1
|
Cho JH, Lee JH, Lee KM, Lee CK, Shin DM. BMP-2 Induced Signaling Pathways and Phenotypes: Comparisons Between Senescent and Non-senescent Bone Marrow Mesenchymal Stem Cells. Calcif Tissue Int 2022; 110:489-503. [PMID: 34714366 DOI: 10.1007/s00223-021-00923-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The use of BMP-2 in orthopedic surgery is limited by uncertainty surrounding its effects on the differentiation of mesenchymal stem cells (MSCs) and how this is affected by cellular aging. This study compared the effects of recombinant human BMP-2 (rhBMP-2) on osteogenic and adipogenic differentiation between senescent and non-senescent MSCs. Senescent and non-senescent MSCs were cultured in osteogenic and adipogenic differentiation medium containing various concentrations of rhBMP-2. The phenotypes of these cells were compared by performing a calcium assay, adipogenesis assay, staining, real-time PCR, western blotting, and microarray analysis. rhBMP-2 induced osteogenic differentiation to a lesser extent (P < 0.001 and P = 0.005 for alkaline phosphatase activity and Ca2+ release) in senescent MSCs regardless of dose-dependent increase in both cells. However, the induction of adipogenic differentiation by rhBMP-2 was comparable between them. There was no difference between these two groups of cells in the adipogenesis assay (P = 0.279) and their expression levels of PPARγ were similar. Several genes such as CHRDL1, NOG, SMAD1, SMAD7, and FST encoding transcription factors were proposed to underlie the different responses of senescent and non-senescent MSCs to rhBMP-2 in microarray analyses. Furthermore, inflammatory, adipogenic, or cell death-related signaling pathways such as NF-kB or p38-MAPK pathways were upregulated by BMP-2 in senescent MSCs, whereas bone forming signaling pathways involving BMP, SMAD, and TGF- ß were upregulated in non-senescent MSCs as expected. This phenomenon explains bone forming dominance by non-senescent MSCs and possible frequent complications such as seroma, osteolysis, or neuritis in senescent MSCs during BMP-2 use in orthopedic surgery.
Collapse
Affiliation(s)
- Jae Hwan Cho
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Boramae-ro 5-gil, Dongjak-Gu, Seoul, Republic of Korea.
| | - Kyung Mee Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Choon-Ki Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Synergistic Effect of rhBMP-2 Protein and Nanotextured Titanium Alloy Surface to Improve Osteogenic Implant Properties. METALS 2021. [DOI: 10.3390/met11030464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the major limitations during titanium (Ti) implant osseointegration is the poor cellular interactions at the biointerface. In the present study, the combined effect of recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) and nanopatterned Ti6Al4V fabricated with Directed irradiation synthesis (DIS) is investigated in vitro. This environmentally-friendly plasma uses ions to create self-organized nanostructures on the surfaces. Nanocones (≈36.7 nm in DIS 80°) and thinner nanowalls (≈16.5 nm in DIS 60°) were fabricated depending on DIS incidence angle and observed via scanning electron microscopy. All samples have a similar crystalline structure and wettability, except for sandblasted/acid-etched (SLA) and acid-etched/anodized (Anodized) samples which are more hydrophilic. Biological results revealed that the viability and adhesion properties (vinculin expression and cell spreading) of DIS 80° with BMP-2 were similar to those polished with BMP-2, yet we observed more filopodia on DIS 80° (≈39 filopodia/cell) compared to the other samples (<30 filopodia/cell). BMP-2 increased alkaline phosphatase activity in all samples, tending to be higher in DIS 80°. Moreover, in the mineralization studies, DIS 80° with BMP-2 and Anodized with BMP-2 increased the formation of calcium deposits (>3.3 fold) compared to polished with BMP-2. Hence, this study shows there is a synergistic effect of BMP-2 and DIS surface modification in improving Ti biological properties which could be applied to Ti bone implants to treat bone disease.
Collapse
|
3
|
Different Bone Healing Effects of Undifferentiated and Osteogenic Differentiated Mesenchymal Stromal Cell Sheets in Canine Radial Fracture Model. Tissue Eng Regen Med 2017; 15:115-124. [PMID: 30603539 PMCID: PMC6171633 DOI: 10.1007/s13770-017-0092-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 02/08/2023] Open
Abstract
Cell sheets technology is being available for fracture healing. This study was performed to clarify bone healing mechanism of undifferentiated (UCS) and osteogenic (OCS) differentiated mesenchymal stromal cell (MSC) sheets in the fracture model of dogs. UCS and OCS were harvested at 10 days of culture. Transverse fractures at the radius of six beagle dogs were assigned into three groups (n = 4 in each group) i.e. UCS, OCS and control. The fractures were fixed with a 2.7 mm locking plate and six screws. Cell sheets were wrapped around the fracture site. Bones were harvested 8 weeks after operation, then scanned by micro-computed tomography (micro-CT) and analyzed histopathologically. The micro-CT revealed different aspects of bone regeneration among the groups. The percentages of external callus volume out of total bone volume in control, UCS, and OCS groups were 42.1, 13.0 and 4.9% (p < 0.05) respectively. However, the percentages of limbs having connectivity of gaps were 25, 12.5 and 75% respectively. In histopathological assessments, OCS group showed well organized and mature woven bone with peripheral cartilage at the fracture site, whereas control group showed cartilage formation without bone maturation or ossification at the fracture site. Meanwhile, fracture site was only filled with fibrous connective tissue without endochondral ossification and bone formation in UCS group. It was suggested that the MSC sheets reduced the quantity of external callus, and OCS induced the primary bone healing.
Collapse
|
4
|
Meshcheryakova A, Mechtcheriakova D, Pietschmann P. Sphingosine 1-phosphate signaling in bone remodeling: multifaceted roles and therapeutic potential. Expert Opin Ther Targets 2017; 21:725-737. [PMID: 28524744 PMCID: PMC5470107 DOI: 10.1080/14728222.2017.1332180] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Sphingolipids belong to a complex class of lipid molecules that are crucially involved in the regulation of important biological processes including proliferation, migration and apoptosis. Given the significant progress made in understanding the sphingolipid pathobiology of several diseases, sphingolipid-related checkpoints emerge as attractive targets. Recent data indicate the multifaceted contribution of the sphingolipid machinery to osteoclast – osteoblast crosstalk, representing one of the pivotal interactions underlying bone homeostasis. Imbalances in the interplay of osteoblasts and osteoclasts might lead to bone-related diseases such as osteoporosis, rheumatoid arthritis, and bone metastases. Areas covered: We summarize and analyze the progress made in bone research in the context of the current knowledge of sphingolipid-related mechanisms regulating bone remodeling. Particular emphasis was given to bioactive sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs). Moreover, the mechanisms of how dysregulations of this machinery cause bone diseases, are covered. Expert opinion: In the context of bone diseases, pharmacological interference with sphingolipid machinery may lead to novel directions in therapeutic strategies. Implementation of knowledge derived from in vivo animal models and in vitro studies using pharmacological agents to manipulate the S1P/S1PRs axes suggests S1PR2 and S1PR3 as potential drug targets, particularly in conjunction with technology for local drug delivery.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- a Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology , Medical University of Vienna , Vienna , Austria
| | - Diana Mechtcheriakova
- a Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology , Medical University of Vienna , Vienna , Austria
| | - Peter Pietschmann
- a Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
5
|
Gao H, Dong H, Cao X, Fu X, Zhu Y, Mao C, Wang Y. Effective Spatial Separation of PC12 and NIH3T3 Cells by the Microgrooved Surface of Biocompatible Polymer Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6797-806. [PMID: 26072918 PMCID: PMC4924521 DOI: 10.1021/acs.langmuir.5b01018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Most organs and tissues are composed of more than one type of cell that is spatially separated and located in different regions. This study used a microgrooved poly(lactic-co-glycolic acid) (PLGA) substrate to guide two types of cocultured cells to two spatially separated regions. Specifically, PC12 pheochromocytoma cells are guided to the inside of microgrooves, whereas NIH3T3 fibroblasts are guided to the ridge area in between neighboring parallel microgrooves. In addition, the microgrooved structures can significantly promote the proliferation and neural differentiation of PC12 cells as well as the osteogenic differentiation of NIH3T3 cells. Therefore, the microgrooved PLGA surface with separated PC12 and NIH3T3 cells can serve as a potential model system for studying nerve reconstruction in bone-repairing scaffolds.
Collapse
Affiliation(s)
- Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoling Fu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Corresponding Authors. .
| | - Yingjun Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
- Corresponding Authors. .
| |
Collapse
|
6
|
Sun H, Liu Z, Li B, Dai J, Wang X. Effects of DLX2 overexpression on the osteogenic differentiation of MC3T3-E1 cells. Exp Ther Med 2015; 9:2173-2179. [PMID: 26136955 DOI: 10.3892/etm.2015.2378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/30/2015] [Indexed: 11/06/2022] Open
Abstract
Distal-less genes (DLX) play important roles in regulating organism development. DLX2 is crucial for the differentiation and development of the primordium, which determines the subsequent development and phenotype of the maxillofacial skeletal patterns, and is the primary candidate gene that regulates the development of the first branchial arch. The aim of the present study was to investigate the effects of DLX2 overexpression on the osteogenic differentiation of MC3T3-E1 cells in vitro. A DLX2-expression retrovirus vector was constructed by subcloning with a murine stem cell virus (MSCV) and verified by sequencing. MC3T3-E1 cells were transfected with pMSCV-DLX2 and stable clones were selected with puromycin. The mRNA and protein expression levels of DLX2 were determined using quantitative polymerase chain reaction (PCR) and western blot analysis, respectively. In addition, the expression levels of the osteogenic biomarkers, alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor (RUNX)2 and Msh homeobox (MSX)2, were assessed by quantitative PCR. ALP detection and Alizarin red staining were conducted to evaluate the effect of DLX2 overexpression on osteogenic differentiation. The data were analyzed by analysis of variance using the Student-Newman-Keuls method. Successful pMSCV-DLX2 construction, as verified by direct sequencing, enabled DLX2 overexpression in vitro. Enhanced ALP activity and Alizarin red staining were observed in the MC3T3-E1-DLX2 cells when compared with the control group. During osteogenic induction, DLX2 overexpression was demonstrated to upregulate ALP and MSX2 expression at the early stage and OCN expression at the late stage, while no statistically significant difference was observed in RUNX2 expression when compared with the control group. Therefore, DLX2 overexpression in vitro induced the osteogenic differentiation of MC3T3-E1 cells via upregulating bone formation-associated genes, such as ALP and MSX2.
Collapse
Affiliation(s)
- Hao Sun
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Zhixu Liu
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Biao Li
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jiewen Dai
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
7
|
Twine NA, Chen L, Pang CN, Wilkins MR, Kassem M. Identification of differentiation-stage specific markers that define the ex vivo osteoblastic phenotype. Bone 2014; 67:23-32. [PMID: 24984278 DOI: 10.1016/j.bone.2014.06.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 11/29/2022]
Abstract
The phenotype of osteoblastic (OB) cells in culture is currently defined using a limited number of markers of low sensitivity and specificity. For the clinical use of human skeletal (stromal, mesenchymal) stem cells (hMSC) in therapy, there is also a need to identify a set of gene markers that predict in vivo bone forming capacity. Thus, we used RNA sequencing to examine changes in expression for a set of skeletally-related genes across 8 time points between 0 and 12days of ex vivo OB differentiation of hMSC. We identified 123 genes showing significant temporal expression change. Hierarchical clustering and Pearson's correlation generated 4 groups of genes: early stage differentiation genes (peak expression: 0-24h, n=28) which were enriched for extracellular matrix organisation, e.g. COL1A1, LOX, and SERPINH1; middle stage differentiating genes (peak expression days: 3 and 6, n=20) which were enriched for extracellular matrix/skeletal system development e.g. BMP4, CYP24A1, and TGFBR2; and late stage differentiation genes (peak expression days: 9 and 12, n=27) which were enriched for bone development/osteoblast differentiation, e.g. BMP2 and IGF2. In addition, we identified 13 genes with bimodal temporal expression (2 peaks of expression: days 0 and 12) including VEGFA, PDGFA and FGF2. We examined the specificity of the 123 genes' expression in skeletal tissues and thus propose a set of ex vivo differentiation-stage-specific markers (n=21). In an independent analysis, we identified a subset of genes (n=20, e.g. ELN, COL11A1, BMP4) to predict the bone forming capacity of hMSC and another set (n=20, e.g. IGF2, TGFB2, SMAD3) associated with the ex vivo phenotype of hMSC obtained from osteoporotic patients.
Collapse
Affiliation(s)
- Natalie A Twine
- NSW Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia
| | - Li Chen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital, Odense, Denmark
| | - Chi N Pang
- NSW Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia
| | - Marc R Wilkins
- NSW Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia
| | - Moustapha Kassem
- NSW Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia; Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital, Odense, Denmark; The Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Prashar P, Yadav PS, Samarjeet F, Bandyopadhyay A. Microarray meta-analysis identifies evolutionarily conserved BMP signaling targets in developing long bones. Dev Biol 2014; 389:192-207. [PMID: 24583261 DOI: 10.1016/j.ydbio.2014.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 11/26/2022]
Abstract
In vertebrates, BMP signaling has been demonstrated to be sufficient for bone formation in several tissue contexts. This suggests that genes necessary for bone formation are expressed in a BMP signaling dependent manner. However, till date no gene has been reported to be expressed in a BMP signaling dependent manner in bone. Our aim was to identify such genes. On searching the literature we found that several microarray experiments have been conducted where the transcriptome of osteogenic cells in absence and presence of BMP signaling activation have been compared. However, till date, there is no evidence to suggest that any of the genes found to be upregulated in presence of BMP signaling in these microarray analyses is indeed a target of BMP signaling in bone. We wanted to utilize this publicly available information to identify candidate BMP signaling target genes in vivo. We performed a meta-analysis of six such comparable microarray datasets. This analysis and subsequent experiments led to the identification of five targets of BMP signaling in bone that are conserved both in mouse and chick. Of these Lox, Klf10 and Gpr97 are likely to be direct transcriptional targets of BMP signaling pathway. Dpysl3, is a novel BMP signaling target identified in our study. Our data demonstrate that Dpysl3 is important for osteogenic differentiation of mesenchymal cells and is involved in cell secretion. We have demonstrated that the expression of Dpysl3 is co-operatively regulated by BMP signaling and Runx2. Based on our experimental data, in silico analysis of the putative promoter-enhancer regions of Bmp target genes and existing literature, we hypothesize that BMP signaling collaborates with multiple signaling pathways to regulate the expression of a unique set of genes involved in endochondral ossification.
Collapse
Affiliation(s)
- Paritosh Prashar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Prem Swaroop Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Fnu Samarjeet
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
9
|
Hupkes M, Sotoca AM, Hendriks JM, van Zoelen EJ, Dechering KJ. MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells. BMC Mol Biol 2014; 15:1. [PMID: 24467925 PMCID: PMC3905160 DOI: 10.1186/1471-2199-15-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/24/2014] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression. Results Using a previously generated RNA polymerase II (Pol-II) ChIP-on-chip dataset, we show differential Pol-II occupancy at the promoter regions of six miRNAs during C2C12 myogenic versus BMP2-induced osteogenic differentiation. Overexpression of one of these miRNAs, miR-378, enhances Alp activity, calcium deposition and mRNA expression of osteogenic marker genes in the presence of BMP2. Conclusions Our results demonstrate a previously unknown role for miR-378 in promoting BMP2-induced osteogenic differentiation.
Collapse
Affiliation(s)
- Marlinda Hupkes
- Department of Cell & Applied Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
11
|
Guo Y, Ren L, Liu C, Yuan Y, Lin X, Tan L, Chen S, Yang K, Mei X. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4470-4. [PMID: 23910367 DOI: 10.1016/j.msec.2013.05.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/19/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
Abstract
The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal.
Collapse
Affiliation(s)
- Yue Guo
- Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bandyopadhyay A, Yadav PS, Prashar P. BMP signaling in development and diseases: a pharmacological perspective. Biochem Pharmacol 2013; 85:857-64. [PMID: 23333766 DOI: 10.1016/j.bcp.2013.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/01/2013] [Accepted: 01/11/2013] [Indexed: 11/27/2022]
Abstract
Bone morphogenetic protein (BMP) signaling has been implicated in several processes during embryonic development and in adult tissue homeostasis. Maintenance of many organs such as skin, intestinal villi, bones and bone marrow requires continuous regeneration and subsequent differentiation of stem cells in order to maintain organ shape and size necessary for proper functioning. Although BMPs were initially identified as osteogenic factors present in demineralized bone capable of inducing ectopic bone formation, it is now evident that BMPs perform several other functions during embryonic development as well as during the adult life of an organism. Many disorders have been linked to either the BMPs or the molecules functioning downstream of BMP signaling pathway. This review summarizes the existing literature describing the role of BMP signaling during embryonic development and in adult tissue homeostasis to provide a perspective on pharmacological interventions of BMP signaling pathway to mitigate several disease conditions.
Collapse
Affiliation(s)
- Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | | | | |
Collapse
|
13
|
Dwivedi PP, Anderson PJ, Powell BC. Development of an efficient, non-viral transfection method for studying gene function and bone growth in human primary cranial suture mesenchymal cells reveals that the cells respond to BMP2 and BMP3. BMC Biotechnol 2012; 12:45. [PMID: 22857382 PMCID: PMC3431223 DOI: 10.1186/1472-6750-12-45] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/25/2012] [Indexed: 01/05/2023] Open
Abstract
Background Achieving efficient introduction of plasmid DNA into primary cultures of mammalian cells is a common problem in biomedical research. Human primary cranial suture cells are derived from the connective mesenchymal tissue between the bone forming regions at the edges of the calvarial plates of the skull. Typically they are referred to as suture mesenchymal cells and are a heterogeneous population responsible for driving the rapid skull growth that occurs in utero and postnatally. To better understand the molecular mechanisms involved in skull growth, and in abnormal growth conditions, such as craniosynostosis, caused by premature bony fusion, it is essential to be able to easily introduce genes into primary bone forming cells to study their function. Results A comparison of several lipid-based techniques with two electroporation-based techniques demonstrated that the electroporation method known as nucleofection produced the best transfection efficiency. The parameters of nucleofection, including cell number, amount of DNA and nucleofection program, were optimized for transfection efficiency and cell survival. Two different genes and two promoter reporter vectors were used to validate the nucleofection method and the responses of human primary suture mesenchymal cells by fluorescence microscopy, RT-PCR and the dual luciferase assay. Quantification of bone morphogenetic protein (BMP) signalling using luciferase reporters demonstrated robust responses of the cells to both osteogenic BMP2 and to the anti-osteogenic BMP3. Conclusions A nucleofection protocol has been developed that provides a simple and efficient, non-viral alternative method for in vitro studies of gene and protein function in human skull growth. Human primary suture mesenchymal cells exhibit robust responses to BMP2 and BMP3, and thus nucleofection can be a valuable method for studying the potential competing action of these two bone growth factors in a model system of cranial bone growth.
Collapse
Affiliation(s)
- Prem P Dwivedi
- Craniofacial Research Group, Women's and Children's Health Research Institute, 72 King William Road, North Adelaide, South Australia 5006, Australia
| | | | | |
Collapse
|
14
|
Milnthorpe AT, Soloviev M. The use of EST expression matrixes for the quality control of gene expression data. PLoS One 2012; 7:e32966. [PMID: 22412959 PMCID: PMC3297614 DOI: 10.1371/journal.pone.0032966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/06/2012] [Indexed: 01/10/2023] Open
Abstract
EST expression profiling provides an attractive tool for studying differential gene expression, but cDNA libraries' origins and EST data quality are not always known or reported. Libraries may originate from pooled or mixed tissues; EST clustering, EST counts, library annotations and analysis algorithms may contain errors. Traditional data analysis methods, including research into tissue-specific gene expression, assume EST counts to be correct and libraries to be correctly annotated, which is not always the case. Therefore, a method capable of assessing the quality of expression data based on that data alone would be invaluable for assessing the quality of EST data and determining their suitability for mRNA expression analysis. Here we report an approach to the selection of a small generic subset of 244 UniGene clusters suitable for identification of the tissue of origin for EST libraries and quality control of the expression data using EST expression information alone. We created a small expression matrix of UniGene IDs using two rounds of selection followed by two rounds of optimisation. Our selection procedures differ from traditional approaches to finding "tissue-specific" genes and our matrix yields consistency high positive correlation values for libraries with confirmed tissues of origin and can be applied for tissue typing and quality control of libraries as small as just a few hundred total ESTs. Furthermore, we can pick up tissue correlations between related tissues e.g. brain and peripheral nervous tissue, heart and muscle tissues and identify tissue origins for a few libraries of uncharacterised tissue identity. It was possible to confirm tissue identity for some libraries which have been derived from cancer tissues or have been normalised. Tissue matching is affected strongly by cancer progression or library normalisation and our approach may potentially be applied for elucidating the stage of normalisation in normalised libraries or for cancer staging.
Collapse
Affiliation(s)
- Andrew T. Milnthorpe
- School of Biological Sciences, CBMS, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Mikhail Soloviev
- School of Biological Sciences, CBMS, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
15
|
Centrella M, McCarthy TL. Estrogen receptor dependent gene expression by osteoblasts - direct, indirect, circumspect, and speculative effects. Steroids 2012; 77:174-84. [PMID: 22093482 DOI: 10.1016/j.steroids.2011.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022]
Abstract
Hormone activated estrogen receptors (ERs) have long been appreciated as potent mediators of gene expression in female reproductive tissues. These highly targeted responses likely evolved from more elemental roles in lower organisms, in agreement with their widespread effects in the cardiovascular, immunological, central nervous, and skeletal tissue systems. Still, despite intense investigation, the multiple and often perplexing roles of ERs retain significant attention. In the skeleton, this in part derives from apparently opposing effects by ER agonists on bone growth versus bone remodeling, and in younger versus older individuals. The complexity associated with ER activation can also derive from their interactions with other hormone and growth factor systems, and their direct and indirect effects on gene expression. We propose that part of this complexity results from essential interactions between ERs and other transcription factors, each with their own biochemical and molecular intricacies. Solving some of the many questions that persist may help to achieve better, or better directed, use of agents that can drive ER activation in focused and possibly tissue restricted ways.
Collapse
Affiliation(s)
- Michael Centrella
- Department of Surgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8041, United States.
| | | |
Collapse
|
16
|
Silvério KG, Davidson KC, James RG, Adams AM, Foster BL, Nociti FH, Somerman MJ, Moon RT. Wnt/β-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J Periodontal Res 2011; 47:309-19. [PMID: 22150562 DOI: 10.1111/j.1600-0765.2011.01433.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation has been shown to occur through the canonical Wnt/βcatenin pathway, whereas factors promoting canonical Wnt signaling in cementoblasts inhibit cell differentiation and promote cell proliferation in vitro. The aim of this study was to investigate whether putative precursor cells of cementoblasts, dental follicle cells (murine SVF4 cells), when stimulated with BMP2, would exhibit changes in genes/proteins associated with the Wnt/β-catenin pathway. MATERIAL AND METHODS SVF4 cells were stimulated with BMP2, and the following assays were carried out: (i) Wnt/β-catenin pathway activation assessed by western blotting, β-catenin/transcription factor (TCF) reporter assays and expression of the lymphoid enhancer-binding factor-1 (Lef1), transcription factor 7 (Tcf7), Wnt inhibitor factor 1 (Wif1) and Axin2 (Axin2) genes; and (ii) cementoblast/osteoblast differentiation assessed by mineralization in vitro, and by the mRNA levels of runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), osteocalcin (Ocn) and bone sialoprotein (Bsp), determined by quantitative PCR after treatment with wingless-type MMTV integration site family, member 3A (WNT3A) and knockdown of β-catenin. RESULTS WNT3A induced β-catenin nuclear translocation and up-regulated the transcriptional activity of a canonical Wnt-responsive reporter, suggesting that the Wnt/β-catenin pathway functions in SVF4 cells. Activation of Wnt signaling with WNT3A suppressed BMP2-mediated induction of cementoblast/osteoblast maturation of SVF4 cells. However, β-catenin knockdown showed that the BMP2-induced expression of cementoblast/osteoblast differentiation markers requires endogenous β-catenin. WNT3A down-regulated transcripts for Runx2, Alp and Ocn in SVF4 cells compared with untreated cells. In contrast, BMP2 induction of Bsp transcripts occurred independently of Wnt/β-catenin signaling. CONCLUSION These data suggest that stabilization of β-catenin by WNT3A inhibits BMP2-mediated induction of cementoblast/osteoblast differentiation in SVF4 cells, although BMP2 requires endogenous Wnt/β-catenin signaling to promote cell maturation.
Collapse
Affiliation(s)
- K G Silvério
- Institute for Stem Cells and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
McCarthy TL, Kallen CB, Centrella M. β-Catenin independent cross-control between the estradiol and Wnt pathways in osteoblasts. Gene 2011; 479:16-28. [PMID: 21335072 DOI: 10.1016/j.gene.2011.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/08/2011] [Indexed: 12/19/2022]
Abstract
Osteoblasts are controlled by the individual and combined effects of systemic and local growth regulators. Here we show functional and physical interactions between estradiol (17βE) and Wnt activated pathways in osteoblasts. 17βE increased gene promoter activity by the Wnt pathway transcriptional effector T cell factor (TCF) in an estrogen receptor (ER) dependent way. This occurred independently of its activity through traditional estrogen response elements and was not replicated by androgen receptor activation. 17βE also increased the stimulatory effect of LiCl on TCF activity, LiCl increased the stimulatory effect of 17βE through estrogen response elements, and both were further enhanced by a noncanonical Wnt receptor agonist (WAg) that functions independently of β-catenin stabilization. In contrast to LiCl, WAg increased DNA synthesis and reduced relative collagen synthesis and alkaline phosphatase activity in otherwise untreated or 17βE stimulated cells. In addition, WAg suppressed Runx2, osterix, and alkaline phosphatase mRNA levels, and potently induced osteoprotegerin mRNA, whereas LiCl was ineffective alone and inhibitory in combination with 17βE. A definitive intersection between the 17βE and Wnt pathways occurred at the protein level, where ERα physically associated with TCF-4 independently of its β-catenin binding domain. This interaction required ligand-dependent exposure of a TCF binding region that mapped to ERα domain E and was further enhanced by Wnt pathway activation. Our studies reveal highly focused co-regulatory effects between the 17βE and Wnt pathways in osteoblasts that involve activated ERα and TCF-4 and downstream changes in gene expression, osteoblast proliferation, and differentiated cell function.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Yale University School of Medicine, Department of Surgery, New Haven, CT, 06520-8041, USA.
| | | | | |
Collapse
|
18
|
DNA methylation restricts spontaneous multi-lineage differentiation of mesenchymal progenitor cells, but is stable during growth factor-induced terminal differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:839-49. [PMID: 21277338 DOI: 10.1016/j.bbamcr.2011.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/14/2022]
Abstract
The progressive restriction of differentiation potential from pluripotent embryonic stem cells, via multipotent progenitor cells to terminally differentiated, mature somatic cells, involves step-wise changes in transcription patterns that are tightly controlled by the coordinated action of key transcription factors and changes in epigenetic modifications. While previous studies have demonstrated tissue-specific differences in DNA methylation patterns that might function in lineage restriction, it is unclear at what exact developmental stage these differences arise. Here, we have studied whether terminal, multi-lineage differentiation of C2C12 myoblasts is accompanied by lineage-specific changes in DNA methylation patterns. Using bisulfite sequencing and genome-wide methylated DNA- and chromatin immunoprecipitation-on-chip techniques we show that in these cells, in general, myogenic genes are enriched for RNA polymerase II and hypomethylated, whereas osteogenic genes show lower polymerase occupancy and are hypermethylated. Removal of DNA methylation marks by 5-azacytidine (5AC) treatment alters the myogenic lineage commitment of these cells and induces spontaneous osteogenic and adipogenic differentiation. This is accompanied by upregulation of key lineage-specific transcription factors. We subsequently analyzed genome-wide changes in DNA methylation and polymerase II occupancy during BMP2-induced osteogenesis. Our data indicate that BMP2 is able to induce the transcriptional program underlying osteogenesis without changing the methylation status of the genome. We conclude that DNA methylation primes C2C12 cells for myogenesis and prevents spontaneous osteogenesis, but still permits induction of the osteogenic transcriptional program upon BMP2 stimulation. Based on these results, we propose that cell type-specific DNA methylation patterns are established prior to terminal differentiation of adult progenitor cells. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
19
|
Toupadakis CA, Wong A, Genetos DC, Cheung WK, Borjesson DL, Ferraro GL, Galuppo LD, Leach JK, Owens SD, Yellowley CE. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am J Vet Res 2010; 71:1237-45. [PMID: 20919913 DOI: 10.2460/ajvr.71.10.1237] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the optimal osteogenic source of equine mesenchymal stem cells (eMSCs) and optimize collection of and expansion conditions for those cells. ANIMALS 10 adult Quarter Horses and 8 newborn Thoroughbred foals. PROCEDURES eMSCs were isolated from bone marrow (BM), adipose tissue, and umbilical cord blood and tissue, and the osteogenic potential of each type was assessed. Effects of anatomic site, aspiration volume, and serum type on eMSC yield from BM were investigated. RESULTS BM-eMSCs had the highest overall expression of the osteogenic genes Cbfa1, Osx, and Omd and staining for ALP activity and calcium deposition. There was no significant difference in BM-eMSC yield from the tuber coxae or sternum, but yield was significantly greater from the first 60-mL aspirate than from subsequent aspirates. The BM-eMSC expansion rate was significantly higher when cells were cultured in fetal bovine serum instead of autologous serum (AS). CONCLUSIONS AND CLINICAL RELEVANCE eMSCs from BM possessed the highest in vitro osteogenic potential; eMSCs from adipose tissue also had robust osteogenic potential. The tuber coxae and the sternum were viable sources of BM-eMSCs in yearlings, and 60 mL of BM aspirate was sufficient for culture and expansion. Expanding BM-eMSCs in AS to avoid potential immunologic reactions decreased the total yield because BM-eMSCs grew significantly slower in AS than in fetal bovine serum. Additional studies are needed to determine optimal ex vivo eMSC culture and expansion conditions, including the timing and use of growth factor—supplemented AS.
Collapse
|
20
|
Minear S, Leucht P, Miller S, Helms JA. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair. J Bone Miner Res 2010; 25:1196-207. [PMID: 20200943 PMCID: PMC3153130 DOI: 10.1002/jbmr.29] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic proteins (BMPs) participate in multiple stages of the fetal skeletogenic program from promoting cell condensation to regulating chondrogenesis and bone formation through endochondral ossification. Here, we show that these pleiotropic functions are recapitulated when recombinant BMPs are used to augment skeletal tissue repair. In addition to their well-documented ability to stimulate chondrogenesis in a skeletal injury, we show that recombinant BMPs (rBMPs) simultaneously suppress the differentiation of skeletal progenitor cells in the endosteum and bone marrow cavity to an osteoblast lineage. Both the prochondrogenic and antiosteogenic effects are achieved because rBMP inhibits endogenous beta-catenin-dependent Wnt signaling. In the injured periosteum, this repression of Wnt activity results in sox9 upregulation; consequently, cells in the injured periosteum adopt a chondrogenic fate. In the injured endosteum, rBMP also inhibits Wnt signaling, which results in the runx2 and collagen type I downregulation; consequently, cells in this region fail to differentiate into osteoblasts. In muscle surrounding the skeletal injury site, rBMP treatment induces Smad phosphorylation followed by exuberant cell proliferation, an increase in alkaline phosphatase activity, and chondrogenic differentiation. Thus different populations of adult skeletal progenitor cells interpret the same rBMP stimulus in unique ways, and these responses mirror the pleiotropic effects of BMPs during fetal skeletogenesis. These mechanistic insights may be particularly useful for optimizing the reparative potential of rBMPs while simultaneously minimizing their adverse outcomes.
Collapse
Affiliation(s)
- Steve Minear
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
21
|
McCarthy HS, Marshall MJ. Dickkopf-1 as a potential therapeutic target in Paget's disease of bone. Expert Opin Ther Targets 2010; 14:221-30. [PMID: 20055719 DOI: 10.1517/14728220903525720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE OF THE FIELD Wnt signalling plays a role in maintaining healthy bone mass. Dickkopf-1 (DKK-1) is a soluble inhibitor of Wnt signalling and its excessive expression contributes to bone loss in rheumatoid arthritis and multiple myeloma. New therapeutics have been developed for treatment of these conditions that target DKK-1 expression. DKK-1 is elevated in serum of patients with Paget's disease of the bone (PDB) and evidence is accumulating for a role of DKK-1 in PDB. AREAS COVERED IN THIS REVIEW The role of Wnt signalling and DKK-1 in bone health and disease and the aetiology of PDB in the light of recent advances in understanding of Wnt signalling. WHAT THE READER WILL GAIN PDB is a disorder of unknown aetiology characterised by localised increase in unregulated bone remodelling resulting in osteolytic and osteosclerotic lesions. Evidence is adduced for the involvement of Wnt signalling, DKK-1 and osteoblasts in PDB pathogenesis. TAKE HOME MESSAGE At present there is no cure for PDB and the current treatment of choice are bisphosphonates. These treat the resorptive phase of PDB but do not prevent its return. We present a new perspective on the aetiology of PDB and speculate on DKK-1 as a therapeutic target.
Collapse
Affiliation(s)
- Helen S McCarthy
- RJAH Orthopaedic Hospital, Charles Salt Centre, Oswestry, Shropshire, SY10 7AG, UK.
| | | |
Collapse
|
22
|
Vaes BLT, Lute C, van der Woning SP, Piek E, Vermeer J, Blom HJ, Mathers JC, Müller M, de Groot LCPGM, Steegenga WT. Inhibition of methylation decreases osteoblast differentiation via a non-DNA-dependent methylation mechanism. Bone 2010; 46:514-23. [PMID: 19815105 DOI: 10.1016/j.bone.2009.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/01/2009] [Accepted: 09/27/2009] [Indexed: 01/24/2023]
Abstract
S-adenosylmethionine (SAM)-dependent methylation of biological molecules including DNA and proteins is rapidly being uncovered as a critical mechanism for regulation of cellular processes. We investigated the effects of reduced SAM-dependent methylation on osteoblast differentiation by using periodate oxidized adenosine (ADOX), an inhibitor of SAM-dependent methyltransferases. The capacity of this agent to modulate osteoblast differentiation was analyzed under non-osteogenic control conditions and during growth factor-induced differentiation and compared with the effect of inhibition of DNA methylation by 5-Aza-2'-deoxycytidine (5-Aza-CdR). Without applying specific osteogenic triggers, both ADOX and 5-Aza-CdR induced mRNA expression of the osteoblast markers Alp, Osx, and Ocn in murine C2C12 cells. Under osteogenic conditions, ADOX inhibited differentiation of both human mesenchymal stem cells and C2C12 cells. Gene expression analysis of early (Msx2, Dlx5, Runx2) and late (Alp, Osx, Ocn) osteoblast markers during bone morphogenetic protein 2-induced C2C12 osteoblast differentiation revealed that ADOX only reduced expression of the late phase Runx2 target genes. By using a Runx2-responsive luciferase reporter (6xOSE), we showed that ADOX reduced the activity of Runx2, while 5-Aza-CdR had no effect. Taken together, our data suggest that decreased SAM-dependent methyltransferase activity leads to impaired osteoblast differentiation via non-DNA-dependent methylation mechanisms and that methylation is a regulator of Runx2-controlled gene expression.
Collapse
Affiliation(s)
- Bart L T Vaes
- Division of Human Nutrition, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McCarthy TL, Centrella M. Novel links among Wnt and TGF-beta signaling and Runx2. Mol Endocrinol 2010; 24:587-97. [PMID: 20093419 DOI: 10.1210/me.2009-0379] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoblasts exhibit complex Wnt-induced effects that increase T cell factor (TCF)/lymphoid enhancing factor-dependent transcription in parallel with beta-catenin stabilization and nuclear factor binding to TCF response element DNA. Here we show that Wnt-dependent gene expression increases during the early phase of osteoblast differentiation in vitro, is enhanced by prostaglandin E(2) activation of transcription factor Runx2 (runt homology domain transcription factor 2), and is specifically suppressed in Runx2 antisense-depleted osteoblasts. Moreover, Wnt pathway induction increases expression of the Runx2-sensitive gene, TGF-beta type I receptor, without increasing nuclear Runx2 levels or Runx2 binding to DNA. Rather, despite an increase in beta-catenin levels, Wnt pathway induction enhances Runx2 transcriptional potential in a beta-catenin-independent way. Runx2 functionally associates with TCF-4 that lacks a beta-catenin-binding domain and is more fully activated in response to both prostaglandin E(2) and Wnt pathway induction. Wnt pathway induction increases TGF-beta type I receptor expression, yet regulates, both positively and negatively, TGF-beta signaling. Furthermore, TGF-beta signaling enhances TCF-4 and lymphoid enhancing factor-1 mRNA expression and increases TCF-4 transcriptional activity. Therefore, we propose that cross talk between the Wnt and TGF-beta pathways, which converge on Runx2, both promotes and attenuates individual aspects of osteoblast maturation.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, MS 208041, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
24
|
Milat F, Ng KW. Is Wnt signalling the final common pathway leading to bone formation? Mol Cell Endocrinol 2009; 310:52-62. [PMID: 19524639 DOI: 10.1016/j.mce.2009.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 12/17/2022]
Abstract
Since the discovery of the link between mutations in the LRP5 gene and human bone mass, considerable progress has been made in our understanding of Wnt signalling and bone formation. The connection between canonical Wnt signalling and bone formation is convincing, and there is evidence of interaction between the Wnt signalling pathway and key growth factors, transcriptional factors and systemic hormones. More recently, the role of the non-canonical pathway in bone metabolism has also started to be explored as well as potential bone-gut interactions. This review focuses on the role of the Wnt pathway in osteoblast differentiation as well as the interplay between Wnt signalling and other pathways involved in bone formation.
Collapse
Affiliation(s)
- Frances Milat
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
25
|
Paic F, Igwe JC, Ravi N, Kronenberg MS, Franceschetti T, Harrington P, Kuo L, Shin DG, Rowe DW, Harris SE, Kalajzic I. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 2009; 45:682-92. [PMID: 19539797 PMCID: PMC2731004 DOI: 10.1016/j.bone.2009.06.010] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
Abstract
Osteocytes represent the most abundant cellular component of mammalian bones with important functions in bone mass maintenance and remodeling. To elucidate the differential gene expression between osteoblasts and osteocytes we completed a comprehensive analysis of their gene profiles. Selective identification of these two mature populations was achieved by utilization of visual markers of bone lineage cells. We have utilized dual GFP reporter mice in which osteocytes are expressing GFP (topaz) directed by the DMP1 promoter, while osteoblasts are identified by expression of GFP (cyan) driven by 2.3 kb of the Col1a1 promoter. Histological analysis of 7-day-old neonatal calvaria confirmed the expression pattern of DMP1GFP in osteocytes and Col2.3 in osteoblasts and osteocytes. To isolate distinct populations of cells we utilized fluorescent activated cell sorting (FACS). Cell suspensions were subjected to RNA extraction, in vitro transcription and labeling of cDNA and gene expression was analyzed using the Illumina WG-6v1 BeadChip. Following normalization of raw data from four biological replicates, 3444 genes were called present in all three sorted cell populations: GFP negative, Col2.3cyan(+) (osteoblasts), and DMP1topaz(+) (preosteocytes and osteocytes). We present the genes that showed in excess of a 2-fold change for gene expression between DMP1topaz(+) and Col2.3cyan(+) cells. The selected genes were classified and grouped according to their associated gene ontology terms. Genes clustered to osteogenesis and skeletal development such as Bmp4, Bmp8a, Dmp1, Enpp1, Phex and Ank were highly expressed in DMP1topaz(+)cells. Most of the genes encoding extracellular matrix components and secreted proteins had lower expression in DMP1topaz(+) cells, while most of the genes encoding plasma membrane proteins were increased. Interestingly a large number of genes associated with muscle development and function and with neuronal phenotype were increased in DMP1topaz(+) cells, indicating some new aspects of osteocyte biology. Although a large number of genes differentially expressed in DMP1topaz(+) and Col2.3cyan(+) cells in our study have already been assigned to bone development and physiology, for most of them we still lack any substantial data. Therefore, isolation of osteocyte and osteoblast cell populations and their subsequent microarray analysis allowed us to identify a number or genes and pathways with potential roles in regulation of bone mass.
Collapse
Affiliation(s)
- Frane Paic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Biology, School of Medicine, Zagreb, Croatia
| | - John C. Igwe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Nori Ravi
- Department of Computer Science, University of Connecticut, Storrs, Connecticut, USA
| | - Mark S. Kronenberg
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tiziana Franceschetti
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Patrick Harrington
- Dept. of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Lynn Kuo
- Dept. of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Don-Guk Shin
- Department of Computer Science, University of Connecticut, Storrs, Connecticut, USA
| | - David W. Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
26
|
Hoeppner LH, Secreto F, Jensen ED, Li X, Kahler RA, Westendorf JJ. Runx2 and bone morphogenic protein 2 regulate the expression of an alternative Lef1 transcript during osteoblast maturation. J Cell Physiol 2009; 221:480-9. [PMID: 19650108 DOI: 10.1002/jcp.21879] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lymphoid Enhancer Binding Factor (Lef) 1 is a transcriptional effector of the Wnt/Lrp5/beta-catenin signaling cascade, which regulates osteoblast differentiation, bone density, and skeletal strength. In this study, we describe the expression and function of an alternative Lef1 isoform in osseous cells. Lef1DeltaN is a naturally occurring isoform driven by a promoter (p2) within the intron between exons 3 and 4 of Lef1. Lef1DeltaN is induced during late osteoblast differentiation. This is converse to the expression pattern of the full-length Lef1 protein, which as we previously showed, decreases during differentiation. Agonists of osteoblast maturation differentially affected Lef1DeltaN expression. BMP2 stimulated Lef1DeltaN expression, whereas Wnt3a blocked basal and BMP2-induced expression of Lef1DeltaN transcripts during osteoblast differentiation. We determined that the Lef1DeltaN p2 promoter is active in osteoblasts and Runx2 regulates its activity. Stable overexpression of Lef1DeltaN in differentiating osteoblasts induced the expression of osteoblast differentiation genes, osteocalcin and type 1 collagen. Taken together, our results suggest Lef1DeltaN is a crucial regulator of terminal differentiation in osseous cells.
Collapse
Affiliation(s)
- Luke H Hoeppner
- Graduate Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
27
|
Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, Quarles LD. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23:1505-18. [PMID: 19556340 PMCID: PMC2737552 DOI: 10.1210/me.2009-0085] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 06/12/2009] [Indexed: 12/20/2022] Open
Abstract
We used gene array analysis of cortical bone to identify Phex-dependent gene transcripts associated with abnormal Fgf23 production and mineralization in Hyp mice. We found evidence that elevation of Fgf23 expression in osteocytes is associated with increments in Fgf1, Fgf7, and Egr2 and decrements in Sost, an inhibitor in the Wnt-signaling pathway, were observed in Hyp bone. beta-Catenin levels were increased in Hyp cortical bone, and TOPflash luciferase reporter assay showed increased transcriptional activity in Hyp-derived osteoblasts, consistent with Wnt activation. Moreover, activation of Fgf and Wnt-signaling stimulated Fgf23 promoter activity in osteoblasts. We also observed reductions in Bmp1, a metalloproteinase that metabolizes the extracellular matrix protein Dmp1. Alterations were also found in enzymes regulating the posttranslational processing and stability of Fgf23, including decrements in the glycosyltransferase Galnt3 and the proprotein convertase Pcsk5. In addition, we found that the Pcsk5 and the glycosyltransferase Galnt3 were decreased in Hyp bone, suggesting that reduced posttranslational processing of FGF23 may also contribute to increased Fgf23 levels in Hyp mice. With regard to mineralization, we identified additional candidates to explain the intrinsic mineralization defect in Hyp osteoblasts, including increases in the mineralization inhibitors Mgp and Thbs4, as well as increases in local pH-altering factors, carbonic anhydrase 12 (Car12) and 3 (Car3) and the sodium-dependent citrate transporter (Slc13a5). These studies demonstrate the complexity of gene expression alterations in bone that accompanies inactivating Phex mutations and identify novel pathways that may coordinate Fgf23 expression and mineralization of extracellular matrix in Hyp bone.
Collapse
Affiliation(s)
- Shiguang Liu
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abarrategi A, García-Cantalejo J, Moreno-Vicente C, Civantos A, Ramos V, Casado JVS, Pérez-Rial S, Martńez-Corriá R, López-Lacomba JL. Gene expression profile on chitosan/rhBMP-2 films: A novel osteoinductive coating for implantable materials. Acta Biomater 2009; 5:2633-46. [PMID: 19342322 DOI: 10.1016/j.actbio.2009.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 01/27/2023]
Abstract
This study focusses on the gene expression profile related to a new rhBMP-2 carrier material, chitosan film. This film could be suitable for use as an osteoinductive coating of commercially available titanium implants. The developed material was characterized, biocompatibility was tested and the cellular response was extensively characterized by transcriptional expression studies. Finally, in vivo studies were carried out to confirm the osteoinductivity of the developed coating. Results show good material properties for cell adhesion and proliferation. Presented data show cellular differentiation to the osteoblastic phenotype due to rhBMP-2, with a 90% common transcriptional response between the control rhBMP-2 treatment and the developed chitosan/rhBMP-2 film. The growing surface also had an influence on the observed cellular response and was quantified as 7% of the total. These results indicate that both the growth factor and the material induce a cell response, but this is mainly driven by the osteoinductor factor. In vivo, new bone formation and early vascularization was observed around chitosan/rhBMP-2 coated titanium pieces implanted in mouse muscle. In contrast, control implants did not induce this reaction. This work, therefore, shows both in vitro and in vivo that chitosan/rhBMP-2 film is a promising osteoinductive coating for titanium implantable materials.
Collapse
Affiliation(s)
- Ander Abarrategi
- Instituto de Estudios Biofuncionales, Universidad Complutense, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
BMP signaling induces cell-type-specific changes in gene expression programs of human keratinocytes and fibroblasts. J Invest Dermatol 2009; 130:398-404. [PMID: 19710687 DOI: 10.1038/jid.2009.259] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BMP signaling has a crucial role in skin development and homeostasis, whereas molecular mechanisms underlying its involvement in regulating gene expression programs in keratinocytes and fibroblasts remain largely unknown. We show here that several BMP ligands, all BMP receptors, and BMP-associated Smad1/5/8 are expressed in human primary epidermal keratinocytes and dermal fibroblasts. Treatment of both cell types by BMP-4 resulted in the activation of the BMP-Smad, but not BMP-MAPK pathways. Global microarray analysis revealed that BMP-4 treatment induces distinct and cell type-specific changes in gene expression programs in keratinocytes and fibroblasts, which are far more complex than the effects of BMPs on cell proliferation/differentiation described earlier. Furthermore, our data suggest that the potential modulation of cell adhesion, extracellular matrix remodeling, motility, metabolism, signaling, and transcription by BMP-4 in keratinocytes and fibroblasts is likely to be achieved by the distinct and cell-type-specific sets of molecules. Thus, these data provide an important basis for delineating mechanisms that underlie the distinct effects of the BMP pathway on different cell populations in the skin, and will be helpful in further establishing molecular signaling networks regulating skin homeostasis in health and disease.
Collapse
|
30
|
Liu ZY, He XB, Yang ZY, Shao HY, Li X, Guo HF, Zhang YQ, Si SY, Li ZR. Synthesis and evaluation of 1-(benzo[b]thiophen-2-yl)ethanone analogues as novel anti-osteoporosis agents acting on BMP-2 promotor. Bioorg Med Chem Lett 2009; 19:4167-70. [DOI: 10.1016/j.bmcl.2009.05.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/14/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
|
31
|
Cho SW, Yang JY, Sun HJ, Jung JY, Her SJ, Cho HY, Choi HJ, Kim SW, Kim SY, Shin CS. Wnt inhibitory factor (WIF)-1 inhibits osteoblastic differentiation in mouse embryonic mesenchymal cells. Bone 2009; 44:1069-77. [PMID: 19254785 DOI: 10.1016/j.bone.2009.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/31/2009] [Accepted: 02/11/2009] [Indexed: 01/10/2023]
Abstract
Wnt inhibitory factor (WIF)-1 belongs to the members of secreted modulators of Wnt proteins. Secreted frizzled-related proteins (sFRPs), another member of Wnt modulators, have been shown to play differential roles in Wnt signaling depending on the subtypes and cell models. This study was undertaken to investigate the functional role of WIF-1 in osteoblastic differentiation of mouse mesenchymal C3H10T1/2 cells. C3H10T1/2 cells express endogenous WIF-1 and its expression level decreases during osteoblastogenesis. Treatment of C3H10T1/2 cells with WIF-1 significantly reduced alkaline phosphatase (ALP) activities induced by either osteogenic medium (OM, ascorbic acid and beta-glycerophosphate) or Wnt-3a conditioned medium (CM) in a dose-dependent manner. In contrast, the expression level of endogenous WIF-1 increased during adipogenesis and WIF-1 treatment resulted in increased adipogenesis. C3H10T1/2 cells transduced with WIF-1 retrovirus also exhibited reduced ALP activity and decreased mRNA expression of Runx2, collagen type 1, ALP and osteocalcin during osteoblastic differentiation compared to empty virus-transduced cells. Moreover, treatment with WIF-1 dose-dependently attenuates beta-catenin/T-cell factor (TCF) transcriptional activity in this cell line. Finally, knockdown of WIF-1 in C3H10T1/2 cells by RNA interference leads to increase in ALP activities. Collectively, these results indicate that WIF-1 plays as a negative regulator of osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells in vitro.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PFM, Simmons PJ, Dawid IB, Thomas DM. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 2009; 119:837-51. [PMID: 19307728 DOI: 10.1172/jci37175] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/21/2009] [Indexed: 02/06/2023] Open
Abstract
Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.
Collapse
Affiliation(s)
- Maya Kansara
- Ian Potter Foundation Centre for Cancer Genetics and Preventative Medicine, and Sir Donald and Lady Trescowthick Laboratories, Peter MacCallumCancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zoccola D, Moya A, Béranger GE, Tambutté E, Allemand D, Carle GF, Tambutté S. Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:260-9. [PMID: 18795368 DOI: 10.1007/s10126-008-9141-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 08/11/2008] [Indexed: 05/25/2023]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily, and have been identified by their ability to induce bone formation in vertebrates. The biomineral-forming process, called biomineralization, is a widespread process, present in all kingdoms of living organisms and among which stony corals are one of the major groups of calcifying animals. Here, we report the presence of a BMP2/4 ortholog in eight species of adult corals. The synthesis of such a protein by the calcifying epithelium of corals suggests that coral BMP2/4 plays a role in skeletogenesis, making BMP the first common protein involved in biomineralization among Eumetazoans. In addition we show that recombinant coral BMP2/4 is able to inhibit human BMP2-induced osteoblastic differentiation in mesenchymal C2C12 cells. We suggest that this inhibition results from a competition between coral BMP2/4 and human BMP2, indicating conservation of binding affinity of BMP and its receptor during evolution from corals to vertebrates. Further studies are needed to understand interactions between coral BMP2/4 and its receptors, and, thus, the action of BMP2/4 in adult corals.
Collapse
Affiliation(s)
- Didier Zoccola
- Centre Scientifique de Monaco, Avenue Saint Martin, Monaco, MC, 98000, Monaco.
| | | | | | | | | | | | | |
Collapse
|
34
|
Roelofsen T, Akkers R, Beumer W, Apotheker M, Steeghs I, van de Ven J, Gelderblom C, Garritsen A, Dechering K. Sphingosine-1-phosphate acts as a developmental stage specific inhibitor of platelet-derived growth factor-induced chemotaxis of osteoblasts. J Cell Biochem 2008; 105:1128-38. [DOI: 10.1002/jcb.21915] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Trevant B, Gaur T, Hussain S, Symons J, Komm BS, Bodine PVN, Stein GS, Lian JB. Expression of secreted frizzled related protein 1, a Wnt antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development. J Cell Physiol 2008; 217:113-26. [PMID: 18498122 DOI: 10.1002/jcp.21482] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secreted frizzled related protein-1 (sFRP1), an antagonist of Wnt signaling, regulates cell proliferation, differentiation and apoptosis and negatively regulates bone formation. The spatial and temporal pattern of endogenous sFRP1 expression and loss-of-function were examined in the sFRP1-LacZ knock-in mouse (sFRP1-/-) during embryonic development and post-natal growth. beta-gal activity representing sFRP1 expression is robust in brain, skeleton, kidney, eye, spleen, abdomen, heart and somites in early embryos, but sFRP1 gene inactivation in these tissues did not compromise normal embryonic and post-natal development. Kidney histology revealed increased numbers of glomeruli in KO mice, observed after 5 years of breeding. In the skeleton, we show sFRP1 expression is found in relation to the mineralizing front of bone tissue during skeletal development from E15.5 to birth. Trabecular bone volume and bone mineral density in the sFRP1-/- mouse compared to WT was slightly increased during post-natal growth. Calvarial osteoblasts from newborn sFRP1-/- mice exhibited a 20% increase in cell proliferation and differentiation at the early stages of osteoblast maturation. sFRP1 expression was observed in osteoclasts, but this did not affect osteoclast number or activity. These findings have identified functions for sFRP1 in kidney and bone that are not redundant with other sFRPs. In summary, the absence of major organ abnormalities, the enhanced bone formation and a normal life span with no detection of spontaneous tumors suggests that targeting sFRP1 can be used as a therapeutic strategy for increasing bone mass in metabolic bone disorders or promoting fracture healing by modulating Wnt signaling.
Collapse
Affiliation(s)
- Brune Trevant
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kochupurakkal BS, Sarig R, Fuchs O, Piestun D, Rechavi G, Givol D. Nanog inhibits the switch of myogenic cells towards the osteogenic lineage. Biochem Biophys Res Commun 2007; 365:846-50. [PMID: 18039466 DOI: 10.1016/j.bbrc.2007.11.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 11/18/2022]
Abstract
The homeodomain transcription factor Nanog has been implicated in inhibiting differentiation and controlling pluripotency of embryonic stem (ES) cells. We used ectopic expression of Nanog in the myogenic committed C2 cells to dissect these properties. Expression of Nanog in C2 cells does not alter terminal muscle differentiation but has a profound effect on their switch to differentiate along the osteogenic lineage upon BMP treatment. Gene expression profiling revealed that ERK 1/2 phosphorylation, alkaline-phosphatase activity and osteocalcin expression were induced to much lower extent and remained suppressed even after 96h. in Nanog expressing C2 cells, compared to control C2 cells. Hence, Nanog does not inhibit terminal differentiation of committed cells but it is an inhibitor of trans-differentiation that is dependent on de-novo activation of gene transcription.
Collapse
Affiliation(s)
- Bose S Kochupurakkal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
37
|
Shibata T, Takahashi Y, Tasaki J, Saito Y, Izutsu Y, Maéno M. A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis. Mech Dev 2007; 125:284-98. [PMID: 18093808 DOI: 10.1016/j.mod.2007.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 11/09/2007] [Indexed: 11/17/2022]
Abstract
We have characterized a cDNA clone, rdd (repeated D domain-like), that encodes for a secretory protein consisting of repeated domains of cysteine-rich sequence. Whole-mount in situ hybridization analysis revealed that rdd2, rdd3 and rdd4 are transiently expressed in the ventral and lateral mesoderm and the overlying ectoderm at the late gastrula and tailbud stages. Morpholino oligonucleotide (MO) was used to inhibit the translation of endogenous rdd3 and rdd4, and we found that the circulation of red blood cells completely disappears in the MO-injected tadpoles. Histological analysis showed that formation of the ventral aorta, dorsal aorta and posterior cardinal vein in the trunk region was severely disorganized in these animals. Injection of MO affected the expression of alpha-globin, a terminal differentiation marker of red blood cells, but did not affect the expression of scl, flk-1 or tie-2, suggesting that angiopoietic and hematopoietic precursor cells differentiate normally in the rdd-depleted embryo. The transplantation of labeled tissues followed by tracing of the donor cells revealed a role of rdds in migration of the embryonic angioblasts and myeloid cells. These observations first demonstrate the role of the novel cysteine-rich proteins in migration of the embryonic cells.
Collapse
Affiliation(s)
- Tomoko Shibata
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Differential gene expression in femoral bone from red junglefowl and domestic chicken, differing for bone phenotypic traits. BMC Genomics 2007; 8:208. [PMID: 17605776 PMCID: PMC1934367 DOI: 10.1186/1471-2164-8-208] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/02/2007] [Indexed: 12/23/2022] Open
Abstract
Background Osteoporosis is frequently observed among aging hens from egg-producing strains (layers) of domestic chicken. White Leghorn (WL) has been intensively selected for egg production and it manifests striking phenotypic differences for a number of traits including several bone phenotypes in comparison with the wild ancestor of chicken, the red junglefowl (RJ). Previously, we have identified four Quantitative Trait Loci (QTL) affecting bone mineral density and bone strength in an intercross between RJ and WL. With the aim of further elucidating the genetic basis of bone traits in chicken, we have now utilized cDNA-microarray technology in order to compare global RNA-expression in femoral bone from adult RJ and WL (five of each sex and population). Results When contrasting microarray data for all WL-individuals to that of all RJ-individuals we observed differential expression (False discovery rate adjusted p-values < 0.015) for 604 microarray probes. In corresponding male and female contrasts, differential expression was observed for 410 and 270 probes, respectively. Altogether, the three contrasts between WL and RJ revealed differential expression of 779 unique transcripts, 57 of which are located to previously identified QTL-regions for bone traits. Some differentially expressed genes have previously been attributed roles in bone metabolism and these were: WNT inhibitory factor 1 (WIF1), WD repeat-containing protein 5 (WDR5) and Syndecan 3 (SDC3). Among differentially expressed transcripts, those encoding structural ribosomal proteins were highly enriched and all 15 had lower expression in WL. Conclusion We report the identification of 779 differentially expressed transcripts, several residing within QTL-regions for bone traits. Among differentially expressed transcripts, those encoding structural ribosomal proteins were highly enriched and all had lower expression levels in WL. In addition, transcripts encoding four translation initiation and translation elongation factor proteins also had lower expression levels in WL, possibly indicating perturbation of protein biosynthesis pathways between the two populations. Information derived from this study could be relevant to the bone research field and may also aid in further inference of genetic changes accompanying animal domestication.
Collapse
|
39
|
Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Sharff KA, Montag AG, Haydon RC, He TC. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 2007; 25:665-77. [PMID: 17290432 DOI: 10.1002/jor.20359] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Efficacious bone regeneration could revolutionize the clinical management of many bone and musculoskeletal disorders. Bone morphogenetic proteins (BMPs) can regulate the differentiation of mesenchymal stem cells into cartilage, bone, tendon/ligament, and fat lineages. Early data documented the osteogenic potential of rhBMP2 and rhBMP7/OP-1. However, prior to this work that summarized several of our recent studies, no comprehensive analysis had been undertaken to characterize relative osteogenic activity of all BMPs. Using recombinant adenoviruses expressing 14 BMPs, we have demonstrated that, besides BMP2 and BMP7, BMP6 and BMP9 exhibit the highest osteogenic activity both in vitro and in vivo. We further demonstrated that several BMPs may exert synergistic effect on osteogenic differentiation, and that osteogenic BMPs produce a distinct set of molecular fingerprints during osteogenic differentiation. The reported work should expand our current understanding of BMP functions during osteogenic differentiation. It is conceivable that osteogenic BMPs (i.e., BMP2, 4, 6, 7, and 9) may be used to formulate synergistic pairs among themselves and/or with other less osteogenic BMPs for efficacious bone regeneration in clinical settings.
Collapse
Affiliation(s)
- Hue H Luu
- Molecular Oncology Laboratory, Department of Surgery, 5841 South Maryland Avenue, MC 3079, Room J-611, The University of Chicago Medical Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhu W, Boachie-Adjei O, Rawlins BA, Frenkel B, Boskey AL, Ivashkiv LB, Blobel CP. A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. J Biol Chem 2007; 282:18676-85. [PMID: 17439946 DOI: 10.1074/jbc.m610232200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stromal-derived factor 1 (SDF-1) is a chemokine with important functions in development and postnatal tissue homeostasis. SDF-1 signaling via the G-protein-coupled receptor CXCR4 regulates the recruitment of stem and precursor cells to support tissue-specific repair or regeneration. In this study we examined the contribution of SDF-1 signaling to osteogenic differentiation of mesenchymal C2C12 cells induced by bone morphogenic protein 2 (BMP2). Blocking SDF-1 signaling before BMP2 stimulation by treatment with siRNA, antibodies against SDF-1 or CXCR4, or the G-protein-coupled receptor inhibitor pertussis toxin strongly suppressed BMP2 induction of osteogenic differentiation in C2C12 cells, as evidenced by an early decrease in the expression of the myogenesis inhibitor Id1, the osteogenic master regulators Runx2 and Osx, the osteoblast-associated transcription factors JunB, Plzf, Msx2, and Dlx5, and later of the bone marker proteins osteocalcin and alkaline phosphatase. Similarly, blocking SDF-1/CXCR4 signaling strongly inhibited BMP2-induced osteogenic differentiation of ST2 bone marrow stromal cells. Moreover, we found that the interaction between SDF-1 and BMP2 signaling was mediated via intracellular Smads and MAPK activation. Our data provide the first evidence for a co-requirement of the SDF-1/CXCR4 signaling axis in BMP2-induced osteogenic differentiation of C2C12 and ST2 cells and, thus, uncover a new potential target for modulation of osteogenesis.
Collapse
Affiliation(s)
- Wei Zhu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Aslan H, Ravid-Amir O, Clancy BM, Rezvankhah S, Pittman D, Pelled G, Turgeman G, Zilberman Y, Gazit Z, Hoffmann A, Gross G, Domany E, Gazit D. Advanced molecular profiling in vivo detects novel function of dickkopf-3 in the regulation of bone formation. J Bone Miner Res 2006; 21:1935-45. [PMID: 17002559 DOI: 10.1359/jbmr.060819] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED A bioinformatics-based analysis of endochondral bone formation model detected several genes upregulated in this process. Among these genes the dickkopf homolog 3 (Dkk3) was upregulated and further studies showed that its expression affects in vitro and in vivo osteogenesis. This study indicates a possible role of Dkk3 in regulating bone formation. INTRODUCTION Endochondral bone formation is a complex biological process involving numerous chondrogenic, osteogenic, and angiogenic proteins, only some of which have been well studied. Additional key genes may have important roles as well. We hypothesized that to identify key genes and signaling pathways crucial for bone formation, a comprehensive gene discovery strategy should be applied to an established in vivo model of osteogenesis. MATERIALS AND METHODS We used in vivo implanted C3H10T1/2 cells that had been genetically engineered to express human bone morphogenetic protein-2 (BMP2) in a tetracycline-regulated system that controls osteogenic differentiation. Oligonucleotide microarray data from the implants (n = 4 repeats) was analyzed using coupled two-way clustering (CTWC) and statistical methods. For studying the effects of dickkopf homolog 3 (Dkk3) in chondrogenesis and osteogenesis, C3H10T1/2 mesenchymal progenitors were used. RESULTS The CTWC revealed temporal expression of Dkk3 with other chondrogenesis-, osteogenesis-, and Wnt-related genes. Quantitative RT-PCR confirmed the expression of Dkk3 in the implants. C3H10T1/2 cells that expressed Dkk3 in the presence of BMP2 displayed lower levels of alkaline phosphatase and collagen I mRNA expression than control C3H10T1/2 cells that did not express Dkk3. Interestingly, the levels of collagen II mRNA expression, Alcian blue staining, and glucose aminoglycans (GAGs) production were not influenced by Dkk3 expression. In vivo microCT and bioluminescence imaging revealed that co-expression of Dkk3 and BMP2 by implanted C3H10T1/2 cells induced the formation of significantly lower quantities of bone than cells expressing only BMP2. CONCLUSIONS A bioinformatics analysis enabled the identification of Dkk3 as a pivotal gene with a novel function in endochondral bone formation. Our results showed that Dkk3 might have inhibitory effects on osteogenesis, but no effect on chondrogenesis, indicating that Dkk3 plays a regulatory role in endochondral bone formation. Further mechanistic studies are required to reveal the mechanism of action of Dkk3 in endochondral bone formation.
Collapse
Affiliation(s)
- Hadi Aslan
- Skeletal Biotechnology Laboratory, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hoogendam J, Farih-Sips H, van Beek E, Löwik CWGM, Wit JM, Karperien M. Novel late response genes of PTHrP in chondrocytes. HORMONE RESEARCH 2006; 67:159-70. [PMID: 17065821 DOI: 10.1159/000096586] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 08/13/2006] [Indexed: 12/13/2022]
Abstract
To gain more insight into the downstream effectors of parathyroid hormone (PTH) related peptide (PTHrP) signaling in chondrocytes, we performed microarray analysis to identify late PTHrP response genes using the chondrogenic ATDC5 cell line and studied their response in the osteoblastic KS483 cell line and explanted metatarsals. At day 8 of micromass culture, ATDC5 cells have pre-hypertrophic-like characteristics and at this time point the cells were stimulated with PTHrP for 24 and 72 h and RNA was isolated. PTHrP treatment inhibited outgrowth of cartilage matrix and decreased the expression of Col10a1 mRNA, which is in line with the inhibitory effects of PTHrP on chondrocyte differentiation. Using cDNA microarray analysis, a list of 9 genes (p< 10(-3)) was generated, including 3 upregulated (IGFBP4, Csrp2, and Ecm1) and 6 downregulated (Col9a1, Col2a1, Agc, Hmgn2, Calm1, and Mxd4) response genes. Four out of 9 genes are novel PTHrP response genes and 2 out of 9 have not yet been identified in cartilage. Four out of 9 genes are components of the extra-cellular matrix and the remaining genes are involved in signal transduction and transcription regulation. The response to PTHrP was validated by quantitative PCR, using the same RNA samples as labeled in the microarray experiments and RNA samples isolated from a new experiment. In addition, we examined whether these genes also reacted to PTHrP in other PTHrP responsive models, like KS483 osteoblasts and explanted metatarsals. The expression of late PTHrP response genes varied between ATDC5 chondrocytes, KS483 osteoblasts and metatarsals, suggesting that the expression of late response genes is dependent on the cellular context of the PTHrP responsive cells.
Collapse
Affiliation(s)
- Jakomijn Hoogendam
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K, Soo C. Nell-1-induced bone regeneration in calvarial defects. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:903-15. [PMID: 16936265 PMCID: PMC1698834 DOI: 10.2353/ajpath.2006.051210] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many craniofacial birth defects contain skeletal components requiring bone grafting. We previously identified the novel secreted osteogenic molecule NELL-1, first noted to be overexpressed during premature bone formation in calvarial sutures of craniosynostosis patients. Nell-1 overexpression significantly increases differentiation and mineralization selectively in osteoblasts, while newborn Nell-1 transgenic mice significantly increase premature bone formation in calvarial sutures. In the current study, cultured calvarial explants isolated from Nell-1 transgenic newborn mice (with mild sagittal synostosis) demonstrated continuous bone growth and overlapping sagittal sutures. Further investigation into gene expression cascades revealed that fibroblast growth factor-2 and transforming growth factor-beta1 stimulated Nell-1 expression, whereas bone morphogenetic protein (BMP)-2 had no direct effect. Additionally, Nell-1-induced osteogenesis in MC3T3-E1 osteoblasts through reduction in the expression of early up-regulated osteogenic regulators (OSX and ALP) but induction of later markers (OPN and OCN). Grafting Nell-1 protein-coated PLGA scaffolds into rat calvarial defects revealed the osteogenic potential of Nell-1 to induce bone regeneration equivalent to BMP-2, whereas immunohistochemistry indicated that Nell-1 reduced osterix-producing cells and increased bone sialoprotein, osteocalcin, and BMP-7 expression. Insights into Nell-1-regulated osteogenesis coupled with its ability to stimulate bone regeneration revealed a potential therapeutic role and an alternative to the currently accepted techniques for bone regeneration.
Collapse
Affiliation(s)
- Tara Aghaloo
- Dental and Craniofacial Research Institute, Department of Bioengineering, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Ave., CHS 30-117, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hassan MQ, Tare RS, Lee SH, Mandeville M, Morasso MI, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB. BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network. J Biol Chem 2006; 281:40515-26. [PMID: 17060321 DOI: 10.1074/jbc.m604508200] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several homeodomain (HD) proteins are critical for skeletal patterning and respond directly to BMP2 as an early step in bone formation. RUNX2, the earliest transcription factor proven essential for commitment to osteoblastogenesis, is also expressed in response to BMP2. However, there is a gap in our knowledge of the regulatory cascade from BMP2 signaling to the onset of osteogenesis. Here we show that BMP2 induces DLX3, a homeodomain protein that activates Runx2 gene transcription. Small interfering RNA knockdown studies in osteoblasts validate that DLX3 is a potent regulator of Runx2. Furthermore in Runx2 null cells, DLX3 forced expression suffices to induce transcription of Runx2, osteocalcin, and alkaline phosphatase genes, thus defining DLX3 as an osteogenic regulator independent of RUNX2. Our studies further show regulation of the Runx2 gene by several homeodomain proteins: MSX2 and CDP/cut repress whereas DLX3 and DLX5 activate endogenous Runx2 expression and promoter activity in non-osseous cells and osteoblasts. These HD proteins exhibit distinct temporal expression profiles during osteoblast differentiation as well as selective association with Runx2 chromatin that is related to Runx2 transcriptional activity and recruitment of RNA polymerase II. Runx2 promoter mutagenesis shows that multiple HD elements control expression of Runx2 in relation to the stages of osteoblast maturation. Our studies establish mechanisms for commitment to the osteogenic lineage directly through BMP2 induction of HD proteins DLX3 and DLX5 that activate Runx2, thus delineating a transcriptional regulatory pathway mediating osteoblast differentiation. We propose that the three homeodomain proteins MSX2, DLX3, and DLX5 provide a key series of molecular switches that regulate expression of Runx2 throughout bone formation.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
46
|
Vaes BLT, Ducy P, Sijbers AM, Hendriks JMA, van Someren EP, de Jong NG, van den Heuvel ER, Olijve W, van Zoelen EJJ, Dechering KJ. Microarray analysis on Runx2-deficient mouse embryos reveals novel Runx2 functions and target genes during intramembranous and endochondral bone formation. Bone 2006; 39:724-38. [PMID: 16774856 DOI: 10.1016/j.bone.2006.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 04/10/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
A major challenge in developmental biology is to correlate genome-wide gene expression modulations with developmental processes in vivo. In this study, we analyzed the role of Runx2 during intramembranous and endochondral bone development, by comparing gene expression profiles in 14.5 dpc wild-type and Runx2 (-/-) mice. A total of 1277, 606 and 492 transcripts were found to be significantly modulated by Runx2 in calvaria, forelimbs and hindlimbs, respectively. Bioinformatics analysis indicated that Runx2 not only controls the processes of osteoblast differentiation and chondrocyte maturation, but may also play a role in axon formation and hematopoietic cell commitment during bone development. A total of 41 genes are affected by the Runx2 deletion in both intramembranous and endochondral bone, indicating common pathways between these two developmental modes of bone formation. In addition, we identified genes that are specifically involved in endochondral ossification. In conclusion, our data show that a comparative genome-wide expression analysis of wild-type and mutant mouse models allows the examination of mutant phenotypes in complex tissues.
Collapse
Affiliation(s)
- Bart L T Vaes
- Department of Applied Biology FNWI, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Christodoulou I, Buttery LDK, Tai G, Hench LL, Polak JM. Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products. J Biomed Mater Res B Appl Biomater 2006; 77:431-46. [PMID: 16333845 DOI: 10.1002/jbm.b.30455] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bioactive glasses dissolve upon immersion in culture medium, releasing their constitutive ions in solution. There is evidence suggesting that these ionic dissolution products influence osteoblast-specific processes. Here, we investigated the effect of 58S sol-gel-derived bioactive glass (60 mol % SiO2, 36 mol % CaO, 4 mol % P2O5) dissolution products on primary osteoblasts derived from human fetal long bone explant cultures (hFOBs). We used U133A human genome GeneChip oligonucleotide arrays to examine 22,283 transcripts and variants, which represent over 18,000 well-substantiated human genes. Hybridization of samples (biotinylated cRNA) derived from monolayer cultures of hFOBs on the arrays revealed that 10,571 transcripts were expressed by these cells, with high confidence. These included transcripts representing osteoblast-related genes coding for growth factors and their associated molecules or receptors, protein components of the extracellular matrix (ECM), enzymes involved in degradation of the ECM, transcription factors, and other important osteoblast-associated markers. A 24-h treatment with a single dosage of ionic products of sol-gel 58S dissolution induced the differential expression of a number of genes, including IL-6 signal transducer/gp130, ISGF-3/STAT1, HIF-1 responsive RTP801, ERK1 p44 MAPK (MAPK3), MAPKAPK2, IGF-I and IGFBP-5. The over 2-fold up-regulation of gp130 and MAPK3 and down-regulation of IGF-I were confirmed by real-time RT-PCR analysis. These data suggest that 58S ionic dissolution products possibly mediate the bioactive effect of 58S through components of the IGF system and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Tissue Engineering and Regenerative Medicine (TERM) Centre, Imperial College Faculty of Medicine, Chelsea and Westminster Campus, 369 Fulham Road, London SW10 9NH, UK
| | | | | | | | | |
Collapse
|
48
|
Bodine PVN, Billiard J, Moran RA, Ponce-de-Leon H, McLarney S, Mangine A, Scrimo MJ, Bhat RA, Stauffer B, Green J, Stein GS, Lian JB, Komm BS. The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem 2006; 96:1212-30. [PMID: 16149051 DOI: 10.1002/jcb.20599] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mechanisms controlling human bone formation remain to be fully elucidated. We have used differential display-polymerase chain reaction analysis to characterize osteogenic pathways in conditionally immortalized human osteoblasts (HOBs) representing distinct stages of differentiation. We identified 82 differentially expressed messages and found that the Wnt antagonist secreted frizzled-related protein (sFRP)-1 was the most highly regulated of these. Transient transfection of HOBs with sFRP-1 suppressed canonical Wnt signaling by 70% confirming its antagonistic function in these cells. Basal sFRP-1 mRNA levels increased 24-fold during HOB differentiation from pre-osteoblasts to pre-osteocytes, and then declined in mature osteocytes. This expression pattern correlated with levels of cellular viability such that the pre-osteocytes, which had the highest levels of sFRP-1 mRNA, also had the highest rate of cell death. Basal sFRP-1 mRNA levels also increased 29-fold when primary human mesenchymal stem cells were differentiated to osteoblasts supporting the developmental regulation of the gene. Expression of sFRP-1 mRNA was induced 38-fold following prostaglandin E2 (PGE2) treatment of pre-osteoblasts and mature osteoblasts that had low basal message levels. In contrast, sFRP-1 expression was down-regulated by as much as 80% following transforming growth factor (TGF)-beta1 treatment of pre-osteocytes that had high basal mRNA levels. Consistent with this, treatment of pre-osteoblasts and mature osteoblasts with PGE(2) increased apoptosis threefold, while treatment of pre-osteocytes with TGF-beta1 decreased cell death by 50%. Likewise, over-expression of sFRP-1 in HOBs accelerated the rate of cell death threefold. These results establish sFRP-1 as an important negative regulator of human osteoblast and osteocyte survival.
Collapse
Affiliation(s)
- Peter V N Bodine
- Women's Health Research Institute, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nadiminty N, Lou W, Lee SO, Mehraein-Ghomi F, Kirk JS, Conroy JM, Zhang H, Gao AC. Prostate-specific antigen modulates genes involved in bone remodeling and induces osteoblast differentiation of human osteosarcoma cell line SaOS-2. Clin Cancer Res 2006; 12:1420-30. [PMID: 16533764 DOI: 10.1158/1078-0432.ccr-05-1849] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The high prevalence of osteoblastic bone metastases in prostate cancer involves the production of osteoblast-stimulating factors by prostate cancer cells. Prostate-specific antigen (PSA) is a serine protease uniquely produced by prostate cancer cells and is an important serologic marker for prostate cancer. In this study, we examined the role of PSA in the induction of osteoblast differentiation. EXPERIMENTAL DESIGN Human cDNA containing a coding region for PSA was transfected into human osteosarcoma SaOS-2 cells. SaOS-2 cells were also treated with exogenously added PSA. We evaluated changes in global gene expression using cDNA arrays and Northern blot analysis resulting from expression of PSA in human osteosarcoma SaOS-2 cells. RESULTS SaOS-2 cells expressing PSA had markedly up-regulated expression of genes associated with osteoblast differentiation including runx-2 and osteocalcin compared with the controls. Consistent with these results, the stable clones expressing PSA showed increased mineralization and increased activity of alkaline phosphatase in vitro compared with controls, suggesting that these cells undergo osteoblast differentiation. We also found that osteoprotegerin expression was down-regulated and that the receptor activator of NF-kappaB ligand expression was up-regulated in cells expressing PSA compared with controls. CONCLUSIONS Modulation of the expression of osteogenic genes and alteration of the balance between osteoprotegerin-receptor activator of NF-kappaB ligand by PSA suggests that PSA produced by metastatic prostate cancer cells may participate in bone remodeling in favor of the development of osteoblastic metastases in the heterogeneous mixture of osteolytic and osteoblastic lesions. These findings provide a molecular basis for understanding the high prevalence of osteoblastic bone metastases in prostate cancer.
Collapse
|
50
|
Abstract
Wnt proteins are a family of secreted proteins that regulate many aspects of cell growth, differentiation, function, and death. Considerable progress has been made in our understanding of the molecular links between Wnt signaling and bone development and remodeling since initial reports that mutations in the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) are causally linked to alterations in human bone mass. Of the pathways activated by Wnts, it is signaling through the canonical (i.e., Wnt/beta-catenin) pathway that increases bone mass through a number of mechanisms including renewal of stem cells, stimulation of preosteoblast replication, induction of osteoblastogenesis, and inhibition of osteoblast and osteocyte apoptosis. This pathway is an enticing target for developing drugs to battle skeletal diseases as Wnt/beta-catenin signaling is composed of a series of molecular interactions that offer potential places for pharmacological intervention. In considering opportunities for anabolic drug discovery in this area, one must consider multiple factors, including (a) the roles of Wnt signaling for development, remodeling, and pathology of bone; (b) how pharmacological interventions that target this pathway may specifically treat osteoporosis and other aspects of skeletal health; and (c) whether the targets within this pathway are amenable to drug intervention. In this Review we discuss the current understanding of this pathway in terms of bone biology and assess whether targeting this pathway might yield novel therapeutics to treat typical bone disorders.
Collapse
Affiliation(s)
- Venkatesh Krishnan
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry U. Bryant
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ormond A. MacDougald
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|