1
|
Farrell HN, Alemseged Z. Locomotor adaptation in the hominoid clavicle through ontogeny. J Hum Evol 2025; 201:103652. [PMID: 39999513 DOI: 10.1016/j.jhevol.2025.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025]
Abstract
Reconstructions of the locomotor behavior of early hominins have been hindered by our incomplete understanding of the form-function relationship in the extant hominoid shoulder. Although extensive research has highlighted the role of the highly mobile shoulder in supporting the locomotor diversity and versatility observed in hominoids, the contribution of the clavicle and its morphological diversity to shoulder function remains significantly underexplored. In this study, we analyzed the cross-sectional geometry of the ape clavicle using a large ontogenetic sample to identify new osteological signals related to locomotor adaptation in the shoulder. We assessed the interspecific and intraspecific differences in cortical bone distribution, with ratios of cortical properties describing the relative eccentricity of the cross section (the ratio of the second moments of area about the maximum [IMAX] and minimum [IMIN] principal axes [IMAX/IMIN]), the orientation of the anatomical plane that eccentricity is occurring in (the ratio of the second moments of area relative to the craniocaudal [IX] and dorsoventral [IY] axes [IX/IY]), and the relative proportion of cortical bone in each section. Our analyses demonstrate that the hominoid clavicle holds strong signals of locomotor adaptation that can be identified both across taxa and through ontogeny. Gibbons and orangutans have a relatively uniform clavicular cortical geometry throughout life, with gibbon clavicles built to best withstand habitual, unidirectional bending forces and orangutan clavicles remodeled to resist unpredictable, multidirectional loading. Furthermore, we find a clear signal of increased clavicular bending in the same portion of the diaphysis through ontogeny in the cortical geometry of chimpanzees and gorillas, likely reflecting both the shifts toward terrestriality through ontogeny and bending rigidity needed for continued arboreality at a larger body mass. Ultimately, these results are promising for the identification of locomotor adaptation in the shoulder of early hominins, especially Australopithecus, and highlight the key structural role of the clavicle in ape locomotion.
Collapse
Affiliation(s)
- Hannah N Farrell
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA.
| | - Zeresenay Alemseged
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Civil R, Brook MS, Santos L, Varley I, Elliott-Sale KJ, Lensu S, Ahtiainen JP, Kainulainen H, Koch LG, Britton SL, Wilkinson DJ, Smith K, Atherton PJ, Sale C. The effects of endurance trainability phenotype, sex, and interval running training on bone collagen synthesis in adult rats. Bone 2024; 189:117257. [PMID: 39299627 DOI: 10.1016/j.bone.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Bone is influenced by many factors such as genetics and mechanical loading, but the short-term physiological effects of these factors on bone (re)modelling are not well characterised. This study investigated the effects of endurance trainability phenotype, sex, and interval running training (7-week intervention) on bone collagen formation in rats using a deuterium oxide stable isotope tracer method. Bone samples of the femur diaphysis, proximal tibia, mid-shaft tibia, and distal tibia were collected after necropsy from forty-six 9 ± 3-month male and female rats selectively bred for yielding low (LRT) or high (HRT) responses to endurance training. Bone collagen proteins were isolated and hydrolysed, and fractional synthetic rates (FSRs) were determined by the incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. There was a significant large main effect of phenotype at the femur site (p < 0.001; η2g = 0.473) with HRT rats showing greater bone collagen FSRs than LRT rats. There was a significant large main effect of phenotype (p = 0.008; η2g = 0.178) and a significant large main effect of sex (p = 0.005; η2g = 0.196) at the proximal site of the tibia with HRT rats showing greater bone collagen FSRs than LRT rats, and male rats showing greater bone collagen FSRs compared to female rats. There was a significant large main effect of training at the mid-shaft site of the tibia (p = 0.012; η2g = 0.159), with rats that underwent interval running training having greater bone collagen FSRs than control rats. Similarly, there was a significant large main effect of training at the distal site of the tibia (p = 0.050; η2g = 0.156), with rats in the interval running training group having greater bone collagen FSRs compared to rats in the control group. Collectively, this evidence highlights that bone responses to physiological effects are site-specific, indicating that interval running training has positive effects on bone collagen synthesis at the tibial mid-shaft and distal sites, whilst genetic factors affect bone collagen synthesis at the femur diaphysis (phenotype) and proximal tibia (phenotype and sex) in rats.
Collapse
Affiliation(s)
- Rita Civil
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Matthew S Brook
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK.; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences at the University of Nottingham, Nottingham, UK
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Kirsty J Elliott-Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
3
|
Kistler-Fischbacher M, Weeks BK, Beck BR. The effect of exercise intensity on bone in postmenopausal women (part 2): A meta-analysis. Bone 2021; 143:115697. [PMID: 33357834 DOI: 10.1016/j.bone.2020.115697] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Previous reviews have concluded that exercise has only modest effects on bone mineral density (BMD) in postmenopausal women. Despite the well-recognized strong positive relationship between load magnitude and bone response observed from animal research, the majority of human trials have examined the effects of only low to moderate intensity exercise on bone. We speculated that meta-analysing according to intensity may reveal a more potent exercise effect at higher intensity. OBJECTIVES To determine the effects of low, moderate and high intensity exercise on BMD at the spine and hip in postmenopausal women. METHODS Electronic databases and reference lists were searched for RCTs that examined the effect of exercise compared to control on DXA-derived lumbar spine, femoral neck or total hip BMD in healthy postmenopausal women. Interventions were classified as low, moderate or high intensity and pooled based on classification. Mean differences (MD) were calculated using random effects models and a risk of bias analysis was undertaken. To determine the effect of different exercise types (resistance and impact training) on BMD outcomes, subgroup analyses for all intensity categories and outcomes were conducted. Separate meta-analyses were undertaken to examine the influence of adding exercise to a bone medication intervention and to examine exercise effects on fracture risk. RESULTS Fifty-three trials, testing 63 interventions (19 low, 40 moderate, 4 high intensity) were included. At the lumbar spine, high intensity exercise yielded greater BMD effects (MD = 0.031 g/cm2 95% CI [0.012, 0.049], p = 0.002) than moderate (MD = 0.012 g/cm2 95% CI [0.008, 0.017], p < 0.001) and low intensity (MD = 0.010 g/cm2 95% CI [0.005, 0.015], p < 0.001). Low and moderate intensity exercise was equally effective at the femoral neck (low: 0.011 g/cm2 95% CI [0.006, 0.016], p < 0.001; moderate: 0.011 g/cm2 95% CI [0.007, 0.015], p < 0.001), but no effect of high-intensity exercise was observed. Moderate intensity exercise increased total hip BMD (0.008 g/cm2 95% CI [0.004, 0.012], p < 0.001), but low intensity did not. There were insufficient data to meta-analyse the effect of high intensity exercise at the total hip. Resistance training, potentially in combination with impact training, appears to be the most effective osteogenic stimulus at the spine and hip. Findings from meta-regression analyses were not informative and no influence of exercise on medication efficacy was observed. Risk of bias was mainly low or unclear due to insufficient information reported. CONCLUSION High intensity exercise is a more effective stimulus for lumbar spine BMD than low or moderate intensity, but not femoral neck BMD, however, the latter finding may be due to lack of power. While data from high-intensity exercise interventions are limited, the current comprehensive meta-analysis demonstrates the same positive relationship between load magnitude and bone response in humans that is observed in animal research. Findings have implications for optimal exercise prescription for osteoporosis in postmenopausal women. STUDY REGISTRATION Registered on PROSPERO (CRD42018117254).
Collapse
Affiliation(s)
- Melanie Kistler-Fischbacher
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia
| | - Benjamin K Weeks
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia
| | - Belinda R Beck
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; The Bone Clinic, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Carina V, Della Bella E, Costa V, Bellavia D, Veronesi F, Cepollaro S, Fini M, Giavaresi G. Bone's Response to Mechanical Loading in Aging and Osteoporosis: Molecular Mechanisms. Calcif Tissue Int 2020; 107:301-318. [PMID: 32710266 DOI: 10.1007/s00223-020-00724-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Mechanotransduction is pivotal in the maintenance of homeostasis in different tissues and involves multiple cell signaling pathways. In bone, mechanical stimuli regulate the balance between bone formation and resorption; osteocytes play a central role in this regulation. Dysfunctions in mechanotransduction signaling or in osteocytes response lead to an imbalance in bone homeostasis. This alteration is very relevant in some conditions such as osteoporosis and aging. Both are characterized by increased bone weakness due to different causes, for example, the increase of osteocyte apoptosis that cause an alteration of fluid space, or the alteration of molecular pathways. There are intertwined yet very different mechanisms involved among the cell-intrinsic effects of aging on bone, the cell-intrinsic and tissue-level effects of estrogen/androgen withdrawal on bone, and the effects of reduced mechanical loading on bone, which are all involved to some degree in how aged bone fails to respond properly to stress/strain compared to younger bone. This review aims at clarifying how the cellular and molecular pathways regulated and induced in bone by mechanical stimulation are altered with aging and in osteoporosis, to highlight new possible targets for antiresorptive or anabolic bone therapeutic approaches.
Collapse
Affiliation(s)
- Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | | | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Veronesi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Simona Cepollaro
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
5
|
Mustafy T, Londono I, Moldovan F, Villemure I. Isolated Cyclic Loading During Adolescence Improves Tibial Bone Microstructure and Strength at Adulthood. JBMR Plus 2020; 4:e10349. [PMID: 32258967 PMCID: PMC7117850 DOI: 10.1002/jbm4.10349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Bone is a unique living tissue, which responds to the mechanical stimuli regularly imposed on it. Adolescence facilitates a favorable condition for the skeleton that enables the exercise to positively influence bone architecture and overall strength. However, it is still dubious for how long the skeletal benefits gained in adolescence is preserved at adulthood. The current study aims to use a rat model to investigate the effects of in vivo low- (LI), medium- (MI), and high- (HI) intensity cyclic loadings applied during puberty on longitudinal bone development, morphometry, and biomechanics during adolescence as well as at adulthood. Forty-two young (4-week-old) male rats were randomized into control, sham, LI, MI, and HI groups. After a 5 day/week for 8 weeks cyclic loading regime applied on the right tibia, loaded rats underwent a subsequent 41-week, normal cage activity period. Right tibias were removed at 52 weeks of age, and a comprehensive assessment was performed using μCT, mechanical testing, and finite element analysis. HI and MI groups exhibited reduced body weight and food intake at the end of the loading period compared with shams, but these effects disappeared afterward. HI cyclic loading increased BMD, bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular spacing after loading. All loading-induced benefits, except BMD, persisted until the end of the normal cage activity period. Moreover, HI loading induced enhanced bone area, periosteal perimeter, and moment of inertia, which remained up to the 52nd week. After the normal cage activity at adulthood, the HI group showed increased ultimate force and stress, stiffness, postyield displacement and energy, and toughness compared with the sham group. Overall, our findings suggest that even though both trabecular and cortical bone drifted through age-related changes during aging, HI cyclic loading performed during adolescence can render lifelong benefits in bone microstructure and biomechanics. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tanvir Mustafy
- Department of Mechanical EngineeringÉcole Polytechnique of MontréalMontréalQuébecCanada
- Department of PediatricsSainte‐Justine University Hospital CenterMontréalQuébecCanada
| | - Irène Londono
- Department of PediatricsSainte‐Justine University Hospital CenterMontréalQuébecCanada
| | - Florina Moldovan
- Department of PediatricsSainte‐Justine University Hospital CenterMontréalQuébecCanada
- Department of Stomatology, Faculty of DentistryUniversité de MontréalMontréalQuébecCanada
| | - Isabelle Villemure
- Department of Mechanical EngineeringÉcole Polytechnique of MontréalMontréalQuébecCanada
- Department of PediatricsSainte‐Justine University Hospital CenterMontréalQuébecCanada
| |
Collapse
|
6
|
Partadiredja G, Karima N, Utami KP, Agustiningsih D, Sofro ZM. The Effects of Light and Moderate Intensity Exercise on the Femoral Bone and Cerebellum of d-Galactose-Exposed Rats. Rejuvenation Res 2018; 22:20-30. [PMID: 29962322 DOI: 10.1089/rej.2018.2050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aging causes the degeneration of organs of the locomotor system, including the cerebellum and bones. Exercise may reverse this deterioration. d-galactose has been frequently used in rodents to accelerate aging. The present study aimed at investigating the effects of exercise on cerebellar and serum growth factors, motor activity, and the number of bone cells of the femoral head of d-galactose-treated rats. Twenty-four male Wistar rats were divided randomly into four groups, that is, three treated groups injected with 300 mg/(mL·kg) body weight (bw) d-galactose solution daily for 4 weeks, and a control group injected with normal saline. Following the 4-week administration of d-galactose solution, two of the treated groups performed light- (45% VO2max) and moderate- (55% VO2max) intensity exercise, by running on a treadmill 4 × a week for 4 weeks. Locomotor activity was examined in rotarod and open field tests. The cerebellar and serum Insulin-like Growth Factor 1 (IGF-1) and Brain-Derived Neurotrophic Factor (BDNF) levels were measured using enzyme-linked immunosorbent assay (ELISA). The number of osteoblasts and osteoclasts of femoral head was estimated using unbiased stereological methods. It was found that the number of osteoclasts was higher in the d-galactose-treated group than the normal control and moderate-intensity exercise groups. No significant difference between groups was found in the rotarod and open field test performance, IGF-1 and BDNF levels, as well as number of osteoblasts. In conclusion, a 4-week administration of high-dosed-galactose caused the increase of the number of osteoclasts. A subsequent 4-week moderate-intensity exercise reversed this increase to the normal level.
Collapse
Affiliation(s)
- Ginus Partadiredja
- 1 Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nisa Karima
- 1 Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,2 Department of Biochemistry, Molecular Biology, and Physiology, Faculty of Medicine, Universitas Lampung, Bandar Lampung, Indonesia
| | - Kurnia Putri Utami
- 1 Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,3 Department of Physiotherapy, Faculty of Health Sciences, Universitas Muhammadiyah Malang, Malang, Indonesia
| | - Denny Agustiningsih
- 1 Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zaenal Muttaqien Sofro
- 1 Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Abstract
PURPOSE The goal of the current work is to challenge the enduring notion that prepuberty is the optimum timing for maximum bone response to exercise in childhood and to present the evidence that early puberty is a more potently receptive period. METHOD The relevant literature is reviewed and the causes of the misconception are addressed in detail. RESULTS Contrary to prevailing opinion, ample evidence exists to suggest that the peripubertal years represent the developmental period during which bone is likely to respond most robustly to exercise intervention. CONCLUSION Public health initiatives that target bone-specific exercise interventions during the pubertal years are likely to be the most effective strategy to harness the increased receptiveness of the growing skeleton to mechanical loading.
Collapse
|
8
|
Mosey H, Núñez JA, Goring A, Clarkin CE, Staines KA, Lee PD, Pitsillides AA, Javaheri B. Sost Deficiency does not Alter Bone's Lacunar or Vascular Porosity in Mice. FRONTIERS IN MATERIALS 2017; 4:27. [PMID: 29349060 PMCID: PMC5769812 DOI: 10.3389/fmats.2017.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation, and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high-resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6/group) were sacrificed at 12 weeks of age. Fixed tibiae were analyzed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nano-computed tomography at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We, therefore, conclude that the significant increases in bone mass induced by Sost deficiency are not accompanied by any significant modification in the density, organization, or shape of osteocyte lacunae or vascular content within the cortical bone. These data may imply that SCLEROSTIN does not modify the frequency of osteocytogenic recruitment of osteoblasts to initiate terminal osteocytic differentiation in mice.
Collapse
Affiliation(s)
- Henry Mosey
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Juan A. Núñez
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Alice Goring
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Claire E. Clarkin
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Katherine A. Staines
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter D. Lee
- Manchester X-Ray Imaging Facility, University of Manchester, Manchester, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
9
|
Sontam DM, Vickers MH, Firth EC, O'Sullivan JM. A Memory of Early Life Physical Activity Is Retained in Bone Marrow of Male Rats Fed a High-Fat Diet. Front Physiol 2017; 8:476. [PMID: 28736532 PMCID: PMC5500658 DOI: 10.3389/fphys.2017.00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Studies have reported opposing effects of high-fat (HF) diet and mechanical stimulation on lineage commitment of the bone marrow stem cells. Yet, how bone marrow modulates its gene expression in response to the combined effects of mechanical loading and a HF diet has not been addressed. We investigated whether early-life (before onset of sexual maturity at 6 weeks of age) voluntary physical activity can modulate the effects of a HF diet on male Sprague Dawley rats. In the bone marrow, early-life HF diet resulted in adipocyte hypertrophy and a pro-inflammatory and pro-adipogenic gene expression profile. The bone marrow of the rats that undertook wheel exercise while on a HF diet retained a memory of the early-life exercise. This memory lasted at least 60 days after the cessation of the voluntary exercise. Our results are consistent with the marrow adipose tissue having a unique response to HF feeding in the presence or absence of exercise.
Collapse
Affiliation(s)
- Dharani M Sontam
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Elwyn C Firth
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand.,Department of Sport and Exercise Science, University of AucklandAuckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| |
Collapse
|
10
|
Haffner-Luntzer M, Liedert A, Ignatius A. Mechanobiology of bone remodeling and fracture healing in the aged organism. Innov Surg Sci 2016; 1:57-63. [PMID: 31579720 PMCID: PMC6753991 DOI: 10.1515/iss-2016-0021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023] Open
Abstract
Bone can adapt to changing load demands by mechanically regulated bone remodeling. Osteocytes, osteoblasts, and mesenchymal stem cells are mechanosensitive and respond to mechanical signals through the activation of specific molecular signaling pathways. The process of bone regeneration after fracture is similarly and highly regulated by the biomechanical environment at the fracture site. Depending on the tissue strains, mesenchymal cells differentiate into fibroblasts, chondrocytes, or osteoblasts, determining the course and the success of healing. In the aged organism, mechanotransduction in both intact and fractured bones may be altered due to changed hormone levels and expression of growth factors and other signaling molecules. It is proposed that altered mechanotransduction may contribute to disturbed healing in aged patients. This review explains the basic principles of mechanotransduction in the bone and the fracture callus and summarizes the current knowledge on aging-induced changes in mechanobiology. Furthermore, the methods for external biomechanical stimulation of intact and fractured bones are discussed with respect to a possible application in the elderly patient.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| |
Collapse
|
11
|
Jokihaara J, Pörsti IH, Sievänen H, Kööbi P, Kannus P, Niemelä O, Turner RT, Iwaniec UT, Järvinen TLN. Phosphate Binding with Sevelamer Preserves Mechanical Competence of Bone Despite Acidosis in Advanced Experimental Renal Insufficiency. PLoS One 2016; 11:e0163022. [PMID: 27658028 PMCID: PMC5033583 DOI: 10.1371/journal.pone.0163022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Phosphate binding with sevelamer can ameliorate detrimental histomorphometric changes of bone in chronic renal insufficiency (CRI). Here we explored the effects of sevelamer-HCl treatment on bone strength and structure in experimental CRI. Methods Forty-eight 8-week-old rats were assigned to surgical 5/6 nephrectomy (CRI) or renal decapsulation (Sham). After 14 weeks of disease progression, the rats were allocated to untreated and sevelamer-treated (3% in chow) groups for 9 weeks. Then the animals were sacrificed, plasma samples collected, and femora excised for structural analysis (biomechanical testing, quantitative computed tomography). Results Sevelamer-HCl significantly reduced blood pH, and final creatinine clearance in the CRI groups ranged 30%-50% of that in the Sham group. Final plasma phosphate increased 2.4- to 2.9-fold, and parathyroid hormone 13- to 21-fold in CRI rats, with no difference between sevelamer-treated and untreated animals. In the femoral midshaft, CRI reduced cortical bone mineral density (-3%) and breaking load (-15%) (p<0.05 for all versus Sham), while sevelamer increased bone mineral density (+2%) and prevented the deleterious changes in bone. In the femoral neck, CRI reduced bone mineral density (-11%) and breaking load (-10%), while sevelamer prevented the decrease in bone mineral density (+6%) so that breaking load did not differ from controls. Conclusions In this model of stage 3–4 CRI, sevelamer-HCl treatment ameliorated the decreases in femoral midshaft and neck mineral density, and restored bone strength despite prevailing acidosis. Therefore, treatment with sevelamer can efficiently preserve mechanical competence of bone in CRI.
Collapse
Affiliation(s)
- Jarkko Jokihaara
- Department of Hand and Microsurgery, Tampere University Hospital, Tampere, Finland
- Center for Hip Health and Mobility, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | | | | | - Peeter Kööbi
- Medical School, University of Tampere, Tampere, Finland
| | - Pekka Kannus
- Bone Research Group, UKK-Institute, Tampere, Finland
| | - Onni Niemelä
- Medical School, University of Tampere, Tampere, Finland
- Department of Laboratory Medicine, Seinäjoki Central Hospital Laboratory, Seinäjoki, Finland
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Teppo L. N. Järvinen
- Center for Hip Health and Mobility, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Hughes JM, Charkoudian N, Barnes JN, Morgan BJ. Revisiting the Debate: Does Exercise Build Strong Bones in the Mature and Senescent Skeleton? Front Physiol 2016; 7:369. [PMID: 27679578 PMCID: PMC5020082 DOI: 10.3389/fphys.2016.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Traditional exercise programs seem to be less osteogenic in the mature and post-mature skeleton compared to the young skeleton. This is likely because of the decline in sensitivity of bone to mechanical loading that occurs with advancing age. Another factor contributing to the apparently diminished benefit of exercise in older adults is failure of widely used measurement techniques (i.e., DXA) to identify changes in 3-dimensional bone structure, which are important determinants of bone strength. Moreover, although hormonal contributors to bone loss in the elderly are well-recognized, the influence of age-related increases in sympathetic nervous system activity, which impacts bone metabolism, is rarely considered. In this Perspective, we cite evidence from animal and human studies demonstrating anabolic effects of exercise on bone across the lifespan and we discuss theoretical considerations for designing exercise regimens to optimize bone health. We conclude with suggestions for future research that should help define the osteogenic potential of exercise in older individuals.
Collapse
Affiliation(s)
- Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| | - Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Barbara J Morgan
- John Rankin Laboratory of Pulmonary Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
13
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Razi H, Birkhold AI, Weinkamer R, Duda GN, Willie BM, Checa S. Aging Leads to a Dysregulation in Mechanically Driven Bone Formation and Resorption. J Bone Miner Res 2015; 30:1864-73. [PMID: 25857303 DOI: 10.1002/jbmr.2528] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/23/2015] [Accepted: 04/05/2015] [Indexed: 11/11/2022]
Abstract
Physical activity is essential to maintain skeletal mass and structure, but its effect seems to diminish with age. To test the hypothesis that bone becomes less sensitive to mechanical strain with age, we used a combined in vivo/in silico approach. We investigated how maturation and aging influence the mechanical regulation of bone formation and resorption to 2 weeks of noninvasive in vivo controlled loading in mice. Using 3D in vivo morphometrical assessment of longitudinal microcomputed tomography images, we quantified sites in the mouse tibia where bone was deposited or resorbed in response to controlled in vivo loading. We compared the (re)modeling events (formation/resorption/quiescent) to the mechanical strains induced at these sites (predicted using finite element analysis). Mice of all age groups (young, adult, and elderly) responded to loading with increased formation and decreased resorption, preferentially at high strains. Low strains were associated with no anabolic response in adult and elderly mice, whereas young animals showed a strong response. Adult animals showed a clear separation between strain ranges where formation and resorption occurred but without an intermediate quiescent "lazy zone". This strain threshold disappeared in elderly mice, as mechanically induced (re)modeling became dysregulated, apparent in an inability to inhibit resorption or initiate formation. Contrary to what is generally believed until now, aging does not shift the mechanical threshold required to initiate formation or resorption, but rather blurs its specificity. These data suggest that pharmaceutical strategies augmenting physical exercise should consider this dysfunction in the mechanical regulation of bone (re)modeling to more effectively combat age-related bone loss.
Collapse
Affiliation(s)
- Hajar Razi
- Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Annette I Birkhold
- Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Richard Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Bettina M Willie
- Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
15
|
Skeletal maturation substantially affects elastic tissue properties in the endosteal and periosteal regions of loaded mice tibiae. Acta Biomater 2015; 21:154-64. [PMID: 25900443 DOI: 10.1016/j.actbio.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 02/01/2023]
Abstract
Although it is well known that the bone adapts to changes in the mechanical environment by forming and resorbing the bone matrix, little is known about the influence of mechanical loading on tissue material properties of the pre-existing and newly formed bone. In this study, we analyzed the newly formed and pre-existing tissue after two weeks of controlled in vivo axial compressive loading in tibia of young (10 week-old) and adult (26 week-old) female mice and compared to the control contralateral limb, by means of scanning acoustic microscopy. Additionally, we used quantitative backscattered electron imaging to determine the bone mineral density distribution within the newly formed and pre-existing bone of young mice. No significant differences were found in tissue stiffness or mineral density in the pre-existing bone tissue as a result of external loading. In the endosteal region, 10 and 26 week loaded animals showed a 9% reduction in bone tissue stiffness compared to control animals. An increase of 200% in the mineral apposition rate in this region was observed in both age groups. In the periosteal region, the reduction in bone tissue stiffness and the increase in bone mineral apposition rate as a result of loading were two times higher in the 10 compared to the 26 week old animals. These data suggest that, during growth and skeletal maturation, the response of bone to mechanical loading is a deposition of new bone matrix, where the tissue amount but not its mineral or elastic properties are influenced by animal age.
Collapse
|
16
|
Aido M, Kerschnitzki M, Hoerth R, Checa S, Spevak L, Boskey AL, Fratzl P, Duda GN, Wagermaier W, Willie BM. Effect of in vivo loading on bone composition varies with animal age. Exp Gerontol 2015; 63:48-58. [PMID: 25639943 PMCID: PMC4352172 DOI: 10.1016/j.exger.2015.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/23/2014] [Accepted: 01/28/2015] [Indexed: 01/07/2023]
Abstract
Loading can increase bone mass and size and this response is reduced
with aging. It is unclear, however how loading affects bone mineral and matrix
properties. Fourier Transform Infrared Imaging and high resolution synchrotron
scanning small angle X-ray scattering were used to study how bone’s
microscale and nanoscale compositional properties were altered in the tibial
midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of
controlled in vivo compressive loading in comparison to
physiological loading. The effect of controlled loading on bone composition
varied with animal age, since it predominantly influenced the bone composition
of elderly mice. Interestingly, controlled loading led to enhanced collagen
maturity in elderly mice. In addition, although the rate of bone formation was
increased by controlled loading based on histomorphometry, the newly formed
tissue had similar material quality to new bone tissue formed during
physiological loading. Similar to previous studies, our data showed that bone
composition was animal and tissue age dependent during physiological loading.
The findings that the new tissue formed in response to controlled loading and
physiological loading had similar bone composition and that controlled loading
enhanced bone composition in elderly mice further supports the use of physical
activity as a noninvasive treatment to enhance bone quality as well as maintain
bone mass in individuals suffering from age-related bone loss.
Collapse
Affiliation(s)
- Marta Aido
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Michael Kerschnitzki
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rebecca Hoerth
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Germany
| | | | | | - Peter Fratzl
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Bettina M Willie
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Germany.
| |
Collapse
|
17
|
The influence of age on adaptive bone formation and bone resorption. Biomaterials 2014; 35:9290-301. [PMID: 25128376 DOI: 10.1016/j.biomaterials.2014.07.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022]
Abstract
Bone is a tissue with enormous adaptive capacity, balancing resorption and formation processes. It is known that mechanical loading shifts this balance towards an increased formation, leading to enhanced bone mass and mechanical performance. What is not known is how this adaptive response to mechanical loading changes with age. Using dynamic micro-tomography, we show that structural adaptive changes of trabecular bone within the tibia of living mice subjected to two weeks of in vivo cyclic loading are altered by aging. Comparisons of 10, 26 and 78 weeks old animals reveal that the adaptive capacity diminishes. Strikingly, adaptation was asymmetric in that loading increases formation more than it reduces resorption. This asymmetry further shifts the (re)modeling balance towards a net bone loss with age. Loading results in a major increase in the surface area of mineralizing bone. Interestingly, the resorption thickness is independent of loading in trabecular bone in all age groups. This data suggests that during youth, mechanical stimulation induces the recruitment of bone modeling cells whereas in old age, only bone forming cells are affected. These findings provide mechanistic insights into the processes that guide skeletal aging in mice as well as in other mammals.
Collapse
|
18
|
Duckham RL, Baxter-Jones ADG, Johnston JD, Vatanparast H, Cooper D, Kontulainen S. Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? J Bone Miner Res 2014; 29:479-86. [PMID: 23907819 DOI: 10.1002/jbmr.2055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022]
Abstract
The long-term benefits of habitual physical activity during adolescence on adult bone structure and strength are poorly understood. We investigated whether physically active adolescents had greater bone size, density, content, and estimated bone strength in young adulthood when compared to their peers who were inactive during adolescence. Peripheral quantitative computed tomography (pQCT) was used to measure the tibia and radius of 122 (73 females) participants (age mean ± SD, 29.3 ± 2.3 years) of the Saskatchewan Pediatric Bone Mineral Accrual Study (PBMAS). Total bone area (ToA), cortical density (CoD), cortical area (CoA), cortical content (CoC), and estimated bone strength in torsion (SSIp ) and muscle area (MuA) were measured at the diaphyses (66% tibia and 65% radius). Total density (ToD), trabecular density (TrD), trabecular content (TrC), and estimated bone strength in compression (BSIc ) were measured at the distal ends (4%). Participants were grouped by their adolescent physical activity (PA) levels (inactive, average, and active) based on mean PA Z-scores obtained from serial questionnaire assessments completed during adolescence. We compared adult bone outcomes across adolescent PA groups in each sex using analysis of covariance followed by post hoc pairwise comparisons with Bonferroni adjustments. When adjusted for adult height, MuA, and PA, adult males who were more physically active than their peers in adolescence had 13% greater adjusted torsional bone strength (SSIp , p < 0.05) and 10% greater adjusted ToA (p < 0.05) at the tibia diaphysis. Females who were more active in adolescence had 10% larger adjusted CoA (p < 0.05), 12% greater adjusted CoC (p < 0.05) at the tibia diaphysis, and 3% greater adjusted TrC (p < 0.05) at the distal tibia when compared to their inactive peers. Benefits to tibia bone size, content, and strength in those who were more active during adolescence seemed to persist into young adulthood, with greater ToA and SSIp in males, and greater CoA, CoC, and TrC in females.
Collapse
Affiliation(s)
- Rachel L Duckham
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Short-term exercise-induced improvements in bone properties are for the most part not maintained during aging in hamsters. Exp Gerontol 2014; 51:46-53. [PMID: 24423444 DOI: 10.1016/j.exger.2013.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 12/20/2013] [Accepted: 12/31/2013] [Indexed: 11/23/2022]
Abstract
Physical exercise during growth affects composition, structure and mechanical properties of bone. In this study we investigated whether the beneficial effects of exercise during the early growth phase have long-lasting effects or not. Female Syrian golden hamsters (total n=152) were used in this study. Half of the hamsters had access to running wheels during their rapid growth phase (from 1 to 3months of age). The hamsters were sacrificed at the ages of 1, 3, 12, and 15months. The diaphysis of the mineralized humerus was analyzed with microCT and subjected to three-point-bending mechanical testing. The trabecular bone in the tibial metaphysis was also analyzed with microCT. The collagen matrix of the humerus bone was studied by tensile testing after decalcification. The weight of the hamsters as well as the length of the bone and the volumetric bone mineral density (BMDvol) of the humerus was higher in the running group at the early age (3months). Moreover, the mineralized bone showed improved mechanical properties in humerus and had greater trabecular thickness in the subchondral bone of tibia in the runners. However, by the age of 12 and 15months, these differences were equalized with the sedentary group. The tensile strength and Young's modulus of decalcified humerus were higher in the runners at early stage, indicating a stronger collagen network. In tibial metaphysis, trabecular thickness was significantly higher for the runners in the old age groups (12 and 15months). Our study demonstrates that physical exercise during growth improves either directly or indirectly through weight gain bone properties of the hamsters. However, the beneficial effects were for the most part not maintained during aging.
Collapse
|
20
|
Warden SJ, Galley MR, Hurd AL, Richard JS, George LA, Guildenbecher EA, Barker RG, Fuchs RK. Cortical and trabecular bone benefits of mechanical loading are maintained long term in mice independent of ovariectomy. J Bone Miner Res 2014; 29:1131-40. [PMID: 24436083 PMCID: PMC3999300 DOI: 10.1002/jbmr.2143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022]
Abstract
Skeletal loading enhances cortical and trabecular bone properties. How long these benefits last after loading cessation remains an unresolved, clinically relevant question. This study investigated long-term maintenance of loading-induced cortical and trabecular bone benefits in female C57BL/6 mice and the influence of a surgically induced menopause on the maintenance. Sixteen-week-old animals had their right tibia extrinsically loaded 3 days/week for 4 weeks using the mouse tibial axial compression loading model. Left tibias were not loaded and served as internal controls. Animals were subsequently detrained (restricted to cage activities) for 0, 4, 8, 26, or 52 weeks, with ovariectomy (OVX) or sham-OVX surgery being performed at 0 weeks detraining. Loading increased midshaft tibia cortical bone mass, size, and strength, and proximal tibia bone volume fraction. The cortical bone mass, area, and thickness benefits of loading were lost by 26 weeks of detraining because of heightened medullary expansion. However, loading-induced benefits on bone total area and strength were maintained at each detraining time point. Similarly, the benefits of loading on bone volume fraction persisted at all detraining time points. The long-term benefits of loading on both cortical and trabecular bone were not influenced by a surgically induced menopause because there were no interactions between loading and surgery. However, OVX had independent effects on cortical bone properties at early (4 and 8 weeks) detraining time points and trabecular bone properties at all detraining time points. These cumulative data indicate loading has long-term benefits on cortical bone size and strength (but not mass) and trabecular bone morphology, which are not influenced by a surgically induced menopause. This suggests skeletal loading associated with physical activity may provide long-term benefits by preparing the skeleton to offset both the cortical and trabecular bone changes associated with aging and menopause.
Collapse
Affiliation(s)
- Stuart J Warden
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA; Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Connexin43 modulates post-natal cortical bone modeling and mechano-responsiveness. BONEKEY REPORTS 2013; 2:446. [PMID: 24422141 DOI: 10.1038/bonekey.2013.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 11/08/2022]
Abstract
Recent advances have established connexin43 (Cx43) as a key regulator of osteoblast function and of bone response to mechanical stimuli. Work by independent laboratories has consistently demonstrated postnatal development of larger than normal cross-section of long bones after conditional ablation of the Cx43 gene, Gja1, selectively in osteoblasts and/or osteocytes. This phenotype is caused by excessive endocortical bone resorption associated with periosteal expansion and cortical thinning. Review of published data suggests that the earlier in the osteogenic lineage is Gja1 deleted, the more severe is the cortical phenotype, implying functional roles of Cx43 at different stages of the osteoblast differentiation program. Such cortical modeling abnormalities resemble the changes occurring in the cortex upon disuse or aging. Indeed, Cx43 deficiency desensitizes endocortical osteoclasts from activation induced by removal of mechanical load, thus preventing medullary area expansion. The action of Cx43 on cancellous bone is controversial. Furthermore, the absence of Cx43 in osteoblasts and osteocytes results in activation of periosteal bone formation at lower strains than in wild-type bones, suggesting that Cx43 deficiency increased cortical sensitivity to mechanical load. Thus, Cx43 modulates cortical bone modeling in homeostatic conditions and in response to mechanical load by restraining both endocortical bone resorption and periosteal bone formation. Cx43 may represent a novel pharmacologic target for improving cortical bone strength through modulation of mechano-responsiveness.
Collapse
|
22
|
Warden SJ, Galley MR, Hurd AL, Wallace JM, Gallant MA, Richard JS, George LA. Elevated mechanical loading when young provides lifelong benefits to cortical bone properties in female rats independent of a surgically induced menopause. Endocrinology 2013; 154:3178-87. [PMID: 23782938 PMCID: PMC3749484 DOI: 10.1210/en.2013-1227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022]
Abstract
Exercise that mechanically loads the skeleton is advocated when young to enhance lifelong bone health. Whether the skeletal benefits of elevated loading when young persist into adulthood and after menopause are important questions. This study investigated the influence of a surgically induced menopause in female Sprague-Dawley rats on the lifelong maintenance of the cortical bone benefits of skeletal loading when young. Animals had their right forearm extrinsically loaded 3 d/wk between 4 and 10 weeks of age using the forearm axial compression loading model. Left forearms were internal controls and not loaded. Animals were subsequently detrained (restricted to cage activities) for 94 weeks (until age 2 years), with ovariectomy (OVX) or sham-OVX surgery being performed at 24 weeks of age. Loading enhanced midshaft ulna cortical bone mass, structure, and estimated strength. These benefits persisted lifelong and contributed to loaded ulnas having greater strength after detraining. Loading also had effects on cortical bone quality. The benefits of loading when young were not influenced by a surgically induced menopause because there were no interactions between loading and surgery. However, OVX had independent effects on cortical bone mass, structure, and estimated strength at early postsurgery time points (up to age 58 weeks) and bone quality measures. These data indicate skeletal loading when young had lifelong benefits on cortical bone properties that persisted independent of a surgically induced menopause. This suggests that skeletal loading associated with exercise when young may provide lifelong antifracture benefits by priming the skeleton to offset the cortical bone changes associated with aging and menopause.
Collapse
Affiliation(s)
- Stuart J Warden
- Center for Translational Musculoskeletal Research, School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Willie BM, Birkhold AI, Razi H, Thiele T, Aido M, Kruck B, Schill A, Checa S, Main RP, Duda GN. Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to load. Bone 2013; 55:335-46. [PMID: 23643681 DOI: 10.1016/j.bone.2013.04.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 04/03/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022]
Abstract
Bone loss occurs during adulthood in both women and men and affects trabecular bone more than cortical bone. The mechanism responsible for trabecular bone loss during adulthood remains unexplained, but may be due at least in part to a reduced mechanoresponsiveness. We hypothesized that trabecular and cortical bone would respond anabolically to loading and that the bone response to mechanical loading would be reduced and the onset delayed in adult compared to postpubescent mice. We evaluated the longitudinal adaptive response of trabecular and cortical bone in postpubescent, young (10 week old) and adult (26 week old) female C57Bl/6J mice to axial tibial compression using in vivo microCT (days 0, 5, 10, and 15) and dynamic histomorphometry (day 15). Loading elicited an anabolic response in both trabecular and cortical bone in young and adult mice. As hypothesized, trabecular bone in adult mice exhibited a reduced and delayed response to loading compared to the young mice, apparent in trabecular bone volume fraction and architecture after 10 days. No difference in mechanoresponsiveness of the cortical bone was observed between young and adult mice. Finite element analysis showed that load-induced strain was reduced with age. Our results suggest that trabecular bone loss that occurs in adulthood may in part be due to a reduced mechanoresponsiveness in this tissue and/or a reduction in the induced tissue deformation which occurs during habitual loading. Therapeutic approaches that address the mechanoresponsiveness of the bone tissue may be a promising and alternate strategy to maintain trabecular bone mass during aging.
Collapse
Affiliation(s)
- Bettina M Willie
- Julius Wolff Institut, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Britz HM, Carter Y, Jokihaara J, Leppänen OV, Järvinen TLN, Belev G, Cooper DML. Prolonged unloading in growing rats reduces cortical osteocyte lacunar density and volume in the distal tibia. Bone 2012; 51:913-9. [PMID: 23046687 DOI: 10.1016/j.bone.2012.08.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/18/2012] [Accepted: 08/02/2012] [Indexed: 11/16/2022]
Abstract
Bone dynamically adapts its structure to the environmental demands placed upon it. Load-related stimuli play an important role in this adaptation. It has been postulated that osteocytes sense changes in these stimuli and initiate adaptive responses, across a number of scales, through a process known as mechanotransduction. While much research has focused on gross and tissue-level adaptation, relatively little is known regarding the relation between cellular-level features (e.g. osteocyte lacunar density, volume and shape) and loading. The increasing availability of high resolution 3D imaging modalities, including synchrotron-based techniques, has made studying 3D cellular-level features feasible on a scale not previously possible. The primary objective of this study was to test the hypothesis that unloading (sciatic neurectomy) during growth results in altered osteocyte lacunar density in the tibial diaphysis of the rat. Secondarily, we explored a potential effect of unloading on mean lacunar volume. Lacunar density was significantly (p<0.05) lower in immobilized bones (49,642 ± 11,955 lacunae per mm(3); n=6) than in control bones (63,138 ± 1956 lacunae per mm(3); n=6). Mean lacunar volume for immobilized bones (209 ± 72 μm(3); n=6) was significantly smaller (p<0.05) than that for the control bones (284 ± 28 μm(3); n=6). Our results demonstrate that extreme differences in loading conditions, such as those created by paralysis, do indeed result in changes in osteocyte lacunar density and volume. Further investigation is warranted to examine relations between these measures and more subtle variation in loading as well as pathological states, which have been linked to alterations in mechanotransduction.
Collapse
|
25
|
Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice. PLoS One 2012; 7:e34980. [PMID: 22514696 PMCID: PMC3325918 DOI: 10.1371/journal.pone.0034980] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/12/2012] [Indexed: 12/24/2022] Open
Abstract
There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months). We first assessed markers of bone turnover in control (non-loaded) mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001). There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001). We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (−1300 µε endocortical; −2350 µε periosteal). Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month) mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (p = 0.001). In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV) than contralateral control tibias (p<0.05), due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages). In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2–12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice.
Collapse
|
26
|
Britz HM, Jokihaara J, Leppänen OV, Järvinen TLN, Cooper DML. The effects of immobilization on vascular canal orientation in rat cortical bone. J Anat 2011; 220:67-76. [PMID: 22050694 DOI: 10.1111/j.1469-7580.2011.01450.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It is well established that bone is capable of adapting to changes in loading; however, little is known regarding how loading specifically affects the internal 3D microarchitecture of cortical bone. The aim of this study was to experimentally test the hypothesis that loading is a determinant of the 3D orientation of primary vascular canals in the rat tibial diaphysis. Left tibiae from 10 rats (30 weeks old) that had been immobilized (sciatic neurectomy) for 27 weeks, right SHAM-operated tibiae from these same rats (internal control) and right tibiae from 10 normal age-matched rats (external control) were scanned by micro-CT. Mean canal orientation (for the whole bone segment and by region), percent porosity, canal diameter and canal separation were quantitatively assessed in 3D. Canal orientation in the immobilized tibiae was significantly (P < 0.001) more radial (by 9.9°) compared to the external controls but did not differ from the internal controls (P = 0.310). Comparing the external and internal controls, orientation was significantly (P < 0.05) more radial in the internal control group (by 6.8°). No differences were found for percent porosity and canal separation. Canal diameter was significantly greater in the immobilized vs. internal (P < 0.001) and external control (P < 0.001) tibiae. The differences in orientation relative to the external controls indicated that the organization of cortical bone in the rat is affected by loading. Although the predicted difference in canal orientation was not detected between immobilized and internal control groups, the distributions of individual canal orientations, from which the mean values were derived, revealed distinctive patterns for all three groups. The internal controls exhibited an intermediate position between the immobilized and external controls, suggesting that paralysis on the contralateral side resulted in altered loading relative to the normal state represented by the external control. This was also evident in a regional analysis by quadrant. The loaded bones had the same cross-sectional shape; however, their internal structure differed. These results provide novel insights into the impact of loading on the 3D organization of primary cortical bone and have implications for understanding the relation between cortical bone adaptation, disease and mechanical properties.
Collapse
|
27
|
Ooi FK, Singh R, Singh HJ, Umemura Y, Nagasawa S. Non-uniform decay in jumping exercise-induced bone gains following 12 and 24 weeks of cessation of exercise in rats. J Physiol Sci 2011; 61:487-95. [PMID: 21870136 PMCID: PMC10717307 DOI: 10.1007/s12576-011-0169-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/01/2011] [Indexed: 11/30/2022]
Abstract
The effects of deconditioning on exercise-induced bone gains in rats were investigated in 12-week-old female WKY rats performing a standard jumping exercise regimen for either 8, 12 or 24 weeks, followed by sedentary periods of either 24, 12 or 0 weeks, respectively. Age-matched controls received no exercise over the same period. At the end of the training/sedentary period, the tibiae were harvested for analyses of bone parameters. Gains in tibial fat-free dry weight decayed within 12 weeks of deconditioning, but gains in tibial ultimate bending force (strength), maximum diameter and cortical area were still present at 12 weeks of deconditioning. With the exception of cortical area, all other exercise-induced bone gains decayed by the 24th week of deconditioning. It appears that the decay in exercise-induced bone gains in strength, physical and morphological properties is not uniform, and that gains in fat-free dry weight seem to decay earlier.
Collapse
Affiliation(s)
- Foong-Kiew Ooi
- Sports Science Unit, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rabindarjeet Singh
- Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Yoshohisa Umemura
- School of Health and Sports Science, Chukyo University, Toyota, Japan
| | - Seigo Nagasawa
- School of Health and Sports Science, Chukyo University, Toyota, Japan
| |
Collapse
|
28
|
Bodnar M, Skalicky M, Viidik A, Erben RG. Interaction between exercise, dietary restriction and age-related bone loss in a rodent model of male senile osteoporosis. Gerontology 2011; 58:139-49. [PMID: 21709404 DOI: 10.1159/000329113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/09/2011] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The pathophysiology of age-related bone loss and whether age-related bone loss can be prevented by exercise are still a matter of debate. OBJECTIVE It was the aim of this study to investigate the long-term effects of exercise and mild food restriction on bone mineral density (BMD) and bone geometry in the appendicular skeleton of aging male rats. METHODS Male Sprague-Dawley rats were studied from 5 to 23 months of age. The rats were divided into 4 groups: baseline, free access to food and running wheels (RW), fed to pair weight with the RW group (PW) and sedentary control animals with free access to food (SED). All rats were housed individually. Volumetric BMD and geometry of femurs and tibiae were assessed by peripheral quantitative computed tomography (pQCT). In addition, the tibial shafts were analyzed by cortical bone histomorphometry. RESULTS At the end of the experiment, RW and PW rats had similar body weight. The body weight of SED rats was 31% greater than that of RW rats. pQCT analysis of femurs and tibiae as well as histomorphometric analysis of the tibial shafts showed that dietary restriction resulted in an enlargement of the marrow cavity and cortical thinning at the femoral and tibial shafts relative to the RW and SED groups. Voluntary running exercise provided no additional protection against age-related bone loss when compared with the 31% heavier SED control rats. Neither exercise nor increased body weight in SED animals could completely prevent age-related bone loss between 19 and 23 months of age. CONCLUSION We conclude that dietary restriction had clear negative effects on BMD and bone geometry and that running wheel exercise provided partial protection but could not prevent age-related bone loss.
Collapse
Affiliation(s)
- Marko Bodnar
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | | | | |
Collapse
|
29
|
Brodt MD, Silva MJ. Aged mice have enhanced endocortical response and normal periosteal response compared with young-adult mice following 1 week of axial tibial compression. J Bone Miner Res 2010; 25:2006-15. [PMID: 20499381 PMCID: PMC3153404 DOI: 10.1002/jbmr.96] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With aging, the skeleton may lose its ability to respond to positive mechanical stimuli. We hypothesized that aged mice are less responsive to loading than young-adult mice. We subjected aged (22 months) and young-adult (7 months) BALB/c male mice to daily bouts of axial tibial compression for 1 week and evaluated cortical and trabecular responses using micro-computed tomography (µCT) and dynamic histomorphometry. The right legs of 95 mice were loaded for 60 rest-inserted cycles per day to 8, 10, or 12 N peak force (generating mid-diaphyseal strains of 900 to 1900 µε endocortically and 1400 to 3100 µε periosteally). At the mid-diaphysis, mice from both age groups showed a strong anabolic response on the endocortex (Ec) and periosteum (Ps) [Ec.MS/BS and Ps.MS/BS: loaded (right) versus control (left), p < .05]. Generally, bone formation increased with increasing peak force. At the endocortical surface, contrary to our hypothesis, aged mice had a significantly greater response to loading than young-adult mice (Ec.MS/BS and Ec.BFR/BS: 22 months versus 7 months, p < .001). Responses at the periosteal surface did not differ between age groups (p > .05). The loading-induced increase in bone formation resulted in increased cortical area in both age groups (loaded versus control, p < .05). In contrast to the strong cortical response, loading only weakly stimulated trabecular bone formation. Serial (in vivo) µCT examinations at the proximal metaphysis revealed that loading caused a loss of trabecular bone in 7-month-old mice, whereas it appeared to prevent bone loss in 22-month-old mice. In summary, 1 week of daily tibial compression stimulated a robust endocortical and periosteal bone-formation response at the mid-diaphysis in both young-adult and aged male BALB/c mice. We conclude that aging does not limit the short-term anabolic response of cortical bone to mechanical stimulation in our animal model.
Collapse
Affiliation(s)
- Michael D Brodt
- Department of Orthopaedic Surgery, Washington University, School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
30
|
Leppänen OV, Sievänen H, Jokihaara J, Pajamäki I, Kannus P, Cooper DM, Järvinen TLN. The effects of loading and estrogen on rat bone growth. J Appl Physiol (1985) 2010; 108:1737-44. [DOI: 10.1152/japplphysiol.00989.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the contributions of locomotive loading and estrogen to the development of diaphysis of rat femur. A randomized 2 × 2 study design was used. Altogether, 70 female Sprague-Dawley rats were used, of which 10 were euthanized at entry. Of the remaining rats, 16 served as controls, and the rest, 44, underwent a unilateral sciatic neurectomy. The effect of estrogen was removed by ovariectomizing one-half of the neurectomized rats. After 27 wk, the animals were euthanized, and the femora were excised. Irrespective of loading or estrogen, the femur length and mineral mass increased by 142 and 687%, respectively. Axial growth was not modulated either by locomotive loading or estrogen, but the loading resulted in direction-specific changes in the cross-sectional geometry. The estrogen-related gains were evident on the endocortical surface, while the loading-related gains occurred on the periosteal surface. The loading and estrogen were significantly associated with increased bone strength (21 and 15%, respectively) in the mediolateral direction, but not in the anteroposterior direction. Axial growth and accrual of bone mineral mass of the rat femur are largely independent of locomotive loading or estrogen, whereas these factors specifically account for the femur function, as either a mechanical lever or a mineral reservoir for reproduction, respectively.
Collapse
Affiliation(s)
- Olli V. Leppänen
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
| | - Harri Sievänen
- The Bone Research Group, UKK Institute, Tampere, Finland
| | - Jarkko Jokihaara
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia; and
| | - Ilari Pajamäki
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
| | - Pekka Kannus
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
- The Bone Research Group, UKK Institute, Tampere, Finland
| | - David M. Cooper
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Teppo L. N. Järvinen
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia; and
| |
Collapse
|
31
|
Isaksson H, Tolvanen V, Finnilä MAJ, Iivarinen J, Turunen A, Silvast TS, Tuukkanen J, Seppänen K, Arokoski JPA, Brama PA, Jurvelin JS, Helminen HJ. Long-term voluntary exercise of male mice induces more beneficial effects on cancellous and cortical bone than on the collagenous matrix. Exp Gerontol 2009; 44:708-17. [PMID: 19706321 DOI: 10.1016/j.exger.2009.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/26/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
The effects of lifelong physical exercise on the composition, structure and mechanical properties of bone are not well understood. Earlier, we found that voluntary physical exercise improved various properties of bone in maturing male mice up to 6 months of age. In this study, we extended the previous study to 18 months. Half of the mice (total N=144) had access to running wheels while half were kept sedentary. The collagen network was assessed biochemically and by tensile testing of decalcified bone. The mineralized femur was analyzed with pQCT and three-point-bending of the diaphysis and neck-strength-test. The proximal tibia was analyzed with microCT. The bone collagen revealed inferior tensional properties with aging and the mineralized femur demonstrated decreased stiffness with age. In the running mice, tensile properties and the BMD were reduced at 18 months of age compared to the sedentary mice. In contrast, the stiffness of both the diaphysis and femoral neck was higher, and trabecular architecture and structure were improved in the running mice. In summary, the results suggest that lifelong exercise training of male mice results in more beneficial effects on intact mineralized bone in both the diaphysis and epiphysis than on bone collagenous matrix.
Collapse
Affiliation(s)
- Hanna Isaksson
- Biophysics of Bone and Cartilage, Department of Physics, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ooi FK, Singh R, Singh HJ, Umemura Y. Minimum level of jumping exercise required to maintain exercise-induced bone gains in female rats. Osteoporos Int 2009; 20:963-72. [PMID: 18839049 DOI: 10.1007/s00198-008-0760-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 08/18/2008] [Indexed: 11/26/2022]
Abstract
SUMMARY This study determines the minimum level of exercise required to maintain 8 weeks of jumping exercise-induced bone gains in rats. It was found that the minimum level of exercise required for maintaining the different exercise-induced bone gains varied between 11% and 18% of the initial exercise intensity. INTRODUCTION This study ascertains the minimum level of follow-up exercise required to maintain bone gains induced by an 8-week jumping exercise in rats. METHODS Twelve groups of 12-week old rats (n = 10 rats per group) were given either no exercise for 8 (8S) or 32 weeks (32S), or received 8 weeks of standard training program (8STP) that consisted of 200 jumps per week, given at 40 jumps per day for 5 days per week, followed by 24 weeks of exercise at loads of either 40 or 20 or 10 jumps per day, for either 5, or 3, or 1 day/week. Bone mass, strength, and morphometric properties were measured in the right tibia. Data were analyzed using one-way analyses of variance. RESULTS Bone mass, strength, mid-shaft periosteal perimeter and cortical area were significantly (p < 0.05) higher in the rats given 8STP than that in the 8S group. The minimal level of exercise required to maintain the bone gains was 31, 36, 25, and 21 jumps per week for mass, strength, periosteal perimeter and cortical area, respectively. CONCLUSIONS Eight weeks of jumping exercise-induced bone gains could be maintained for a period of 24 weeks with follow-up exercise consisting of 11% to 18% of the initial exercise load.
Collapse
Affiliation(s)
- F K Ooi
- Sports Science Unit, School of Medical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
33
|
Kriemler S, Zahner L, Puder JJ, Braun-Fahrländer C, Schindler C, Farpour-Lambert NJ, Kränzlin M, Rizzoli R. Weight-bearing bones are more sensitive to physical exercise in boys than in girls during pre- and early puberty: a cross-sectional study. Osteoporos Int 2008; 19:1749-58. [PMID: 18425403 DOI: 10.1007/s00198-008-0611-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
UNLABELLED We carried out a cross-section study of the sex-specific relationship between bone mineral content and physical activity at sites with different loading in pre- and early pubertal girls and boys. There was significant sensitivity of bone mineral content of the hip to physical exercise in boys, but not in girls. BACKGROUND Since little is known whether there are sex differences in sensitivity of bone to loading, we investigated sex differences in the cross-sectional association between measures of physical activity (PA) and bone mass and size in pre- and early pubertal children of both sexes. METHODS We measured bone mineral content/density (BMC/BMD) and fat-free mass (FFM) in 269 6- to 13-year-old children from randomly selected schools by dual-energy X-ray absorptiometry. Physical activity (PA) was measured by accelerometers and lower extremity strength by a jump-and-reach test. RESULTS Boys (n = 128) had higher hip and total body BMC and BMD, higher FFM, higher muscle strength and were more physically active than girls (n = 141). Total hip BMC was positively associated with time spent in total and vigorous PA in boys (r = 0.20-0.33, p < 0.01), but not in girls (r = 0.02-0.04, p = ns), even after adjusting for FFM and strength. While boys and girls in the lowest tertile of vigorous PA (22 min/day) did not differ in hip BMC (15.62 vs 15.52 g), boys in the highest tertile (72 min/day) had significantly higher values than the corresponding girls (16.84 vs 15.71 g, p < 0.05). CONCLUSIONS Sex differences in BMC during pre- and early puberty may be related to a different sensitivity of bone to physical loading, irrespective of muscle mass.
Collapse
Affiliation(s)
- S Kriemler
- Institute of Exercise and Health Sciences, University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Karlsson MK, Nordqvist A, Karlsson C. Sustainability of exercise-induced increases in bone density and skeletal structure. Food Nutr Res 2008; 52:1872. [PMID: 19109651 PMCID: PMC2596739 DOI: 10.3402/fnr.v52i0.1872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/22/2008] [Accepted: 08/10/2008] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The prevalence of osteoporosis with related fragility fractures has increased during the last decades. As physical activity influences the skeleton in a beneficial way, exercise may hypothetically be used as a prophylactic tool against osteoporosis. OBJECTIVE This review evaluates if exercise-induced skeletal benefits achieved during growth remain in a long-term perspective. DESIGN PUBLICATIONS WITHIN THE FIELD WERE SEARCHED THROUGH MEDLINE (PUBMED) USING THE SEARCH WORDS: exercise, physical activity, bone mass, bone mineral content (BMC), bone mineral density (BMD) and skeletal structure. We based our inferences on publications with the highest level of evidence, particularly randomised controlled trials (RCT). RESULTS Benefits in BMD achieved by exercise during growth seem to be eroded at retirement, but benefits in skeletal structure may possibly be retained in a longer perspective. Recreational exercise seems to at least partially maintain exercise-induced skeletal benefits achieved during growth. CONCLUSIONS Exercise during growth may be followed by long-term beneficial skeletal effects, which could possibly reduce the incidence of fractures. Exercise during adulthood seems to partly preserve these benefits and reduce the age-related bone loss.
Collapse
Affiliation(s)
- Magnus K Karlsson
- Clinical and Osteoporosis Research Unit, Department of Clinical Sciences and Department of Orthopaedics, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | |
Collapse
|
35
|
Middleton KM, Kelly SA, Garland T. Selective breeding as a tool to probe skeletal response to high voluntary locomotor activity in mice. Integr Comp Biol 2008; 48:394-410. [PMID: 21669801 PMCID: PMC6515713 DOI: 10.1093/icb/icn057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present a novel mouse-model for the study of skeletal structure and evolution, based on selective breeding for high levels of voluntary wheel running. Whereas traditional models (originally inbred strains, more recently knockouts and transgenics) rely on the study of mutant or laboratory-manipulated phenotypes, we have studied changes in skeletal morphometrics resulting from many generations of artificial selection for high activity in the form of wheel running, in which mice engage voluntarily. Mice from the four replicate High Runner (HR) lines run nearly three times as many revolutions during days 5 and 6 of a 6-day exposure to wheels (1.12 m circumference). We have found significant changes in skeletal dimensions of the hind limbs, including decreased directional asymmetry, larger femoral heads, and wider distal femora. The latter two have been hypothesized as evolutionary adaptations for long-distance locomotion in hominids. Exercise-training studies involving experimental groups with and without access to wheels have shown increased diameters of both femora and tibiafibulae, and suggest genetic effects on trainability (genotype-by-environment interactions). Reanalysis of previously published data on bone masses of hind limbs revealed novel patterns of change in bone mass associated with access to wheels for 2 months. Without access to wheels, HR mice have significantly heavier tibiafibulae and foot bones, whereas with chronic access to wheels, a significant increase in foot bone mass that was linearly related to increases in daily wheel running was observed. Mice exhibiting a recently discovered small-muscle phenotype ("mini-muscle," [MM] caused by a Mendelian recessive gene), in which the mass of the triceps surae muscle complex is ∼50% lower than in normal individuals, have significantly longer and thinner bones in the hind limb. We present new data for the ontogenetic development of muscle mass in Control, HR, and MM phenotypes in mice of 1-7 weeks postnatal age. Statistical comparisons reveal highly significant differences both in triceps surae mass and mass-corrected triceps surae mass between normal and MM mice at all but the postnatal age of 1 week. Based on previously observed differences in distributions of myosin isoforms in adult MM mice, we hypothesize that a reduction of myosin heavy-chain type-IIb isoforms with accounts for our observed ontogenetic changes in muscle mass.
Collapse
Affiliation(s)
- Kevin M. Middleton
- *Department of Biology, California State University–San Bernardino, San Bernardino, CA 92507, USA
| | - Scott A. Kelly
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
36
|
Honda A, Sogo N, Nagasawa S, Kato T, Umemura Y. Bones benefits gained by jump training are preserved after detraining in young and adult rats. J Appl Physiol (1985) 2008; 105:849-53. [PMID: 18599679 DOI: 10.1152/japplphysiol.00902.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the osteogenic responses to jump training and subsequent detraining in young and adult male rats to test the following hypotheses: 1) jump training has skeletal benefits; 2) these skeletal benefits are preserved with subsequent detraining throughout bone morphometric changes; and 3) there are no differences between young and adult rats during detraining in terms of the maintenance of exercise-induced changes. Twelve-week-old (young) and 44-wk-old (adult) rats were divided into the following four groups: young-sedentary, young-exercised, adult-sedentary, and adult-exercised. The exercised groups performed jump training (height = 40 cm, 10 jumps/day, 5 days/wk) for 8 wk followed by 24 wk of being sedentary. Tibial bone mineral content and bone mineral density in vivo significantly increased with jump training, and the effects were maintained after detraining in both the young and adult exercised groups, although the benefits of training became somewhat diminished. After 24 wk of detraining, the beneficial effects of training on bone mass and strength were preserved and associated with morphometric changes, such as periosteal perimeter, cortical area, and moment of inertia. There were no significant age-exercise interactions in such parameters, except for the periosteal perimeter. These results suggest that there are few differences in bone accommodation and maintenance by training and detraining between young and adult rats.
Collapse
Affiliation(s)
- Akiko Honda
- School of Health and Sport Sciences, Chukyo Univ., 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393 Japan.
| | | | | | | | | |
Collapse
|
37
|
Pathogenesis of age-related osteoporosis: impaired mechano-responsiveness of bone is not the culprit. PLoS One 2008; 3:e2540. [PMID: 18648530 PMCID: PMC2481275 DOI: 10.1371/journal.pone.0002540] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 05/21/2008] [Indexed: 11/21/2022] Open
Abstract
Background According to prevailing understanding, skeletal mechano-responsiveness declines with age and this apparent failure of the mechano-sensory feedback system has been attributed to the gradual bone loss with aging (age-related osteoporosis). The objective of this study was to evaluate whether the capacity of senescent skeleton to respond to increased loading is indeed reduced as compared to young mature skeleton. Methods and Findings 108 male and 101 female rats were randomly assigned into Exercise and Control groups. Exercise groups were subjected to treadmill training either at peak bone mass between 47–61 weeks of age (Mature) or at senescence between 75–102 weeks of age (Senescent). After the training intervention, femoral necks and diaphysis were evaluated with peripheral quantitative computed tomography (pQCT) and mechanical testing; the proximal tibia was assessed with microcomputed tomography (μCT). The μCT analysis revealed that the senescent bone tissue was structurally deteriorated compared to the mature bone tissue, confirming the existence of age-related osteoporosis. As regards the mechano-responsiveness, the used loading resulted in only marginal increases in the bones of the mature animals, while significant exercise-induced increases were observed virtually in all bone traits among the senescent rats. Conclusion The bones of senescent rats displayed a clear ability to respond to an exercise regimen that failed to initiate an adaptive response in mature animals. Thus, our observations suggest that the pathogenesis of age-related osteoporosis is not attributable to impaired mechano-responsiveness of aging skeleton. It also seems that strengthening of even senescent bones is possible – naturally provided that safe and efficient training methods can be developed for the oldest old.
Collapse
|
38
|
Forwood MR. Physical activity and bone development during childhood: insights from animal models. J Appl Physiol (1985) 2008; 105:334-41. [DOI: 10.1152/japplphysiol.00040.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animal studies illustrate greater structural and material adaptations of growing bone to exercise than in adult bones but do not define effective training regimes to optimize bone strength in children. Controlled loading studies in turkey, rat, or mouse bones have revealed mechanisms of mechanotransduction and loading characteristics that optimize the modeling response to applied strains. Insights from these models reveal that static loads do not play a role in mechanotransduction and that bone formation is threshold driven and dependent on strain rate, amplitude, and partitioning of the load. That is, only a few cycles of loading are required at any time to elicit an adaptive response, and distributed bouts of loading, incorporating rest periods, are more osteogenic than single sessions of long duration. These parameters of loading have been translated into feasible public health interventions that exploit the insights gained from animal experiments to achieve adaptive responses in children and adolescents. Studies manipulating estrogen receptors (ER) in mice also demonstrate that skeletal sensitivity to loading during the peripubertal period is due to a direct regulation of mechanotransduction pathways by ER, and not just a simple enhancement of cell activity already marshaled by the hypothalamic-pituitary axis. Unfortunately, because the rate and timing of growth in small animals are completely different from those in humans, these models can be poor tools to elucidate periods during growth in youths, during which the skeleton is more sensitive to loading. However, there are insights from studies of human growth that can improve the interpretation of data from such studies of growth and development in animals.
Collapse
|
39
|
Jokihaara J, Pörsti IH, Kööbi P, Jolma PM, Mustonen JT, Saha HHT, Sievänen H, Kannus P, Iwaniec UT, Turner RT, Järvinen TLN. Treatment of experimental renal osteodystrophy with pamidronate. Kidney Int 2008; 74:319-27. [PMID: 18463610 DOI: 10.1038/ki.2008.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated the effects of the bisphosphonate pamidronate on bone histomorphometry, structure and strength in male rats with uninephrectomy or with chronic renal disease induced by 5/6 nephrectomy. In rats with chronic renal disease the plasma urea, phosphate and parathyroid hormone levels were significantly increased compared to rats with a uninephroctomy and none of these parameters was affected by pamidronate treatment. In the femoral midshaft, chronic renal disease reduced cortical bone mineral density and content. No difference was observed in the breaking load of the femoral midshaft. In the distal femur, a high-turnover renal osteodystrophy was found but pamidronate suppressed this bone turnover and increased bone mineral content. Treatment had no effect on chronic disease-induced augmentation of osteoid volume or fibroblast surface. These studies show that in this model of stage 3 renal disease, pamidronate increased mineral content in the femoral midshaft and distal metaphysis primarily by adding bone to endocortical and trabecular surfaces but did not reduce osteitis fibrosa.
Collapse
Affiliation(s)
- Jarkko Jokihaara
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Middleton KM, Shubin CE, Moore DC, Carter PA, Garland T, Swartz SM. The relative importance of genetics and phenotypic plasticity in dictating bone morphology and mechanics in aged mice: evidence from an artificial selection experiment. ZOOLOGY 2008; 111:135-47. [PMID: 18221861 PMCID: PMC2405767 DOI: 10.1016/j.zool.2007.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 06/11/2007] [Accepted: 06/13/2007] [Indexed: 01/09/2023]
Abstract
Both genetic and environmental factors are known to influence the structure of bone, contributing to its mechanical behavior during, and adaptive response to, loading. We introduce a novel approach to simultaneously address the genetically mediated, exercise-related effects on bone morphometrics and strength, using mice that had been selectively bred for high levels of voluntary wheel running (16 generations). Female mice from high running and control lines were either allowed (n=12, 12, respectively) or denied (n=11, 12, respectively) access to wheels for 20 months. Femoral shaft, neck, and head were measured with calipers and via micro-computed tomography. Fracture characteristics of the femoral head were assessed in cantilever bending. After adjusting for variation in body mass by two-way analysis of covariance, distal width of the femur increased as a result of selective breeding, and mediolateral femoral diameter was reduced by wheel access. Cross-sectional area of the femoral mid-shaft showed a significant linetype x activity effect, increasing with wheel access in high-running lines but decreasing in control lines. Body mass was significantly positively correlated with many of the morphometric traits studied. Fracture load of the femoral neck was strongly positively predicted by morphometric traits of the femoral neck (r2>0.30), but no significant effects of selective breeding or wheel access were found. The significant correlations of body mass with femoral morphometric traits underscore the importance of controlling for body size when analyzing the response of bone size and shape to experimental treatments. After controlling for body mass, measures of the femoral neck remain significant predictors of femoral neck strength.
Collapse
Affiliation(s)
- Kevin M Middleton
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Thomsen JS, Skalicky M, Viidik A. Influence of physical exercise and food restriction on the biomechanical properties of the femur of ageing male rats. Gerontology 2008; 54:32-9. [PMID: 18196922 DOI: 10.1159/000113502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 11/15/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Voluntary running in wheels as well as food reduction increase the life spans of rats. Disparate parameters such as the collagen biomarker of ageing and the development of kidney pathologies are decreased by voluntary exercise. There are few reports on the influence of physical exercise and food restriction on the skeleton of male rats. Most investigations initiated rather short-term interventions in 4- to 5-week-old animals and thus studied more the influence of growth than the influence of ageing on the skeleton. OBJECTIVE To compare the effects of physical exercise and food restriction on the biomechanical properties of bone tissue of ageing male rats with the interventions starting at the age of 5 months with the end point at 23 months. This enables the study of the influence of these interventions on the ageing of the skeleton. METHODS Five groups of male Sprague-Dawley rats were used: baseline (BL), voluntarily running in wheels (RW), food restriction to attain pair weight with RW animals (PW), forced running in treadmills (TM), and sedentary controls (SE). The biomechanical properties of femoral neck, diaphysis, and distal metaphysis were measured. RESULTS While the body weights and fat-free mass increased from BL to SE group, the occiput-sacrum length did not increase and the length of the femur increased marginally. These lengths were slightly retarded in RW and PW groups compared to the SE group. The strength of the distal femoral metaphysis decreased from BL to SE group. This decrease was counteracted by physical exercise (RW and TM groups) as well as by food restriction (PW group). In contrast, the strength of the femoral mid-diaphysis did not differ between BL and SE groups. CONCLUSIONS The distal metaphysis in the male rat femur is more prone to decreasing biomechanical strength than the diaphysis during ageing. Physical exercise, when started at the age of 5 months, when the skeleton has reached its adult size, is somewhat effective in counteracting these changes. There is also some retarding effect of food restriction.
Collapse
Affiliation(s)
- Jesper Skovhus Thomsen
- Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Arhus, Denmark
| | | | | |
Collapse
|
42
|
Figard H, Mougin F, Nappey M, Davicco MJ, Lebecque P, Coxam V, Lamothe V, Sauvant P, Berthelot A. Effects of isometric strength training followed by no exercise and Humulus lupulus L-enriched diet on bone metabolism in old female rats. Metabolism 2007; 56:1673-81. [PMID: 17998020 DOI: 10.1016/j.metabol.2007.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 07/30/2007] [Indexed: 11/17/2022]
Abstract
We investigated in female rats the effects on bone metabolism of a prolonged no-training period, subsequent to an isometric exercise program, performed during young adulthood and those of a long-term consumption of Humulus lupulus L-enriched diet (genistein 1.92 and daidzein 1.24 mg/kg diet) combined or not with isometric training. Forty-eight rats (4 weeks old) were randomly divided into 4 groups: trained (C-Tr) or nontrained rats (C-NTr) fed with control diet and trained (H-Tr) or nontrained rats (H-NTr) fed with Humulus lupulus L-enriched diet. The diets lasted 100 weeks. Training was followed over a 25-week period. Bone parameters were measured at week 100. Our results showed that no significant difference was observed among the 4 groups in uterine relative weight, calcium (Ca) intake, fecal Ca, urinary Ca excretion, net Ca absorption, plasma Ca, and bone Ca content. Calcium balance was significantly enhanced in H-NTr rats in comparison with C-NTr and C-Tr rats. Isometric strength training led to a significant increase in total bone mineral density (BMD), diaphyseal BMD, and osteocalcin-deoxypyridinoline ratio in C-Tr rats compared with the other groups. The main findings of the present study indicate that in female rats, a 25-week isometric strength training performed during young adulthood followed by a prolonged no-training period increases BMD values and osteocalcin-deoxypyridinoline ratio, whereas long-term consumption of Humulus lupulus L-enriched diet does not improve bone parameters. It suggests that bone gains induced by exercise do not decrease immediately after cessation of training and also confirms the importance of the practice of physical activity during puberty and young adulthood to maximize the achieved peak bone density.
Collapse
Affiliation(s)
- Hélène Figard
- UFR STAPS Besançon, 31 chemin de l'Epitaphe, Université de Franche-Comté, 25000, Besançon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rautava E, Lehtonen-Veromaa M, Kautiainen H, Kajander S, Heinonen OJ, Viikari J, Möttönen T. The reduction of physical activity reflects on the bone mass among young females: a follow-up study of 142 adolescent girls. Osteoporos Int 2007; 18:915-22. [PMID: 17211530 DOI: 10.1007/s00198-006-0312-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 12/12/2006] [Indexed: 11/28/2022]
Abstract
UNLABELLED Maintenance of positive effects of physical activity on growing bone is unknown. Physical activity was associated with increased BMC and BMD in a 7-year follow-up with 142 adolescent girls. Marked reduction in physical activity had an unfavorable effect on bone measurements, which is an important finding when the prevention of osteoporosis is considered. INTRODUCTION Environmental factors influence quality and durability of bone. Physical activity, with high-impact weight bearing activity during puberty in particular, has been shown to have a beneficial effect on growing bone. Only few studies have been published on the maintenance of these effects. METHODS At baseline, 142 girls aged 9-15 years participated in the present 7-year follow-up study. Growth and development, physical activity, and intakes of calcium and vitamin-D were recorded at intervals. BMC and BMD measurements were repeated using DXA. Based on the recording of physical activity during the follow-up measurements, the effect of the reduction in physical activity was examined with the bone measurements, and the measurements in the tertiles based on the amount of physical activity during the whole follow-up period were compared. RESULTS Physical activity was positively associated with the development of BMC and BMD during the follow-up. The mean BMC of the lumbar spine increased 1.69 g (3%) (p = 0.021) more among those girls who maintained the physical activity level as compared with those who reduced it during last 4 years. In the femoral neck, the corresponding difference was 0.14 g (4.6%) (p = 0.015) between the same two groups of girls. The mean increases in BMC at lumbar spine and femoral neck were more substantial among those girls having the highest physical activity levels during the 7-year follow-up (46.7% and 22.6%) as compared with those having the lowest physical activity levels (43.3% and 17.4%, respectively). CONCLUSIONS The findings of the present study show that regular physical activity is valuable in preserving the peak bone mass acquired at puberty in particular. Many of the girls who markedly reduced their activity levels lost bone in their femoral neck prior to their 25th birthday.
Collapse
Affiliation(s)
- E Rautava
- Jyväskylä Central Hospital, Keskussairaalantie 19, 40620, Jyväskylä, Finland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ducher G, Bass SL. Exercise during growth: Compelling evidence for the primary prevention of osteoporosis? ACTA ACUST UNITED AC 2007. [DOI: 10.1138/20070263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Macdonald HM, Kontulainen SA, Khan KM, McKay HA. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res 2007; 22:434-46. [PMID: 17181400 DOI: 10.1359/jbmr.061205] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED This 16-month randomized, controlled school-based study compared change in tibial bone strength between 281 boys and girls participating in a daily program of physical activity (Action Schools! BC) and 129 same-sex controls. The simple, pragmatic intervention increased distal tibia bone strength in prepubertal boys; it had no effect in early pubertal boys or pre or early pubertal girls. INTRODUCTION Numerous school-based exercise interventions have proven effective for enhancing BMC, but none have used pQCT to evaluate the effects of increased loading on bone strength during growth. Thus, our aim was to determine whether a daily program of physical activity, Action Schools! BC (AS! BC) would improve tibial bone strength in boys and girls who were pre- (Tanner stage 1) or early pubertal (Tanner stage 2 or 3) at baseline. MATERIALS AND METHODS Ten schools were randomized to intervention (INT, 7 schools) or control (CON, 3 schools). The bone-loading component of AS! BC included a daily jumping program (Bounce at the Bell) plus 15 minutes/day of classroom physical activity in addition to regular physical education. We used pQCT to compare 16-month change in bone strength index (BSI, mg2/mm4) at the distal tibia (8% site) and polar strength strain index (SSIp, mm3) at the tibial midshaft (50% site) in 281 boys and girls participating in AS! BC and 129 same-sex controls. We used a linear mixed effects model to analyze our data. RESULTS Children were 10.2+/-0.6 years at baseline. Intervention boys tended to have a greater increase in BSI (+774.6 mg2/mm4; 95% CI: 672.7, 876.4) than CON boys (+650.9 mg2/mm4; 95% CI: 496.4, 805.4), but the difference was only significant in prepubertal boys (p=0.03 for group x maturity interaction). Intervention boys also tended to have a greater increase in SSIp (+198.6 mm3; 95% CI: 182.9, 214.3) than CON boys (+177.1 mm3; 95% CI: 153.5, 200.7). Change in BSI and SSIp was similar between CON and INT girls. CONCLUSIONS Our findings suggest that a simple, pragmatic program of daily activity enhances bone strength at the distal tibia in prepubertal boys. The precise exercise prescription needed to elicit a similar response in more mature boys or in girls might be best addressed in a dose-response trial.
Collapse
Affiliation(s)
- Heather M Macdonald
- School of Human Kinetics, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
46
|
Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res 2007; 22:251-9. [PMID: 17129172 DOI: 10.1359/jbmr.061107] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Short-term exercise in growing rodents provided lifelong benefits to bone structure, strength, and fatigue resistance. Consequently, exercise when young may reduce the risk for fractures later in life, and the old exercise adage of "use it or lose it" may not be entirely applicable to the skeleton. INTRODUCTION The growing skeleton is most responsive to exercise, but low-trauma fractures predominantly occur in adults. This disparity has raised the question of whether exercised-induced skeletal changes during growth persist into adulthood where they may have antifracture benefits. This study investigated whether brief exercise during growth results in lifelong changes in bone quantity, structure, quality, and mechanical properties. MATERIALS AND METHODS Right forearms of 5-week-old Sprague-Dawley rats were exercised 3 days/week for 7 weeks using the forearm axial compression loading model. Left forearms were internal controls and not exercised. Bone quantity (mineral content and areal density) and structure (cortical area and minimum second moment of area [I(MIN)]) were assessed before and after exercise and during detraining (restriction to home cage activity). Ulnas were removed after 92 weeks of detraining (at 2 years of age) and assessed for bone quality (mineralization) and mechanical properties (ultimate force and fatigue life). RESULTS Exercise induced consistent bone quantity and structural adaptation. The largest effect was on I(MIN), which was 25.4% (95% CI, 15.6-35.3%) greater in exercised ulnas compared with nonexercised ulnas. Bone quantity differences did not persist with detraining, whereas all of the absolute difference in bone structure between exercised and nonexercised ulnas was maintained. After detraining, exercised ulnas had 23.7% (95% CI, 13.0-34.3%) greater ultimate force, indicating enhanced bone strength. However, exercised ulnas also had lower postyield displacement (-26.4%; 95% CI, -43.6% to -9.1%), indicating increased brittleness. This resulted from greater mineralization (0.56%; 95% CI, 0.12-1.00%), but did not influence fatigue life, which was 10-fold greater in exercised ulnas. CONCLUSIONS These data indicate that exercise when young can have lifelong benefits on bone structure and strength, and potentially, fracture risk. They suggest that the old exercise adage of "use it or lose it" may not be entirely applicable to the skeleton and that individuals undergoing skeletal growth should be encouraged to perform impact exercise.
Collapse
Affiliation(s)
- Stuart J Warden
- Department of Physical Therapy, Indiana University, Indianapolis, USA
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Leppänen O, Sievänen H, Jokihaara J, Pajamäki I, Järvinen TLN. Three-point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol. J Bone Miner Res 2006; 21:1231-7. [PMID: 16869721 DOI: 10.1359/jbmr.060511] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mediolateral three-point bending of the rat midfemur was developed to enable the assessment of the mechanical competence of the elliptic bone cross-section in terms of its widest diameter, the apparent primary direction of bone adaptation to loading. INTRODUCTION Today, the most commonly used method to characterize the biomechanical properties of appendicular long bones is the three-point bending testing of the midfemur in the anteroposterior (AP) direction. However, as the diameter of the elliptic cross-section of femoral diaphysis is widest in the orthogonal mediolateral (ML) direction, the femoral diaphysis should also show the highest resistance to bending along this direction. The objective of this study was thus to introduce and validate a mechanical testing protocol for femoral midshaft along the ML direction. MATERIALS AND METHODS To determine the repeatability of the novel testing protocol, 38 pairs of rat femora underwent a comprehensive structural analysis by pQCT followed by ML three-point bending. For comparison of the repeatability, corresponding tests were performed on the femoral neck. To validate the novel testing direction, the left hindlimb of 24 rats was neurectomized for 6 months, whereas the right limb served as an intact control. After excision, one half of these pairs of femora were randomly subjected to three-point bending test in the conventional AP direction and the remaining in the orthogonal ML direction. RESULTS The precision (CVrms) of breaking load, stiffness, and energy absorption of the femoral midshaft in the ML direction was 3.8%, 6.6%, and 14.5%, respectively. The corresponding values for femoral neck compression test were 7.6%, 17.9%, and 18.7%, respectively. The loading-induced effect on the femoral midshaft (difference between the neurectomized [nonloaded] and contralateral intact [loaded] femur) was +2.2%, +1.9%, and +2.1% in the AP direction and -18.9%, -17.6%, and -20.3% in the ML direction (p < 0.01 for all comparisons), respectively. CONCLUSIONS Our results show that testing of rat femoral midshaft in the ML direction is a precise and biologically valid method to determine the structural strength of this widely used skeletal site in experimental bone research.
Collapse
Affiliation(s)
- Olli Leppänen
- Department of Surgery and the Institute of Medical Technology, University of Tampere, Tampere, Finland
| | | | | | | | | |
Collapse
|
49
|
Rautava E, Lehtonen-Veromaa M, Möttönen T, Kautiainen H, Heinonen OJ, Viikari J. Association of reduced physical activity and quantitative ultrasound measurements: a 6-year follow-up study of adolescent girls. Calcif Tissue Int 2006; 79:50-6. [PMID: 16868666 DOI: 10.1007/s00223-005-0306-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 03/30/2006] [Indexed: 11/29/2022]
Abstract
Sonographic parameters of the heel were recorded in order to investigate the effects of changes in physical activities among 140 healthy growing peripubertal Caucasian girls. Calcaneal quantitative ultrasound measurements (Hologic Sahara) were recorded at baseline and 2- and 6-year follow-up. Broadband ultrasound attenuation, speed of sound (SOS), and T scores were documented. Altogether, 30 girls reduced their physical activity by >50% and 29 girls by 25-50%, whereas 81 girls continued at the present level or increased it. Age and physical activity together accounted for 16.7% of the variation in calcaneal T scores at baseline and for 16.4% at 2-year follow-up, whereas physical activity alone accounted for 11.3% of the variation at 6-year follow-up. The reduction in mean T scores was significant (from 2.0 to 0.8, P < 0.001) among those having discontinued their physical activity by the 6-year measurement. The changes between three groups were statistically significantly different from each other (P = 0.003). The mean SOS values decreased 16.78 meters per second (95% CI -26.9 to -6.7) among those having discontinued their physical activity between the 2- and 6-year follow-up measurements. The SOS value sensitively reacts to changes in physical activity, and consequently, it will help assess changes in bone quality. Because of such an immediate reaction, SOS is a good-quality measure for the physical condition of bone in young people and a suitable tool for detecting changes in calcaneal bone.
Collapse
Affiliation(s)
- E Rautava
- Department of Medicine, Turku University Central Hospital, Kiinamyllynkatu 4-8, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
50
|
Jokihaara J, Pörsti I, Pajamäki I, Vuohelainen T, Jolma P, Kööbi P, Kalliovalkama J, Niemelä O, Kannus P, Sievänen H, Järvinen TLN. Paricalcitol [19-nor-1,25-(OH)2D2] in the treatment of experimental renal bone disease. J Bone Miner Res 2006; 21:745-51. [PMID: 16734389 DOI: 10.1359/jbmr.060114] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Paricalcitol is a less hypercalcemic vitamin D analog that has been shown to suppress secondary hyperparathyroidism and to prevent the associated histomorphometric changes in bone. In this study, we show that paricalcitol also ameliorates the renal insufficiency-induced loss of bone mineral and the mechanical competence of bone. INTRODUCTION Renal bone disease is a common consequence of chronic renal insufficiency and the associated secondary hyperparathyroidism (SH). Paricalcitol [19-nor-1,25(OH)(2)D(2)] has been shown to ameliorate SH and prevent renal failure-induced histomorphometric changes in bone with minimal calcemic and phosphatemic activity. However, information about its efficacy on restoration of bone structural strength is lacking. In this study, we explored the effects of paricalcitol treatment on bone structure and strength in a model of advanced renal disease. MATERIALS AND METHODS Forty-five 8-week-old rats were randomly assigned to either surgical 5/6 nephrectomy (NTX) or Sham-operation. After a 15-week postoperative disease progression period, the NTX rats were further allocated to uremic control (NTX) and treatment (NTX + paricalcitol) groups, the latter of which received paricalcitol for the subsequent 12 weeks. After 27 weeks, the animals were killed, plasma samples were collected, and both femora were excised for comprehensive analysis of the femoral neck and midshaft (pQCT and biomechanical testing). RESULTS High mortality that exceeded 30% was observed in both NTX groups. NTX induced over a 13-fold increase in plasma PTH, whereas this increase was only 5-fold after paricalcitol treatment. At the femoral neck, NTX was associated with an 8.1% decrease (p < 0.05) in vBMD and a 16% decrease in breaking load (p < 0.05) compared with the Sham group, whereas paricalcitol treatment completely prevented these changes. At the femoral midshaft, the NTX resulted in a 6.6% decrease in cortical BMD (p < 0.01 versus Sham), and this change was also prevented by paricalcitol. CONCLUSIONS Paricalcitol administration prevented renal insufficiency-associated decreases in BMD in the femoral neck and the femoral midshaft and restored bone strength in the femoral neck. Therefore, paricalcitol can efficiently ameliorate renal insufficiency-induced loss of bone mineral and mechanical competence of bone.
Collapse
Affiliation(s)
- Jarkko Jokihaara
- Medical School and the Institute of Medical Technology, University of Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|