1
|
Ugarteburu M, Doube M, Witek L, Rau C, Cardoso L, Richter CP, Carriero A. Small and porous ossicles, with flat stapes footplate and incudal fractures in the oim mouse model of osteogenesis imperfecta. Bone 2025; 196:117495. [PMID: 40280254 DOI: 10.1016/j.bone.2025.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Hearing loss affects approximately 70% of individuals with osteogenesis imperfecta (OI), a genetic connective tissue disorder characterized by bone fragility and deformities. No effective treatments exist for OI hearing loss, and its etiology is unknown limiting the development of new targeted therapies. This work investigates the impact of OI type I collagen mutations on the ossicle bone properties in the homozygous oim mouse model of severe OI, which is known to exhibit hearing loss. The morphology and porosity of the ossicles of 14-week-old oim and wild-type mice were analyzed using high-resolution synchrotron radiation microtomography. Additionally, the collagen fibers structure, bone tissue composition and mechanical properties were evaluated through second harmonic generation microscopy, Raman spectroscopy, and nanoindentation. The results demonstrated that oim ossicles are small, highly porous with an elevated lacunar number density, a flat stapes footplate and a small malleal processus brevis. One-in-two oim ossicles had incudomalleal joint abnormalities, exhibiting either a localized fracture in the incus head or a joint space widening. No differences were observed in collagen fibers structure, bone tissue composition and mechanical properties. These findings suggest that bone fractures observed in the oim incudes may contribute to their reported hearing loss. However, the underlying mechanism for these fractures' development remains to be investigated, as they do not appear to result from changes in bone tissue properties (collagen fibers organization, tissue composition or mechanical properties). Instead, they may be associated with joint space widening, and possibly altered ossicle chain kinematics.
Collapse
Affiliation(s)
- Maialen Ugarteburu
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Michael Doube
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Lukasz Witek
- Biomaterials and Regenerative Biology Division, NYU College of Dentistry, New York, NY, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY, USA; Department of Biomedical Engineering, New York University, New York, NY, USA
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Luis Cardoso
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA; The Hugh Knowles Center, Northwestern University, Evanston, IL, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
2
|
Hua R, Han Y, Ni Q, Fajardo RJ, Iozzo RV, Ahmed R, Nyman JS, Wang X, Jiang JX. Pivotal roles of biglycan and decorin in regulating bone mass, water retention, and bone toughness. Bone Res 2025; 13:2. [PMID: 39743559 DOI: 10.1038/s41413-024-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025] Open
Abstract
Proteoglycans, key components of non-collagenous proteins in the bone matrix, attract water through their negatively charged glycosaminoglycan chains. Among these proteoglycans, biglycan (Bgn) and decorin (Dcn) are major subtypes, yet their distinct roles in bone remain largely elusive. In this study, we utilized single knockout (KO) mouse models and successfully generated double KO (dKO) models despite challenges with low yield. Bgn deficiency, but not Dcn deficiency, decreased trabecular bone mass, with more pronounced bone loss in dKO mice. Low-field nuclear magnetic resonance measurements showed a marked decrease in bound water among all KO groups, especially in Bgn KO and dKO mice. Moreover, both Bgn KO and dKO mice exhibited reduced fracture toughness compared to Dcn KO mice. Dcn was significantly upregulated in Bgn KO mice, while a modest upregulation of Bgn was observed in Dcn KO mice, indicating Bgn's predominant role in bone. High resolution atomic force microscopy showed decreased in situ permanent energy dissipation and increased elastic modulus in the extrafibrillar matrix of Bgn/Dcn deficient mice, which were diminished upon dehydration. Furthermore, we found that both Bgn and Dcn are indispensable for the activation of ERK and p38 MAPK signaling pathways. Collectively, our results highlight the distinct and indispensable roles of Bgn and Dcn in maintaining bone structure, water retention, and bulk/in situ tissue properties in the bone matrix, with Bgn exerting a predominant influence.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan Han
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Qingwen Ni
- Department of Physics, Texas A&M International University, Laredo, TX, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, USA
| | - Renato V Iozzo
- Department of Pathology & Genomic Medicine, Sidney Kimmel Medical Collage, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
3
|
Gamsjaeger S, Rauch F, Glorieux FH, Paschalis EP. Cortical bone material / compositional properties in growing children and young adults aged 1.5-23 years, as a function of gender, age, metabolic activity, and growth spurt. Bone 2022; 165:116548. [PMID: 36122648 DOI: 10.1016/j.bone.2022.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Bone material / compositional properties are significant determinants of bone quality, thus strength. Raman spectroscopic analysis provides information on the quantity and quality of all three bone tissue components (mineral, organic matrix, and tissue water). The overwhelming majority of the published reports on the subject concern adults. We have previously reported on these properties in growing children and young adults, in the cancellous compartment. The purpose of the present study was to create normative reference data of bone material / compositional properties for children and young adults, in the cortical compartment. We performed Raman (Senterra (Bruker Optik GmbH), 50× objective, with an excitation of 785 nm (100 mW) and a lateral resolution of ~0.6 μm) microspectroscopic analysis of transiliac bone samples from 54 individuals between 1.5 and 23 years of age, with no known metabolic bone disease, and which have been previously used to establish histomorphometric, bone mineralization density distribution, and cancellous bone quality reference values. The bone quality indices that were determined were: mineral/matrix ratio (MM) from the integrated areas of the v2PO4 (410-460 cm-1) and the amide III (1215-1300 cm-1) bands, tissue water in nanopores approximated by the ratio of the integrated spectral area ~ 494-509 cm-1 to Amide III band, the glycosaminoglycan (GAG) content (ratio of integrated area 1365-1390 cm-1 to the Amide III band, the sulfated proteoglycan (sPG) content as the ratio of the integrated peaks ~1062 cm-1 and 1365-1390 cm-1, the pyridinoline (Pyd) content estimated from the ratio of the absorbance height at 1660 cm-1 / area of the amide I (1620-1700 cm-1) band, and the mineral maturity / crystallinity (MMC) estimated from the inverse of the full width at half height of the v1PO4 (930-980 cm-1) band. Analyses were performed at the three distinct cortical surfaces (endosteal, osteonal, periosteal) at specific anatomical microlocations, namely the osteoid, and the three precisely known tissue ages based on the presence of fluorescence double labels. Measurements were also taken in interstitial bone, a much older tissue that has undergone extensive secondary mineralization. Overall, significant dependencies of the measured parameters on tissue age were observed, while at any given tissue age, sex and subject age were minimal confounders. The established Raman database in the cortical compartments complements the previously published one in cancellous bone, and provides healthy baseline bone quality indices that may serve as a valuable tool to identify alterations due to pediatric disease.
Collapse
Affiliation(s)
- S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - F Rauch
- Shriners Hospitals for Children and McGill University, Montreal, QC H4A 0A9, Canada
| | - F H Glorieux
- Shriners Hospitals for Children and McGill University, Montreal, QC H4A 0A9, Canada
| | - E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| |
Collapse
|
4
|
Paschalis EP, Gamsjaeger S, Burr DB. Bone quality in an ovariectomized monkey animal model treated with two doses of teriparatide for either 18 months, or 12 months followed by withdrawal for 6 months. Bone 2022; 158:116366. [PMID: 35167989 DOI: 10.1016/j.bone.2022.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Previous studies of ovariectomized (OVX) monkeys, treated with recombinant human parathyroid hormone (PTH) (1-34) at 1 or 5 μg/kg/day for 18 months or for 12 months followed by 6 months withdrawal from treatment, displayed significant changes in geometry, histomorphometry, and bone quality, but without strict tissue age criteria, of the midshaft humerus. Since bone quality significantly depends on tissue age among other factors, the aim of the present study was to establish the bone-turnover independent effects of two doses of PTH, as well as the effects of treatment withdrawal on bone quality by measuring bone material composition at precisely known tissue ages ranging from osteoid, to mineralized tissue older than 373 days. Raman microspectroscopic analysis of bone tissue from the mid-shaft humerus of OVX monkeys demonstrated that the clinically relevant dose of PTH administered for 18 months reverses the effects of ovariectomy on bone quality when compared against SHAM. Both doses investigated in this study restore the mineralization regulation mechanisms to SHAM levels. The study also showed that the beneficial effects induced by 12 months of clinically relevant PTH therapy were sustained after six months of therapy withdrawal.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute for Osteology, at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute for Osteology, at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - D B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
6
|
Gamsjaeger S, Fratzl P, Paschalis EP. Interplay between mineral crystallinity and mineral accumulation in health and postmenopausal osteoporosis. Acta Biomater 2021; 124:374-381. [PMID: 33582361 DOI: 10.1016/j.actbio.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023]
Abstract
Osteoporosis is characterized by an imbalance between bone formation and resorption rates, resulting in bone loss. For ethical reasons, effects of antiosteoporosis drugs are compared against patients receiving vitamin D and calcium supplementation which is a mild antiresorptive regimen. Bone formation may be resolved into two phases: the initial formation of mineral crystals (primary nucleation) and the subsequent mineral accumulation (secondary nucleation and mineral growth) on them. In this study, we used Raman microspectroscopic analysis of iliac crest biopsies from healthy females (N = 108), postmenopausal osteoporosis patients receiving vitamin D and calcium supplementation (PMOP-S; N = 66), and treatment-naïve postmenopausal osteoporosis patients (PMOP-TN; N = 12) to test the hypothesis that at forming trabecular surfaces, mineral maturity / crystallinity of the youngest crystallites associates with the amount of subsequent mineral accumulation. The surfaces of analysis were chosen based on the presence of fluorescent double labels, defining three distinct tissue ages. The results indicated that when adjusted for age and tissue age, there were no differences in amount of mineral formed between healthy females and either PMOP-S or PMOP-TN, while both PMOP-S and PMOP-TN had larger crystallites compared to healthy females. Moreover, significant differences existed between PMOP-S and PMOP-TN in size of initial crystals formed as well as rate of mineral accumulation and maturation. These findings suggest an additional mechanism that may contribute to the decreased mineral content evident in PMOP, and provide a potential target for the development of new interventions. STATEMENT OF SIGNIFICANCE: We used Raman microspectroscopic analysis of iliac crest biopsies from healthy females and postmenopausal osteoporosis patients (PMOP) receiving placebo to test the hypothesis that at forming trabecular surfaces, mineral maturity / crystallinity (MMC) of the youngest crystallites associates with the amount of subsequent mineral accumulation. This can affect bone mechanical properties as larger crystallites have been shown to result in compromised mechanical attributes; and larger crystallites grow slower compared to smaller ones. The results of the present analysis indicate that increased MMC of the youngest formed mineral may contribute to the bone mineral loss evident in PMOP and the accompanying increased fracture risk independently of bone turnover rate.
Collapse
Affiliation(s)
- S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, Vienna A-1140, Austria
| | - P Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, Vienna A-1140, Austria.
| |
Collapse
|
7
|
Hua R, Ni Q, Eliason TD, Han Y, Gu S, Nicolella DP, Wang X, Jiang JX. Biglycan and chondroitin sulfate play pivotal roles in bone toughness via retaining bound water in bone mineral matrix. Matrix Biol 2020; 94:95-109. [PMID: 33002580 DOI: 10.1016/j.matbio.2020.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022]
Abstract
Recent in vitro evidence shows that glycosaminoglycans (GAGs) and proteoglycans (PGs) in bone matrix may functionally be involved in the tissue-level toughness of bone. In this study, we showed the effect of biglycan (Bgn), a small leucine-rich proteoglycan enriched in extracellular matrix of bone and the associated GAG subtype, chondroitin sulfate (CS), on the toughness of bone in vivo, using wild-type (WT) and Bgn deficient mice. The amount of total GAGs and CS in the mineralized compartment of Bgn KO mouse bone matrix decreased significantly, associated with the reduction of the toughness of bone, in comparison with those of WT mice. However, such differences between WT and Bgn KO mice diminished once the bound water was removed from bone matrix. In addition, CS was identified as the major subtype in bone matrix. We then supplemented CS to both WT and Bgn KO mice to test whether supplemental GAGs could improve the tissue-level toughness of bone. After intradermal administration of CS, the toughness of WT bone was greatly improved, with the GAGs and bound water amount in the bone matrix increased, while such improvement was not observed in Bgn KO mice or with supplementation of dermatan sulfate (DS). Moreover, CS supplemented WT mice exhibited higher bone mineral density and reduced osteoclastogenesis. Interestingly, Bgn KO bone did not show such differences irrespective of the intradermal administration of CS. In summary, the results of this study suggest that Bgn and CS in bone matrix play a pivotal role in imparting the toughness to bone most likely via retaining bound water in bone matrix. Moreover, supplementation of CS improves the toughness of bone in mouse models.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX, USA
| | - Qingwen Ni
- Department of Physics, Texas A&M International University, Laredo, TX, USA
| | - Travis D Eliason
- Department of Materials Engineering, Southwest Research Institute, San Antonio, TX, USA
| | - Yan Han
- Department of Mechanical Engineering, University of Texas at San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX, USA
| | - Daniel P Nicolella
- Department of Materials Engineering, Southwest Research Institute, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, TX, USA.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX, USA.
| |
Collapse
|
8
|
Kram V, Shainer R, Jani P, Meester JAN, Loeys B, Young MF. Biglycan in the Skeleton. J Histochem Cytochem 2020; 68:747-762. [PMID: 32623936 DOI: 10.1369/0022155420937371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small leucine rich proteoglycans (SLRPs), including Biglycan, have key roles in many organ and tissue systems. The goal of this article is to review the function of Biglycan and other related SLRPs in mineralizing tissues of the skeleton. The review is divided into sections that include Biglycan's role in structural biology, signaling, craniofacial and long bone homeostasis, remodeled skeletal tissues, and in human genetics. While many cell types in the skeleton are now known to be affected by Biglycan, there are still unanswered questions about its mechanism of action(s).
Collapse
Affiliation(s)
- Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Reut Shainer
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Josephina A N Meester
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Bart Loeys
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| |
Collapse
|
9
|
Li S, He T, Wu D, Zhang L, Chen R, Liu B, Yuan J, Tickner J, Qin A, Xu J, Rong L. Conditional Knockout of PKC-δ in Osteoclasts Favors Bone Mass Accrual in Males Due to Decreased Osteoclast Function. Front Cell Dev Biol 2020; 8:450. [PMID: 32582715 PMCID: PMC7295979 DOI: 10.3389/fcell.2020.00450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Protein kinase C delta (PKC-δ) functions as an important regulator in bone metabolism. However, the precise involvement of PKC-δ in the regulation of osteoclasts remains elusive. We generated an osteoclast specific PKC-δ knockout mouse strain to investigate the function of PKC-δ in osteoclast biology. Bone phenotype was investigated using microcomputed tomography. Osteoclast and osteoblast parameters were assessed using bone histomorphometry, and analysis of osteoclast formation and function with osteoclastogensis and hydroxyapatite resorption assays. The molecular mechanisms by which PKC-δ regulated osteoclast function were dissected by Western Blotting, TUNEL assay, transfection and transcriptome sequencing. We found that ablation of PKC-δ in osteoclasts resulted in an increase in trabecular and cortical bone volume in male mice, however, the bone mass phenotype was not observed in female mice. This was accompanied by decreased osteoclast number and surface, and Cathepsin-K protein levels in vivo, as well as decreased osteoclast formation and resorption in vitro in a male-specific manner. PKC-δ regulated androgen receptor transcription by binding to its promoter, moreover, PKC-δ conditional knockout did not increase osteoclast apoptosis but increased MAPK signaling and enhanced androgen receptor transcription and expression, finally leding to significant alterations in gene expression and signaling changes related to extracellular matrix proteins specifically in male mice. In conclusion, PKC-δ plays an important role in osteoclast formation and function in a male-specific manner. Our work reveals a previously unknown target for treatment of gender-related bone diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Ruiqiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| |
Collapse
|
10
|
Abstract
Purpose: Biglycan is a proteoglycan of the small leucine-rich repeat family. It is present in all connective tissues and plays key structural and signaling roles. This review aimed to compile available evidence in the characteristics and distribution of biglycan and its glycosylated and non-glycosylated forms in connective tissues with a specific focus on the contribution to homeostasis of bone and changes of biglycan structure with aging.Methods: The Pubmed database was searched and included the terms "biglycan", "proteoglycans", "glycosaminoglycans", "bone", "osteoblast", "osteocyte", "osteoclast", "aging", "inflammation", "cartilage". Abstracts were appraised and a series of original articles and reviews studied to generate this narrative review.Results: Based on the search, biglycan significantly affects bone development and homeostasis and can be significantly changed by the aging process in several connective tissues, which in turn affects the behavior of tissue and cell responses in aged networks. Further, as the understanding of the various forms of biglycan in vivo is expanded and the function of its components in vitro is dissected, this proteoglycan can potentially serve as a therapeutic or biomarker molecule to detect tissue destruction.Conclusions: Biglycan is a key player in skeletal bone homeostasis, and overall, there is more evidence on the role of biglycan in development and less in the adult physiological or diseased young and aged systems. Further understanding of its conformation, degradation peptides and post-translational modifications will be required to understand the role of biglycan in bone maintenance and to support the development of treatments for age-related bone dysfunctions.
Collapse
Affiliation(s)
- Patricia A Miguez
- Adams School of Dentistry, Division of Comprehensive Oral Health, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Rokidi S, Paschalis EP, Klaushofer K, Vennin S, Desyatova A, Turner JA, Watson P, Lappe J, Akhter MP, Recker RR. Organic matrix quality discriminates between age- and BMD-matched fracturing versus non-fracturing post-menopausal women: A pilot study. Bone 2019; 127:207-214. [PMID: 31229674 DOI: 10.1016/j.bone.2019.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
Women with similar areal Bone Mineral Densities (BMD) may show divergent fracture incidence due to differences in bone quality. The hypothesis tested in the present pilot study is that postmenopausal (PM) women who have sustained osteoporotic fractures have altered organic matrix quality compared to those who have not. We used Raman microspectroscopy to analyze transiliac biopsies collected from fracturing (n = 6, mean age 62.5 ± 7.4 yrs; Cases) and non-fracturing PM women (n = 6, age- and BMD-matched; mean age 62.2 ± 7.3 yrs; Controls). Previous results show differences in intrinsic material properties by nanoindentation that are more homogenously distributed and could facilitate microcrack propagation in Cases, along with lower mineral carbonate/phosphate ratio by Fourier transform infrared spectroscopic imaging, and no differences in bone tissue mineralization by digitized microradiography. No differences between groups were seen by conventional histomorphometry. Spectra were acquired 2 μm away from previously performed nanoindents, in cortical and cancellous compartments. The determined parameters were: mineral to matrix ratio (MM), and nanoporosity (a surrogate for tissue water (TW)), glycosaminoglycan (GAG), pyridinoline (Pyd; trivalent enzymatic collagen cross-link), N(6)-carboxymethyllysine (CML; advanced glycation endproduct), and pentosidine (PEN; advanced glycation endproduct) content. ANCOVA indicated no differences in any of the spectroscopic outcomes between cancellous and cortical compartments. On the other hand, Cases had lower nanoporosity (TW) and GAG, and elevated Pyd, and CML content compared to Controls. In conclusion, the results of the present study indicate significant differences in organic matrix quality in PM women that sustain fragility fractures versus age- and BMD-matched controls, highlighting its importance as a potential independent determinant of fracture incidence.
Collapse
Affiliation(s)
- S Rokidi
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna Austria
| | - E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna Austria.
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna Austria
| | - S Vennin
- Iniversity of Nebraska-Lincoln, NE, USA
| | | | | | - P Watson
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - J Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - M P Akhter
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - R R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| |
Collapse
|
12
|
Paschalis EP, Gamsjaeger S, Condon K, Klaushofer K, Burr D. Estrogen depletion alters mineralization regulation mechanisms in an ovariectomized monkey animal model. Bone 2019; 120:279-284. [PMID: 30414509 DOI: 10.1016/j.bone.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Abstract
Ovariectomized animal models have been extensively used in osteoporosis research due to the resulting loss of bone mass. The purpose of the present study was to test the hypothesis that estrogen depletion alters mineralization regulation mechanisms in an ovariectomized monkey animal model. To achieve this we used Raman microspectroscopy to analyze humeri from monkeys that were either SHAM-operated or ovariectomized (N = 10 for each group). Measurements were made as a function of tissue age and cortical surface (periosteal, osteonal, endosteal) based on the presence of calcein fluorescent double labels. In the present work we focused on osteoid seams (defined as a surface with evident calcein labels, 1 μm distance away from the mineralizing front, and for which the Raman spectra showed the presence of organic matrix but not mineral), as well as the youngest mineralized tissue between the second fluorescent label and the mineralizing front, 1 μm inwards from the front with the phosphate mineral peak evident in the Raman spectra (TA1). The spectroscopically determined parameters of interest were the relative glycosaminoglycan (GAG) and pyridinoline (Pyd) contents in the osteoid, and the mineral content in TA1. At all three cortical surfaces, significant correlations were evident in the SHAM-operated animals between osteoid GAG (negative) and Pyd content, and mineral content, unlike the OVX animals. These results suggest that in addition to the well-established effects on turnover rates and bone mass, estrogen depletion alters the regulation of mineralization by GAGs and Pyd.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - K Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - D Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Steven A, Leisz S, Fussek S, Nowroozizadeh B, Huang J, Branstetter D, Dougall WC, Burchardt M, Belldegrun AS, Seliger B, Pantuck A, Kroeger N. Receptor activator of NF-κB (RANK)-mediated induction of metastatic spread and association with poor prognosis in renal cell carcinoma. Urol Oncol 2018; 36:502.e15-502.e24. [PMID: 30170981 DOI: 10.1016/j.urolonc.2018.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Inhibition of the receptor activator of NF-κB ligand (RANKL) has become a standard of care supportive treatment to prevent skeletal related events in cancer patients. Moreover, RANKL inhibition has been implicated with better survival outcome in lung cancer, while RANKL expression induces tumor progression and metastatic spread in vivo in breast cancer. Whether RANK/RANKL may have an impact on the pathogenesis of clear cell renal cell carcinoma (ccRCC) is currently unknown. PATIENTS AND METHODS A retrospective tissue micro array (TMA)-study was carried out determining the expression of RANK/RANKL in primary tumors of 306 ccRCC patients. Additionally, 24 ccRCC cell lines were employed for in vitro analyses of the RANK/RANKL axis including cell proliferation, migration and anchorage independent growth. RESULTS RANK (+) vs. RANK (-) tumors had both worse cancer specific survival (CSS) (6.3 vs. 1.3 years; p < 0.001) and recurrence free survival (RFS) (9.9 vs. 5.8 years; p < 0.001). RANK (+) (HR 2.21; p < 0.001) was an independent prognostic factor for CSS and RFS (HR 4.98; p < 0.001). RANKL treatment resulted in increased proliferation, soft agar growth, and colony formation of RANK (+) RCC cell lines, which could be reversed by treatment with an NF-κB inhibitor and with a combination of osteoprotegrin and RANKL in vitro. CONCLUSIONS RANK is expressed in ccRCC tissue, correlates with clinicopathological features, survival outcome, and when stimulated with RANKL can induce ccRCC progression in vitro. Consequently, RANKL inhibition combined with standard of care treatment may be a promising approach to improve ccRCC patient's survival.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology at the Martin Luther University Halle/Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology at the Martin Luther University Halle/Wittenberg, Halle, Germany
| | - Sebastian Fussek
- Department of Urology, University Medicine at the Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Behdokht Nowroozizadeh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA
| | | | - William C Dougall
- Department of Hematology and Oncology Research, Amgen Inc., Seattle, WA
| | - Martin Burchardt
- Department of Urology, University Medicine at the Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Arie S Belldegrun
- Institute of Urologic Oncology, Department of Urology, David Geffen School of Medicine at the University of California, Los Angeles, CA
| | - Barbara Seliger
- Institute of Medical Immunology at the Martin Luther University Halle/Wittenberg, Halle, Germany
| | - Allan Pantuck
- Institute of Urologic Oncology, Department of Urology, David Geffen School of Medicine at the University of California, Los Angeles, CA
| | - Nils Kroeger
- Department of Urology, University Medicine at the Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany; Institute of Urologic Oncology, Department of Urology, David Geffen School of Medicine at the University of California, Los Angeles, CA; Institute of Medical Biochemistry and Molecular Medicine, University Medicine at the Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany.
| |
Collapse
|
14
|
Lei T, Liang Z, Li F, Tang C, Xie K, Wang P, Dong X, Shan S, Jiang M, Xu Q, Luo E, Shen G. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice. Bone 2018; 108:10-19. [PMID: 29229438 DOI: 10.1016/j.bone.2017.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Pulsed electromagnetic fields (PEMF) has been investigated as a noninvasive alternative method to prevent bone loss for postmenopausal osteoporosis (OP), and the bone tissue involved in these studies are usually long bones such as femur and tibia in OP patients or rat models. However, few studies have investigated the effects of PEMF on the vertebral bone in mice with OP. This study aimed to investigate whether PEMF preserve lumbar vertebral bone mass, microarchitecture and strength in ovariectomized (OVX) mouse model of OP and its associated mechanisms. Thirty 3-month-old female BALB/c mice were randomly divided into three groups (n=10): sham-operated control (Sham), ovariectomy (OVX), and ovariectomy with PEMF treatment (OVX+PEMF). The OVX+PEMF group was exposed to 15Hz, 1.6 mT PEMF for 8h/day, 7days/week. After 8weeks, the mice were sacrificed. The OVX+PEMF group showed lower body weight gain of mice induced by estrogen deficiency compared with OVX group. Biochemical analysis of serum demonstrated that serum bone formation markers including bone specific alkaline phosphatase (BALP), serum osteocalcin (OCN), osteoprotegerin (OPG) and N-terminal propeptide of type I procollagen (P1NP) were markedly higher in OVX+PEMF group compared with OVX group. Besides, serum bone resorption markers including tartrate-resistant acid phosphatase 5b (TRAP-5b) and C-terminal crosslinked telopeptides of type I collagen (CTX-I) were markedly lower in OVX+PEMF group compared with OVX group. Biomechanical test observed that OVX+PEMF group showed higher compressive maximum load and stiffness of the lumbar vertebrae compared with OVX group. Micro-computed tomography (μCT) and histological analysis of lumbar vertebrae revealed that PEMF partially prevented OVX-induced decrease of trabecular bone mass and deterioration of trabecular bone microarchitecture in lumbar vertebrae. Real-time PCR showed that the canonical Wnt signaling pathway of the lumbar vertebrae, including Wnt3a, LRP5 and β-catenin were markedly up-regulated in OVX+PEMF group compared with OVX group. Moreover, the mRNA expressions of RANKL and OPG were markedly up-regulated in OVX+PEMF group compared with OVX group, whereas no statistical difference in RANKL/OPG mRNA ratio was found between OVX+PEMF group and OVX group. Besides, our study also found that the RANK mRNA expression was down-regulated in OVX+PEMF group compared with OVX group. Taken together, we reported that long-term stimulation with PEMF treatment was able to alleviate lumbar vertebral OP in postmenopausal mice through a combination of increased bone formation and suppressed bone resorption related to regulating the skeletal gene expressions of Wnt3a/LRP5/β-catenin and OPG/RANKL/RANK signaling pathways.
Collapse
Affiliation(s)
- Tao Lei
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Zhuowen Liang
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feijiang Li
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Chi Tang
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Kangning Xie
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Pan Wang
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Xu Dong
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Shuai Shan
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Maogang Jiang
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Qiaoling Xu
- School of Nursing, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Erping Luo
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China.
| | - Guanghao Shen
- School of Biomedical Engineering, Fourth Military Medical University, 169 West Changle Road, Xi'an, China.
| |
Collapse
|
15
|
Shabestari M, Eriksen EF, Paschalis EP, Roschger P, Gamsjaeger S, Klaushofer K, Berzlanovich A, Nogues X, Puig L, Diez-Perez A. Presence of pyrophosphate in bone from an atypical femoral fracture site: A case report. Bone Rep 2017; 6:81-86. [PMID: 28377987 PMCID: PMC5365312 DOI: 10.1016/j.bonr.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Long-term antiresorptives use has been linked to atypical subtrochanteric and diaphyseal femoral fractures (AFF), the pathogenesis of which is still unknown. In the present case report we present the results of analysis of bone chips from a 74-year old female patient that had been on alendronate, ibandronate and denosumab treatment, and who sustained an atypical femoral fracture, by histology, quantitative backscattered electron imaging, and Raman spectroscopic analysis. The results indicate ongoing osteoclastic resorption, but also several abnormalities: 1) an altered arrangement of osteons; 2) impaired mineralization; 3) the presence of pyrophosphate, which might contribute to the impaired mineralization evident in the present case. Taken together, these changes may contribute to the focally reduced bone strength of this patient.
Collapse
Affiliation(s)
| | - Erik Fink Eriksen
- Dept. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Andrea Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Vienna, Austria
| | - Xavier Nogues
- Dept. of Orthopedics, Institut Hospital del Mar d'Investigació Mèdica, Autonomous University of Barcelona, Spain
| | - Lluis Puig
- Department of Orthopedic Surgery, Hospital del Mar, Barcelona, Spain
| | - Adolfo Diez-Perez
- Dept. of Orthopedics, Institut Hospital del Mar d'Investigació Mèdica, Autonomous University of Barcelona, Spain
| |
Collapse
|
16
|
Paschalis EP, Gamsjaeger S, Hassler N, Klaushofer K, Burr D. Ovarian hormone depletion affects cortical bone quality differently on different skeletal envelopes. Bone 2017; 95:55-64. [PMID: 27826024 DOI: 10.1016/j.bone.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022]
Abstract
The physical properties of bone tissue are determined by the organic and mineral matrix, and are one aspect of bone quality. As such, the properties of mineral and matrix are a major contributor to bone strength, independent of bone mass. Cortical bone quality may differ regionally on the three skeletal envelopes that compose it. Each of these envelopes may be affected differently by ovarian hormone depletion. Identifying how these regions vary in their tissue adaptive response to ovarian hormones can inform our understanding of how tissue quality contributes to overall bone strength in postmenopausal women. We analyzed humeri from monkeys that were either SHAM-operated or ovariectomized. Raman microspectroscopic analysis was performed as a function of tissue age based on the presence of multiple fluorescent double labels, to determine whether bone compositional properties (mineral/matrix ratio, tissue water, glycosaminoglycan, lipid, and pyridinoline contents, and mineral maturity/crystallinity) are similar between periosteal, osteonal, and endosteal surfaces, as well as to determine the effects of ovarian hormone depletion on them. The results indicate that mineral and organic matrix characteristics, and kinetics of mineral and organic matrix modifications as a function of tissue age are different at periosteal vs. osteonal and endosteal surfaces. Ovarian hormone depletion affects the three cortical surfaces (periosteal, osteonal, endosteal) differently. While ovarian hormone depletion does not significantly affect the quality of either the osteoid or the most recently mineralized tissue, it significantly affects the rate of subsequent mineral accumulation, as well as the kinetics of organic matrix modifications, culminating in significant differences within interstitial bone. These results highlight the complexity of the cortical bone compartments, add to existing knowledge on the effects of ovarian hormone depletion on local cortical bone properties, and may contribute to a better understanding of the location specific action of drugs used in the management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - N Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - D Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Paschalis EP, Gamsjaeger S, Hassler N, Fahrleitner-Pammer A, Dobnig H, Stepan JJ, Pavo I, Eriksen EF, Klaushofer K. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality. Bone 2017; 95:41-46. [PMID: 27826025 DOI: 10.1016/j.bone.2016.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.0-1.5g) supplementation, or did not. We have analyzed by Raman microspectroscopy the bone forming trabecular surfaces of iliac crest in pre-treatment samples of a teriparatide study and the endpoint biopsies of the control arm obtained from the HORIZON trial. In general, the mineral/matrix ratio and the glycosaminoglycan (GAG) content was higher while nanoporosity, (a surrogate for tissue water content), the mineral maturity/crystallinity (MMC) and the pyridinoline (Pyd) content was lower in patients without long-term supplementation. Moreover, all indices were significantly dependent on tissue age. In conclusion, vitamin D and calcium supplementation is associated with altered mineral and organic matrix properties.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| | - N Hassler
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| | | | - H Dobnig
- Thyroid, Endocrinology, and Osteoporosis Institute, Graz, Austria
| | - J J Stepan
- Institute of Rheumatology, Faculty of Medicine 1, Charles University, Prague, Czech Republic
| | - I Pavo
- Endocrinology Dept., Oslo University Hospital, Norway
| | - E F Eriksen
- Endocrinology Dept., Oslo University Hospital, Norway
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| |
Collapse
|
18
|
Paschalis EP, Gamsjaeger S, Dempster D, Jorgetti V, Borba V, Boguszewski CL, Klaushofer K, Moreira CA. Fragility Fracture Incidence in Chronic Obstructive Pulmonary Disease (COPD) Patients Associates With Nanoporosity, Mineral/Matrix Ratio, and Pyridinoline Content at Actively Bone-Forming Trabecular Surfaces. J Bone Miner Res 2017; 32:165-171. [PMID: 27490957 DOI: 10.1002/jbmr.2933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/22/2016] [Accepted: 07/12/2016] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with low areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and altered microstructure by bone histomorphometry and micro-computed tomography. Nevertheless, not all COPD patients sustain fragility fractures. In the present study, we used Raman microspectroscopic analysis to determine bone compositional properties at actively forming trabecular surfaces (based on double fluorescent labels) in iliac crest biopsies from 19 postmenopausal COPD patients (aged 62.1 ± 7.3 years). Additionally, we analyzed trabecular geometrical centers, representing tissue much older than the forming surfaces. Eight of the patients had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. None of the patients had taken oral glucocorticoids. The monitored parameters were mineral/matrix ratio (MM), nanoporosity, and relative glycosaminoglycan (GAG), lipid, and pyridinoline contents (PYD). There were no significant differences between the glucocorticoid-treated patients and those who did not receive any. On the other hand, COPD patients sustaining fragility fractures had significantly lower nanoporosity and higher MM and PYD values compared with COPD patients without fragility fractures. To the best of our knowledge, this is the first study to discriminate between fracture and non-fracture COPD patients based on differences in the material properties of bone matrix. Given that these bone material compositional differences are evident close to the cement line (a major bone interface), they may contribute to the inferior bone toughness and coupled with the lower lumbar spine bone mineral density values result in the fragility fractures prevalent in these patients. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology, the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - David Dempster
- Departments of Medicine and Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Vanda Jorgetti
- Department of Nephrology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Victoria Borba
- Endocrinology Division, Federal University of Parana, Curitiba, Brazil
| | | | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology, the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Carolina A Moreira
- Endocrinology Division, Federal University of Parana, Curitiba, Brazil.,LAB PRO, Bone Histomorphometry Division, Pro Renal Foundation, Curitiba, Brazil
| |
Collapse
|
19
|
Paschalis EP, Gamsjaeger S, Fratzl-Zelman N, Roschger P, Masic A, Brozek W, Hassler N, Glorieux FH, Rauch F, Klaushofer K, Fratzl P. Evidence for a Role for Nanoporosity and Pyridinoline Content in Human Mild Osteogenesis Imperfecta. J Bone Miner Res 2016; 31:1050-9. [PMID: 26748579 DOI: 10.1002/jbmr.2780] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type I represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near-normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of ∼1 µm, as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either attributable to collagen haploinsufficiency OI type I (OI-Quant; n = 11) or aberrant collagen structure (OI-Qual; n = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (n = 54, ages 1 to 23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, whereas fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared with healthy children were evident for nanoporosity, mineral maturity/crystallinity as determined by maxima of the v1 PO4 Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Admir Masic
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Wolfgang Brozek
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Francis H Glorieux
- Genetics Unit, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Frank Rauch
- Genetics Unit, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
20
|
Paschalis EP, Fratzl P, Gamsjaeger S, Hassler N, Brozek W, Eriksen EF, Rauch F, Glorieux FH, Shane E, Dempster D, Cohen A, Recker R, Klaushofer K. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years. J Bone Miner Res 2016; 31:347-57. [PMID: 26308158 DOI: 10.1002/jbmr.2696] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 11/11/2022]
Abstract
Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Wolfgang Brozek
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Erik F Eriksen
- Dept. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Aker, Norway
| | - Frank Rauch
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, QC, Canada
| | - Francis H Glorieux
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, QC, Canada
| | - Elizabeth Shane
- Medicine and Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - David Dempster
- Medicine and Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Adi Cohen
- Medicine and Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Robert Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| |
Collapse
|
21
|
The small leucine-rich proteoglycan BGN accumulates in CADASIL and binds to NOTCH3. Transl Stroke Res 2015; 6:148-55. [PMID: 25578324 DOI: 10.1007/s12975-014-0379-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/09/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited form of cerebral small vessel disease caused by mutations in conserved residues of NOTCH3. Affected arteries of CADASIL feature fibrosis and accumulation of NOTCH3. A variety of collagen subtypes (types I, III, IV, and VI) have been identified in fibrotic CADASIL vessels. Biglycan (BGN) and decorin (DCN) are class I members of the small leucine-rich proteoglycan (SLRP) family that regulate collagen fibril size. Because DCN has been shown to deposit in arteries in cerebral small vessel disease, we tested whether BGN accumulates in arteries of CADASIL brains. BGN was strongly expressed in both small penetrating and leptomeningeal arteries of CADASIL brain. BGN protein was localized to all three layers of arteries (intima, media, and adventitia). Substantially, more immunoreactivity was observed in CADASIL brains compared to controls. Immunoblotting of brain lysates showed a fourfold increase in CADASIL brains (compared to controls). Messenger RNA encoding BGN was also increased in CADASIL and was localized by in situ hybridization to all three vascular layers in CADASIL. Human cerebrovascular smooth muscle cells exposed to purified NOTCH3 ectodomain upregulated BGN, DCN, and COL4A1 through mechanisms that are sensitive to rapamycin, a potent mTOR inhibitor. In addition, BGN protein interacted directly with NOTCH3 protein in cell culture and in direct protein interaction assays. In conclusion, BGN is a CADASIL-enriched protein that potentially accumulates in vessels by mTOR-mediated transcriptional activation and/or post-translational accumulation via protein interactions with NOTCH3 and collagen.
Collapse
|
22
|
Hassler N, Gamsjaeger S, Hofstetter B, Brozek W, Klaushofer K, Paschalis EP. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporos Int 2015; 26:339-52. [PMID: 25315260 DOI: 10.1007/s00198-014-2929-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/02/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED Raman microspectroscopic analysis of iliac crest from patients that were treated with alendronate (ALN) for 10 years revealed minimal, transient alterations in bone material properties confined to actively forming bone surfaces compared to patients that were on ALN for 5 years. These changes were not encountered in the bulk tissue. INTRODUCTION Alendronate (ALN) and other bisphosphonates (BPs) are the most widely prescribed therapy for postmenopausal osteoporosis. Despite their overall excellent safety record and efficacy in reducing fractures, questions have been raised regarding potential detrimental effects that may be related to prolonged bone turnover reduction, although no definite cause-effect relationship has been established to date. The purpose of the present study was to evaluate bone material properties in patients that were receiving ALN for 5 or 10 years. METHODS Raman microspectroscopic analysis was used to analyze iliac crest biopsies from postmenopausal women with osteoporosis who had been treated with ALN for 5 years and were then re-randomized to placebo (PBO, N = 14), 5 mg/day ALN (N = 10), or 10 mg/day ALN (N = 6) for another 5 years. The parameters monitored and expressed as a function of tissue age were (i) the mineral/matrix ratio (MM), (ii) the relative proteoglycan content (PG), (iii) the relative lipid content (LPD), (iv) the mineral maturity/crystallinity (MMC), and (v) the relative pyridinoline content (PYD). RESULTS The obtained data indicate that 10-year ALN use results in minimal, transient bone tissue composition changes compared to use for 5 years, confined to actively forming trabecular surfaces, implying potential differences in bone matrix maturation that nevertheless did not result in differences of these values in bulk tissue. CONCLUSIONS The data suggest that prolonged reduction in bone turnover during 10 years of therapy with ALN by itself is unlikely to be associated with adverse effects on bone material properties.
Collapse
Affiliation(s)
- N Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma CentreMeidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Gamsjaeger S, Mendelsohn R, Boskey AL, Gourion-Arsiquaud S, Klaushofer K, Paschalis EP. Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry. Curr Osteoporos Rep 2014; 12:454-64. [PMID: 25240579 PMCID: PMC4638121 DOI: 10.1007/s11914-014-0238-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metabolic bone diseases manifesting fragility fractures (such as osteoporosis) are routinely diagnosed based on bone mineral density (BMD) measurements, and the effect of various therapies also evaluated based on the same outcome. Although useful, it is well recognized that this metric does not fully account for either fracture incidence or the effect of various therapies on fracture incidence, thus, the emergence of bone quality as a contributing factor in the determination of bone strength. Infrared and Raman vibrational spectroscopic techniques are particularly well-suited for the determination of bone quality as they provide quantitative and qualitative information of the mineral and organic matrix bone components, simultaneously. Through the use of microspectroscopic techniques, this information is available in a spatially resolved manner, thus, the outcomes may be easily correlated with outcomes from techniques such as histology, histomorphometry, and nanoindentation, linking metabolic status with material properties.
Collapse
Affiliation(s)
- S. Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | | | | | | | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - E. P. Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria,
| |
Collapse
|
24
|
Hofstetter B, Gamsjaeger S, Varga F, Dobnig H, Stepan JJ, Petto H, Pavo I, Klaushofer K, Paschalis EP. Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment-naïve or on long-term alendronate therapy. Osteoporos Int 2014; 25:2709-19. [PMID: 25037600 DOI: 10.1007/s00198-014-2814-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/04/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED The results of the present study, involving analysis of biopsies from patients who received teriparatide for 2 years and were previously either treatment-naïve or on long-term alendronate therapy, suggest that prior alendronate use does not blunt the favorable effects of teriparatide on bone quality. INTRODUCTION Examine the effect of 2 years of teriparatide (TPTD) treatment on mineral and organic matrix properties of the newest formed bone in patients who were previously treatment-naïve (TN) or on long-term alendronate (ALN) therapy. METHODS Raman and Fourier transform infrared microspectroscopic analyses were used to determine the mineral/matrix (M/M) ratio, the relative proteoglycan (PG) content, and the mineral maturity/crystallinity (MMC; determined by three methods: carbonate content, full width at half height of the v 1 PO4 band [FWHH], and wavelength at maxima of the v 1 PO4 band), as well as collagen maturity (ratio of pyridinoline/divalent cross-links), in paired iliac crest biopsies at trabecular, endosteal, and osteonal surfaces of newly formed bone in postmenopausal osteoporotic women who were previously either TN (n = 16) or receiving long-term ALN treatment (n = 24). RESULTS Trabecular M/M ratio increased and matrix content decreased significantly in the ALN pretreated group. Collagen maturity decreased in both patient groups. Endosteal M/M ratio increased significantly in the TN group. Trabecular M/M ratio was higher at endpoint in the ALN pretreated group than in the TN group. Overall, no changes from baseline were observed in PG content, except that PG content was higher in the ALN pretreated group than in the TN group at endosteal surfaces at endpoint. The ability of TPTD treatment to reduce MMC in both patient groups and at the different bone surfaces depended on the measurement tool (relative carbonate content or wavelength at maxima of the v 1 PO4 band). None of the changes in MMC were different between the two patient groups. CONCLUSIONS The results suggest some favorable impact of TPTD on bone mineral and organic matrix properties of in situ forming bone in terms of increased initial mineralization and decreased MMC and collagen maturity. Moreover, prior long-term ALN administration may have only limited influence on these properties in bone newly formed after 2 years of TPTD treatment.
Collapse
Affiliation(s)
- B Hofstetter
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gamsjaeger S, Hofstetter B, Fratzl-Zelman N, Roschger P, Roschger A, Fratzl P, Brozek W, Masic A, Misof BM, Glorieux FH, Klaushofer K, Rauch F, Paschalis EP. Pediatric reference Raman data for material characteristics of iliac trabecular bone. Bone 2014; 69:89-97. [PMID: 25245203 DOI: 10.1016/j.bone.2014.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023]
Abstract
Bone material characteristics are important contributors in the determination of bone strength. Raman spectroscopic analysis provides information on mineral/matrix ratio, mineral maturity/crystallinity, relative pyridinoline (Pyd) collagen cross-link content, relative proteoglycan content and relative lipid content. However, published reference data are available only for adults. The purpose of the present study was to establish reference data of Raman outcomes pertaining to bone quality in trabecular bone for children and young adults. To this end, tissue age defined Raman microspectroscopic analysis was performed on bone samples from 54 individuals between 1.5 and 23 years with no metabolic bone disease, which have been previously used to establish histomorphometric and bone mineralization density distribution reference values. Four distinct tissue ages, three well defined by the fluorescent double labels representing early stages of bone formation and tissue maturation (days 3, 12, 20 of tissue mineralization) and a fourth representing old mature tissue at the geometrical center of the trabeculae, were analyzed. In general, significant dependencies of the measured parameters on tissue age were found, while at any given tissue age, sex and subject age were not confounders. Specifically, mineral/matrix ratio, mineral maturity/crystallinity index and relative pyridinoline collagen cross-link content index increased by 485%, 20% and 14%, respectively between days 3 and 20. The relative proteoglycan content index was unchanged between days 3 and 20 but was elevated in the old tissue compared to young tissue by 121%. The relative lipid content decreased within days 3 to 20 by -22%. Thus, the method allows not only the monitoring of material characteristics at a specific tissue age but also the kinetics of tissue maturation as well. The established reference Raman database will serve as sensitive tool to diagnose disturbances in material characteristics of pediatric bone biopsy samples.
Collapse
Affiliation(s)
- S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - B Hofstetter
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - N Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria; Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - W Brozek
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A Masic
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - B M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - F H Glorieux
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, Quebec H3G 1A6, Canada
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - F Rauch
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, Quebec H3G 1A6, Canada
| | - E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| |
Collapse
|
26
|
Gamsjaeger S, Brozek W, Recker R, Klaushofer K, Paschalis EP. Transmenopausal changes in trabecular bone quality. J Bone Miner Res 2014; 29:608-17. [PMID: 23966337 DOI: 10.1002/jbmr.2073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 02/01/2023]
Abstract
Bone strength depends on its amount and quality. Bone quality includes its structural and material properties. Bone material properties are dependent on bone turnover rates. Remodeling rates are significantly increased immediately after menopause. In the present study, we used Raman microspectroscopic analysis of double iliac crest biopsies with a spatial resolution of 1 µm obtained before and immediately after menopause (1 year after cessation of menses) in healthy females to investigate changes in material properties attributable to menopause. In particular, the mineral/matrix ratio, the relative proteoglycan and lipid content, the mineral maturity/crystallinity, and the relative pyridinoline collagen cross-link content were determined in trabecular bone as a function of surface metabolic activity and tissue age. The results indicate that significant changes (specifically in mineral/matrix ratio) were evident at active bone forming surfaces, whereas the relative proteoglycan content was altered at resorbing surfaces. These changes were not accompanied by altered mineral content or quality as monitored by Raman microspectroscopic analysis.
Collapse
Affiliation(s)
- Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital, Vienna, Austria
| | | | | | | | | |
Collapse
|
27
|
Govindarajan P, Khassawna T, Kampschulte M, Böcker W, Huerter B, Dürselen L, Faulenbach M, Heiss C. Implications of combined ovariectomy and glucocorticoid (dexamethasone) treatment on mineral, microarchitectural, biomechanical and matrix properties of rat bone. Int J Exp Pathol 2013; 94:387-98. [PMID: 23998329 PMCID: PMC3944450 DOI: 10.1111/iep.12038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/12/2013] [Indexed: 12/28/2022] Open
Abstract
Osteoporosis is one of the deleterious side effects of long-term glucocorticoid therapy. Since the condition is particularly aggressive in postmenopausal women who are on steroid therapy, in this study we have attempted to analyse the combined effect of glucocorticoid (dexamethasone) treatment and cessation of oestrogen on rat bone. The dual aim was to generate osteoporotic bone status in a short time scale and to characterise the combination of glucocorticoid-postmenopausal osteoporotic conditions. Sprague Dawley rats (N = 42) were grouped randomly into three groups: untreated control, sham-operated and ovariectomized-steroid (OVX-Steroid) rats. Control animals were euthanized with no treatment [Month 0 (M0)], while sham and OVX-Steroid rats were monitored up to 1 month (M1) and 3 months (M3) post laparotomy/post OVX-Steroid treatment. Histology, dual-energy X-ray absorptiometry (DXA), micro-computed tomography (micro-CT), and biomechanical and mRNA expression analysis of collagenous, non-collagenous matrix proteins and osteoclast markers were examined. The study indicated enhanced osteoclastogenesis and significantly lower bone mineral density (BMD) in the OVX-Steroid rats with Z-scores below -2.5, reduced torsional strength, reduced bone volume (BV/TV%), significantly enhanced trabecular separation (Tb.S), and less trabecular number (Tb.N) compared with sham rats. Osteoclast markers, cathepsin K and MMP 9 were upregulated along with Col1α1 and biglycan with no significant expression variation in fibronectin, MMP 14, LRP-5, Car II and TNC. These results show higher bone turnover with enhanced bone resorption accompanied with reduced torsional strength in OVX-Steroid rats; and these changes were attained within a short timeframe. This could be a useful model which mimics human postmenopausal osteoporosis that is associated with steroid therapy and could prove of value both in disease diagnosis and for testing generating and testing biological agents which could be used in treatment.
Collapse
Affiliation(s)
| | - Thaqif Khassawna
- Laboratory of Experimental Trauma Surgery, Justus-Liebig UniversityGiessen, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen-MarburgGiessen, Germany
| | - Wolfgang Böcker
- Department of Trauma Surgery, University Hospital of Giessen-MarburgGiessen, Germany
| | - Britta Huerter
- Laboratory of Experimental Trauma Surgery, Justus-Liebig UniversityGiessen, Germany
| | - Lutz Dürselen
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm, University of UlmUlm, Germany
| | - Miriam Faulenbach
- Department of Radiology, University Hospital of Giessen-MarburgGiessen, Germany
| | - Christian Heiss
- Laboratory of Experimental Trauma Surgery, Justus-Liebig UniversityGiessen, Germany
- Department of Trauma Surgery, University Hospital of Giessen-MarburgGiessen, Germany
| |
Collapse
|
28
|
Tamura Y, Kawao N, Okada K, Yano M, Okumoto K, Matsuo O, Kaji H. Plasminogen activator inhibitor-1 is involved in streptozotocin-induced bone loss in female mice. Diabetes 2013; 62:3170-9. [PMID: 23715621 PMCID: PMC3749344 DOI: 10.2337/db12-1552] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In diabetic patients, the risk of fracture is high because of impaired bone formation. However, the details of the mechanisms in the development of diabetic osteoporosis remain unclear. In the current study, we investigated the role of plasminogen activator inhibitor (PAI)-1 in the pathogenesis of type 1 diabetic osteoporosis by using PAI-1-deficient mice. Quantitative computed tomography analysis showed that PAI-1 deficiency protected against streptozotocin-induced bone loss in female mice but not in male mice. PAI-1 deficiency blunted the changes in the levels of Runx2, osterix, and alkaline phosphatase in tibia as well as serum osteocalcin levels suppressed by the diabetic state in female mice only. Furthermore, the osteoclast levels in tibia, suppressed in diabetes, were also blunted by PAI-1 deficiency in female mice. Streptozotocin markedly elevated the levels of PAI-1 mRNA in liver in female mice only. In vitro study demonstrated that treatment with active PAI-1 suppressed the levels of osteogenic genes and mineralization in primary osteoblasts from female mouse calvaria. In conclusion, the current study indicates that PAI-1 is involved in the pathogenesis of type 1 diabetic osteoporosis in females. The expression of PAI-1 in the liver and the sensitivity of bone cells to PAI-1 may be an underlying mechanism.
Collapse
Affiliation(s)
- Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osaka, Japan
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
- Corresponding author: Hiroshi Kaji,
| |
Collapse
|
29
|
Abstract
Obesity promotes increased secretion of a number of inflammatory factors from adipose tissue. These factors include cytokines and very lately, extracellular matrix components (ECM). Biglycan, a small leucine rich proteoglycan ECM protein, is up-regulated in obesity and has recently been recognized as a pro-inflammatory molecule. However, it is unknown whether biglycan contributes to adipose tissue dysfunction. In the present study, we characterized biglycan expression in various adipose depots in wild-type mice fed a low fat diet (LFD) or obesity-inducing high fat diet (HFD). High fat feeding induced biglycan mRNA expression in multiple adipose depots. Adiponectin is an adipokine with anti-inflammatory and insulin sensitizing effects. Due to the importance of adiponectin, we examined the effect of biglycan on adiponectin expression. Comparison of adiponectin expression in biglycan knockout (bgn(-/0)) and wild-type (bgn(+/0)) reveals higher adiponectin mRNA and protein in epididymal white adipose tissue in bgn(-/0) mice, as well higher serum concentration of adiponectin, and lower serum insulin concentration. On the contrary, knockdown of biglycan in 3T3-L1 adipocytes led to decreased expression and secretion of adiponectin. Furthermore, treatment of 3T3-L1 adipocytes with conditioned medium from biglycan treated macrophages resulted in an increase in adiponectin mRNA expression. These data suggest a link between biglycan and adiponectin expression. However, the difference in the pattern of regulation between in vivo and in vitro settings reveals the complexity of this relationship.
Collapse
|
30
|
Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN. The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem 2012; 287:33926-33. [PMID: 22879588 DOI: 10.1074/jbc.r112.379602] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class of small leucine-rich proteoglycans (SLRPs) is a family of homologous proteoglycans harboring relatively small (36-42 kDa) protein cores compared with the larger cartilage and mesenchymal proteoglycans. SLRPs have been localized to most skeletal regions, with specific roles designated during all phases of bone formation, including periods relating to cell proliferation, organic matrix deposition, remodeling, and mineral deposition. This is mediated by key signaling pathways regulating the osteogenic program, including the activities of TGF-β, bone morphogenetic protein, Wnt, and NF-κB, which influence both the number of available osteogenic precursors and their subsequent development, differentiation, and function. On the other hand, SLRP depletion is correlated with degenerative diseases such as osteoporosis and ectopic bone formation. This minireview will focus on the SLRP roles in bone physiology and pathology.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, Greece
| | | | | | | | | | | |
Collapse
|
31
|
Wang X, Harimoto K, Xie S, Cheng H, Liu J, Wang Z. Matrix protein biglycan induces osteoblast differentiation through extracellular signal-regulated kinase and Smad pathways. Biol Pharm Bull 2011; 33:1891-7. [PMID: 21048317 DOI: 10.1248/bpb.33.1891] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biglycan (Bgn) is a member of the small leucine-rich proteoglycan (SLRP) family found in bone extracellular matrix (ECM), and hence involved in regulating bone formation and matrix mineralization. It has been reported that Bgn facilitates osteoblast differentiation, and extracellular signal-regulated kinase (Erk) and Smad are two important pathways in regulating osteoblast differentiation. However, the underlying mechanism for Bgn facilitating osteoblast differentiation has not been fully elucidated. The present study demonstrated that the matrix protein Bgn activates Erk signaling pathway and therefore increases Runx2 transcriptional activity, in which glycosaminoglycans (GAGs) chains play an essential role. Additionally, Bgn also activated Smad pathway, another signaling pathway related with osteoblast differentiation. The activation of these two signaling pathways induced by Bgn facilitated the mineralization deposition in vitro. These results demonstrated the mechanism of Bgn promoting osteoblast differentiation and matrix mineralization.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Medicine, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Ershov KI, Rusova TV, Falameeva OV, Sadovoy MA, Aizman RI, Kolosova NG. Bone matrix glycosaminoglycans and osteoporosis development in early aging OXYS rats. ADVANCES IN GERONTOLOGY 2011. [DOI: 10.1134/s2079057011010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Okudaira S, Shimizu M, Otsuki B, Nakanishi R, Ohta A, Higuchi K, Hosokawa M, Tsuboyama T, Nakamura T. Quantitative trait locus on chromosome X affects bone loss after maturation in mice. J Bone Miner Metab 2010; 28:520-31. [PMID: 20354743 DOI: 10.1007/s00774-010-0168-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
Genetic programming is known to affect the peak bone mass and bone loss after maturation. However, little is known about how polymorphic genes on chromosome X (Chr X) modulate bone loss after maturation. We previously reported a quantitative trait locus (QTL) on Chr X, designated Pbd3, which had a suggestive linkage to bone mass, in male SAMP2 and SAMP6 mice. In this study, we aimed to clarify the effects of Pbd3 on the skeletal phenotype. We generated a congenic strain, P2.P6-X, carrying a 45.6-cM SAMP6-derived Chr X interval on a SAMP2 genetic background. The effects of Pbd3 on the bone phenotype were determined by microcomputed tomography (microCT), whole-body dual-energy X-ray absorptiometry (DXA), serum bone turnover markers, and histomorphometric parameters. Both the bone area fraction (BA/TA) on microCT and whole-body DXA revealed reduced bone loss in P2.P6-X compared with that in SAMP2. The serum concentrations of bone turnover markers at 4 months of age were significantly lower in P2.P6-X than in SAMP2, but did not differ at 8 months of age. These results were observed in female mice, but not in male mice. In conclusion, a QTL within a segregated 45.6-cM interval on Chr X is sex-specifically related to the rate of bone loss after maturation.
Collapse
Affiliation(s)
- Shuzo Okudaira
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kilts T, Ameye L, Syed-Picard F, Ono M, Berendsen AD, Oldberg A, Heegaard AM, Bi Y, Young MF. Potential roles for the small leucine-rich proteoglycans biglycan and fibromodulin in ectopic ossification of tendon induced by exercise and in modulating rotarod performance. Scand J Med Sci Sports 2009; 19:536-46. [PMID: 19422643 DOI: 10.1111/j.1600-0838.2009.00909.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present a detailed comparison of ectopic ossification (EO) found in tendons of biglycan (Bgn), fibromodulin (Fmod) single and double Bgn/Fmod-deficient (DKO) mice with aging. At 3 months, Fmod KO, Bgn KO and DKO displayed torn cruciate ligaments and EO in their quadriceps tendon, menisci and cruciate and patellar ligaments. The phenotype was the least severe in the Fmod KO, intermediate in the Bgn KO and the most severe in the DKO. This condition progressed with age in all three mouse strains and resulted in the development of large supernumerary sesmoid bones. To determine the role of exercise in the extent of EO, we subjected normal and DKO mice to a treadmill exercise 3 days a week for 4 weeks. In contrast to previous findings using more rigorous exercise regimes, the EO in moderately exercised DKO was decreased compared with unexercised DKO mice. Finally, DKO and Bgn KO mice tested using a rotarod showed a reduced ability to maintain their grip on a rotating cylinder compared with wild-type controls. In summary, we show (1) a detailed description of EO formed by Bgn, Fmod or combined depletion, (2) the role of exercise in modulating EO and (3) that Bgn and Fmod are critical in controlling motor function.
Collapse
Affiliation(s)
- T Kilts
- Molecular Biology of Bones and Teeth Section, Craniofacial and Skeletal Diseases Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heegaard AM, Corsi A, Danielsen CC, Nielsen KL, Jorgensen HL, Riminucci M, Young MF, Bianco P. Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation 2007; 115:2731-8. [PMID: 17502576 DOI: 10.1161/circulationaha.106.653980] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND For the majority of cases, the cause of spontaneous aortic dissection and rupture is unknown. An inherited risk is associated with Marfan syndrome, Ehlers-Danlos syndrome type IV, and loci mapped to diverse autosomal chromosomes. Analysis of pedigrees however has indicated that it may be also inherited as an X-linked trait. The biglycan gene, found on chromosome X in humans and mice, encodes a small leucine-rich proteoglycan involved in the integrity of the extracellular matrix. A vascular phenotype has never been described in mice deficient in the gene for small leucine-rich proteoglycans. In the breeding of BALB/cA mice homozygous for a null mutation of the biglycan gene, we observed that 50% of biglycan-deficient male mice died suddenly within the first 3 months of life. METHODS AND RESULTS Necropsies revealed a major hemorrhage in the thoracic or abdominal cavity, and histology showed aortic rupture that involved an intimal and medial tear as well as dissection between the media and adventitia. By transmission electron microscopy and biomechanical testing, the aortas of biglycan-deficient mice showed structural abnormalities of collagen fibrils and reduced tensile strength. Similar collagen fibril changes were observed in male as well as in female biglycan-deficient mice, which implies a role of additional determinants such as gender-related response to stress in the development of this vascular catastrophe only in male mice. CONCLUSIONS The spontaneous death of biglycan-deficient male mice from aortic rupture implicates biglycan as essential for the structural and functional integrity of the aortic wall and suggests a potential role of biglycan gene defects in the pathogenesis of aortic dissection and rupture in humans.
Collapse
Affiliation(s)
- Anne-Marie Heegaard
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
37
|
Wallace JM, Rajachar RM, Chen XD, Shi S, Allen MR, Bloomfield SA, Les CM, Robey PG, Young MF, Kohn DH. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone 2006; 39:106-16. [PMID: 16527557 DOI: 10.1016/j.bone.2005.12.081] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/29/2005] [Accepted: 12/30/2005] [Indexed: 11/23/2022]
Abstract
Biglycan (bgn) is a small leucine-rich proteoglycan (SLRP) enriched in the extracellular matrix of skeletal tissues. While bgn is known to be involved in the growth and differentiation of osteoblast precursor cells and regulation of collagen fibril formation, it is unclear how these functions impact bone's geometric and mechanical properties, properties which are integral to the structural function of bone. Because the genetic control of bone structure and function is both local- and gender-specific and because there is evidence of gender-specific effects associated with genetic deficiencies, it was hypothesized that the engineered deletion of the gene encoding bgn would result in a cortical bone mechanical phenotype that was bone- and gender-specific. In 11-week-old C57BL6/129 mice, the cortical bone in the mid-diaphyses of the femora and tibiae of both genders was examined. Phenotypic changes in bgn-deficient mice relative to wild type controls were assayed by four-point bending tests to determine mechanical properties at the whole bone (structural) and tissue levels, as well as analyses of bone geometry and bone formation using histomorphometry. Of the bones examined, bgn deficiency most strongly affected the male tibiae, where enhanced cross-sectional geometric properties and bone mineral density were accompanied by decreased tissue-level yield strength and pre-yield structural deformation and energy dissipation. Because pre-yield properties alone were impacted, this implies that the gene deletion causes important alterations in mineral and/or the matrix/mineral ultrastructure and suggests a new understanding of the functional role of bgn in regulating bone mineralization in vivo.
Collapse
Affiliation(s)
- Joseph M Wallace
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-2099, and Henry Ford Hospital, Bone and Joint Center, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Suzuki H, Amizuka N, Oda K, Li M, Yoshie H, Ohshima H, Noda M, Maeda T. Histological evidence of the altered distribution of osteocytes and bone matrix synthesis in klotho-deficient mice. ACTA ACUST UNITED AC 2006; 68:371-81. [PMID: 16505583 DOI: 10.1679/aohc.68.371] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mice homozygous for klotho gene deletion are well established aging models as they mimic certain aspects of human senescence e.g. osteoporosis. Induced senescence may affect cellular functions and alter the histological properties of the extracellular matrices. The present study examined the histological and ultrastructural features of osteocytes and the surrounding bone matrix in klotho-deficient mice. As expected, osteoblasts showed a flattened shape with a weak immunoreactivity for alkaline phosphatase, and the bone matrix contained many empty osteocytic lacunae. The walls of both normal and empty lacunae were intensely immunopositive for osteopontin and dentin matrix protein-1, but featured an inconsistent immunoreactivity for osteocalcin and type I collagen. Not surprisingly, TUNEL-positivity, indicative of apoptosis, was found in many osteoblasts, osteocytes, and bone marrow cells of the klotho-deficient mice. In transmission electron microscopy, an amorphous matrix containing non-collagenous organic materials was recognizable around osteoblasts and in the osteocytic lacunae. Some osteoblasts on the bone surface featured these amorphous materials in vacuoles associated with their trans-Golgi network, indicating that, under klotho-deficient conditions, they synthesize and secrete the non-collagenous structures. Some osteocytes displayed pyknosis or degenerative traits. Thus, our findings provide histological evidence that klotho gene deletion influences the spatial distribution of osteocytes and the synthesis of bone matrix proteins in addition to the accelerated aging of bone cells.
Collapse
Affiliation(s)
- Hironobu Suzuki
- Division of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Baribault H, Danao J, Gupte J, Yang L, Sun B, Richards W, Tian H. The G-protein-coupled receptor GPR103 regulates bone formation. Mol Cell Biol 2006; 26:709-17. [PMID: 16382160 PMCID: PMC1346910 DOI: 10.1128/mcb.26.2.709-717.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GPR103 is a G-protein-coupled receptor with reported expression in brain, heart, kidney, adrenal gland, retina, and testis. It encodes a 455-amino-acid protein homologous to neuropeptide FF2, neuropeptide Y2, and galanin GalR1 receptors. Its natural ligand was recently identified as 26RFa, a novel human RF-amide-related peptide with orexigenic activity. To identify the function of GPR103, we generated GPR103-deficient mice. Homozygous mutant mice were viable and fertile. Their body weight was undistinguishable from that of their wild-type littermates. Histological analysis revealed that GPR103-/- mice exhibited a thinned osteochondral growth plate, a thickening of trabecular branches, and a reduction in osteoclast number, suggestive of an early arrest of osteochondral bone formation. Microcomputed tomography confirmed the reduction in trabecular bone and connective tissue densities in GPR103 knockout animals. Whole-body radiography followed by morphometric analysis revealed a kyphosis in mutant animals. Reverse transcription-PCR analysis showed that GPR103 was expressed in human skull, mouse spine, and several osteoblast cell lines. Dexamethasone, a known inhibitor of osteoblast growth and inducer of osteoblast differentiation, inhibited GPR103 expression in human osteoblast primary cultures. Altogether, these results suggest that osteopenia in GPR103-/- mice may be mediated directly by the loss of GPR103 expression in bone.
Collapse
Affiliation(s)
- Helene Baribault
- Department of Biology Research, Amgen, Mail Stop ASF1-1, 1120 Veterans Blvd., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Miyazaki T, Matsunaga T, Miyazaki S, Hokari S, Komoda T. Changes in receptor activator of nuclear factor-kappaB, and its ligand, osteoprotegerin, bone-type alkaline phosphatase, and tartrate-resistant acid phosphatase in ovariectomized rats. J Cell Biochem 2005; 93:503-12. [PMID: 15372622 DOI: 10.1002/jcb.20201] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigated time-course changes in the expression of receptor activator of nuclear factor-kappaB (RANK), its ligand (RANKL), osteoprotegerin (OPG), bone-type alkaline phosphatase (BAP), and tartrate-resistant acid phosphatase (TRAP) in ovariectomized (OVX) rats. Samples of sera and coccyges were used for analysis of the enzyme activities and expression levels of proteins and mRNAs, and an immunohistochemical analysis was also performed. Serum BAP activity increased to 158.6% of the pre-operation value at 1 week after OVX, and then decreased to 38.7% at 8 weeks after OVX. On the other hand, the serum TRAP activity increased to 130.9% of the pre-operation level at 1 week after OVX, and was maintained at a high level, compared with the pre-operation level. The patterns of BAP and TRAP activity in the coccyges specimens were similar to those seen in the sera. The expression profiles of TRAP, RANK, and RANKL proteins in the coccyx specimens were similar to the pattern of serum TRAP activity, while the profiles of the BAP and OPG proteins were similar to the pattern of serum BAP activity in OVX rats. The changes in the mRNA expression levels of the osteogenic proteins were similar to those for protein expression. These biochemical changes in OVX rats were confirmed by immunohistochemical studies. Our results suggest that not only osteoclastogenesis accelerated but also osteoblastogenesis transiently increased during the early phase of osteoporosis.
Collapse
Affiliation(s)
- Takashi Miyazaki
- Department of Biochemistry, Saitama Medical School, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | | | | | | | | |
Collapse
|
41
|
Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG, Young M, Shi S. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 2004; 114:1704-13. [PMID: 15599395 PMCID: PMC535063 DOI: 10.1172/jci20427] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 10/19/2004] [Indexed: 12/25/2022] Open
Abstract
Caspase-3 is a critical enzyme for apoptosis and cell survival. Here we report delayed ossification and decreased bone mineral density in caspase-3-deficient (Casp3(-/-) and Casp3(+/-)) mice due to an attenuated osteogenic differentiation of bone marrow stromal stem cells (BMSSCs). The mechanism involved in the impaired differentiation of BMSSCs is due, at least partially, to the overactivated TGF-beta/Smad2 signaling pathway and the upregulated expressions of p53 and p21 along with the downregulated expressions of Cdk2 and Cdc2, and ultimately increased replicative senescence. In addition, the overactivated TGF-beta/Smad2 signaling may result in the compromised Runx2/Cbfa1 expression in preosteoblasts. Furthermore, we demonstrate that caspase-3 inhibitor, a potential agent for clinical treatment of human diseases, caused accelerated bone loss in ovariectomized mice, which is also associated with the overactivated TGF-beta/Smad2 signaling in BMSSCs. This study demonstrates that caspase-3 is crucial for the differentiation of BMSSCs by influencing TGF-beta/Smad2 pathway and cell cycle progression.
Collapse
Affiliation(s)
- Masako Miura
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hou P, Troen T, Ovejero MC, Kirkegaard T, Andersen TL, Byrjalsen I, Ferreras M, Sato T, Shapiro SD, Foged NT, Delaissé JM. Matrix metalloproteinase-12 (MMP-12) in osteoclasts: new lesson on the involvement of MMPs in bone resorption. Bone 2004; 34:37-47. [PMID: 14751561 DOI: 10.1016/j.bone.2003.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called metalloelastase, is reported only in a few cells, including tissue macrophages and hypertrophic chondrocytes. MMP-12 is critical for invasion and destruction in pathologies such as aneurysm and emphysema. In the present study, we demonstrate that osteoclasts express MMP-12, although only in some situations. Northern blots show that highly purified rabbit osteoclasts in culture express MMP-12 at the same level as macrophages, whereas in situ hybridizations performed on rabbit bone do not show any MMP-12 expression in osteoclasts whatever the bone type. In contrast, in situ hybridizations performed on mouse bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading and resorption. Furthermore, we investigated the role of MMP-12 in bone resorption and osteoclast recruitment by comparing MMP-12 knockout and wild-type mice in specialized culture models known to depend on MMP activity, as well as in the ovariectomy model, and we did not find any indication for a limiting role of MMP-12 in these processes. In conclusion, we found that osteoclasts are able to express MMP-12, but MMP-12 did not appear critical for osteoclast recruitment or resorption. The fact that none of the MMPs identified so far in osteoclasts appears limiting for resorption, gives strength to the hypothesis that the critical MMP for bone solubilization is produced by non-osteoclastic cells.
Collapse
Affiliation(s)
- Peng Hou
- Nordic Bioscience/Center for Clinical and Basic Research, Herlev, Ballerup, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|