of the cortex of the calluses as shown by the modified radiographic patterns in Group III when compared to Groups I and II. Densitometric analysis revealed the bone mineral content (BMC) was significantly higher in the rh-BMP-2/ACS treated animals (Group III).
Collapse
Affiliation(s)
- Valérie Lesaichot
- Department of Animal Experimental Surgery, National Veterinary School of Maison Alfort, France
| | | | | | | | | | | |
Collapse
|
46
|
Mahalingam CD, Datta T, Patil RV, Kreider J, Bonfil RD, Kirkwood KL, Goldstein SA, Abou-Samra AB, Datta NS. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone. J Endocrinol 2011; 211:145-56. [PMID: 21852324 PMCID: PMC3783352 DOI: 10.1530/joe-11-0144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) signaling via PTH 1 receptor (PTH1R) involves mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase 1 (MKP1) dephosphorylates and inactivates MAPKs in osteoblasts, the bone-forming cells. We previously showed that PTH1R activation in differentiated osteoblasts upregulates MKP1 and downregulates pERK1/2-MAPK and cyclin D1. In this study, we evaluated the skeletal phenotype of Mkp1 knockout (KO) mice and the effects of PTH in vivo and in vitro. Microcomputed tomography analysis of proximal tibiae and distal femora from 12-week-old Mkp1 KO female mice revealed osteopenic phenotype with significant reduction (8-46%) in bone parameters compared with wild-type (WT) controls. Histomorphometric analysis showed decreased trabecular bone area in KO females. Levels of serum osteocalcin (OCN) were lower and serum tartrate-resistant acid phosphatase 5b (TRAP5b) was higher in KO animals. Treatment of neonatal mice with hPTH (1-34) for 3 weeks showed attenuated anabolic responses in the distal femora of KO mice compared with WT mice. Primary osteoblasts derived from KO mice displayed delayed differentiation determined by alkaline phosphatase activity, and reduced expressions of Ocn and Runx2 genes associated with osteoblast maturation and function. Cells from KO females exhibited attenuated PTH response in mineralized nodule formation in vitro. Remarkably, this observation was correlated with decreased PTH response of matrix Gla protein expression. Expressions of pERK1/2 and cyclin D1 were inhibited dramatically by PTH in differentiated osteoblasts from WT mice but much less in osteoblasts from Mkp1 KO mice. In conclusion, MKP1 is important for bone homeostasis, osteoblast differentiation and skeletal responsiveness to PTH.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Distraction osteogenesis (DO) is a surgical technique widely used in orthopedic surgery for the treatment of various pathological conditions such as leg length discrepancy, bone deformity or bone defects. The basic principle of the callotasis technique includes performing a transverse bone section before gradually distracting the two bone segments. New bone tissue is generated in the gap between the two segments. Bone regeneration during DO is believed to occur in response to the longitudinal mechanical strain applied to the callus during healing. One of the limitations of this technique is the long period of time required for the newly formed bone tissue to mineralize and consolidate. Various studies have reported that among growth factors, bone morphogenetic proteins (BMPs) may play a central role in the molecular signaling cascade leading to bone renegeration and remodeling in a DO procedure. Ongoing research is aimed at developing methods to accelerate bone consolidation in order to reduce the time required to obtain consolidation. One of these methods is to test the ability of exogenous BMPs to increase bone regeneration and accelerate bone consolidation.
Collapse
Affiliation(s)
- F Sailhan
- Department of Orthopedic Surgery, Hôpital Cochin, Paris-Descartes University, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France.
| |
Collapse
|
48
|
Fuchs S, Jiang X, Gotman I, Makarov C, Schmidt H, Gutmanas EY, Kirkpatrick CJ. Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone nanocomposites on the formation of microvessel-like structures. Acta Biomater 2010; 6:3169-77. [PMID: 20144913 DOI: 10.1016/j.actbio.2010.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/11/2010] [Accepted: 02/02/2010] [Indexed: 01/03/2023]
Abstract
Calcium phosphate (CaP) ceramics are widely used in bone tissue engineering due to their good osteoconductivity. The mechanical properties of CaP can be modified by the addition of small volume fractions of biodegradable polymers such as polycaprolactone (PCL). Nevertheless, it is also important to evaluate how the polymer content influences cell-material or cell-cell interactions because of potential consequences for bone regeneration and vascularization. In this study we assessed the general biocompatibilty of Ca-deficient hydroxyapatite (CDHA)-PCL disks containing nominally 11 and 24% polycaprolactone using human umbilical vein endothelial cells and human primary osteoblasts. Confocal microscopy showed that both CDHA-PCL variants supported the growth of both cell types. In terms of the endothelial cells grown on CDHA-PCL nanocomposites with 24% PCL, an increased expression of the endothelial marker vWF compared to CDHA-PCL with 11% PCL was observed in real-time polymerase chain reaction analysis. In addition to monocultures, co-cultures of outgrowth endothelial cells, derived from peripheral blood, and primary osteoblasts were assessed as an example of a more complex test system for bone regeneration and vascularization. Constructs based on CDHA with different PCL contents were investigated with regard to the formation of microvessel-like structures induced by the co-culture process using confocal microscopy and quantitative image analysis. Furthermore, the osteogenic differentiation of the co-culture was assessed. As a result, more pre-vascular structures were observed after 1 week on the CDHA-PCL disks with 24% PCL, whereas after 4 weeks of culture the extent of microvessel-like structure formation was slightly higher on the CDHA with 11% PCL. In contrast to this, variation of PCL content had no effect on the osteogenic differentiation in the co-culture.
Collapse
Affiliation(s)
- S Fuchs
- Institute of Pathology, Langenbeckstrasse 1, Universitätsmedizin der Johannes Gutenberg-Universität, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Sethuraman S, Nair LS, El-Amin S, Nguyen MT, Singh A, Krogman N, Greish YE, Allcock HR, Brown PW, Laurencin CT. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects. Acta Biomater 2010; 6:1931-7. [PMID: 20004751 PMCID: PMC2862891 DOI: 10.1016/j.actbio.2009.12.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 11/28/2022]
Abstract
The versatility of polymers for tissue regeneration lies in the feasibility to modulate the physical and biological properties by varying the side groups grafted to the polymers. Biodegradable polyphosphazenes are high-molecular-weight polymers with alternating nitrogen and phosphorus atoms in the backbone. This study is the first of its kind to systematically investigate the effect of side group structure on the compressive strength of novel biodegradable polyphosphazene based polymers as potential materials for tissue regeneration. The alanine polyphosphazene based polymers, poly(bis(ethyl alanato) phosphazene) (PNEA), poly((50% ethyl alanato) (50% methyl phenoxy) phosphazene) (PNEA(50)mPh(50)), poly((50% ethyl alanato) (50% phenyl phenoxy) phosphazene) (PNEA(50)PhPh(50)) were investigated to demonstrate their mechanical properties and osteocompatibility. Results of mechanical testing studies demonstrated that the nature and the ratio of the pendent groups attached to the polymer backbone play a significant role in determining the mechanical properties of the resulting polymer. The compressive strength of PNEA(50)PhPh(50) was significantly higher than poly(lactide-co-glycolide) (85:15 PLAGA) (p<0.05). Additional studies evaluated the cellular response and gene expression of primary rat osteoblast cells on PNEA, PNEA(50)mPh(50) and PNEA(50)PhPh(50) films as candidates for bone tissue engineering applications. Results of the in vitro osteocompatibility evaluation demonstrated that cells adhere, proliferate, and maintain their phenotype when seeded directly on the surface of PNEA, PNEA(50)mPh(50), and PNEA(50)PhPh(50). Moreover, cells on the surface of the polymers expressed type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein, which are characteristic genes for osteoblast maturation, differentiation, and mineralization.
Collapse
Affiliation(s)
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA
- Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, USA
| | - Saadiq El-Amin
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, USA
| | - My-Tien Nguyen
- Department of Biology, University of Virginia, Charlottesville, USA
| | - Anurima Singh
- Department of Chemistry, Pennsylvania State University, University Park, USA
| | - Nick Krogman
- Department of Chemistry, Pennsylvania State University, University Park, USA
| | - Yaser E. Greish
- Materials Research Institute Pennsylvania State University, University Park, USA
| | - Harry R. Allcock
- Department of Chemistry, Pennsylvania State University, University Park, USA
| | - Paul W. Brown
- Materials Research Institute Pennsylvania State University, University Park, USA
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA
- Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, USA
| |
Collapse
|
50
|
Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JMG, García-García A. RANK/RANKL/OPG role in distraction osteogenesis. ACTA ACUST UNITED AC 2010; 109:679-86. [PMID: 20163972 DOI: 10.1016/j.tripleo.2009.10.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/08/2009] [Accepted: 10/16/2009] [Indexed: 01/20/2023]
Abstract
Distraction osteogenesis is a fundamental pillar for craniomaxillofacial reconstruction processes. Nonetheless, although the clinical, biomechanical, and histologic changes associated with distraction osteogenesis have been widely described, this is not the case with the molecular mechanisms that regulate bone synthesis in the interfragmentary gap resulting from the gradual separation of bone segments. Recent studies have attributed a decisive role to the RANK/RANKL/OPG system in regulating bone metabolism and osteoclastogenesis. Receptor activator of nuclear factor kappa beta (RANK), belonging to the tumor necrosis factor superfamily, is present in the osteoclasts. It promotes osteoclastogenesis when it binds to RANK ligand (RANKL), which is produced by the osteoblasts and other stromal cells. Osteoprotegerin (OPG) acts as a decoy receptor by binding to RANKL and preventing RANK signaling. Osteoclast activation is thus blocked and apoptosis induced. The aim of this review is to analyze the influence of the RANK/RANKL/OPG system on the bone healing and remodeling processes that occur in distraction osteogenesis, with a view to possibly developing molecular mechanisms that stimulate bone regeneration and inhibit resorption, thereby improving the clinical outcome for distraction osteogenesis.
Collapse
Affiliation(s)
- Mario Pérez-Sayáns
- Facultad de Odontología, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|