1
|
Goswami N, Anastasio MA, Popescu G. Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part I. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22713. [PMID: 39026612 PMCID: PMC11257415 DOI: 10.1117/1.jbo.29.s2.s22713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024]
Abstract
Significance Quantitative phase imaging (QPI) techniques offer intrinsic information about the sample of interest in a label-free, noninvasive manner and have an enormous potential for wide biomedical applications with negligible perturbations to the natural state of the sample in vitro. Aim We aim to present an in-depth review of the scattering formulation of light-matter interactions as applied to biological samples such as cells and tissues, discuss the relevant quantitative phase measurement techniques, and present a summary of various reported applications. Approach We start with scattering theory and scattering properties of biological samples followed by an exploration of various microscopy configurations for 2D QPI for measurement of structure and dynamics. Results We reviewed 157 publications and presented a range of QPI techniques and discussed suitable applications for each. We also presented the theoretical frameworks for phase reconstruction associated with the discussed techniques and highlighted their domains of validity. Conclusions We provide detailed theoretical as well as system-level information for a wide range of QPI techniques. Our study can serve as a guideline for new researchers looking for an exhaustive literature review of QPI methods and relevant applications.
Collapse
Affiliation(s)
- Neha Goswami
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Mark A. Anastasio
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
2
|
Hassini H, Dorizzi B, Thellier M, Klossa J, Gottesman Y. Investigating the Joint Amplitude and Phase Imaging of Stained Samples in Automatic Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:7932. [PMID: 37765989 PMCID: PMC10536387 DOI: 10.3390/s23187932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The diagnosis of many diseases relies, at least on first intention, on an analysis of blood smears acquired with a microscope. However, image quality is often insufficient for the automation of such processing. A promising improvement concerns the acquisition of enriched information on samples. In particular, Quantitative Phase Imaging (QPI) techniques, which allow the digitization of the phase in complement to the intensity, are attracting growing interest. Such imaging allows the exploration of transparent objects not visible in the intensity image using the phase image only. Another direction proposes using stained images to reveal some characteristics of the cells in the intensity image; in this case, the phase information is not exploited. In this paper, we question the interest of using the bi-modal information brought by intensity and phase in a QPI acquisition when the samples are stained. We consider the problem of detecting parasitized red blood cells for diagnosing malaria from stained blood smears using a Deep Neural Network (DNN). Fourier Ptychographic Microscopy (FPM) is used as the computational microscopy framework to produce QPI images. We show that the bi-modal information enhances the detection performance by 4% compared to the intensity image only when the convolution in the DNN is implemented through a complex-based formalism. This proves that the DNN can benefit from the bi-modal enhanced information. We conjecture that these results should extend to other applications processed through QPI acquisition.
Collapse
Affiliation(s)
- Houda Hassini
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
- TRIBVN/T-Life, 92800 Puteaux, France;
| | - Bernadette Dorizzi
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
| | - Marc Thellier
- AP-HP, Centre National de Référence du Paludisme, 75013 Paris, France;
- Institut Pierre-Louis d’Épidémiologie et de Santé Publique, Sorbonne Université, INSERM, 75013 Paris, France
| | | | - Yaneck Gottesman
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
| |
Collapse
|
3
|
Ma Y, Dai T, Yu L, Ma L, An S, Wang Y, Liu M, Zheng J, Kong L, Zuo C, Gao P. Reflectional quantitative differential phase microscopy using polarized wavefront phase modulation. JOURNAL OF BIOPHOTONICS 2023; 16:e202200325. [PMID: 36752421 DOI: 10.1002/jbio.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 06/07/2023]
Abstract
Quantitative phase microscopy (QPM), as a label-free and nondestructive technique, has been playing an indispensable tool in biomedical imaging and industrial inspection. Herein, we introduce a reflectional quantitative differential phase microscopy (termed RQDPM) based on polarized wavefront phase modulation and partially coherent full-aperture illumination, which has high spatial resolution and spatio-temporal phase sensitivity and is applicable to opaque surfaces and turbid biological specimens. RQDPM does not require additional polarized devices and can be easily switched from reflectional mode to transmission mode. In addition, RQDPM inherits the characteristic of high axial resolution of differential interference contrast microscope, thereby providing topography for opaque surfaces. We experimentally demonstrate the reflectional phase imaging ability of RQDPM with several samples: semiconductor wafer, thick biological tissues, red blood cells, and Hela cells. Furthermore, we dynamically monitor the flow state of microspheres in a self-built microfluidic channel by using RQDPM converted into the transmission mode.
Collapse
Affiliation(s)
- Ying Ma
- School of Physics, Xidian University, Xi'an, China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Lan Yu
- School of Physics, Xidian University, Xi'an, China
| | - Lin Ma
- School of Physics, Xidian University, Xi'an, China
| | - Sha An
- School of Physics, Xidian University, Xi'an, China
| | - Yang Wang
- School of Physics, Xidian University, Xi'an, China
| | - Min Liu
- School of Physics, Xidian University, Xi'an, China
| | | | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chao Zuo
- School of Physics, Xidian University, Xi'an, China
| | - Peng Gao
- School of Physics, Xidian University, Xi'an, China
| |
Collapse
|
4
|
Li Z, Liu B, Tan D, Yang Y, Zheng M. Research on partially coherent spatial light interference microscopy. OPTICS EXPRESS 2022; 30:44850-44863. [PMID: 36522899 DOI: 10.1364/oe.474831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Based on partial coherence theory, this study rigorously deduces the principle of spatial light interference microscopy (SLIM) and improves the calculation method of SLIM. The main problem we found with SLIM is that it simply defaults the phase of the direct light to 0. To address this problem, we propose and experimentally demonstrate a double four-step phase shift method. Simulation results show that this method can reduce the relative error of oil-immersed microsphere reconstruction to about 3.7%, and for red blood cell reconstruction, the relative error can be reduced to about 13%.
Collapse
|
5
|
Cheng Z, Zhang Y, Liu X, Guo C, He C, Liu G, Song H. Time-Resolved Four-Channel Jones Matrix Measurement of Birefringent Materials Using an Ultrafast Laser. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7813. [PMID: 36363406 PMCID: PMC9654291 DOI: 10.3390/ma15217813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A method for ultrafast time-resolved four-channel Jones matrix measurement of birefringent materials using an ultrafast laser is investigated. This facilitated the acquisition of a four-channel angular multiplexing hologram in a single shot. The Jones matrix information of a birefringent sample was retrieved from the spatial spectrum of a hologram. The feasibility of this approach was established by measuring the Jones matrix of starch granules in microfluidic chips and the complex amplitude distribution and phase delay distribution of liquid crystal cell at different voltages. Moreover, when the picosecond laser was switched to a femtosecond laser, ultrafast measurements were possible provided that the time interval between two detection pulses was larger than the pulse width.
Collapse
Affiliation(s)
- Zhenjia Cheng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yuqin Zhang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Xuan Liu
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Chengshan Guo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Changwei He
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Guiyuan Liu
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Hongsheng Song
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
6
|
Liu H, Wu X, Liu G, Ren H, R V V, Chen Z, Pu J. Label-free single-shot imaging with on-axis phase-shifting holographic reflectance quantitative phase microscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202100400. [PMID: 35285152 DOI: 10.1002/jbio.202100400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Quantitative phase microscopy (QPM) has been emerged as an indispensable diagnostic and characterization tool in biomedical imaging with its characteristic nature of label-free, noninvasive, and real time imaging modality. The integration of holography to the conventional microscopy opens new advancements in QPM featuring high-resolution and quantitative three-dimensional image reconstruction. However, the holography schemes suffer in space-bandwidth and time-bandwidth issues in the off-axis and phase-shifting configuration, respectively. Here, we introduce an on-axis phase-shifting holography based QPM system with single-shot imaging capability. The technique utilizes the Fizeau interferometry scheme in combination with polarization phase-shifting and space-division multiplexing to achieve the single-shot recording of the multiple phase-shifted holograms. Moreover, the high-speed imaging capability with instantaneous recording of spatially phase shifted holograms offers the flexible utilization of the approach in dynamic quantitative phase imaging with robust phase stability. We experimentally demonstrated the validity of the approach by quantitative phase imaging and depth-resolved imaging of paramecium cells. Furthermore, the technique is applied to the phase imaging and quantitative parameter estimation of red blood cells. This integration of a Fizeau-based phase-shifting scheme to the optical microscopy enables a simple and robust tool for the investigations of engineered and biological specimen with real-time quantitative analysis.
Collapse
Affiliation(s)
- Hanzi Liu
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Xiaoyan Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
- Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, China
| | - Guodong Liu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
- Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, China
| | - Hongliang Ren
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Vinu R V
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Ziyang Chen
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Jixiong Pu
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
7
|
Memmolo P, Aprea G, Bianco V, Russo R, Andolfo I, Mugnano M, Merola F, Miccio L, Iolascon A, Ferraro P. Differential diagnosis of hereditary anemias from a fraction of blood drop by digital holography and hierarchical machine learning. Biosens Bioelectron 2022; 201:113945. [PMID: 35032844 DOI: 10.1016/j.bios.2021.113945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023]
Abstract
Anemia affects about the 25% of the global population and can provoke severe diseases, ranging from weakness and dizziness to pregnancy problems, arrhythmias and hearth failures. About 10% of the patients are affected by rare anemias of which 80% are hereditary. Early differential diagnosis of anemia enables prescribing patients a proper treatment and diet, which is effective to mitigate the associated symptoms. Nevertheless, the differential diagnosis of these conditions is often difficult due to shared and overlapping phenotypes. Indeed, the complete blood count and unaided peripheral blood smear observation cannot always provide a reliable differential diagnosis, so that biomedical assays and genetic tests are needed. These procedures are not error-free, require skilled personnel, and severely impact the financial resources of national health systems. Here we show a differential screening system for hereditary anemias that relies on holographic imaging and artificial intelligence. Label-free holographic imaging is aided by a hierarchical machine learning decider that works even in the presence of a very limited dataset but is enough accurate for discerning between different anemia classes with minimal morphological dissimilarities. It is worth to notice that only a few tens of cells from each patient are sufficient to obtain a correct diagnosis, with the advantage of significantly limiting the volume of blood drawn. This work paves the way to a wider use of home screening systems for point of care blood testing and telemedicine with lab-on-chip platforms.
Collapse
Affiliation(s)
- Pasquale Memmolo
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Genny Aprea
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy.
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Italy; CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Italy; CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Martina Mugnano
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Francesco Merola
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Italy; CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Pietro Ferraro
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| |
Collapse
|
8
|
Kaza N, Ojaghi A, Robles FE. Hemoglobin quantification in red blood cells via dry mass mapping based on UV absorption. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210112LR. [PMID: 34378368 PMCID: PMC8353376 DOI: 10.1117/1.jbo.26.8.086501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/16/2021] [Indexed: 05/31/2023]
Abstract
SIGNIFICANCE The morphological properties and hemoglobin (Hb) content of red blood cells (RBCs) are essential biomarkers to diagnose or monitor various types of hematological disorders. Label-free mass mapping approaches enable accurate Hb quantification from individual cells, serving as promising alternatives to conventional hematology analyzers. Deep ultraviolet (UV) microscopy is one such technique that allows high-resolution, molecular imaging, and absorption-based mass mapping. AIM To compare UV absorption-based mass mapping at four UV wavelengths and understand variations across wavelengths and any assumptions necessary for accurate Hb quantification. APPROACH Whole blood smears are imaged with a multispectral UV microscopy system, and the RBCs' dry masses are computed. This approach is compared to quantitative phase imaging-based mass mapping using data from an interferometric UV imaging system. RESULTS Consistent Hb mass and mean corpuscular Hb values are obtained at all wavelengths, with the precision of the single-cell mass measurements being nearly identical at 220, 260, and 280 nm but slightly lower at 300 nm. CONCLUSIONS A full hematological analysis (including white blood cell identification and characterization, and Hb quantification) may be achieved using a single UV illumination wavelength, thereby improving the speed and cost-effectiveness.
Collapse
Affiliation(s)
- Nischita Kaza
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| | - Ashkan Ojaghi
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Francisco E. Robles
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
9
|
Reichenwallner AK, Vurmaz E, Battis K, Handl L, Üstün H, Mach T, Hörnig G, Lipfert J, Richter L. Optical Investigation of Individual Red Blood Cells for Determining Cell Count and Cellular Hemoglobin Concentration in a Microfluidic Channel. MICROMACHINES 2021; 12:mi12040358. [PMID: 33810262 PMCID: PMC8066749 DOI: 10.3390/mi12040358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022]
Abstract
We demonstrate a blood analysis routine by observing red blood cells through light and digital holographic microscopy in a microfluidic channel. With this setup a determination of red blood cell (RBC) concentration, the mean corpuscular volume (MCV), and corpuscular hemoglobin concentration mean (CHCM) is feasible. Cell count variations in between measurements differed by 2.47% with a deviation of −0.26×106 μL to the reference value obtained from the Siemens ADVIA 2120i. Measured MCV values varied by 2.25% and CHCM values by 3.78% compared to the reference ADVIA measurement. Our results suggest that the combination of optical analysis with microfluidics handling provides a promising new approach to red blood cell counts.
Collapse
Affiliation(s)
- Ann-Kathrin Reichenwallner
- Technologies for Precision Medicine, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany; (A.-K.R.); (E.V.); (K.B.); (L.H.); (H.Ü.); (T.M.)
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany;
| | - Esma Vurmaz
- Technologies for Precision Medicine, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany; (A.-K.R.); (E.V.); (K.B.); (L.H.); (H.Ü.); (T.M.)
| | - Kristina Battis
- Technologies for Precision Medicine, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany; (A.-K.R.); (E.V.); (K.B.); (L.H.); (H.Ü.); (T.M.)
| | - Laura Handl
- Technologies for Precision Medicine, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany; (A.-K.R.); (E.V.); (K.B.); (L.H.); (H.Ü.); (T.M.)
| | - Helin Üstün
- Technologies for Precision Medicine, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany; (A.-K.R.); (E.V.); (K.B.); (L.H.); (H.Ü.); (T.M.)
| | - Tivadar Mach
- Technologies for Precision Medicine, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany; (A.-K.R.); (E.V.); (K.B.); (L.H.); (H.Ü.); (T.M.)
| | - Gabriele Hörnig
- Product Lifecycle Management, Siemens Healthcare GmbH, Röntgenstr. 19-21, 95478 Kemnath, Germany;
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany;
| | - Lukas Richter
- Technologies for Precision Medicine, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany; (A.-K.R.); (E.V.); (K.B.); (L.H.); (H.Ü.); (T.M.)
- Correspondence:
| |
Collapse
|
10
|
Paul R, Zhou Y, Nikfar M, Razizadeh M, Liu Y. Quantitative absorption imaging of red blood cells to determine physical and mechanical properties. RSC Adv 2020; 10:38923-38936. [PMID: 33240491 PMCID: PMC7685304 DOI: 10.1039/d0ra05421f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Red blood cells or erythrocytes, constituting 40 to 45 percent of the total volume of human blood are vesicles filled with hemoglobin with a fluid-like lipid bilayer membrane connected to a 2D spectrin network. The shape, volume, hemoglobin mass, and membrane stiffness of RBCs are important characteristics that influence their ability to circulate through the body and transport oxygen to tissues. In this study, we show that a simple two-LED set up in conjunction with standard microscope imaging can accurately determine the physical and mechanical properties of single RBCs. The Beer-Lambert law and undulatory motion dynamics of the membrane have been used to measure the total volume, hemoglobin mass, membrane tension coefficient, and bending modulus of RBCs. We also show that this method is sensitive enough to distinguish between the mechanical properties of RBCs during morphological changes from a typical discocyte to echinocytes and spherocytes. Measured values of the tension coefficient and bending modulus are 1.27 × 10-6 J m-2 and 7.09 × 10-2 J for discocytes, 4.80 × 10-6 J m-2 and 7.70 × 10-20 J for echinocytes, and 9.85 × 10-6 J m-2 and 9.69 × 10-20 J for spherocytes, respectively. This quantitative light absorption imaging reduces the complexity related to the quantitative imaging of the biophysical and mechanical properties of a single RBC that may lead to enhanced yet simplified point of care devices for analyzing blood cells.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh UniversityBethlehemPennsylvania 18015USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh UniversityBethlehemPennsylvania 18015USA
| | - Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh UniversityBethlehemPennsylvania 18015USA
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh UniversityBethlehemPennsylvania 18015USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh UniversityBethlehemPennsylvania 18015USA
- Department of Bioengineering, Lehigh UniversityBethlehemPennsylvania 18015USA
| |
Collapse
|
11
|
Ozaki Y, Yamada H, Kikuchi H, Hirotsu A, Murakami T, Matsumoto T, Kawabata T, Hiramatsu Y, Kamiya K, Yamauchi T, Goto K, Ueda Y, Okazaki S, Kitagawa M, Takeuchi H, Konno H. Label-free classification of cells based on supervised machine learning of subcellular structures. PLoS One 2019; 14:e0211347. [PMID: 30695059 PMCID: PMC6350988 DOI: 10.1371/journal.pone.0211347] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/12/2019] [Indexed: 01/26/2023] Open
Abstract
It is demonstrated that cells can be classified by pattern recognition of the subcellular structure of non-stained live cells, and the pattern recognition was performed by machine learning. Human white blood cells and five types of cancer cell lines were imaged by quantitative phase microscopy, which provides morphological information without staining quantitatively in terms of optical thickness of cells. Subcellular features were then extracted from the obtained images as training data sets for the machine learning. The built classifier successfully classified WBCs from cell lines (area under ROC curve = 0.996). This label-free, non-cytotoxic cell classification based on the subcellular structure of QPM images has the potential to serve as an automated diagnosis of single cells.
Collapse
Affiliation(s)
- Yusuke Ozaki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hidenao Yamada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Amane Hirotsu
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohiro Murakami
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohiro Matsumoto
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshiki Kawabata
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshihiro Hiramatsu
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kinji Kamiya
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toyohiko Yamauchi
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Kentaro Goto
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Yukio Ueda
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Shigetoshi Okazaki
- Department of Medical Spectroscopy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Konno
- Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
12
|
Funamizu H, Aizu Y. Three-dimensional quantitative phase imaging of blood coagulation structures by optical projection tomography in flow cytometry using digital holographic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-6. [PMID: 30302967 PMCID: PMC6975226 DOI: 10.1117/1.jbo.24.3.031012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 05/30/2023]
Abstract
Blood coagulation is an important role in the hemostasis process. In the observation using microscopies, an aggregation structure of red blood cells indicates the degree of blood coagulation. Recently, it has been proposed that digital holographic microscopy (DHM) is a powerful tool for biomedical cell imaging on the basis of quantitative phase information. DHM has the advantage in that the real-time and three-dimensional (3-D) quantitative phase imaging can be realized in the wide field of view, which means that the 3-D morphological parameters of biological cells without a staining process are obtained in real time. We report the complete 3-D quantitative phase imaging of blood coagulation structures by optical projection tomography in a flow cytometry using DHM.
Collapse
Affiliation(s)
- Hideki Funamizu
- Division of Production Systems Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Yoshihisa Aizu
- Division of Production Systems Engineering, Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
13
|
Hu C, Zhu S, Gao L, Popescu G. Endoscopic diffraction phase microscopy. OPTICS LETTERS 2018; 43:3373-3376. [PMID: 30004509 DOI: 10.1364/ol.43.003373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 05/23/2023]
Abstract
In this Letter, we present, to our knowledge, the first endoscopic diffraction phase microscopy (eDPM) system. This instrument consists of a gradient-index-lens-based endoscope probe followed by a DPM module, which enables single-shot phase imaging at a single-cell-level resolution. Using the phase information provided by eDPM, we show that the geometric aberrations associated with the endoscope can be reduced by digitally applying a spectral phase filter to the raw data. The filter function is a linear combination of polynomials with weighting optimized to improve resolution. We validate the principle of the proposed method using reflective semiconductor samples and blood cells. This research extends the current scope of quantitative phase imaging applications, and proves its potential for future in vivo studies.
Collapse
|
14
|
Patel N, Trivedi V, Mahajan S, Chhaniwal V, Fournier C, Lee S, Javidi B, Anand A. Wavefront division digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2779-2784. [PMID: 30258690 PMCID: PMC6154202 DOI: 10.1364/boe.9.002779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 05/29/2023]
Abstract
Digital holographic microscopy is the state of the art quantitative phase imaging of micro-objects including living cells. It is an ideal tool to image and quantify cell thickness profiles with nanometer thickness resolution. Digital holographic techniques usually are implemented using a two-beam setup that may be bulky and may not be field portable. Self-referencing techniques provide compact geometry but suffer from a reduction of the field of view. Here, we discuss the development of a wavefront division digital holographic microscope providing the full field of view with a compact system. The proposed approach uses a wavefront division module consisting of two lenses. The developed microscope is tested experimentally by measuring the physical and mechanical properties of red blood cells.
Collapse
Affiliation(s)
- Nimit Patel
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| | - Vismay Trivedi
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| | - Swapnil Mahajan
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| | - Vani Chhaniwal
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| | - Corinne Fournier
- Laboratoire Hubert Curien, UMR 5516, CNRS, Université Jean Monnet, 18 rue du Professeur Benoît Lauras, F-42000 Saint-Etienne, France
| | - Seonoh Lee
- HICS Company Inc., 6F, 39, Banpo-daero 14-gil, Seocho-gu, Seoul 06652, South Korea
| | - Bahram Javidi
- Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, CT 06269-4157, USA
| | - Arun Anand
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| |
Collapse
|
15
|
Merola F, Memmolo P, Miccio L, Mugnano M, Ferraro P. Phase contrast tomography at lab on chip scale by digital holography. Methods 2018; 136:108-115. [DOI: 10.1016/j.ymeth.2018.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
|
16
|
Huang J, Guo P, Moses MA. A Time-lapse, Label-free, Quantitative Phase Imaging Study of Dormant and Active Human Cancer Cells. J Vis Exp 2018. [PMID: 29553530 DOI: 10.3791/57035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The acquisition of the angiogenic phenotype is an essential component of the escape from tumor dormancy. Although several classic in vitro assays (e.g., proliferation, migration, and others) and in vivo models have been developed to investigate and characterize angiogenic and non-angiogenic cell phenotypes, these methods are time and labor intensive, and often require expensive reagents and instruments, as well as significant expertise. In a recent study, we used a novel quantitative phase imaging (QPI) technique to conduct time-lapse and labeling-free characterizations of angiogenic and non-angiogenic human osteosarcoma KHOS cells. A panel of cellular parameters, including cell morphology, proliferation, and motility, were quantitatively measured and analyzed using QPI. This novel and quantitative approach provides the opportunity to continuously and non-invasively study relevant cellular processes, behaviors, and characteristics of cancer cells and other cell types in a simple and integrated manner. This report describes our experimental protocol, including cell preparation, QPI acquisition, and data analysis.
Collapse
Affiliation(s)
- Jing Huang
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital
| | - Peng Guo
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital;
| |
Collapse
|
17
|
Vora P, Trivedi V, Mahajan S, Patel N, Joglekar M, Chhaniwal V, Moradi AR, Javidi B, Anand A. Wide field of view common-path lateral-shearing digital holographic interference microscope. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-11. [PMID: 29235271 DOI: 10.1117/1.jbo.22.12.126001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/16/2017] [Indexed: 05/12/2023]
Abstract
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.
Collapse
Affiliation(s)
- Priyanka Vora
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
- Uka Tarsadia University, Department of Physics, Bardoli, Gujarat, India
| | - Vismay Trivedi
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Swapnil Mahajan
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Nimit Patel
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Mugdha Joglekar
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Vani Chhaniwal
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Ali-Reza Moradi
- Institute for Research in Fundamental Sciences, School of Nano Science, Tehran, Iran
- Institute for Advanced Studies in Basic Sciences, Optics Research Center, Zanjan, Iran
| | - Bahram Javidi
- University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut, United States
| | - Arun Anand
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| |
Collapse
|
18
|
Gilev K, Yastrebova E, Strokotov D, Yurkin M, Karmadonova N, Chernyshev A, Lomivorotov V, Maltsev V. Advanced consumable-free morphological analysis of intact red blood cells by a compact scanning flow cytometer. Cytometry A 2017; 91:867-873. [DOI: 10.1002/cyto.a.23141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 01/14/2023]
Affiliation(s)
- K.V. Gilev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3; Novosibirsk 630090 Russia
- Novosibirsk State University, Pirogova 2; Novosibirsk 630090 Russia
| | - E.S. Yastrebova
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3; Novosibirsk 630090 Russia
- Novosibirsk State University, Pirogova 2; Novosibirsk 630090 Russia
| | - D.I. Strokotov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3; Novosibirsk 630090 Russia
- Novosibirsk State Medical University, Krasny Prospect 52; Novosibirsk 630091 Russia
| | - M.A. Yurkin
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3; Novosibirsk 630090 Russia
- Novosibirsk State University, Pirogova 2; Novosibirsk 630090 Russia
| | - N.A. Karmadonova
- Siberian Biomedical Research Center, Rechkunovskaya 15; Novosibirsk 630055 Russia
| | - A.V. Chernyshev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3; Novosibirsk 630090 Russia
- Novosibirsk State University, Pirogova 2; Novosibirsk 630090 Russia
| | - V.V. Lomivorotov
- Siberian Biomedical Research Center, Rechkunovskaya 15; Novosibirsk 630055 Russia
| | - V.P. Maltsev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3; Novosibirsk 630090 Russia
- Novosibirsk State University, Pirogova 2; Novosibirsk 630090 Russia
- Novosibirsk State Medical University, Krasny Prospect 52; Novosibirsk 630091 Russia
| |
Collapse
|
19
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017. [PMID: 28426150 DOI: 10.1101/080937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. However, therapeutic methods of PD are still limited due to complex pathophysiology in PD. Here, optical measurements of individual neurons from in vitro PD model using optical diffraction tomography (ODT) are presented. By measuring 3D refractive index distribution of neurons, morphological and biophysical alterations in in-vitro PD model are quantitatively investigated. It was found that neurons show apoptotic features in early PD progression. The present approach will open up new opportunities for quantitative investigation of the pathophysiology of various neurodegenerative diseases. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
- Tomocube, Inc, Daejeon, 34051, South Korea
| |
Collapse
|
20
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017; 91:510-518. [DOI: 10.1002/cyto.a.23110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 South Korea
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
- Tomocube, Inc; Daejeon 34051 South Korea
| |
Collapse
|
21
|
Merola F, Memmolo P, Miccio L, Savoia R, Mugnano M, Fontana A, D'Ippolito G, Sardo A, Iolascon A, Gambale A, Ferraro P. Tomographic flow cytometry by digital holography. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16241. [PMID: 30167240 PMCID: PMC6062169 DOI: 10.1038/lsa.2016.241] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 05/11/2023]
Abstract
High-throughput single-cell analysis is a challenging task. Label-free tomographic phase microscopy is an excellent candidate to perform this task. However, in-line tomography is very difficult to implement in practice because it requires a complex set-up for rotating the sample and examining the cell along several directions. We demonstrate that by exploiting the random rolling of cells while they are flowing along a microfluidic channel, it is possible to obtain in-line phase-contrast tomography, if smart strategies for wavefront analysis are adopted. In fact, surprisingly, a priori knowledge of the three-dimensional position and orientation of rotating cells is no longer needed because this information can be completely retrieved through digital holography wavefront numerical analysis. This approach makes continuous-flow cytotomography suitable for practical operation in real-world, single-cell analysis and with a substantial simplification of the optical system; that is, no mechanical scanning or multi-direction probing is required. A demonstration is given for two completely different classes of biosamples: red blood cells and diatom algae. An accurate characterization of both types of cells is reported, despite their very different nature and material content, thus showing that the proposed method can be extended by adopting two alternate strategies of wavefront analysis to many classes of cells.
Collapse
Affiliation(s)
- Francesco Merola
- CNR-ISASI, Istituto di Scienze Applicate e Sistemi Intelligenti ‘E. Caianiello’, CNR—Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Istituto di Scienze Applicate e Sistemi Intelligenti ‘E. Caianiello’, CNR—Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Lisa Miccio
- CNR-ISASI, Istituto di Scienze Applicate e Sistemi Intelligenti ‘E. Caianiello’, CNR—Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Roberto Savoia
- CNR-ISASI, Istituto di Scienze Applicate e Sistemi Intelligenti ‘E. Caianiello’, CNR—Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Martina Mugnano
- CNR-ISASI, Istituto di Scienze Applicate e Sistemi Intelligenti ‘E. Caianiello’, CNR—Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Angelo Fontana
- CNR-ICB, Istituto di Chimica Biomolecolare, Pozzuoli 80078, Italy
| | | | - Angela Sardo
- CNR-ICB, Istituto di Chimica Biomolecolare, Pozzuoli 80078, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II & CEINGE—Advanced Biotechnologies, Napoli 80145, Italy
| | - Antonella Gambale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II & CEINGE—Advanced Biotechnologies, Napoli 80145, Italy
| | - Pietro Ferraro
- CNR-ISASI, Istituto di Scienze Applicate e Sistemi Intelligenti ‘E. Caianiello’, CNR—Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| |
Collapse
|
22
|
Majeed H, Okoro C, Kajdacsy-Balla A, Toussaint KC, Popescu G. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:46004. [PMID: 28388706 DOI: 10.1117/1.jbo.22.4.046004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 05/20/2023]
Abstract
Tumor progression in breast cancer is significantly influenced by its interaction with the surrounding stromal tissue. Specifically, the composition, orientation, and alignment of collagen fibers in tumor-adjacent stroma affect tumor growth and metastasis. Most of the work done on measuring this prognostic marker has involved imaging of collagen fibers using second-harmonic generation microscopy (SHGM), which provides label-free specificity. Here, we show that spatial light interference microscopy (SLIM), a label-free quantitative phase imaging technique, is able to provide information on collagen-fiber orientation that is comparable to that provided by SHGM. Due to its wide-field geometry, the throughput of the SLIM system is much higher than that of SHGM and, because of the linear imaging, the equipment is simpler and significantly less expensive. Our results indicate that SLIM images can be used to extract important prognostic information from collagen fibers in breast tissue, potentially providing a convenient high throughput clinical tool for assessing patient prognosis.
Collapse
Affiliation(s)
- Hassaan Majeed
- University of Illinois at Urbana Champaign, Quantitative Light Imaging (QLI) Lab, Department of Bioengineering, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
| | - Chukwuemeka Okoro
- University of Illinois at Urbana Champaign, Photonics Research of Bio/Nano Environments (PROBE) Lab, Department of Electrical and Computer Engineering, Mechanical Engineering Lab, Urbana, Illinois, United States
| | - André Kajdacsy-Balla
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Kimani C Toussaint
- University of Illinois at Urbana Champaign, Photonics Research of Bio/Nano Environments (PROBE) Lab, Department of Mechanical Science and Engineering, Mechanical Engineering Lab, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois at Urbana Champaign, Quantitative Light Imaging (QLI) Lab, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
| |
Collapse
|
23
|
Guo P, Huang J, Moses MA. Characterization of dormant and active human cancer cells by quantitative phase imaging. Cytometry A 2017; 91:424-432. [PMID: 28314083 DOI: 10.1002/cyto.a.23083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023]
Abstract
The switch of tumor cells from a dormant, non-angiogenic phenotype to an active, angiogenic phenotype is a critical step in early cancer progression. To date, relatively little is known about the cellular behaviors of angiogenic and non-angiogenic tumor cell phenotypes. In this study, holographic imaging cytometry, a quantitative phase imaging (QPI) technique was used to continuously and non-invasively analyze, quantify, and compare a panel of fundamental cellular behaviors of angiogenic and non-angiogenic human osteosarcoma cells (KHOS) in a simple and economical way. Results revealed that angiogenic KHOS cells (KHOS-A) have significantly higher cell motility speeds than their non-angiogenic counterpart (KHOS-N) while no difference in their cell proliferation rates and cell cycle lengths were observed. KHOS-A cells were also found to have significantly smaller cell areas and greater cell optical thicknesses when compared with the non-angiogenic KHOS-N cells. No difference in average cell volumes was observed. These studies demonstrate that the morphology and behavior of angiogenic and non-angiogenic cells can be continuously, efficiently, and non-invasively monitored using a simple, quantitative, and economical system that does not require tedious and time-consuming assays to provide useful information about tumor dormancy. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| |
Collapse
|
24
|
McReynolds N, Cooke FGM, Chen M, Powis SJ, Dholakia K. Multimodal discrimination of immune cells using a combination of Raman spectroscopy and digital holographic microscopy. Sci Rep 2017; 7:43631. [PMID: 28256551 PMCID: PMC5335250 DOI: 10.1038/srep43631] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
The ability to identify and characterise individual cells of the immune system under label-free conditions would be a significant advantage in biomedical and clinical studies where untouched and unmodified cells are required. We present a multi-modal system capable of simultaneously acquiring both single point Raman spectra and digital holographic images of single cells. We use this combined approach to identify and discriminate between immune cell populations CD4+ T cells, B cells and monocytes. We investigate several approaches to interpret the phase images including signal intensity histograms and texture analysis. Both modalities are independently able to discriminate between cell subsets and dual-modality may therefore be used a means for validation. We demonstrate here sensitivities achieved in the range of 86.8% to 100%, and specificities in the range of 85.4% to 100%. Additionally each modality provides information not available from the other providing both a molecular and a morphological signature of each cell.
Collapse
Affiliation(s)
- Naomi McReynolds
- SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, United Kingdom
| | - Fiona G M Cooke
- School of Medicine, University of St Andrews, Fife, KY16 9TF, United Kingdom
| | - Mingzhou Chen
- SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, United Kingdom
| | - Simon J Powis
- School of Medicine, University of St Andrews, Fife, KY16 9TF, United Kingdom
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, United Kingdom
| |
Collapse
|
25
|
Majeed H, Sridharan S, Mir M, Ma L, Min E, Jung W, Popescu G. Quantitative phase imaging for medical diagnosis. JOURNAL OF BIOPHOTONICS 2017; 10:177-205. [PMID: 27539534 DOI: 10.1002/jbio.201600113] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 05/19/2023]
Abstract
Optical microscopy is an indispensable diagnostic tool in modern healthcare. As a prime example, pathologists rely exclusively on light microscopy to investigate tissue morphology in order to make a diagnosis. While advances in light microscopy and contrast markers allow pathologists to visualize cells and tissues in unprecedented detail, the interpretation of these images remains largely subjective, leading to inter- and intra-observer discrepancy. Furthermore, conventional microscopy images capture qualitative information which makes it difficult to automate the process, reducing the throughput achievable in the diagnostic workflow. Quantitative Phase Imaging (QPI) techniques have been advanced in recent years to address these two challenges. By quantifying physical parameters of cells and tissues, these systems remove subjectivity from the disease diagnosis process and allow for easier automation to increase throughput. In addition to providing quantitative information, QPI systems are also label-free and can be easily assimilated into the current diagnostic workflow in the clinic. In this paper we review the advances made in disease diagnosis by QPI techniques. We focus on the areas of hematological diagnosis and cancer pathology, which are the areas where most significant advances have been made to date. [Image adapted from Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, Proc. Natl. Acad. Sci. 105, 13730-13735 (2008).].
Collapse
Affiliation(s)
- Hassaan Majeed
- Quantitative Light Imaging Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Shamira Sridharan
- Biomedical Engineering Department, University of California Davis, Genome and Biomedical Sciences Facility #2603B, 451 Health Science Dr., Davis, CA, 95616, USA
| | - Mustafa Mir
- Molecular and Cell Biology, University of California, Berkeley, 485 Li Ka Shing Center, 94720, Berkeley, CA, USA
| | - Lihong Ma
- Institute of Information Optics, Zhejiang Normal University, Jinhua, 321004, China
| | - Eunjung Min
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Gabriel Popescu
- Quantitative Light Imaging Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Yang Z, Zhan Q. Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating. PLoS One 2016; 11:e0159596. [PMID: 27441837 PMCID: PMC4956142 DOI: 10.1371/journal.pone.0159596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/06/2016] [Indexed: 12/04/2022] Open
Abstract
Blood testing has been used as an essential tool to diagnose diseases for decades. Recently, there has been a rapid developing trend in using Quantitative Phase Imaging (QPI) methods for blood cell screening. Compared to traditional blood testing techniques, QPI has the advantage of avoiding dyeing or staining the specimen, which may cause damage to the cells. However, most existing systems are bulky and costly, requiring experienced personnel to operate. This work demonstrates the integration of one QPI method onto a smartphone platform and the application of imaging red blood cells. The adopted QPI method is based on solving the Intensity Transport Equation (ITE) from two de-focused pupil images taken in one shot by the smartphone camera. The device demonstrates a system resolution of about 1 μm, and is ready to be used for 3D morphological study of red blood cells.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of Electrical & Computer Engineering and Electro-Optics Program, University of Dayton, Dayton, Ohio, United States of America
- * E-mail:
| | - Qiwen Zhan
- Department of Electrical & Computer Engineering and Electro-Optics Program, University of Dayton, Dayton, Ohio, United States of America
| |
Collapse
|
27
|
|
28
|
Backoach O, Kariv S, Girshovitz P, Shaked NT. Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping. OPTICS EXPRESS 2016; 24:3177-3188. [PMID: 26906982 DOI: 10.1364/oe.24.003177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present parallel processing implementation for rapid extraction of the quantitative phase maps from off-axis holograms on the Graphics Processing Unit (GPU) of the computer using computer unified device architecture (CUDA) programming. To obtain efficient implementation, we parallelized both the wrapped phase map extraction algorithm and the two-dimensional phase unwrapping algorithm. In contrast to previous implementations, we utilized unweighted least squares phase unwrapping algorithm that better suits parallelism. We compared the proposed algorithm run times on the CPU and the GPU of the computer for various sizes of off-axis holograms. Using the GPU implementation, we extracted the unwrapped phase maps from the recorded off-axis holograms at 35 frames per second (fps) for 4 mega pixel holograms, and at 129 fps for 1 mega pixel holograms, which presents the fastest processing framerates obtained so far, to the best of our knowledge. We then used common-path off-axis interferometric imaging to quantitatively capture the phase maps of a micro-organism with rapid flagellum movements.
Collapse
|
29
|
Mahajan S, Trivedi V, Vora P, Chhaniwal V, Javidi B, Anand A. Highly stable digital holographic microscope using Sagnac interferometer. OPTICS LETTERS 2015; 40:3743-3746. [PMID: 26274649 DOI: 10.1364/ol.40.003743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Interferometric microscopy has grown into a very potent tool for quantitative phase imaging of biological samples. Among the interfermetric methods, microscopy by digital holography is one of the most effective techniques, especially for studying dynamics of cells. Imaging of cell fluctuations requires digital holographic setups with high temporal stability. Common path setups in which the object and the reference beams encounter the same set of optical elements provide better temporal stability compared to two-beam setups. Here, we present a compact, easy-to-implement, common path digital holographic microscope based on Sagnac interferometer geometry. The microscope is implemented using a diode laser module employing a CCD array or a webcam sensor to record holograms. The system was tested for three-dimensional imaging capability, numerical focusing ability, and temporal stability. Sub-nanometer temporal stability without external vibration isolation components was obtained in both cases. The higher temporal stability makes the microscope compatible to image cell fluctuations, which is demonstrated by imaging the oscillation of the cell membrane of human red blood cells.
Collapse
|
30
|
Abstract
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Collapse
|
31
|
Kandel ME, Luo Z, Han K, Popescu G. C++ software integration for a high-throughput phase imaging platform. ACTA ACUST UNITED AC 2015. [DOI: 10.1117/12.2080212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
32
|
Sridharan S, Katz A, Soto-Adames F, Popescu G. Quantitative phase imaging of arthropods. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:111212. [PMID: 26334858 PMCID: PMC4689101 DOI: 10.1117/1.jbo.20.11.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023]
Abstract
Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.
Collapse
Affiliation(s)
- Shamira Sridharan
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Department of Bioengineering, 405 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Aron Katz
- University of Illinois at Urbana-Champaign, Department of Entomology, 606 East Healey Street, Champaign, Illinois 61820, United States
| | - Felipe Soto-Adames
- University of Illinois at Urbana-Champaign, Department of Entomology, 606 East Healey Street, Champaign, Illinois 61820, United States
| | - Gabriel Popescu
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Department of Bioengineering, 405 North Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Gannavarpu R, Bhaduri B, Tangella K, Popescu G. Spatiotemporal characterization of a fibrin clot using quantitative phase imaging. PLoS One 2014; 9:e111381. [PMID: 25386701 PMCID: PMC4227684 DOI: 10.1371/journal.pone.0111381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022] Open
Abstract
Studying the dynamics of fibrin clot formation and its morphology is an important problem in biology and has significant impact for several scientific and clinical applications. We present a label-free technique based on quantitative phase imaging to address this problem. Using quantitative phase information, we characterized fibrin polymerization in real-time and present a mathematical model describing the transition from liquid to gel state. By exploiting the inherent optical sectioning capability of our instrument, we measured the three-dimensional structure of the fibrin clot. From this data, we evaluated the fractal nature of the fibrin network and extracted the fractal dimension. Our non-invasive and speckle-free approach analyzes the clotting process without the need for external contrast agents.
Collapse
Affiliation(s)
- Rajshekhar Gannavarpu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Basanta Bhaduri
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Krishnarao Tangella
- Department of Pathology, Christie Clinic, and University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
34
|
Marquet P, Depeursinge C, Magistretti PJ. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. NEUROPHOTONICS 2014; 1:020901. [PMID: 26157976 PMCID: PMC4478935 DOI: 10.1117/1.nph.1.2.020901] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 05/20/2023]
Abstract
Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.
Collapse
Affiliation(s)
- Pierre Marquet
- Centre Hospitalier Universitaire Vaudois (CHUV), Centre de Neurosciences Psychiatriques, Département de Psychiatrie, Site de Cery, Prilly/Lausanne CH-1008, Switzerland
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Christian Depeursinge
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pierre J. Magistretti
- Centre Hospitalier Universitaire Vaudois (CHUV), Centre de Neurosciences Psychiatriques, Département de Psychiatrie, Site de Cery, Prilly/Lausanne CH-1008, Switzerland
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Jung J, Kim K, Yu H, Lee K, Lee S, Nahm S, Park H, Park Y. Biomedical applications of holographic microspectroscopy [invited]. APPLIED OPTICS 2014; 53:G111-22. [PMID: 25322118 DOI: 10.1364/ao.53.00g111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The identification and quantification of specific molecules are crucial for studying the pathophysiology of cells, tissues, and organs as well as diagnosis and treatment of diseases. Recent advances in holographic microspectroscopy, based on quantitative phase imaging or optical coherence tomography techniques, show promise for label-free noninvasive optical detection and quantification of specific molecules in living cells and tissues (e.g., hemoglobin protein). To provide important insight into the potential employment of holographic spectroscopy techniques in biological research and for related practical applications, we review the principles of holographic microspectroscopy techniques and highlight recent studies.
Collapse
|
36
|
Edwards C, Bhaduri B, Nguyen T, Griffin BG, Pham H, Kim T, Popescu G, Goddard LL. Effects of spatial coherence in diffraction phase microscopy. OPTICS EXPRESS 2014; 22:5133-5146. [PMID: 24663853 DOI: 10.1364/oe.22.005133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quantitative phase imaging systems using white light illumination can exhibit lower noise figures than laser-based systems. However, they can also suffer from object-dependent artifacts, such as halos, which prevent accurate reconstruction of the surface topography. In this work, we show that white light diffraction phase microscopy using a standard halogen lamp can produce accurate height maps of even the most challenging structures provided that there is proper spatial filtering at: 1) the condenser to ensure adequate spatial coherence and 2) the output Fourier plane to produce a uniform reference beam. We explain that these object-dependent artifacts are a high-pass filtering phenomenon, establish design guidelines to reduce the artifacts, and then apply these guidelines to eliminate the halo effect. Since a spatially incoherent source requires significant spatial filtering, the irradiance is lower and proportionally longer exposure times are needed. To circumvent this tradeoff, we demonstrate that a supercontinuum laser, due to its high radiance, can provide accurate measurements with reduced exposure times, allowing for fast dynamic measurements.
Collapse
|
37
|
Schonbrun E, Malka R, Di Caprio G, Schaak D, Higgins JM. Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume. Cytometry A 2014; 85:332-8. [PMID: 24677669 DOI: 10.1002/cyto.a.22450] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
Abstract
We present an optical system, called the quantitative absorption cytometer (QAC), to measure the volume and hemoglobin mass of red blood cells flowing through a microfluidic channel. In contrast to clinical hematology analyzers, where cells are sphered in order for both volume and hemoglobin to be measured accurately, the QAC measures cells in their normal physiological shape. Human red blood cells are suspended in a refractive index-matching absorbing buffer, driven through a microfluidic channel, and imaged using a transmission light microscope onto a color camera. A red and a blue LED illuminate cells and images at each color are used to independently retrieve cell volume and hemoglobin mass. This system shows good agreement with red blood cell indices retrieved by a clinical hematology analyzer and in fact measures a smaller coefficient of variation of hemoglobin concentration. In addition to cell indices, the QAC returns height and mass maps of each measured cell. These quantitative images are valuable for analyzing the detailed morphology of individual cells as well as statistical outliers found in the data. We also measured red blood cells in hypertonic and hypotonic buffers to quantify the correlation between volume and hemoglobin mass under osmotic stress. Because this method is invariant to cell shape, even extremely nonspherical cells in hypertonic buffers can be measured accurately.
Collapse
Affiliation(s)
- Ethan Schonbrun
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts
| | | | | | | | | |
Collapse
|
38
|
Ou X, Horstmeyer R, Yang C, Zheng G. Quantitative phase imaging via Fourier ptychographic microscopy. OPTICS LETTERS 2013; 38:4845-8. [PMID: 24322147 PMCID: PMC4277232 DOI: 10.1364/ol.38.004845] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fourier ptychographic microscopy (FPM) is a recently developed imaging modality that uses angularly varying illumination to extend a system's performance beyond the limit defined by its optical components. The FPM technique applies a novel phase-retrieval procedure to achieve resolution enhancement and complex image recovery. In this Letter, we compare FPM data to theoretical prediction and phase-shifting digital holography measurement to show that its acquired phase maps are quantitative and artifact-free. We additionally explore the relationship between the achievable spatial and optical thickness resolution offered by a reconstructed FPM phase image. We conclude by demonstrating enhanced visualization and the collection of otherwise unobservable sample information using FPM's quantitative phase.
Collapse
Affiliation(s)
- Xiaoze Ou
- Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Roarke Horstmeyer
- Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhuei Yang
- Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Guoan Zheng
- Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Biomedical Engineering & Electrical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
39
|
Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. SENSORS 2013; 13:4170-91. [PMID: 23539026 PMCID: PMC3673078 DOI: 10.3390/s130404170] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 11/17/2022]
Abstract
A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI) techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell pathophysiology, here we present the principles of QPI and highlight some of the recent applications of QPI ranging from cell homeostasis to infectious diseases and cancer.
Collapse
|
40
|
Bhaduri B, Wickland D, Wang R, Chan V, Bashir R, Popescu G. Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM). PLoS One 2013; 8:e56930. [PMID: 23457641 PMCID: PMC3574023 DOI: 10.1371/journal.pone.0056930] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/16/2013] [Indexed: 02/02/2023] Open
Abstract
Spatial light interference microscopy (SLIM) is a highly sensitive quantitative phase imaging method, which is capable of unprecedented structure studies in biology and beyond. In addition to the π/2 shift introduced in phase contrast between the scattered and unscattered light from the sample, 4 phase shifts are generated in SLIM, by increments of π/2 using a reflective liquid crystal phase modulator (LCPM). As 4 phase shifted images are required to produce a quantitative phase image, the switching speed of the LCPM and the acquisition rate of the camera limit the acquisition rate and, thus, SLIM's applicability to highly dynamic samples. In this paper we present a fast SLIM setup which can image at a maximum rate of 50 frames per second and provide in real-time quantitative phase images at 50/4 = 12.5 frames per second. We use a fast LCPM for phase shifting and a fast scientific-grade complementary metal oxide semiconductor (sCMOS) camera (Andor) for imaging. We present the dispersion relation, i.e. decay rate vs. spatial mode, associated with dynamic beating cardiomyocyte cells from the quantitative phase images obtained with the real-time SLIM system.
Collapse
Affiliation(s)
- Basanta Bhaduri
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - David Wickland
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ru Wang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Vincent Chan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rashid Bashir
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
We demonstrate a real-time blood testing system that can provide remote diagnosis with minimal human intervention in economically challenged areas. Our instrument combines novel advances in label-free optical imaging with parallel computing. Specifically, we use quantitative phase imaging for extracting red blood cell morphology with nanoscale sensitivity and NVIDIA's CUDA programming language to perform real time cellular-level analysis. While the blood smear is translated through focus, our system is able to segment and analyze all the cells in the one megapixel field of view, at a rate of 40 frames/s. The variety of diagnostic parameters measured from each cell (e.g., surface area, sphericity, and minimum cylindrical diameter) are currently not available with current state of the art clinical instruments. In addition, we show that our instrument correctly recovers the red blood cell volume distribution, as evidenced by the excellent agreement with the cell counter results obtained on normal patients and those with microcytic and macrocytic anemia. The final data outputted by our instrument represent arrays of numbers associated with these morphological parameters and not images. Thus, the memory necessary to store these data is of the order of kilobytes, which allows for their remote transmission via, for example, the cellular network. We envision that such a system will dramatically increase access for blood testing and furthermore, may pave the way to digital hematology.
Collapse
|
42
|
Chhaniwal V, Singh ASG, Leitgeb RA, Javidi B, Anand A. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd's mirror. OPTICS LETTERS 2012; 37:5127-5129. [PMID: 23258027 DOI: 10.1364/ol.37.005127] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Digital holographic microscopy (DHM) is one of the most effective techniques used for quantitative phase imaging of cells. Here we present a compact, easy to implement, portable, and very stable DHM setup employing a self-referencing Lloyd's mirror configuration. The microscope is constructed using a diode laser source and a CMOS sensor, making it cost effective. The reconstruction of recorded holograms yields the amplitude and phase information of the object. The temporal stability of the presented technique was found to be around 0.9 nm without any vibration compensation, which makes it ideal for studying cell profile changes. This aspect of the technique is demonstrated by studying membrane fluctuations of red blood cells.
Collapse
Affiliation(s)
- Vani Chhaniwal
- Applied Physics Department, Faculty of Technology & Engineering, MS University of Baroda, Vadodara 390001, India
| | | | | | | | | |
Collapse
|
43
|
Pham H, Bhaduri B, Ding H, Popescu G. Spectroscopic diffraction phase microscopy. OPTICS LETTERS 2012; 37:3438-40. [PMID: 23381283 DOI: 10.1364/ol.37.003438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present spectroscopic diffraction phase microscopy (sDPM) as a method capable of measuring quantitative phase images at multiple wavelengths. sDPM uses a spatial light modulator at the Fourier plane of a lens to select desired wavelengths from the white light illumination of a grating. The quantitative phase information at different wavelengths allows us to decouple the refractive index and the thickness from the phase shift induced by biological cells. We demonstrate the capability of the setup by dispersion measurements of microsphere beads and RBCs.
Collapse
Affiliation(s)
- Hoa Pham
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
44
|
Tychinsky VP, Kretushev AV, Vyshenskaya TV, Shtil AA. Dissecting eukaryotic cells by coherent phase microscopy: quantitative analysis of quiescent and activated T lymphocytes. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:076020. [PMID: 22894503 PMCID: PMC3400610 DOI: 10.1117/1.jbo.17.7.076020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/23/2012] [Accepted: 06/18/2012] [Indexed: 06/01/2023]
Abstract
We present a concept for quantitative characterization of a functional state of an individual eukaryotic cell based on interference imaging. The informative parameters of the phase images of quiescent and mitogen-activated T lymphocytes included the phase thickness, phase volume, the area, and the size of organelles. These parameters were obtained without a special hypothesis about cell structure. Combinations of these parameters generated a "phase portrait" of the cell. A simplified spherical multilayer optic model of a T lymphocyte was used to calculate the refractivity profile, to identify structural elements of the image with the organelles, and to interpret the parameters of the phase portrait. The values of phase image parameters underwent characteristic changes in the course of mitogenic stimulation of T cells; thereby, the functional state of individual cells can be described using these parameters. Because the values of the components of the phase portrait are measured in absolute units, it is possible to compare the parameters of images obtained with different interference microscopes. Thus, the analysis of phase portraits provides a new and perspective approach for quantitative, real-time analysis of subcellular structure and physiologic state of an individual cell.
Collapse
Affiliation(s)
- Vladimir P Tychinsky
- Moscow Institute of Radioengineering, Electronics and Automation, Laboratory of Coherent Phase Microscopy, 78 Vernadsky Avenue, Moscow 119454, Russia.
| | | | | | | |
Collapse
|
45
|
Mir M, Babacan SD, Bednarz M, Do MN, Golding I, Popescu G. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution Spatial Light Interference Tomography. PLoS One 2012; 7:e39816. [PMID: 22761910 PMCID: PMC3386179 DOI: 10.1371/journal.pone.0039816] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/27/2012] [Indexed: 01/27/2023] Open
Abstract
Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM). In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT), to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner.
Collapse
Affiliation(s)
- Mustafa Mir
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
| | | | | | | | | | | |
Collapse
|
46
|
Jang Y, Jang J, Park Y. Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. OPTICS EXPRESS 2012; 20:9673-81. [PMID: 22535058 DOI: 10.1364/oe.20.009673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report a technique for simultaneous label-free quantification of cytoplasmic hemoglobin Hb concentration and dynamic membrane fluctuation in individual red blood cells (RBCs). Spectroscopic phase microscopy equipped with three different coherent laser sources and a color detector records three wavelength-dependent quantitative phase images in a single shot of a color-coded hologram. Using molecular specific dispersion, we demonstrate the extraction of Hb concentration and the dynamic membrane fluctuation from individual RBCs.
Collapse
Affiliation(s)
- Yunhun Jang
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 South Korea
| | | | | |
Collapse
|