1
|
Lei W, Wu Y, He P, Wu J, Chen J, Liu Y, Zhang H, de Bruijn JD, Bao C, Li Y, Ji P, Yuan H, Li M. Osteoclastogenesis-characterized osteoinductive biphasic calcium phosphate ceramic for bone regeneration in rabbit maxillary sinus lift. J Mater Chem B 2025. [PMID: 40296547 DOI: 10.1039/d4tb02743d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Calcium phosphate ceramics can be osteoinductive. Osteoinductive calcium phosphate ceramics are attractive bone substitutes because of their ability to induce bone formation in soft tissues far from osseous sites. Herein, we introduce an osteoinductive biphasic calcium phosphate (BCP) ceramic for maxillary sinus lift. Compared to protein-deprived bovine bone mineral (DBBM), BCP supported osteoclastogenesis in vitro and in vivo, induced bone formation following intramuscular implantation in FVB/NCrl (FVB) mice, and enhanced bone regeneration in the rabbit maxillary sinus lift. Our findings indicate that BCP is a promising bone substitute for bone regeneration in maxillary sinus lifts. Furthermore, the current information makes optimizing bone substitutes more convenient and effective. For instance, in vitro osteoclastogenesis evaluation of biomaterials can be used as the first screening, bone formation following non-osseous implantation as the follow-up and bone regeneration in pre-clinical bone defects as the final confirmation.
Collapse
Affiliation(s)
- Wei Lei
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| | - Yan Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ping He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| | - Jingqi Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| | - Jingrong Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| | - Yuxiao Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| | - Joost D de Bruijn
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, MB Bilthoven 3723, The Netherlands.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Yong Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| | - Huipin Yuan
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, MB Bilthoven 3723, The Netherlands.
- Huipin Yuan's Lab, Sichuan, 610000, P. R. China
| | - Mingzheng Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, P. R. China.
| |
Collapse
|
2
|
Kato K, Nakashima A, Kimura A, Maruyama Y, Ohkido I, Miyazaki Y, Yokoo T. Parathyroid hormone-related protein levels and treatment outcomes in hypercalcemia of malignancy: a retrospective cohort study. JBMR Plus 2025; 9:ziae178. [PMID: 39925622 PMCID: PMC11807284 DOI: 10.1093/jbmrpl/ziae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
The challenge of managing acute hypercalcemia in patients diagnosed with hypercalcemia of malignancy (HCM) merits further attention. Elevated levels of PTHrP may be a risk factor for treatment resistance in acute hypercalcemia; however, few studies have tested this hypothesis. This study aimed to investigate whether high PTHrP levels represent an independent risk factor that impedes the treatment of acute hypercalcemia. This retrospective cohort study recruited 159 patients aged 20-80 years with diagnosed malignancies who had been hospitalized for hypercalcemia with PTHrP levels above the reference value (1.1 pmol/L). The median (25%-75%) patient age was 69 (61-76) years, and the median PTHrP level was 6.3 (3.3-11.1) pmol/L. The corrected calcium levels decreased from 12.8 mg/dL (11.9-14.1 mg/dL) to 10.6 mg/dL (9.8-11.7 mg/dL) following treatments, such as bisphosphonates and saline solution. Multivariate linear regression analysis showed less significant decreases in the corrected calcium levels as natural logarithm-transformed PTHrP levels increased (β coefficient [95% CI]: 0.569 [0.225-0.914]; p = .001 for Model 3). Multivariate logistic regression analysis showed an association between high natural logarithm-transformed PTHrP levels and lack of treatment response, defined as a corrected calcium level of ≤10.4 mg/dL in the last blood test conducted within 2 wk of treatment initiation (odds ratio [95% CI]: 0.504 [0.312-0.814]; p = .005). Therefore, elevated PTHrP levels are a potential risk factor for treatment resistance in hypercalcemia in HCM patients, complicating management regardless of calcium levels.
Collapse
Affiliation(s)
- Kazuhiko Kato
- Department of Internal Medicine, Division of Nephrology and Hypertension, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Akio Nakashima
- Department of Internal Medicine, Division of Nephrology and Hypertension, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Ai Kimura
- Department of Internal Medicine, Division of Nephrology and Hypertension, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yukio Maruyama
- Department of Internal Medicine, Division of Nephrology and Hypertension, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Ichiro Ohkido
- Department of Internal Medicine, Division of Nephrology and Hypertension, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yoichi Miyazaki
- Department of Internal Medicine, Division of Nephrology and Hypertension, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Yokoo
- Department of Internal Medicine, Division of Nephrology and Hypertension, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
3
|
Hoveidaei A, Karimi M, Salmannezhad A, Tavakoli Y, Taghavi SP, Hoveidaei AH. Low-dose Radiation Therapy (LDRT) in Managing Osteoarthritis: A Comprehensive Review. CURRENT THERAPEUTIC RESEARCH 2025; 102:100777. [PMID: 40177366 PMCID: PMC11964493 DOI: 10.1016/j.curtheres.2025.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/30/2025] [Indexed: 04/05/2025]
Abstract
Osteoarthritis (OA) is the most common degenerative arthropathy, impacting the quality of life for millions worldwide. It typically presents with chronic pain, stiffness, and reduced mobility in the affected joints. Nonsurgical treatments like physiotherapy or pharmacotherapy may provide limited relief and may have adverse effects and complications. Recently, low-dose radiation therapy (LDRT) has emerged as a potential alternative for managing OA, utilizing its anti-inflammatory effects. LDRT's anti-inflammatory effects involve modulating immune responses, reducing pro-inflammatory cytokines, and inducing apoptosis in inflammatory cells. Clinical studies show varying degrees of symptom relief, with some patients experiencing pain reduction and improved joint mobility while others show minimal response. The variability in LDRT treatment designs, radiation dosages, and patient populations complicates standardized treatment protocols and raises concerns about potential carcinogenic risks. Despite these issues, LDRT shows promise as an alternative to other OA treatments, especially for patients who don't respond to other treatments. This review aims to provide updated information on the effectiveness, mechanisms, and safety of LDRT in treating OA. We reviewed the literature of studies on the safety and efficacy of LDRT on affected joints by OA, its biological effects, potential therapeutic and adverse effects, application and contraindications, clinical outcomes, and clinical evidence in subjects with OA.
Collapse
Affiliation(s)
- Armin Hoveidaei
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | | | - Yasaman Tavakoli
- Student Research Committee, Department of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| |
Collapse
|
4
|
Irie MS, Reis INRD, Osuna LGG, Oliveira GJPLD, Spin-Neto R, Soares PBF. Evaluation of radiation therapy on grafted and non-grafted defects: an experimental rat model. J Appl Oral Sci 2025; 32:e20240211. [PMID: 39813584 PMCID: PMC11756820 DOI: 10.1590/1678-7757-2024-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVE This study aimed to assess the effects of a single-dose radiation therapy (15 Gy) on grafted and non-grafted defects, bone microarchitecture, and collagen maturity. METHODOLOGY Bone defects were surgically created in rat femurs. The right femur defect was filled with blood clot (group "Clot") and the left femur defect by deproteinized bovine bone mineral graft (group "Xenograft"). The animals were divided into two groups: without radiation therapy (nRTX) and with radiation therapy (RTX). Microtomographic (bone volume fraction, BV/TV; trabecular thickness, Tb.Th; trabecular number, Tb.N; trabecular separation, Tb.Sp), histological, and histomorphometric analyses were performed 14 days after the surgery. Two-way ANOVA with Tukey post hoc test was used to compare the groups (α=5%). RESULTS Microtomographic analysis revealed that radiation therapy led to smaller BV/TV and Tb.N in both Clot and Xenograft groups. Regardless of radiation therapy, defects filled with xenografts showed a larger Tb.N. In contrast, the Clot group demonstrated increased BV/TV and Tb.Th. The histomorphometric results were consistent with those obtained by microtomography. Intermediately and densely packed collagen were predominant among the groups. Histological analysis revealed disorganized bone formation bridging the cortical borders of the lesions in the RTX group. The involvement of primary bone with graft particles was commonly observed in all xenograft groups, and radiation therapy did not affect the percentage of bone-graft contact. CONCLUSION Single-dose radiation therapy affected bone repair, resulting in a smaller amount of newly formed bone in both grafted and non-grafted defects.
Collapse
Affiliation(s)
- Milena Suemi Irie
- Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil
| | | | - Luiz Gustavo Gonzáles Osuna
- Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil
| | | | - Rubens Spin-Neto
- Aarhus University, Section for Oral Radiology, Department of Dentistry and Oral Health, Health, Aarhus, Denmark
| | | |
Collapse
|
5
|
Lee SH, Park NR, Park EK, Kim JE. S100P binds to RAGE and activates ERK/NF-κB signaling to promote osteoclast differentiation and activity. Biochem Biophys Res Commun 2024; 738:150536. [PMID: 39146619 DOI: 10.1016/j.bbrc.2024.150536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
S100 calcium-binding protein P (S100P) is a secretory protein that is expressed in various healthy tissues and tumors. Megakaryocyte-secreted S100P promotes osteoclast differentiation and function; however, its receptor and cellular signaling in osteoclasts remain unclear. Receptor for advanced glycation end products (RAGE), which is the receptor for S100P on cancer cells, was expressed in osteoclast precursors, and S100P-RAGE binding was confirmed through co-immunoprecipitation. Additionally, the phosphorylation of ERK and NF-κB was increased in S100P-stimulated osteoclast precursors but was inhibited by addition of the RAGE antagonistic peptide (RAP). S100P-induced osteoclast differentiation and excessive bone resorption activity were also reduced by the addition of RAP. This study demonstrates that S100P, upon binding with RAGE, activates the ERK and NF-κB signaling pathways in osteoclasts, leading to increased cell differentiation and bone resorption activity.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Na Rae Park
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
6
|
Nam B, Park NR, Park EK, Kim JE. Unique cartilage matrix-associated protein inhibits osteoclast differentiation by alleviating RANKL-induced reactive oxygen species. Biochem Biophys Res Commun 2024; 722:150171. [PMID: 38797151 DOI: 10.1016/j.bbrc.2024.150171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Unique cartilage matrix-associated protein (UCMA) is a γ-carboxyglutamic acid-rich secretory protein primarily expressed in adult cartilage. UCMA promotes osteoblast differentiation and reduces high glucose-induced reactive oxygen species (ROS) production in osteoblasts; however, its role in osteoclasts remains unclear. Since Ucma is not expressed in osteoclasts, treatment with recombinant UCMA protein (rUCMA) was employed to investigate the effect of UCMA on osteoclasts. The rUCMA-treated osteoclasts exhibited significantly reduced osteoclast differentiation, resorption activity, and osteoclast-specific gene expression. Moreover, rUCMA treatment reduced RANKL-induced ROS production and increased the expression of antioxidant genes in osteoclasts. This study demonstrates that UCMA effectively inhibits RANKL-stimulated osteoclast differentiation and oxidative stress.
Collapse
Affiliation(s)
- Bora Nam
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Na Rae Park
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
7
|
Huang M, Zhou J, Li X, Liu R, Jiang Y, Chen K, Jiao Y, Yin X, Liu L, Sun Y, Wang W, Xiao Y, Su T, Guo Q, Huang Y, Yang M, Wei J, Darryl Quarles L, Xiao Z, Zeng C, Luo X, Lei G, Li C. Mechanical protein polycystin-1 directly regulates osteoclastogenesis and bone resorption. Sci Bull (Beijing) 2024; 69:1964-1979. [PMID: 38760248 PMCID: PMC11462616 DOI: 10.1016/j.scib.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/19/2024]
Abstract
Mechanical loading is required for bone homeostasis, but the underlying mechanism is still unclear. Our previous studies revealed that the mechanical protein polycystin-1 (PC1, encoded by Pkd1) is critical for bone formation. However, the role of PC1 in bone resorption is unknown. Here, we found that PC1 directly regulates osteoclastogenesis and bone resorption. The conditional deletion of Pkd1 in the osteoclast lineage resulted in a reduced number of osteoclasts, decreased bone resorption, and increased bone mass. A cohort study of 32,500 patients further revealed that autosomal dominant polycystic kidney disease, which is mainly caused by loss-of-function mutation of the PKD1 gene, is associated with a lower risk of hip fracture than those with other chronic kidney diseases. Moreover, mice with osteoclast-specific knockout of Pkd1 showed complete resistance to unloading-induced bone loss. A mechanistic study revealed that PC1 facilitated TAZ nuclear translocation via the C-terminal tail-TAZ complex and that conditional deletion of Taz in the osteoclast lineage resulted in reduced osteoclastogenesis and increased bone mass. Pharmacological regulation of the PC1-TAZ axis alleviated unloading- and estrogen deficiency- induced bone loss. Thus, the PC1-TAZ axis may be a potential therapeutic target for osteoclast-related osteoporosis.
Collapse
Affiliation(s)
- Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingxuan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoxiao Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; Center for Neuromusculoskeletal Restorative Medicine (CNRM), The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Yin
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuchen Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weishan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shihezi University, Shihezi 832061, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410008, China
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis 38163, USA
| | - Chao Zeng
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Guanghua Lei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
8
|
Liu X, Wang X, Ma X, Li H, Miao C, Tian Z, Hu Y. Genetic disruption of Ano5 leads to impaired osteoclastogenesis for gnathodiaphyseal dysplasia. Oral Dis 2024; 30:1403-1415. [PMID: 36989132 DOI: 10.1111/odi.14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVES Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare skeletal genetic disorder characterized by sclerosis of tubular bones and cemento-osseous lesions in mandibles. TMEM16E/ANO5 gene mutations have been identified in patients with GDD. Here, Ano5 knockout (Ano5-/-) mice with enhanced osteoblastogenesis were used to investigate whether Ano5 disruption affects osteoclastogenesis. SUBJECTS AND METHODS The maturation of osteoclasts, formation of F-actin ring and bone resorption were detected by immunohistochemistry, TRAP, phalloidin staining and Coming Osteo assays. The expression of osteoclast-related factors was measured by qRT-PCR. Early signaling pathways were verified by western blot. RESULTS Ano5-/- mice exhibited inhibitory formation of multinucleated osteoclasts with a reduction of TRAP activity. The expression of Nfatc1, c-Fos, Trap, Ctsk, Mmp9, Rank and Dc-stamp was significantly decreased in bone tissues and bone marrow-derived macrophages (BMMs) of Ano5-/- mice. Ano5-/- osteoclasts manifested disrupted actin ring and less mineral resorption. RANKL-induced early signaling pathways were suppressed in Ano5-/- osteoclasts and Ano5 knockdown RAW264.7 cells. Moreover, the inhibitory effects of NF-κB signalling pathway on osteoclastogenesis were partially attenuated with NF-κB signalling activator. CONCLUSIONS Ano5 deficiency impairs osteoclastogenesis, which leads to enhanced osteogenic phenotypes mediated by bone homeostasis dysregulation.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Wang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xinrong Ma
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongyu Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenchuan Tian
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
9
|
Yamaguchi M, Yoshiike K, Watanabe H, Watanabe M. The marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol prevents TNF-α-mediated impairment of mineralization in mouse osteoblastic MC3T3-E1 cells: Impact of macrophage activation. Chem Biol Interact 2024; 390:110871. [PMID: 38228243 DOI: 10.1016/j.cbi.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
The phenolic antioxidant 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), found in the Pacific oyster Crassostrea gigas, is a superior peroxyl radical scavenger compared to other materials, including Trolox. DHMBA may play an important role in the prevention of health disorders. This study elucidates whether DHMBA prevents the impairment of mineralization of mouse osteoblastic MC3T3-E1 cells under inflammatory conditions by using mouse macrophage RAW264.7 cells in vitro. Culturing with DHMBA (1-100 μM) did not affect the proliferation and death of MC3T3-E1 cells. DHMBA stimulated osteoblastic mineralization. DHMBA blocked the decrease in mineralization of MC3T3-E1 cells caused by culture with the inflammatory cytokine TNF-α. DHMBA inhibited the production of TNF-α by stimulation with lipopolysaccharide (LPS) in RAW264.7 cells. The growth of MC3T3-E1 cells was suppressed by coculture with macrophages under LPS stimulation through the crosstalk of both cells. Interestingly, the growth of MC3T3-E1 cells was suppressed by culturing with the conditioned medium obtained by culturing macrophages with LPS. The effect of the conditioned medium was blocked by the presence of DHMBA or Bay 11-7082, an inhibitor of the TNF-α pathway. The blocking effect of DHMBA was not further enhanced in the presence of Bay 11-7082. Mechanistically, DHMBA was found to decrease the levels of NF-κB p65 and the activity of NF-κB reporter expression in MC3T3-E1 cells. DHMBA was shown to prevent the impairment of osteoblastic mineralization via TNF-α signaling involved in macrophage activation in the bone marrow microenvironment. This study may provide a novel strategy for the therapy of osteoblastic impairment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI, 96813, USA.
| | - Kenji Yoshiike
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan
| | - Hideaki Watanabe
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan
| | - Mitsugu Watanabe
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan; Graduate School of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo, 192-8577, Japan; Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
10
|
Hosseini-Fard SR, Etemad-Moghadam S, Alaeddini M, Dehpour AR, Emamgholipour S, Golestani A. Exploring the impact of naltrexone on the THBS1/eNOS/NO pathway in osteoporotic bile duct-ligated rats. Sci Rep 2024; 14:48. [PMID: 38167957 PMCID: PMC10761994 DOI: 10.1038/s41598-023-50547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatic osteodystrophy, a prevalent manifestation of metabolic bone disease, can arise in the context of chronic liver disease. The THBS1-eNOS-NO signaling pathway plays a pivotal role in the maturation of osteoclast precursors. This study aimed to investigate the impact of Naltrexone (NTX) on bone loss by examining the THBS1-eNOS-NO signaling pathways in bile duct ligated (BDL) rats. Male Wistar rats were randomly divided into five groups (n = 10 per group): control, sham-operated + normal saline, BDL + normal saline, sham-operated + NTX (10 mg/kg), and BDL + NTX. Parameters related to liver injury were measured at the study's conclusion, and Masson-trichrome staining was employed to evaluate collagen deposition in liver tissue. Bone THBS-1 and endothelial nitric oxide synthase (eNOS) expression levels were measured using real-time PCR, while the level of bone nitric oxide (NO) was assessed through a colorimetric assay. NTX treatment significantly attenuated the BDL-induced increase in circulating levels of liver enzymes and bilirubin. THBS-1 expression levels, elevated after BDL, were significantly suppressed following NTX administration in the BDL + NTX group. Despite no alterations in eNOS expression between groups, the bone NO level, significantly decreased in the BDL group, was significantly reduced by NTX in the BDL + NTX group. This study partly provides insights into the possible molecular mechanisms in BDL-induced osteoporosis and highlights the modulating effect of NTX on these pathways. Further research is needed to establish the impact of NTX on histomorphometric indexes.
Collapse
Affiliation(s)
- Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wu B, Shang J, Lin S, Jiang N, Xing B, Peng R, Xu X, Lu H. A Novel Role for RILP in Regulating Osteoclastogenesis and Bone Resorption. J Transl Med 2023; 103:100067. [PMID: 36801641 DOI: 10.1016/j.labinv.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Increased bone resorption caused by excessive number or activity of osteoclasts is the main cause of osteoporosis. Osteoclasts are multinucleated cells that are formed by the fusion of precursor cells. Although osteoclasts are primarily characterized by bone resorption, our understanding of the mechanisms that regulate the formation and function of osteoclasts is poor. Here we showed that the expression level of Rab interacting lysosomal protein (RILP) was strongly induced by receptor activator of NF-κB ligand in mouse bone marrow macrophages. Inhibition of RILP expression induced a drastic decrease in the number, size, F-actin ring formation of osteoclasts, and the expression level of osteoclast-related genes. Functionally, inhibition of RILP reduced the migration of preosteoclasts through PI3K-Akt signaling and suppressed bone resorption by inhibiting the secretion of lysosome cathepsin K. Treatments with siRNA-RILP attenuated pathologic bone loss in disease models induced by lipopolysaccharide. Thus, this work indicates that RILP plays an important role in the formation and bone resorption function of osteoclasts and may have a therapeutic potential to treat bone diseases caused by excessive or hyperactive osteoclasts.
Collapse
Affiliation(s)
- Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shiyuan Lin
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Baizhou Xing
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Rong Peng
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xianghe Xu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| | - Huading Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
12
|
Liu L, Wang Q, Zhang Y, Liang J, Liu P, Zhao H. Therapeutics of Charcot neuroarthropathy and pharmacological mechanisms: A bone metabolism perspective. Front Pharmacol 2023; 14:1160278. [PMID: 37124200 PMCID: PMC10130761 DOI: 10.3389/fphar.2023.1160278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Charcot neuroarthropathy (CN) is a chronic, destructive, and painless damage of the skeletal system that affects the life quality of patients. CN, with an unclear mechanism, is characterized with invasive destruction of bones and a serious abnormality of bone metabolism. Unfortunately, development of an effective prevention and treatment strategy for CN is still a great challenge. Of note, recent studies providing an insight into the molecular mechanisms of bone metabolism and homeostasis have propelled development of novel CN therapeutic strategies. Therefore, this review aims to shed light on the pathogenesis, diagnosis, and treatment of CN. In particular, we highlight the eminent role of the osteoprotegerin (OPG)-receptor activator of nuclear factor-κB (RANK)-RANK ligand (RANKL) system in the development of CN. Furthermore, we summarize and discuss the diagnostic biomarkers of CN as well as the potential pharmacological mechanisms of current treatment regimens from the perspective of bone metabolism. We believe that this review will enhance the current state of knowledge on the diagnosis, prevention, and therapeutic efficacy of CN.
Collapse
|
13
|
Zhou F, Zhang G, Wu Y, Xiong Y. Inflammasome Complexes: Crucial mediators in osteoimmunology and bone diseases. Int Immunopharmacol 2022; 110:109072. [DOI: 10.1016/j.intimp.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
14
|
Yamaguchi M, Murata T, Ramos JW. Overexpression of regucalcin blocks the migration, invasion, and bone metastatic activity of human prostate cancer cells: Crosstalk between cancer cells and bone cells. Prostate 2022; 82:1025-1039. [PMID: 35365850 DOI: 10.1002/pros.24348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostate cancer is a bone metastatic cancer and is the second leading cause of cancer-related death in men. Prolonged progression-free survival of prostate cancer patients is associated with high regucalcin expression in the tumor tissues. This study investigates the underlying mechanism by which regucalcin prevents bone metastatic activity of prostate cancer cells. METHODS Human prostate cancer PC-3 or DU-145 wild-type cells or regucalcin-overexpressing PC-3 or DU-145 cells (transfectants) were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum. RESULTS Overexpressed regucalcin suppressed the migration and invasion of bone metastatic human prostate cancer cells in vitro, and it reduced the levels of key proteins in metastasis including Ras, Akt, MAPK, RSK-2, mTOR, caveolin-1, and integrin β1. Invasion of prostate cancer cells was promoted by coculturing with preosteoblastic MC3T3-E1 or preosteoclastic RAW264.7 cells. Coculturing with cancer cells and bone cells repressed the growth of preosteoblastic cells and enhanced osteoclastogenesis of preosteoclastic cells, and these alterations were caused by a conditioned medium from cancer cell culture. Disordered differentiation of bone cells was prevented by regucalcin overexpression. Production of tumor necrosis factor-α (TNF-α) in cancer cells was blocked by overexpressed regucalcin. Of note, the effects of conditioned medium on bone cells were prevented by NF-κB inhibitor. TNF-α may be important as a mediator in the crosstalk between cancer cells and bone cells. CONCLUSION Overexpression of regucalcin suppressed the migration, invasion, and bone metastatic activity of human prostate cancer cells. This study may provide a new strategy for therapy with the regucalcin gene transfer.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Hawaii, USA
| | - Tomiyasu Murata
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Hawaii, USA
| |
Collapse
|
15
|
Rydzewski NR, Yadav P, Musunuru HB, Condit KM, Francis D, Zhao SG, Baschnagel AM. Radiomic Modeling of Bone Density and Rib Fracture Risk After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer. Adv Radiat Oncol 2022; 7:100884. [PMID: 35647405 PMCID: PMC9133372 DOI: 10.1016/j.adro.2021.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/21/2021] [Indexed: 11/01/2022] Open
Abstract
Purpose Our purpose was to determine whether bone density and bone-derived radiomic metrics in combination with dosimetric variables could improve risk stratification of rib fractures after stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (NSCLC). Methods and Materials A retrospective analysis was conducted of patients with early-stage NSCLC treated with SBRT. Dosimetric data and rib radiomic data extracted using PyRadiomics were used for the analysis. A subset of patients had bone density scans that were used to create a predicted bone density score for all patients. A 10-fold cross validated approach with 10 resamples was used to find the top univariate logistic models and elastic net regression models that predicted for rib fracture. Results A total of 192 treatment plans were included in the study with a rib fracture rate of 16.1%. A predicted bone density score was created from a multivariate model with vertebral body Hounsfield units and patient weight, with an R-squared of 0.518 compared with patient dual-energy x-ray absorptiometry T-scores. When analyzing all patients, a low predicted bone density score approached significance for increased risk of rib fracture (P = .07). On competing risk analysis, when stratifying patients based on chest wall V30 Gy and bone density score, those with a V30 Gy ≥30 cc and a low bone density score had a significantly higher risk of rib fracture compared with all other patients (P < .001), with a predicted 2-year risk of rib fracture of 28.6% (95% confidence interval, 17.2%-41.1%) and 4.9% (95% confidence interval, 2.3%-9.0%), respectively. Dosimetric variables were the primary drivers of fracture risk. A multivariate elastic net regression model including all dosimetric variables was the best predictor of rib fracture (area under the curve [AUC], 0.864). Bone density variables (AUC, 0.618) and radiomic variables (AUC, 0.617) have better predictive power than clinical variables that exclude bone density (AUC, 0.538). Conclusion Radiomic features, including a bone density score that includes vertebral body Hounsfield units and radiomic signatures from the ribs, can be used to stratify risk of rib fracture after SBRT for NSCLC.
Collapse
Affiliation(s)
- Nicholas R. Rydzewski
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Poonam Yadav
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hima Bindu Musunuru
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kevin M. Condit
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - David Francis
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Shuang G. Zhao
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Andrew M. Baschnagel
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| |
Collapse
|
16
|
Affiliation(s)
- Theresa A Guise
- From the Section of Bone and Mineral Disorders, Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M.D. Anderson Cancer Center, and the Lawrence Bone Disease Program of Texas, Houston, and the Cancer Prevention Research Institute of Texas, Austin (T.A.G.); and the Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine, New Haven, CT (J.J.W.)
| | - John J Wysolmerski
- From the Section of Bone and Mineral Disorders, Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M.D. Anderson Cancer Center, and the Lawrence Bone Disease Program of Texas, Houston, and the Cancer Prevention Research Institute of Texas, Austin (T.A.G.); and the Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine, New Haven, CT (J.J.W.)
| |
Collapse
|
17
|
Urciuoli E, Peruzzi B. Mutual Modulation Between Extracellular Vesicles and Mechanoenvironment in Bone Tumors. Front Cell Dev Biol 2021; 9:789674. [PMID: 34950663 PMCID: PMC8688845 DOI: 10.3389/fcell.2021.789674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
The bone microenvironment homeostasis is guaranteed by the balanced and fine regulated bone matrix remodeling process. This equilibrium can be disrupted by cancer cells developed in the bone (primary bone cancers) or deriving from other tissues (bone metastatic lesions), through a mechanism by which they interfere with bone cells activities and alter the microenvironment both biochemically and mechanically. Among the factors secreted by cancer cells and by cancer-conditioned bone cells, extracellular vesicles (EVs) are described to exert pivotal roles in the establishment and the progression of bone cancers, by conveying tumorigenic signals targeting and transforming normal cells. Doing this, EVs are also responsible in modulating the production of proteins involved in regulating matrix stiffness and/or mechanotransduction process, thereby altering the bone mechanoenvironment. In turn, bone and cancer cells respond to deregulated matrix stiffness by modifying EV production and content, fueling the vicious cycle established in tumors. Here, we summarized the relationship between EVs and the mechanoenvironment during tumoral progression, with the final aim to provide some innovative perspectives in counteracting bone cancers.
Collapse
Affiliation(s)
| | - Barbara Peruzzi
- Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
18
|
Back J, Nguyen MN, Li L, Lee S, Lee I, Chen F, Gillinov L, Chung YH, Alder KD, Kwon HK, Yu KE, Dussik CM, Hao Z, Flores MJ, Kim Y, Ibe IK, Munger AM, Seo SW, Lee FY. Inflammatory conversion of quiescent osteoblasts by metastatic breast cancer cells through pERK1/2 aggravates cancer-induced bone destruction. Bone Res 2021; 9:43. [PMID: 34588427 PMCID: PMC8481290 DOI: 10.1038/s41413-021-00158-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023] Open
Abstract
Disruption of bone homeostasis caused by metastatic osteolytic breast cancer cells increases inflammatory osteolysis and decreases bone formation, thereby predisposing patients to pathological fracture and cancer growth. Alteration of osteoblast function induces skeletal diseases due to the disruption of bone homeostasis. We observed increased activation of pERK1/2 in osteolytic breast cancer cells and osteoblasts in human pathological specimens with aggressive osteolytic breast cancer metastases. We confirmed that osteolytic breast cancers with high expression of pERK1/2 disrupt bone homeostasis via osteoblastic ERK1/2 activation at the bone-breast cancer interface. The process of inflammatory osteolysis modulates ERK1/2 activation in osteoblasts and breast cancer cells through dominant-negative MEK1 expression and constitutively active MEK1 expression to promote cancer growth within bone. Trametinib, an FDA-approved MEK inhibitor, not only reduced breast cancer-induced bone destruction but also dramatically reduced cancer growth in bone by inhibiting the inflammatory skeletal microenvironment. Taken together, these findings suggest that ERK1/2 activation in both breast cancer cells and osteoblasts is required for osteolytic breast cancer-induced inflammatory osteolysis and that ERK1/2 pathway inhibitors may represent a promising adjuvant therapy for patients with aggressive osteolytic breast cancers by altering the shared cancer and bone microenvironment.
Collapse
Affiliation(s)
- Jungho Back
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Minh Nam Nguyen
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.444808.40000 0001 2037 434XResearch Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Lu Li
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.415869.7Department of Rehabilitation Medicine, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Saelim Lee
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.411982.70000 0001 0705 4288College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Inkyu Lee
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Fancheng Chen
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.11841.3d0000 0004 0619 8943Shanghai Medical College, Fudan University, Shanghai City, China
| | - Lauren Gillinov
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Yeon-Ho Chung
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Kareme D. Alder
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Hyuk-Kwon Kwon
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Kristin E. Yu
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Christopher M. Dussik
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Zichen Hao
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA ,grid.411525.60000 0004 0369 1599Department of Emergency & Trauma, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Michael J. Flores
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Yoseph Kim
- grid.21107.350000 0001 2171 9311Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Izuchukwu K. Ibe
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Alana M. Munger
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| | - Sung Wook Seo
- grid.414964.a0000 0001 0640 5613Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Gangnam-gu Republic of Korea
| | - Francis Y. Lee
- grid.47100.320000000419368710Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT USA
| |
Collapse
|
19
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
20
|
Zhao X, Patil S, Xu F, Lin X, Qian A. Role of Biomolecules in Osteoclasts and Their Therapeutic Potential for Osteoporosis. Biomolecules 2021; 11:747. [PMID: 34067783 PMCID: PMC8156890 DOI: 10.3390/biom11050747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoclasts (OCs) are important cells that are involved in the regulation of bone metabolism and are mainly responsible for coordinating bone resorption with bone formation to regulate bone remodeling. The imbalance between bone resorption and formation significantly affects bone metabolism. When the activity of osteoclasts exceeds the osteoblasts, it results in a condition called osteoporosis, which is characterized by reduced bone microarchitecture, decreased bone mass, and increased occurrences of fracture. Molecules, including transcription factors, proteins, hormones, nucleic acids, such as non-coding RNAs, play an important role in osteoclast proliferation, differentiation, and function. In this review, we have highlighted the role of these molecules in osteoclasts regulation and osteoporosis. The developed therapeutics targeting these molecules for the treatment of osteoporosis in recent years have also been discussed with challenges faced in clinical application.
Collapse
Affiliation(s)
- Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an 712046, China;
| | - Suryaji Patil
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Fang Xu
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Xiao Lin
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Airong Qian
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| |
Collapse
|
21
|
Wani AL, Hammad Ahmad Shadab GG, Afzal M. Lead and zinc interactions - An influence of zinc over lead related toxic manifestations. J Trace Elem Med Biol 2021; 64:126702. [PMID: 33285442 DOI: 10.1016/j.jtemb.2020.126702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Interaction between metals is known from earlier studies, in which one metal influences the absorption and functional role of other. Lead is known to cause debilitating effects in living organisms and also prevents several essential trace metals from functioning normally. METHODS The relevant literature using the key words lead toxicity, lead zinc interaction, zinc nutrition and the ability of zinc to act against lead has been reviewed. RESULTS Role of several nutrients in reducing the manifestations of toxic metals have been elucidated recently. Lead damages bio-membranes, causes cognitive disabilities and disturbs the normal process of DNA replication and transcription. Zinc on the other hand helps in proper maintenance of the cellular membranes and plays an important role as a metal cofactor in most of the proteins vital for membrane integrity. Zinc has essential role in cognitive functioning, zinc finger proteins and significantly neutralizes most toxic effects of lead. CONCLUSION Increased lead exposure and limited resources for tackling lead poisoning may cause an increased possibility of future environmental emergencies. Interactions between essential nutrient metals and non-essential toxic metals may act as important factor which can be used to target the metal toxicities. An assumption is made that the lead toxicity can be reduced by maintaining the status of essential trace metals like zinc.
Collapse
Affiliation(s)
- Ab Latif Wani
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - G G Hammad Ahmad Shadab
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Mohammad Afzal
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
22
|
Yamaguchi M, Murata T, Ramos JW. The botanical component p-hydroxycinnamic acid suppresses the growth and bone metastatic activity of human prostate cancer PC-3 cells in vitro. J Cancer Res Clin Oncol 2021; 147:339-350. [PMID: 33001270 DOI: 10.1007/s00432-020-03405-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Abstract
Bone metastatic prostate cancer is one of the most common malignancies in developed countries and the second leading cause of cancer-related death in men. There remains no effective treatment for metastatic prostate cancer. We investigate here the anticancer effects of botanical component p-hydroxycinnamic acid (HCA) on the PC-3 cells in vitro model of bone metastatic human prostate cancer. Culturing with HCA (10-1000 nM) suppressed colony formation and growth of PC-3 cells. Mechanistically, culturing with HCA decreased protein levels of Ras, PI3K, Akt, MAPK, NF-κB p65 and β-catenin related to processes of cell signaling and transcription, and it increased levels of p21, p53, retinoblastoma and regucalcin, which are suppressors in carcinogenesis. These alterations can lead to suppression of cell growth. Furthermore, culturing with HCA increased cell death and caspase-3 levels. The effects of HCA on the growth and death of PC-3 cells were blocked by culturing with CH223191, an antagonist of aryl hydrocarbon receptor (AHR), suggesting that HCA effects are partly involved in AHR signaling. Interestingly, HCA suppressed the stimulatory effects of Bay K 8644, an agonist of L-type calcium channel, on the growth of PC-3 cells. Coculturing of PC-3 cells and preosteoblastic MC-3T3 E1 cells increased osteoblastic mineralization. This increase was not attenuated by treatment of HCA that stimulated mineralization. Notably, osteoclastogenesis from preosteoclastic RAW264.7 cells was enhanced by coculturing with PC-3 cells, and this enhancement was suppressed by treatment with HCA (10-1000 nM). Thus, HCA has anticancer effects on bone metastatic human prostate cancer, potentially providing a novel therapeutic tool.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI, 96813, USA.
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI, 96813, USA
| |
Collapse
|
23
|
Yamaguchi M, Osuka S, Murata T, Ramos JW. Progression-free survival of prostate cancer patients is prolonged with a higher regucalcin expression in the tumor tissues: Overexpressed regucalcin suppresses the growth and bone activity in human prostate cancer cells. Transl Oncol 2021; 14:100955. [PMID: 33232921 PMCID: PMC7691610 DOI: 10.1016/j.tranon.2020.100955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer, which is a bone metastatic cancer, is the second leading cause of cancer-related death in men. There is no effective treatment for metastatic prostate cancer. Regucalcin has been shown to contribute as a suppressor in various types of human cancers. In the present study, furthermore, we investigate an involvement of regucalcin in suppression of prostate cancer. Regucalcin expression was compared in 131 primary tumor tissues and 19 metastatic tumor tissues in prostate cancer patients. Regucalcin expression in the metastatic tumor was found to be reduced as compared with that in primary tumor. The progression-free survival rate was prolonged in patients with a higher regucalcin expression. Translationally, overexpression of regucalcin in bone metastatic human prostate cancer PC-3 and DU-145 cells suppressed colony formation and cell growth in vitro. Mechanistically, overexpressed regucalcin enhanced the levels of p53, Rb, and p21, and decreased the levels of Ras, PI3 kinase, Akt, and mitogen-activated protein kinase, leading to suppression of cell growth. Furthermore, higher regucalcin expression suppressed the levels of nuclear factor-κB p65, β-catenin, and signal transducer and activator of transcription 3, which regulate a transcription activity. Cell growth was promoted by culturing with the calcium agonist Bay K 8644. This effect was blocked by overexpression of regucalcin. Notably, overexpressed regucalcin suppressed bone metastatic activity of PC-3 and DU-145 cells when cocultured with preosteoblastic or preosteoclastic cells. Regucalcin may suppress the development of human prostate cancer, suggesting that gene delivery systems in which its expression is forced may be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA.
| | - Satoru Osuka
- Department of Neurosurgery, Wallace Tumor Institute, The University of Alabama at Birmingham, WTI 520A, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA
| |
Collapse
|
24
|
PERK controls bone homeostasis through the regulation of osteoclast differentiation and function. Cell Death Dis 2020; 11:847. [PMID: 33051453 PMCID: PMC7554039 DOI: 10.1038/s41419-020-03046-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Osteoclasts are multinucleated giant cells with the ability to degrade bone tissue, and are closely related to abnormal bone metabolic diseases. Endoplasmic reticulum (ER) is an organelle responsible for protein modification, quality control, and transportation. The accumulation of unfolded or misfolded proteins in ER cavity induces ER stress. Double-stranded RNA-dependent protein kinase-like ER kinase (PERK) is an ER stress-sensing protein, which is ubiquitous in eukaryotic cells. Systemic PERK knockout mice show severe bone loss, suggesting that PERK is of great significance for maintaining the normal growth and development of bone tissue, but the role of PERK in osteoclastogenesis is still unclear. In this study, we found that PERK was significantly activated during RANKL-induced osteoclast differentiation; knockdown of PERK by siRNA and inhibition of PERK by GSK2606414, respectively, had significant negative regulatory effects on the formation and bone resorption of osteoclasts. PERK inhibitor GSK2606414 down-regulated the mRNA levels and protein expression of osteoclast differentiation marker genes, and inhibited RANKL-induced activation of Mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways. Treatment with PERK inhibitor GSK2606414 in ovariectomized mouse model significantly suppressed bone loss and osteoclast formation. Thapsigargin activated ER stress to enhance autophagy, while GSK2606414 had a significant inhibitory effect on autophagy flux and autophagosome formation. Antioxidant N-acetylcysteine (NAC) could inhibit the expression of PERK phosphorylation, osteoclast-related proteins and autophagy-related proteins, but the use of PERK activator CCT020312 can reverse inhibition effect of NAC. Our findings demonstrate a key role for PERK in osteoclast differentiation and suggest its therapeutic potential.
Collapse
|
25
|
Zhang N, Zhang ZK, Yu Y, Zhuo Z, Zhang G, Zhang BT. Pros and Cons of Denosumab Treatment for Osteoporosis and Implication for RANKL Aptamer Therapy. Front Cell Dev Biol 2020; 8:325. [PMID: 32478071 PMCID: PMC7240042 DOI: 10.3389/fcell.2020.00325] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is age-related deterioration in bone mass and micro-architecture. Denosumab is a novel human monoclonal antibody for osteoporosis. It is a receptor activator of nuclear factor-κB ligand (RANKL) inhibitor, which binds to and inhibits osteoblast-produced RANKL, in turn reduces the binding between RANKL and osteoclast receptor RANK, therefore decreases osteoclast-mediated bone resorption and turnover. However, adverse events have also been reported after denosumab treatment, including skin eczema, flatulence, cellulitis and osteonecrosis of the jaw (ONJ). Extensive researches on the mechanism of adverse reactions caused by denosumab have been conducted and may provide new insights into developing new RANKL inhibitors that achieve better specificity and safety. Aptamers are single-stranded oligonucleotides that can bind to target molecules with high specificity and affinity. They are screened from large single-stranded synthetic oligonucleotides and enriched by a technology named SELEX (systematic evolution of ligands by exponential enrichment). With extra advantages such as high stability, low immunogenicity and easy production over antibodies, aptamers are hypothesized to be promising candidates for therapeutic drugs targeting RANKL to counteract osteoporosis. In this review, we focus on the pros and cons of denosumab treatment in osteoporosis and the implication for novel aptamer treatment.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Choi JH, Jang AR, Jeong HN, Kim K, Kim YM, Cho JY, Park JH. Water extract of tendril of Cucurbita Moschata Duch. suppresses RANKL-induced osteoclastogenesis by down-regulating p38 and ERK signaling. Int J Med Sci 2020; 17:632-639. [PMID: 32210713 PMCID: PMC7085206 DOI: 10.7150/ijms.39622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Pumpkin (Curcubita sp.) is a natural product that is commonly used in folk medicine. However, the inhibitory effect and molecular mechanisms of tendril of Cucurbita Moschata Duch. (TCMD) on osteoclast differentiation have yet to be clearly elucidated. Thus, the present study aimed to investigate the effect and underlying mechanism of water extract of TCMD on osteoclast differentiation. Methods: Bone marrow-derived macrophages (BMDMs), osteoclast precursors, were cultured with macrophage colony stimulating factor (M-CSF) 30 ng/ml and receptor activator of nuclear factor-kappa B ligand (RANKL) 100 ng/ml for four days. We investigated the effect of TCMD on RANKL-induced osteoclast differentiation, tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation, and bone resorption assay. RANKL signaling pathways were determined through Western blotting, and osteoclast differentiation marker genes were confirmed by Real-time PCR. Results: TCMD inhibited the RANKL-induced osteoclast differentiation in a dose-dependent manner without cytotoxicity. Further, F-actin ring formation and bone resorption were reduced by TCMD in RANKL-treated BMDMs. In addition, TCMD decreased the phosphorylation of p38 and ERK as well as the expression of osteoclast-related genes in BMDMs treated with RANKL. Conclusion: These findings suggest that TCMD may have preventive and therapeutic effects for destructive bone diseases.
Collapse
Affiliation(s)
- Joo-Hee Choi
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea.,Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Ha-Na Jeong
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Kiok Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Coates BA, McKenzie JA, Buettmann EG, Liu X, Gontarz PM, Zhang B, Silva MJ. Transcriptional profiling of intramembranous and endochondral ossification after fracture in mice. Bone 2019; 127:577-591. [PMID: 31369916 PMCID: PMC6708791 DOI: 10.1016/j.bone.2019.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Bone fracture repair represents an important clinical challenge with nearly 1 million non-union fractures occurring annually in the U.S. Gene expression differs between non-union and healthy repair, suggesting there is a pattern of gene expression that is indicative of optimal repair. Despite this, the gene expression profile of fracture repair remains incompletely understood. In this work, we used RNA-seq of two well-established murine fracture models to describe gene expression of intramembranous and endochondral bone formation. We used top differentially expressed genes, enriched gene ontology terms and pathways, callus cellular phenotyping, and histology to describe and contrast these bone formation processes across time. Intramembranous repair, as modeled by ulnar stress fracture, and endochondral repair, as modeled by femur full fracture, exhibited vastly different transcriptional profiles throughout repair. Stress fracture healing had enriched differentially expressed genes associated with bone repair and osteoblasts, highlighting the strong osteogenic repair process of this model. Interestingly, the PI3K-Akt signaling pathway was one of only a few pathways uniquely enriched in stress fracture repair. Full fracture repair involved a higher level of inflammatory and immune cell related genes than did stress fracture repair. Full fracture repair also differed from stress fracture in a robust downregulation of ion channel genes following injury, the role of which in fracture repair is unclear. This study offers a broad description of gene expression in intramembranous and endochondral ossification across several time points throughout repair and suggests several potentially intriguing genes, pathways, and cells whose role in fracture repair requires further study.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| | - Xiaochen Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Paul M Gontarz
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
28
|
Kim HS, Kim S, Ko H, Song M, Kim M. Effects of the cathepsin K inhibitor with mineral trioxide aggregate cements on osteoclastic activity. Restor Dent Endod 2019; 44:e17. [PMID: 31149615 PMCID: PMC6529801 DOI: 10.5395/rde.2019.44.e17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/21/2019] [Accepted: 04/04/2019] [Indexed: 12/02/2022] Open
Abstract
Objectives Root resorption is an unexpected complication after replantation procedures. Combining anti-osteoclastic medicaments with retrograde root filling materials may avert this resorptive activity. The purpose of this study was to assess effects of a cathepsin K inhibitor with calcium silicate-based cements on osteoclastic activity. Methods MC3T3-E1 cells were cultured for biocompatibility analyses. RAW 264.7 cells were cultured in the presence of the receptor activator of nuclear factor-kappa B and lipopolysaccharide, followed by treatment with Biodentine (BIOD) or ProRoot MTA with or without medicaments (Odanacatib [ODN], a cathepsin inhibitor and alendronate, a bisphosphonate). After drug treatment, the cell counting kit-8 assay and Alizarin red staining were performed to evaluate biocompatibility in MC3T3-E1 cells. Reverse-transcription polymerase chain reaction, tartrate-resistant acid phosphatase (TRAP) staining and enzyme-linked immunosorbent assays were performed in RAW 264.7 cells to determine the expression levels of inflammatory cytokines, interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2). Data were analyzed by one-way analysis of variance and Tukey's post hoc test (p < 0.05). Results Biocompatibility results showed that there were no significant differences among any of the groups. RAW 264.7 cells treated with BIOD and ODN showed the lowest levels of TNF-α and PGE2. Treatments with BIOD + ODN were more potent suppressors of inflammatory cytokine expression (p < 0.05). Conclusion The cathepsin K inhibitor with calcium silicate-based cement inhibits osteoclastic activity. This may have clinical application in preventing inflammatory root resorption in replanted teeth.
Collapse
Affiliation(s)
- Hee-Sun Kim
- Department of Conservative Dentistry, Seoul Metropolitan Governance-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Soojung Kim
- Department of Conservative Dentistry, University of Ulsan, Asan Medical Center, Seoul, Korea
| | - Hyunjung Ko
- Department of Conservative Dentistry, University of Ulsan, Asan Medical Center, Seoul, Korea
| | - Minju Song
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Korea
| | - Miri Kim
- Department of Conservative Dentistry, University of Ulsan, Asan Medical Center, Seoul, Korea
| |
Collapse
|
29
|
Kim M, Kim S, Ko H, Song M. Effect of ProRoot MTA® and Biodentine® on osteoclastic differentiation and activity of mouse bone marrow macrophages. J Appl Oral Sci 2019; 27:e20180150. [PMID: 30624466 PMCID: PMC6322722 DOI: 10.1590/1678-7757-2018-0150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
Objectives This investigation aimed to assess the differentiation inhibitory effects of ProRoot MTA® (PMTA) and Biodentine® (BIOD) on osteoclasts originated from murine bone marrow macrophages (BMMs) and compare these effects with those of alendronate (ALD). Materials and Methods Mouse BMMs were cultured to differentiate into osteoclasts with macrophage colony-stimulating factor and receptor activator of NF-κB (RANKL), treated with lipopolysaccharide. After application with PMTA, BIOD, or ALD, cell toxicities were examined using WST-1 assay kit, and RANKL-induced osteoclast differentiation and activities were determined by resorption pit formation assay and tartrate-resistant acid phosphate (TRAP) staining. The mRNA levels of osteoclast activity-related genes were detected with quantitative real time polymerase chain reaction. Expressions of molecular signaling pathways were assessed by western blot. All data were statistically analyzed with one-way ANOVA and Tukey's post-hoc test (p<0.05). Results Mouse BMMs applied with PMTA, BIOD, or ALD showed highly reduced levels of TRAP-positive osteoclasts. The BIOD treated specimens suppressed mRNA expressions of cathepsin K, TRAP, and c-Fos. Nonetheless, it showed a lower effect than PMTA or ALD applications. Compared with ALD, PMTA and BIOD decreased RANKL-mediated phosphorylation of ERK1/2 and IκBα. Conclusions PMTA and BIOD showed the inhibitory effect on osteoclast differentiation and activities similar to that of ALD through IκB phosphorylation and suppression of ERK signaling pathways.
Collapse
Affiliation(s)
- Miri Kim
- Asan Medical Center, University of Ulsan, Department of Conservative Dentistry, Seoul, Korea
| | - Soojung Kim
- Asan Medical Center, University of Ulsan, Department of Conservative Dentistry, Seoul, Korea
| | - Hyunjung Ko
- Asan Medical Center, University of Ulsan, Department of Conservative Dentistry, Seoul, Korea
| | - Minju Song
- Dankook University, College of Dentistry, Department of Conservative Dentistry, Cheonan, Korea
| |
Collapse
|
30
|
Huang KC, Huang TW, Chuang PY, Yang TY, Chang SF. Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts. Int J Med Sci 2019; 16:751-756. [PMID: 31217743 PMCID: PMC6566742 DOI: 10.7150/ijms.32612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Increasing research has recently been focused on the supplementary use of drugs such as bisphosphonates that are known to influence bone turnover to prevent and treat periprosthetic bone loss and subsequent implant loosening following total joint replacements. However, there are still concerns about the conflicting effects of bisphosphonate treatment on osteoblastic bone formation in the literature. Methods: In this study, we investigate the role of zoledronate (ZOL) in regulating cell cycle distribution and differentiation in mouse MC3T3-E1 preosteoblasts and also explore the mechanism underlying this effect of ZOL. We examined the expression levels of osteocalcin (OCN) by quantitative polymerase chain reaction (qPCR), the total amount of CDK6, p21 and p27 proteins by Western blot analysis, and the cell cycle distribution by flow cytometric analysis in mouse MC3T3-E1 preosteoblasts to evaluate the effect of ZOL. Small interfering RNAs (siRNAs) were used to assess the individual contributions of genes to specific osteoblast phenotypes. Results: In addition to increased OCN expression, we found that ZOL treatment induces the G0/G1 arrest and results in the increase of p21 and p27 expressions and decrease of CDK6 expression in mouse MC3T3-E1 preosteoblasts. Both p21 and p27 mediates ZOL-induced cell cycle exit; however, p21, but not p27, is responsible for the increase of ZOL-induced OCN expression in these cells. Conclusions: These results endorse that ZOL might have an anabolic effect on osteoblasts. The CDK inhibitor p21 plays a key role in regulating osteoblast differentiation by controlling proliferation-related events in mouse MC3T3-E1 preosteoblasts.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan.,Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan
| | - Tsan-Wen Huang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Po-Yao Chuang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Tien-Yu Yang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| |
Collapse
|
31
|
Nishida M, Saegusa J, Tanaka S, Morinobu A. S100A12 facilitates osteoclast differentiation from human monocytes. PLoS One 2018; 13:e0204140. [PMID: 30235276 PMCID: PMC6147475 DOI: 10.1371/journal.pone.0204140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022] Open
Abstract
Osteoclasts play a critical role not only in bone homeostasis but also in inflammatory osteolysis, such as that occurring in inflammatory arthritis and systemic inflammation. In both inflammation conditions, inflammatory cytokines like Interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-α induce RANKL expression in osteoblasts, but the roles of these cytokines in osteoclast activation remain unclear. S100A12, an S100 family member, is a low-molecular-weight calcium-binding protein. Although it has a pro-inflammatory role, its effects on osteoclast differentiation have been unclear. Here we examined the direct effects of S100A12 on human osteoclasts in vitro. S100A12 facilitated osteoclast formation in the presence of RANKL, as judged by the cells’ morphology and elevated expression of osteoclast-related molecules, including NFATc1, ACP5, CALCR, and ITGβ3. In addition, S100A12 administration markedly enhanced the osteoclasts’ bone resorption ability, consistent with their increased expression levels of CTSK and CA2. Blocking RAGE and TLR4 cancelled the effects of S100A12. Our results indicate that S100A12 is a potential therapeutic target for inflammatory osteolysis.
Collapse
Affiliation(s)
- Miwa Nishida
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- The Center for Rheumatic Diseases, Shinko Hospital, Chuo-ku, Kobe, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- Clinical Laboratory, Kobe University Hospital, Chuo-ku, Kobe, Japan
| | - Shino Tanaka
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- * E-mail:
| |
Collapse
|
32
|
Ku B, Yun HY, Lee KW, Shin HC, Lee SR, Kim CH, Park H, Yi KY, Lee CH, Kim SJ. Identification of N-(5-(phenoxymethyl)-1,3,4-thiadiazol-2-yl)acetamide derivatives as novel protein tyrosine phosphatase epsilon inhibitors exhibiting anti-osteoclastic activity. Bioorg Med Chem 2018; 26:5204-5211. [PMID: 30249496 DOI: 10.1016/j.bmc.2018.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
Cytosolic protein tyrosine phosphatase epsilon (cyt-PTPε) plays a central role in controlling differentiation and function of osteoclasts, whose overactivation causes osteoporosis. Based on our previous study reporting a number of cyt-PTPε inhibitory chemical compounds, we carried out a further and extended analysis of our compounds to examine their effects on cyt-PTPε-mediated dephosphorylation and on osteoclast organization and differentiation. Among five compounds showing target selectivity to cyt-PTPε over three other phosphatases in vitro, two compounds exhibited an inhibitory effect against the dephosphorylation of cellular Src protein, the cyt-PTPε substrate. Moreover, these two compounds caused destabilization of the podosome structure that is necessary for the bone-resorbing activity of osteoclasts, and also attenuated cellular differentiation of monocytes into osteoclasts, without affecting cell viability. Therefore, these findings not only verified anti-osteoclastic effects of our cyt-PTPε inhibitory compounds, but also showed that cyt-PTPε expressed in osteoclasts could be a putative therapeutic target worth considering.
Collapse
Affiliation(s)
- Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, University of Science and Technology KRIBB School, Daejeon 34113, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, University of Science and Technology KRIBB School, Daejeon 34113, Republic of Korea
| | - Kyung Won Lee
- Center for Information-Based Drug Research, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Chang Hyen Kim
- Department of Oral and Maxillofacial Surgery, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Kyu Yang Yi
- Center for Information-Based Drug Research, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chang Hoon Lee
- Center for Information-Based Drug Research, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, University of Science and Technology KRIBB School, Daejeon 34113, Republic of Korea.
| |
Collapse
|
33
|
Jules J, Li YP, Chen W. C/EBPα and PU.1 exhibit different responses to RANK signaling for osteoclastogenesis. Bone 2018; 107:104-114. [PMID: 29032174 PMCID: PMC6240464 DOI: 10.1016/j.bone.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
The transcription factors C/EBPα and PU.1 are upregulated by RANKL through activation of its receptor RANK during osteoclastogenesis and are critical for osteoclast differentiation. Herein we investigated the mechanisms underlying how C/EBPα and PU.1 regulate osteoclast differentiation in response to RANK signaling. We showed that C/EBPα or PU.1 overexpression could initiate osteoclastogenesis and upregulate the expressions of the osteoclast genes encoding the nuclear factor of activated T-cells, C1, cathepsin K, and tartrate-resistant acid phosphatase independently of RANKL. However, while PU.1 upregulated C/EBPα, C/EBPα could not upregulate PU.1. RANK has a unique cytoplasmic domain, 535IVVY538 motif, which is crucial for osteoclast differentiation. We demonstrated that mutational inactivation of RANK IVVY motif blocked osteoclast differentiation and significantly attenuated C/EBPα, but not PU.1, expression, indicating that RANK-IVVY-induced signaling is dispensable to PU.1 upregulation during osteoclastogenesis. However, C/EBPα or PU.1 overexpression failed to promote osteoclastogenesis in cells expressing mutated RANK IVVY motif. We noted that RANK-IVVY-motif inactivation significantly repressed osteoclast genes as compared with a vector control, suggesting that IVVY motif might also negatively regulate osteoclast inhibitors during osteoclastogenesis. Consistently, IVVY-motif inactivation triggered upregulation of RBP-J, a potent osteoclast inhibitor, during osteoclastogenesis. Notably, C/EBPα or PU.1 overexpression in cells expressing mutated RANK IVVY motif failed to control the deregulated RBP-J expression, resulting in repression of osteoclast genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or PU.1 overexpression. In conclusion, we revealed that while PU.1 and C/EBPα are critical for osteoclastogenesis, they respond differently to RANKL-induced activation of RANK IVVY motif.
Collapse
Affiliation(s)
- Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States.
| | - Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States.
| |
Collapse
|
34
|
The Actin-Binding Protein PPP1r18 Regulates Maturation, Actin Organization, and Bone Resorption Activity of Osteoclasts. Mol Cell Biol 2018; 38:MCB.00425-17. [PMID: 29158294 DOI: 10.1128/mcb.00425-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/11/2017] [Indexed: 01/21/2023] Open
Abstract
Osteoclasts resorb bone by attaching on the bone matrix and forming a sealing zone. In Src-deficient mice, osteoclasts cannot form the actin ring, a characteristic actin structure that seals the resorbed area, and resorb hardly any bone as a result. However, the molecular mechanism underlying the role of Src in the regulation and organization of the actin ring is still unclear. We identified an actin-regulatory protein, protein phosphatase 1 regulatory subunit 18 (PPP1r18), as an Src-binding protein in an Src-, Yes-, and Fyn-deficient fibroblast (SYF) cell line overexpressing a constitutively active form of Src. PPP1r18 was localized in the nucleus and actin ring. PPP1r18 overexpression in osteoclasts inhibited terminal differentiation, actin ring formation, and bone-resorbing activity. A mutation of the protein phosphatase 1 (PP1)-binding domain of PPP1r18 rescued these phenotypes. In contrast, PPP1r18 knockdown promoted terminal differentiation and actin ring formation. In summary, we showed that PPP1r18 likely plays a role in podosome organization and bone resorption.
Collapse
|
35
|
Zhang Y, Jiang P, Li W, Liu X, Lu Y, Huang Z, Song K. Calcineurin/NFAT signaling pathway mediates titanium particle-induced inflammation and osteoclast formation by inhibiting RANKL and M-CSF in vitro. Mol Med Rep 2017; 16:8223-8230. [DOI: 10.3892/mmr.2017.7670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/17/2017] [Indexed: 11/06/2022] Open
|
36
|
Wang C, Xiao F, Qu X, Zhai Z, Hu G, Chen X, Zhang X. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced Osteoporosis In Vivo and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption In Vitro. Front Pharmacol 2017; 8:407. [PMID: 28713268 PMCID: PMC5492451 DOI: 10.3389/fphar.2017.00407] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022] Open
Abstract
Postmenopausal osteoporosis is a disease characterized by excessive osteoclastic bone resorption. Some anti-diabetic drugs were demonstrated for anti-osteoclastic bone-loss effects. The present study investigated the skeletal effects of chronic administration of sitagliptin, a dipeptidyl peptidase IV (DPP IV) inhibitor that is increasingly used for type 2 diabetes treatments, in an estrogen deficiency-induced osteoporosis and elucidated the associated mechanisms. This study indicated that sitagliptin effectively prevented ovariectomy-induced bone loss and reduced osteoclast numbers in vivo. It was also indicated that sitagliptin suppressed receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation, bone resorption, and F-actin ring formation in a manner of dose-dependence. In addition, sitagliptin significantly reduced the expression of osteoclast-specific markers in mouse bone-marrow-derived macrophages, including calcitonin receptor (Calcr), dendrite cell-specific transmembrane protein (Dc-stamp), c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1). Further study indicated that sitagliptin inhibited osteoclastogenesis by suppressing AKT and ERK signaling pathways, scavenging ROS activity, and suppressing the Ca2+ oscillation that consequently affects the expression and/or activity of the osteoclast-specific transcription factors, c-Fos and NFATc1. Collectively, these findings suggest that sitagliptin possesses beneficial effects on bone and the suppression of osteoclast number implies that the effect is exerted directly on osteoclastogenesis.
Collapse
Affiliation(s)
- Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affilliated to Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affilliated to Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai, China
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai, China
| | - Guoli Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS)Shanghai, China
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affilliated to Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affilliated to Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai, China
| |
Collapse
|
37
|
Yamaguchi M, Levy RM. Combination of alendronate and genistein synergistically suppresses osteoclastic differentiation of RAW267.4 cells in vitro. Exp Ther Med 2017; 14:1769-1774. [PMID: 28810648 DOI: 10.3892/etm.2017.4695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
Bone is a dynamic tissue that undergoes constant remodeling, with removal by osteoclastic bone resorption and replacement via osteoblastic bone formation and mineralization. Deterioration of bone mass with aging leads to osteoporosis. Bisphosphonates are potent inhibitors of osteoclastic bone resorption. Genistein, an isoflavone, exerts a bone anabolic effect by suppressing osteoclastic bone resorption and stimulating osteoblastic bone formation. The present study was undertaken to investigate the anabolic effects of a combination of alendronate and genistein on osteoclastic differentiation. Preosteoclastic RAW267.4 cells were cultured with alendronate (0.1-100 µM) and/or genistein (0.1-100 µM) in vitro. Alendronate or genistein alone had no significant effect on the proliferation and death of RAW267.4 cells. Notably, the combination of the two agents was found to potently and synergistically repress the proliferation and death of RAW267.4 cells. Moreover, alendronate or genistein used separately at higher concentrations suppressed the osteoclastic differentiation of RAW267.4 cells induced by receptor activator of nuclear factor-κB ligand (RANKL) in vitro. However, combinations of the two agents (0.1-100 µM) synergistically suppressed the RANKL-induced osteoclastic differentiation. In conclusion, bisphosphonate and genistein combination therapy may provide a novel strategy for the prevention and treatment of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Levy
- Department of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, AZ 85253, USA
| |
Collapse
|
38
|
Clarke SA, Martin J, Nelson J, Hornez JC, Bohner M, Dunne N, Buchanan F. Surrogate Outcome Measures of In Vitro Osteoclast Resorption of β Tricalcium Phosphate. Adv Healthc Mater 2017; 6. [PMID: 27930865 DOI: 10.1002/adhm.201600947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/01/2016] [Indexed: 01/12/2023]
Abstract
Introduction of porosity to calcium phosphate scaffolds for bone repair has created a new challenge when measuring bioresorption in vitro, rendering traditional outcome measures redundant. The aim of this study is to identify a surrogate endpoint for use with 3D scaffolds. Murine RAW 264.7 cells are cultured on dense discs of β-tricalcium phosphate in conditions to stimulate osteoclast (OC) formation. Multinucleated OCs are visible from day 6 with increases at days 8 and 10. Resorption pits are first observed at day 6 with much larger pits visible at days 8, 10, and 12. The concentration of calcium ions in the presence of cells is significantly higher than cell-free cultures at days 3 and 9. Using linear regression analysis, Ca ion release could account for 35.9% of any subsequent change in resorption area. The results suggest that Ca ion release is suitable to measure resorption of a beta-tricalcium phosphate ceramic substrate in vitro. This model could replace the more accepted resorption pit assay in circumstances where quantification of pits is not possible, e.g., when characterizing 3D tissue engineered bone scaffolds.
Collapse
Affiliation(s)
- Susan A. Clarke
- School of Nursing and Midwifery; Medical Biology Centre; 97, Lisburn Road Belfast BT9 7BL UK
| | - Joanne Martin
- School of Mechanical and Aerospace Engineering; Queen's University Belfast; Ashby Building, Stranmillis Rd Belfast BT9 5AH UK
| | - John Nelson
- School of Biological Sciences; Queens University Belfast; MBC, 97 Lisburn Rd Belfast BT9 7BL UK
| | | | - Marc Bohner
- Skeletal Substitutes Group; RMS Foundation; Bischmattstr. 12 CH-2544 Bettlach Switzerland
| | - Nicholas Dunne
- School of Mechanical and Aerospace Engineering; Queen's University Belfast; Ashby Building, Stranmillis Rd Belfast BT9 5AH UK
| | - Fraser Buchanan
- School of Mechanical and Aerospace Engineering; Queen's University Belfast; Ashby Building, Stranmillis Rd Belfast BT9 5AH UK
| |
Collapse
|
39
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Zito F, Lampiasi N, Kireev I, Russo R. United we stand: Adhesion and molecular mechanisms driving cell fusion across species. Eur J Cell Biol 2016; 95:552-562. [DOI: 10.1016/j.ejcb.2016.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/14/2023] Open
|
41
|
Yamaguchi M, Levy RM. β-Caryophyllene promotes osteoblastic mineralization, and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro. Exp Ther Med 2016; 12:3602-3606. [PMID: 28105093 PMCID: PMC5228512 DOI: 10.3892/etm.2016.3818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is induced by the reduction in bone mass through decreased osteoblastic osteogenesis and increased osteoclastic bone resorption, and it is associated with obesity and diabetes. Osteoblasts and adipocytes are derived from bone marrow mesenchymal stem cells. The prevention of osteoporosis is an important public health concern in aging populations. β-caryophyllene, a component of various essential oils, is a selective agonist of the cannabinoid receptor type 2 and exerts cannabimimetic anti-inflammatory effects in animals. The present study aimed to identify the effect of β-caryophyllene on adipogenesis, osteoblastic mineralization and osteoclastogenesis in mouse bone marrow cell cultures in vitro. Bone marrow cells obtained from mouse femoral tissues were cultured in the presence of β-caryophyllene (0.1-100 µM) in vitro. The results revealed that β-caryophyllene stimulated osteoblastic mineralization, and suppressed adipogenesis and osteoclastogenesis. Thus, β-caryophyllene may be used as a therapeutic agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Levy
- Department of Clinical Development, Primus Pharmaceuticals, Inc, Scottsdale, AZ 85253, USA
| |
Collapse
|
42
|
Yamaguchi M. The botanical molecule p-hydroxycinnamic acid as a new osteogenic agent: insight into the treatment of cancer bone metastases. Mol Cell Biochem 2016; 421:193-203. [DOI: 10.1007/s11010-016-2803-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
|
43
|
Guo C, Li C, Yang K, Kang H, Xu X, Xu X, Deng L. Increased EZH2 and decreased osteoblastogenesis during local irradiation-induced bone loss in rats. Sci Rep 2016; 6:31318. [PMID: 27499068 PMCID: PMC4976370 DOI: 10.1038/srep31318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
Abstract
Radiation therapy is commonly used to treat cancer patients but exhibits adverse effects, including insufficiency fractures and bone loss. Epigenetic regulation plays an important role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Here, we reported local bone changes after single-dose exposure to 137CS irradiation in rats. Femur bone mineral density (BMD) and trabecular bone volume in the tibia were significantly decreased at 12 weeks after irradiation. Micro-CT results showed that tBMD, Tb.h and Tb.N were also significantly reduced at 12 weeks after irradiation exposure. ALP-positive OB.S/BS was decreased by 42.3% at 2 weeks after irradiation and was decreased by 50.8% at 12 weeks after exposure. In contrast to the decreased expression of Runx2 and BMP2, we found EZH2 expression was significantly increased at 2 weeks after single-dose 137CS irradiation in BMSCs. Together, our results demonstrated that single-dose 137CS irradiation induces BMD loss and the deterioration of bone microarchitecture in the rat skeleton. Furthermore, EZH2 expression increased and osteoblastogenesis decreased after irradiation. The underlying mechanisms warrant further investigation.
Collapse
Affiliation(s)
- Changjun Guo
- Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine. Address: No. 197, Rui Jin Er Road, Shanghai 200025 China
| | - Changwei Li
- Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine. Address: No. 197, Rui Jin Er Road, Shanghai 200025 China
| | - Kai Yang
- Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine. Address: No. 197, Rui Jin Er Road, Shanghai 200025 China
| | - Hui Kang
- Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine. Address: No. 197, Rui Jin Er Road, Shanghai 200025 China
| | - Xiaoya Xu
- Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032, China. Address: No. 2094, Xietu Road, Shanghai 200032 China
| | - Xiangyang Xu
- Department of Orthopedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine. Address: No. 197, Rui Jin Er Road, Shanghai 200025 China
| | - Lianfu Deng
- Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine. Address: No. 197, Rui Jin Er Road, Shanghai 200025 China
| |
Collapse
|
44
|
Fossey S, Vahle J, Long P, Schelling S, Ernst H, Boyce RW, Jolette J, Bolon B, Bendele A, Rinke M, Healy L, High W, Roth DR, Boyle M, Leininger J. Nonproliferative and Proliferative Lesions of the Rat and Mouse Skeletal Tissues (Bones, Joints, and Teeth). J Toxicol Pathol 2016; 29:49S-103S. [PMID: 27621538 PMCID: PMC5013709 DOI: 10.1293/tox.29.3s-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) Project (www.toxpath.org/inhand.asp) is an initiative of the Societies of Toxicological Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in the skeletal tissues and teeth of laboratory rats and mice, with color photomicrographs illustrating examples of many common lesions. The standardized nomenclature presented in this document is also available on the internet (http://www.goreni.org/). Sources of material were databases from government, academic and industrial laboratories throughout the world.
Collapse
Affiliation(s)
| | - John Vahle
- Lilly Research Laboratories, Indianapolis, IN, USA
| | | | - Scott Schelling
- Pfizer Inc., Andover, MA, USA
- Dr. Schelling retired April 2015
| | | | | | | | | | | | | | - Laura Healy
- LNH Tox Path Consulting, LLC, Kalamazoo, MI, USA
| | - Wanda High
- WB High Preclin Path/Tox Consulting, LLC, Rochester, NY,
USA
| | | | | | - Joel Leininger
- JRL Consulting, LLC, Chapel Hill, NC, USA
- Chair of the Skeletal Tissues INHAND Committee
| |
Collapse
|
45
|
Yamaguchi M, Osuka S, Weitzmann MN, Shoji M, Murata T. Increased regucalcin gene expression extends survival in breast cancer patients: Overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro. Int J Oncol 2016; 49:812-22. [PMID: 27221776 DOI: 10.3892/ijo.2016.3538] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/06/2016] [Indexed: 11/06/2022] Open
Abstract
Human breast cancer is highly metastatic to bone and drives bone turnover. Breast cancer metastases cause osteolytic lesions and skeletal damage that leads to bone fractures. Regucalcin, which plays a pivotal role as an inhibitor of signal transduction and transcription activity, has been suggested to act as a suppressor of human cancer. In the present study, we compared the clinical outcome between 44 breast cancer patients with higher regucalcin expression and 43 patients with lower regucalcin expression. Prolonged relapse-free survival was identified in the patients with increased regucalcin gene expression. We further demonstrated that overexpression of full length, but not alternatively spliced variants of regucalcin, induces G1 and G2/M phase cell cycle arrest, suppressing the proliferation of MDA-MB-231 cells, a commonly used in vitro model of human breast cancer that metastasize to bone causing osteolytic lesions. Overexpression of regucalcin was found to suppress multiple signaling pathways including Akt, MAP kinase and SAPK/JNK, and NF-κB p65 and β-catenin along with increased p53, a tumor suppressor, and decreased K-ras, c-fos and c-jun. Moreover, we found that co-culture of regucalcin-overexpressing MDA-MB-231 cells with mouse bone marrow cells prevented enhanced osteoclastogenesis and suppressed mineralization in mouse bone marrow cells in vitro. Taken together, the present study suggests that regucalcin may have important anticancer properties in human breast cancer patients. Mechanistically, these effects are likely mediated through suppression of multiple signaling pathways, upregulation of p53 and downregulation of oncogenes leading to anti-proliferative effects and reduced metastases to bone, a phenotype associated with poor clinical outcome.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Satoru Osuka
- Department of Neurosurgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Neale Weitzmann
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Mamoru Shoji
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| |
Collapse
|
46
|
Latif R, Lau Z, Cheung P, Felsenfeld DP, Davies TF. The "TSH Receptor Glo Assay" - A High-Throughput Detection System for Thyroid Stimulation. Front Endocrinol (Lausanne) 2016; 7:3. [PMID: 26858688 PMCID: PMC4729884 DOI: 10.3389/fendo.2016.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To identify novel small molecules against the TSH receptor, we developed a sensitive transcription-based luciferase high-throughput screening (HTS) system named the TSHR-Glo Assay (TSHR-Glo). METHODS This assay uses double-transfected Chinese hamster ovary cells stably expressing the human TSHR and a cAMP-response element (CRE) construct fused to an improved luciferase reporter gene. RESULTS The assay was highly responsive toward TSH in a dose-dependent manner with a TSH sensitivity of 10(-10)M (10 ± 1.12 μU/ml) and thyroid-stimulating antibodies, a hallmark of Graves' disease, could also be detected. The assay was validated against the standard indicator of HTS performance - the Z-factor (Z') - producing a score of 0.895. Using the TSHR-Glo assay, we screened 48,224 compounds from a diverse chemical library in duplicate plates at a fixed dose of 17 μM. Twenty molecules with the greatest activity out of 62 molecules that were identified by this technique were subsequently screened against the parent luciferase stable cell line in order to eliminate false positive stimulators. CONCLUSION Using this approach, we were able to identify specific agonists against the TSH receptor leading to the characterization of several TSH agonist molecules. Hence, the TSHR-Glo assay was a one-step cell-based HTS assay, which was successful in the discovery of novel small molecular agonists and for the detection of stimulating antibodies to the TSH receptor.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, USA
- *Correspondence: Rauf Latif,
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Cheung
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan P. Felsenfeld
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
47
|
Kim JY, Park SH, Baek JM, Erkhembaatar M, Kim MS, Yoon KH, Oh J, Lee MS. Harpagoside Inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca(2+) Signaling Pathway and Prevents Inflammation-Mediated Bone Loss. JOURNAL OF NATURAL PRODUCTS 2015; 78:2167-2174. [PMID: 26308264 DOI: 10.1021/acs.jnatprod.5b00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Harpagoside (HAR) is a natural compound isolated from Harpagophytum procumbens (devil's claw) that is reported to have anti-inflammatory effects; however, these effects have not been investigated in the context of bone development. The current study describes for the first time that HAR inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro and suppresses inflammation-induced bone loss in a mouse model. HAR also inhibited the formation of osteoclasts from mouse bone marrow macrophages (BMMs) in a dose-dependent manner as well as the activity of mature osteoclasts, including filamentous actin (F-actin) ring formation and bone matrix breakdown. This involved a HAR-induced decrease in extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) phosphorylation, leading to the inhibition of Syk-Btk-PLCγ2-Ca(2+) in RANKL-dependent early signaling, as well as the activation of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which resulted in the down-regulation of various target genes. Consistent with these in vitro results, HAR blocked lipopolysaccharide (LPS)-induced bone loss in an inflammatory osteoporosis model. However, HAR did not prevent ovariectomy-mediated bone erosion in a postmenopausal osteoporosis model. These results suggest that HAR is a valuable agent against inflammation-related bone disorders but not osteoporosis induced by hormonal abnormalities.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Sun-Hyang Park
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Jong Min Baek
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Munkhsoyol Erkhembaatar
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Min Seuk Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Kwon-Ha Yoon
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Jaemin Oh
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Myeung Su Lee
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| |
Collapse
|
48
|
Cheon YH, Baek JM, Park SH, Ahn SJ, Lee MS, Oh J, Kim JY. Stauntonia hexaphylla (Lardizabalaceae) leaf methanol extract inhibits osteoclastogenesis and bone resorption activity via proteasome-mediated degradation of c-Fos protein and suppression of NFATc1 expression. Altern Ther Health Med 2015; 15:280. [PMID: 26271279 PMCID: PMC4535770 DOI: 10.1186/s12906-015-0801-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/03/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Natural plants, including common vegetables and fruits, have been recognized as essential sources for drug discovery and the development of new, safe, and economical medicaments. Stauntonia hexaphylla (Lardizabalaceae) is widely distributed in Korea, Japan, and China, and is a popular herbal supplement in Korean and Chinese folk medicine owing to its analgesic, sedative, and diuretic properties. However, the exact pharmacological effects of S. hexaphylla extract, particularly its effect on osteoclastogenesis, are not known. METHODS Osteoclast differentiation and function were identified with tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay, and the underling mechanisms were determined by real-time RT-PCR and western blot analysis. RESULTS S. hexaphylla was found to inhibit early-stage receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation in bone marrow macrophages (BMMs) without cytotoxicity and bone-resorbing activity in mature osteoclasts in a dose-dependent manner. This S. hexaphylla-mediated blockade of osteoclastogenesis involved abrogation of the NF-κB, ERK, and c-Src-Btk-PLCγ2 calcium signal pathways. Interestingly, we found that S. hexaphylla down-regulated RANKL-associated c-Fos protein induction by suppressing its translation. Furthermore, ectopic overexpression of c-Fos and NFATc1 rescued the inhibition of osteoclast differentiation by S. hexaphylla. Furthermore, S. hexaphylla inhibited the c-Fos- and NFATc1-regulated expression of genes required for osteoclastogenesis, such as TRAP, OSCAR, β3-integrin, ATP6v0d2, and CtsK. CONCLUSIONS These findings suggest that S. hexaphylla might be useful for the development of new anti-osteoporosis agents.
Collapse
|
49
|
YAMAGUCHI MASAYOSHI, VIKULINA TATYANA, WEITZMANN MNEALE. Gentian violet inhibits MDA-MB-231 human breast cancer cell proliferation, and reverses the stimulation of osteoclastogenesis and suppression of osteoblast activity induced by cancer cells. Oncol Rep 2015; 34:2156-62. [DOI: 10.3892/or.2015.4190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
|
50
|
YAMAGUCHI MASAYOSHI, MURATA TOMIYASU, SHOJI MAMORU, WEITZMANN MNEALE. The flavonoid p-hydroxycinnamic acid mediates anticancer effects on MDA-MB-231 human breast cancer cells in vitro: Implications for suppression of bone metastases. Int J Oncol 2015; 47:1563-71. [DOI: 10.3892/ijo.2015.3106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/07/2015] [Indexed: 11/05/2022] Open
|