1
|
Jin X, Wang H, Zhao X, Liu C. Terahertz wave induces the structural and functional changes in voltage-gated calcium channel Cav1.1: A molecular dynamics study. J Chem Phys 2025; 162:165105. [PMID: 40277085 DOI: 10.1063/5.0245391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Terahertz waves, owing to the special feature of inducing resonance with numerous biomolecules, thus affecting biological activities, have become a novel and promising biological technology. Recently, the effect of terahertz waves on neuroscience via ion channel proteins on the cell membrane has received more attention. A cell membrane model with the voltage-gated calcium channel Cav1.1 embedded was constructed. The vibrational spectra of TIP3P molecules and carboxyl and carbonyl groups in the selectivity filter region (13.4, 48.7, and 53.2 THz) were calculated. The change in ion channel pore radius distribution and secondary structures of Cav1.1 triggered by external terahertz electromagnetic fields are measured. The umbrella sampling method is carried out to assess the functional changes of Cav1.1 via potential of mean force profiles of Ca2+ permeation. The results showed that Cav1.1 has highly frequency specificity, emphasizing the importance of terahertz resonance with biomolecules in terahertz-related neuroscience research.
Collapse
Affiliation(s)
- Xinrui Jin
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongguang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaofei Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunliang Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
2
|
Pu Z, Wu Y, Zhu Z, Zhao H, Cui D. A new horizon for neuroscience: terahertz biotechnology in brain research. Neural Regen Res 2025; 20:309-325. [PMID: 38819036 PMCID: PMC11317941 DOI: 10.4103/nrr.nrr-d-23-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 06/01/2024] Open
Abstract
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences. In this article, we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry. Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease, cerebrovascular disease, glioma, psychiatric disease, traumatic brain injury, and myelin deficit. In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases. Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood, the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications. However, the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications. This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang Province, China
| | - Yu Wu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Zhongjie Zhu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hongwei Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Rytik AP, Tuchin VV. Effect of terahertz radiation on cells and cellular structures. FRONTIERS OF OPTOELECTRONICS 2025; 18:2. [PMID: 39871024 PMCID: PMC11772664 DOI: 10.1007/s12200-024-00146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes. The problem of the safety of terahertz radiation for the human body from the point of view of its effect on the structures and systems of biological cells is also considered.
Collapse
Affiliation(s)
- A P Rytik
- Institute of Physics, Saratov State University, Saratov, 410012, Russia.
| | - V V Tuchin
- Institute of Physics, Saratov State University, Saratov, 410012, Russia.
- Science Medical Center, Saratov State University, Saratov, 410012, Russia.
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, 634050, Russia.
- Institute of Precision Mechanics and Control, Federal Research Center "Saratov Scientific Center of the Russian Academy of Sciences", Saratov, 410012, Russia.
| |
Collapse
|
4
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Rashidi B, Rezaei I, Soldoozy A, Salmanpour A, Aghaee T. Metasurface Absorber for Blood Hemoglobin Concentration. ACS APPLIED BIO MATERIALS 2024; 7:5948-5955. [PMID: 39207038 DOI: 10.1021/acsabm.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this study, a biosensing scenario is developed for monitoring blood quality based on the detection of blood hemoglobin concentration. The procedure involves considering the blood sample as the dielectric with different refractive indexes for different concentrations of hemoglobin. Usually, the sensitivity to design parameters is the major issue with the metasurface-based detection. To address this issue, a three-layer graphene-based wave absorber is designed and modeled using passive circuit elements. The major idea behind this work is to maximize the device sensitivity against the blood sample. The research methodology involves impedance matching between the device and the surrounding environment, while full-wave simulation is also performed and compared to ensure circuit view accuracy. The findings suggest that the proposed graphene-based absorber can efficiently monitor blood quality via dual absorption peaks. The simulation results extracted from impedance matching and the full-wave method indicate frequency shifts of the second absorption peak. These shift values are interpreted based on hemoglobin concentration. Additionally, ample analyses are provided to show the reliability of the proposed absorber against geometrical aspects, incident angle, external stimulation, and the graphene electron relaxation time.
Collapse
Affiliation(s)
- Behnaz Rashidi
- Department of Electrical and Computer Engineering, Isfahan University of Technology (IUT), Isfahan 8415683111, Iran
| | - Ilghar Rezaei
- Department of Electrical and Electronic Engineering, Islamic Azad University, Central Tehran Branch, Tehran 1955847781, Iran
| | - Ali Soldoozy
- Department of Electrical and Electronic Engineering, Islamic Azad University, Yazd Branch, Yazd 8915813135, Iran
| | - Ava Salmanpour
- Department of Electrical Engineering, Shahid Chamran University, Ahvaz 6135783151, Iran
| | - Toktam Aghaee
- Department of Electrical and Electronic Engineering, Semnan University, Semnan 3513119111, Iran
| |
Collapse
|
6
|
Lei M, Zhang T, Lu X, Zhao X, Wang H, Long J, Lu Z. Membrane-mediated modulation of mitochondrial physiology by terahertz waves. BIOMEDICAL OPTICS EXPRESS 2024; 15:4065-4080. [PMID: 39022554 PMCID: PMC11249691 DOI: 10.1364/boe.528706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Extensive studies have demonstrated the diverse impacts of electromagnetic waves at gigahertz and terahertz (THz) frequencies on cytoplasmic membrane properties. However, there is little evidence of these impacts on intracellular membranes, particularly mitochondrial membranes crucial for mitochondrial physiology. In this study, human neuroblast-like cells were exposed to continuous 0.1 THz radiation at an average power density of 33 mW/cm2. The analysis revealed that THz exposure significantly altered the mitochondrial ultrastructure. THz waves enhanced the enzymatic activity of the mitochondrial respiratory chain but disrupted supercomplex assembly, compromising mitochondrial respiration. Molecular dynamics simulations revealed altered rates of change in the quantity of hydrogen bonds and infiltration of water molecules in lipid bilayers containing cardiolipin, indicating the specific behavior of cardiolipin, a signature phospholipid in mitochondria, under THz exposure. These findings suggest that THz radiation can significantly alter mitochondrial membrane properties, impacting mitochondrial physiology through a mechanism related to mitochondrial membrane, and provide deeper insight into the bioeffects of THz radiation.
Collapse
Affiliation(s)
- Mengyao Lei
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| | - Tingrong Zhang
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| | - Xiaoyun Lu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| | - Xiaofei Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Hongguang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| | - Zhuoyang Lu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| |
Collapse
|
7
|
Liu M, Liu J, Liang W, Lu B, Fan P, Song Y, Wang M, Wu Y, Cai X. Recent advances and research progress on microsystems and bioeffects of terahertz neuromodulation. MICROSYSTEMS & NANOENGINEERING 2023; 9:143. [PMID: 38025884 PMCID: PMC10643571 DOI: 10.1038/s41378-023-00612-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023]
Abstract
Terahertz waves can interact with the nervous system of organisms under certain conditions. Compared to common optical modulation methods, terahertz waves have the advantages of low photon energy and low risk; therefore, the use of terahertz waves to regulate the nervous system is a promising new method of neuromodulation. However, most of the research has focused on the use of terahertz technology for biodetection, while relatively little research has been carried out on the biological effects of terahertz radiation on the nervous system, and there are almost no review papers on this topic. In the present article, we begin by reviewing principles and objects of research regarding the biological effects of terahertz radiation and summarizing the current state of related research from a variety of aspects, including the bioeffects of terahertz radiation on neurons in vivo and in vitro, novel regulation and detection methods with terahertz radiation devices and neural microelectrode arrays, and theoretical simulations of neural information encoding and decoding. In addition, we discuss the main problems and their possible causes and give some recommendations on possible future breakthroughs. This paper will provide insight and assistance to researchers in the fields of neuroscience, terahertz technology and biomedicine.
Collapse
Affiliation(s)
- Meiting Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
8
|
Wang Y, Xiong Y, Chen M, Liu F, He H, Ma Q, Gao P, Xiang G, Zhang L. The biological effects of terahertz wave radiation-induced injury on neural stem cells. iScience 2023; 26:107418. [PMID: 37771661 PMCID: PMC10523010 DOI: 10.1016/j.isci.2023.107418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 09/30/2023] Open
Abstract
Terahertz (THz) is an electromagnetic wave with a radiation wavelength range of 30-3000 μm and a frequency of 0.1-10 THz. With the development of new THz sources and devices, THz has been widely applied in various fields. However, there are few studies on biological effects of THz irradiation on the human neural stem cells (hNSCs) and mouse neural stem cells (mNSCs), which need to be further studied. We studied the biological effects of THz radiation on hNSCs and mNSCs. The effects of THz irradiation time and average output power on the proliferation, apoptosis, and DNA damage of NSCs were analyzed by flow cytometry and immunofluorescence. The results showed that the proliferation and apoptosis of NSCs were dose-dependently affected by THz irradiation time and average output power. The proliferation of hNSCs was more vulnerable to damage and apoptosis was more serious under the same terahertz irradiation conditions compared to those of mNSCs.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Man Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Fei Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Haiyan He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health, Faculty of Preventive Medicine, Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education of China, Army Medical University, Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health, Faculty of Preventive Medicine, Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education of China, Army Medical University, Chongqing 400038, China
| | - Guiming Xiang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Liqun Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
9
|
Song X, Li H, Liu X, Pang M, Wang Y. Calcium Imaging Characterize the Neurobiological Effect of Terahertz Radiation in Zebrafish Larvae. SENSORS (BASEL, SWITZERLAND) 2023; 23:7689. [PMID: 37765745 PMCID: PMC10537331 DOI: 10.3390/s23187689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
(1) Objective: To explore the neurobiological effects of terahertz (THz) radiation on zebrafish larvae using calcium (Ca2+) imaging technology. (2) Methods: Zebrafish larvae at 7 days post fertilization (dpf) were exposed to THz radiation for 10 or 20 min; the frequency was 2.52 THz and the amplitude 50 mW/cm2. The behavioral experiments, neural Ca2+ imaging, and quantitative polymerase chain reaction (qPCR) of the dopamine-related genes were conducted following the irradiation. (3) Results: Compared with the control group, the behavioral experiments demonstrated that THz radiation significantly increased the distance travelled and speed of zebrafish larvae. In addition, the maximum acceleration and motion frequency were elevated in the 20 min radiation group. The neural Ca2+ imaging results indicated a substantial increase in zebrafish neuronal activity. qPCR experiments revealed a significant upregulation of dopamine-related genes, such as drd2b, drd4a, slc6a3 and th. (4) Conclusion: THz radiation (2.52 THz, 50 mW/cm2, 20 min) upregulated dopamine-related genes and significantly enhanced neuronal excitability, and the neurobiological effect of THz radiation can be visualized using neural Ca2+ imaging in vivo.
Collapse
Affiliation(s)
- Xin Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Haibin Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
10
|
Shi S, Yuan S, Zhou J, Jiang P. Terahertz technology and its applications in head and neck diseases. iScience 2023; 26:107060. [PMID: 37534152 PMCID: PMC10391736 DOI: 10.1016/j.isci.2023.107060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The terahertz (THz) radiation refers to electromagnetic waves between infrared and millimeter waves. THz technology has shown a significant potential for medical diagnosis and biomedical applications over the past three decades. Therefore, exploring the biological effects of THz waves has become an important new field in life sciences. Specifically, THz radiation has been proved to be able to diagnose and treat several head and neck diseases. In this review, we primarily discuss the biological characteristics of THz waves and clinical applications of THz technology, focusing on the research progress of THz technology in head and neck diseases (brain cancer, hypopharyngeal cancer, oral diseases, thyroid nodules, Alzheimer's disease, eyes diseases, and otitis). The future application perspectives of THz technologies in head and neck diseases are also highlighted and proposed.
Collapse
Affiliation(s)
- Shenggan Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuqin Yuan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Peidu Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Shaoqing M, Zhiwei L, Shixiang G, Chengbiao L, Xiaoli L, Yingwei L. The laws and effects of terahertz wave interactions with neurons. Front Bioeng Biotechnol 2023; 11:1147684. [PMID: 37180041 PMCID: PMC10170412 DOI: 10.3389/fbioe.2023.1147684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Terahertz waves lie within the energy range of hydrogen bonding and van der Waals forces. They can couple directly with proteins to excite non-linear resonance effects in proteins, and thus affect the structure of neurons. However, it remains unclear which terahertz radiation protocols modulate the structure of neurons. Furthermore, guidelines and methods for selecting terahertz radiation parameters are lacking. Methods: In this study, the propagation and thermal effects of 0.3-3 THz wave interactions with neurons were modelled, and the field strength and temperature variations were used as evaluation criteria. On this basis, we experimentally investigated the effects of cumulative radiation from terahertz waves on neuron structure. Results: The results show that the frequency and power of terahertz waves are the main factors influencing field strength and temperature in neurons, and that there is a positive correlation between them. Appropriate reductions in radiation power can mitigate the rise in temperature in the neurons, and can also be used in the form of pulsed waves, limiting the duration of a single radiation to the millisecond level. Short bursts of cumulative radiation can also be used. Broadband trace terahertz (0.1-2 THz, maximum radiated power 100 μW) with short duration cumulative radiation (3 min/day, 3 days) does not cause neuronal death. This radiation protocol can also promote the growth of neuronal cytosomes and protrusions. Discussion: This paper provides guidelines and methods for terahertz radiation parameter selection in the study of terahertz neurobiological effects. Additionally, it verifies that the short-duration cumulative radiation can modulate the structure of neurons.
Collapse
Affiliation(s)
- Ma Shaoqing
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
| | - Li Zhiwei
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Gong Shixiang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
| | - Lu Chengbiao
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| | - Li Xiaoli
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| | - Li Yingwei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| |
Collapse
|
12
|
Sitnikov DS, Revkova VA, Ilina IV, Gurova SA, Komarov PS, Struleva EV, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Studying the genotoxic effects of high intensity terahertz radiation on fibroblasts and CNS tumor cells. JOURNAL OF BIOPHOTONICS 2023; 16:e202200212. [PMID: 36250985 DOI: 10.1002/jbio.202200212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The data is obtained on the effect of high-intensity pulses of terahertz (THz) radiation with a broad spectrum (0.2-3 THz) on cell cultures. We have evaluated the threshold exposure parameters of THz radiation causing genotoxic effects in fibroblasts. Phosphorylation of histone H2AX at Ser 139 (γH2AX) was chosen as a marker for genotoxicity and a quantitative estimation of γH2AX foci number in fibroblasts was performed after cell irradiation with THz pulses for 30 min. No genotoxic effects of THz radiation were observed in fibroblasts unless peak intensity and electric field strength exceeded 21 GW cm-2 and 2.8 MV cm-1 , respectively. In tumor cell lines (neuroblastoma (SK-N-BE (2)) and glioblastoma (U87)), exposure to THz pulses with peak intensity of 21 GW cm-2 for 30 min caused no morphological changes as well as no statistically significant increase in histone phosphorylation foci number.
Collapse
Affiliation(s)
- Dmitry S Sitnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Veronika A Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Inna V Ilina
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana A Gurova
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Obninsk, Russia
| | - Pavel S Komarov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Evgenia V Struleva
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir A Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Romeo S, Zeni O, Scarfì MR, Poeta L, Lioi MB, Sannino A. Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:2322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz-300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
Affiliation(s)
- Stefania Romeo
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Olga Zeni
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Maria Rosaria Scarfì
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Loredana Poeta
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Maria Brigida Lioi
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy
| | - Anna Sannino
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| |
Collapse
|
14
|
Zhang J, Li S, Le W. Advances of terahertz technology in neuroscience: Current status and a future perspective. iScience 2021; 24:103548. [PMID: 34977497 PMCID: PMC8683584 DOI: 10.1016/j.isci.2021.103548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Terahertz (THz) waves are ranged between microwave and infrared region in the electromagnetic spectrum. THz technology has been demonstrated promising potential for biomedical applications. Exploration of biological effects of THz waves has emerged as a critical new area in life sciences. It is critical to uncover the effects of THz waves on complex biological systems in order to lay out the framework for THz technology development and future applications. Specifically, THz radiation has been shown to affect the nervous system, including the structure of nerve cell membranes, genes expressions, and cytokines level. In this review, we primarily discuss the biological impacts and mechanisms of THz waves on the nervous system at the organisms, cellular, and molecular levels. The future application perspectives of THz technologies in neuroscience are also highlighted and proposed.
Collapse
Affiliation(s)
- Jun Zhang
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116024, China
- Department of Neurology, The Affiliated Xinhua Hospital, Dalian University, Dalian 116024, China
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116024, China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116024, China
- Department of Neurology & Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu 610031, China
- Corresponding author
| |
Collapse
|
15
|
Zhao X, Zhang M, Liu Y, Liu H, Ren K, Xue Q, Zhang H, Zhi N, Wang W, Wu S. Terahertz exposure enhances neuronal synaptic transmission and oligodendrocyte differentiation in vitro. iScience 2021; 24:103485. [PMID: 34927027 PMCID: PMC8649796 DOI: 10.1016/j.isci.2021.103485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Terahertz (THz) frequency occupies a large portion of the electromagnetic spectrum that is between the infrared and microwave regions. Recent advances in THz application have stimulated interests regarding the biological effects within this frequency range. In the current study, we report that irradiation with a single-frequency THz laser on mice cortical neuron cultures increases excitatory synaptic transmission and neuronal firing activities. Microarray assay reveals gene expression dynamics after THz exposure, which is consistent with morphology and electrophysiology results. Besides, certain schedule of THz irradiation inhibits the proliferation of oligodendrocyte precursor cells (OPCs) and promotes OPC differentiation. Of note, the myelination process is enhanced after THz exposure. In summary, our observations suggest that THz irradiation can modulate the functions of different neuronal cells, with different sensitivity to THz. These results provide important understanding of the mechanisms that govern THz interactions with nervous systems and suggest THz wave as a new strategy for neuromodulation. THz irradiation increases excitatory synaptic transmission and neuronal firing Microarray assay reveals neuronal gene expression dynamics after THz exposure THz irradiation promotes the maturation of oligodendrocytes The myelination process in neuron is enhanced after THz exposure
Collapse
Affiliation(s)
- Xianghui Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuming Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haifeng Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Na Zhi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,College of Life Sciences, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
16
|
Characterization of Silver Nanowire Layers in the Terahertz Frequency Range. MATERIALS 2021; 14:ma14237399. [PMID: 34885553 PMCID: PMC8658758 DOI: 10.3390/ma14237399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
Thin layers of silver nanowires are commonly studied for transparent electronics. However, reports of their terahertz (THz) properties are scarce. Here, we present the electrical and optical properties of thin silver nanowire layers with increasing densities at THz frequencies. We demonstrate that the absorbance, transmittance and reflectance of the metal nanowire layers in the frequency range of 0.2 THz to 1.3 THz is non-monotonic and depends on the nanowire dimensions and filling factor. We also present and validate a theoretical approach describing well the experimental results and allowing the fitting of the THz response of the nanowire layers by a Drude–Smith model of conductivity. Our results pave the way toward the application of silver nanowires as a prospective material for transparent and conductive coatings, and printable antennas operating in the terahertz range—significant for future wireless communication devices.
Collapse
|
17
|
Sitnikov DS, Ilina IV, Revkova VA, Rodionov SA, Gurova SA, Shatalova RO, Kovalev AV, Ovchinnikov AV, Chefonov OV, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. BIOMEDICAL OPTICS EXPRESS 2021; 12:7122-7138. [PMID: 34858704 PMCID: PMC8606137 DOI: 10.1364/boe.440460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
For the first time, the data have been obtained on the effects of high-intensity terahertz (THz) radiation (with the intensity of 30 GW/cm2, electric field strength of 3.5 MV/cm) on human skin fibroblasts. A quantitative estimation of the number of histone Н2АХ foci of phosphorylation was performed. The number of foci per cell was studied depending on the irradiation time, as well as on the THz pulse energy. The performed studies have shown that the appearance of the foci is not related to either the oxidative stress (the cells preserve their morphology, cytoskeleton structure, and the reactive oxygen species content does not exceed the control values), or the thermal effect of THz radiation. The prolonged irradiation of fibroblasts also did not result in a decrease of their proliferative index.
Collapse
Affiliation(s)
- Dmitry S. Sitnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Inna V. Ilina
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Veronika A. Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Sergey A. Rodionov
- N. N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Svetlana A. Gurova
- National Research nuclear University MEPhI Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
| | - Rimma O. Shatalova
- National Research nuclear University MEPhI Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
| | - Alexey V. Kovalev
- N. N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Andrey V. Ovchinnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Chefonov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A. Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir A. Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| |
Collapse
|
18
|
Cherkasova OP, Serdyukov DS, Nemova EF, Ratushnyak AS, Kucheryavenko AS, Dolganova IN, Xu G, Skorobogatiy M, Reshetov IV, Timashev PS, Spektor IE, Zaytsev KI, Tuchin VV. Cellular effects of terahertz waves. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210179VR. [PMID: 34595886 PMCID: PMC8483303 DOI: 10.1117/1.jbo.26.9.090902] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/08/2021] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE An increasing interest in the area of biological effects at exposure of tissues and cells to the terahertz (THz) radiation is driven by a rapid progress in THz biophotonics, observed during the past decades. Despite the attractiveness of THz technology for medical diagnosis and therapy, there is still quite limited knowledge about safe limits of THz exposure. Different modes of THz exposure of tissues and cells, including continuous-wave versus pulsed radiation, various powers, and number and duration of exposure cycles, ought to be systematically studied. AIM We provide an overview of recent research results in the area of biological effects at exposure of tissues and cells to THz waves. APPROACH We start with a brief overview of general features of the THz-wave-tissue interactions, as well as modern THz emitters, with an emphasis on those that are reliable for studying the biological effects of THz waves. Then, we consider three levels of biological system organization, at which the exposure effects are considered: (i) solutions of biological molecules; (ii) cultures of cells, individual cells, and cell structures; and (iii) entire organs or organisms; special attention is devoted to the cellular level. We distinguish thermal and nonthermal mechanisms of THz-wave-cell interactions and discuss a problem of adequate estimation of the THz biological effects' specificity. The problem of experimental data reproducibility, caused by rareness of the THz experimental setups and an absence of unitary protocols, is also considered. RESULTS The summarized data demonstrate the current stage of the research activity and knowledge about the THz exposure on living objects. CONCLUSIONS This review helps the biomedical optics community to summarize up-to-date knowledge in the area of cell exposure to THz radiation, and paves the ways for the development of THz safety standards and THz therapeutic applications.
Collapse
Affiliation(s)
- Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Novosibirsk State Technical University, Russian Federation
| | - Danil S. Serdyukov
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Eugenia F. Nemova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Alexander S. Ratushnyak
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Anna S. Kucheryavenko
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Irina N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
| | - Guofu Xu
- Polytechnique Montreal, Department of Engineering Physics, Canada
| | | | - Igor V. Reshetov
- Sechenov University, Institute for Cluster Oncology, Russian Federation
- Academy of Postgraduate Education FSCC FMBA, Russian Federation
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
- N.N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, Russian Federation
| | - Igor E. Spektor
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Bauman Moscow State Technical University, Russian Federation
| | - Valery V. Tuchin
- Saratov State University, Russian Federation
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Russian Federation
- National Research Tomsk State University, Russian Federation
| |
Collapse
|
19
|
Sun L, Zhao L, Peng RY. Research progress in the effects of terahertz waves on biomacromolecules. Mil Med Res 2021; 8:28. [PMID: 33894781 PMCID: PMC8070290 DOI: 10.1186/s40779-021-00321-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of terahertz technologies, basic research and applications of terahertz waves in biomedicine have attracted increasing attention. The rotation and vibrational energy levels of biomacromolecules fall in the energy range of terahertz waves; thus, terahertz waves might interact with biomacromolecules. Therefore, terahertz waves have been widely applied to explore features of the terahertz spectrum of biomacromolecules. However, the effects of terahertz waves on biomacromolecules are largely unexplored. Although some progress has been reported, there are still numerous technical barriers to clarifying the relation between terahertz waves and biomacromolecules and to realizing the accurate regulation of biological macromolecules by terahertz waves. Therefore, further investigations should be conducted in the future. In this paper, we reviewed terahertz waves and their biomedical research advantages, applications of terahertz waves on biomacromolecules and the effects of terahertz waves on biomacromolecules. These findings will provide novel ideas and methods for the research and application of terahertz waves in the biomedical field.
Collapse
Affiliation(s)
- Liu Sun
- Beijing Institute of Radiation Medicine, Haidian District, 27 Taiping Road, Beijing, 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Haidian District, 27 Taiping Road, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Haidian District, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
20
|
Abufadda MH, Erdélyi A, Pollák E, Nugraha PS, Hebling J, Fülöp JA, Molnár L. Terahertz pulses induce segment renewal via cell proliferation and differentiation overriding the endogenous regeneration program of the earthworm Eisenia andrei. BIOMEDICAL OPTICS EXPRESS 2021; 12:1947-1961. [PMID: 33996209 PMCID: PMC8086446 DOI: 10.1364/boe.416158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Terahertz (THz) irradiation of excised Eisenia andrei earthworms is shown to cause overriding of the genetically determined, endogenously mediated segment renewing capacity of the model animal. Single-cycle THz pulses of 5 µJ energy, 0.30 THz mean frequency, 293 kV/cm peak electric field, and 1 kHz repetition rate stimulated the cell proliferation (indicated by the high number of mitotic cells) and both histogenesis and organogenesis, producing a significantly higher number of regenerated segments. The most conspicuous alteration in THz-treated animals was the more intense development of the new central nervous system and blood vessels. These results clearly demonstrate that THz pulses are capable to efficiently trigger biological processes and suggest potential applications in medicine.
Collapse
Affiliation(s)
- Mahmoud H. Abufadda
- Institute of Physics, University of Pécs, Pécs, 7624, Hungary
- MTA-PTE High-Field Terahertz Research Group, Pécs, 7624, Hungary
| | - Anita Erdélyi
- Institute of Biology, University of Pécs, Pécs, 7624, Hungary
| | - Edit Pollák
- Institute of Biology, University of Pécs, Pécs, 7624, Hungary
| | - Priyo S. Nugraha
- Institute of Physics, University of Pécs, Pécs, 7624, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- MTA-PTE High-Field Terahertz Research Group, Pécs, 7624, Hungary
| | - János Hebling
- Institute of Physics, University of Pécs, Pécs, 7624, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- MTA-PTE High-Field Terahertz Research Group, Pécs, 7624, Hungary
| | - József A. Fülöp
- Institute of Physics, University of Pécs, Pécs, 7624, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- ELI-ALPS, ELI-HU Nonprofit Ltd., Szeged, 6728, Hungary
| | - László Molnár
- Institute of Biology, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
21
|
Saeed N, Loukil MH, Sarieddeen H, Al-Naffouri TY, Alouini MS. Body-Centric Terahertz Networks: Prospects and Challenges. IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS 2021; 8:138-157. [PMID: 36345554 PMCID: PMC9564038 DOI: 10.1109/tmbmc.2021.3135198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
Following recent advancements in Terahertz (THz) technology, THz communications are currently being celebrated as key enablers for various applications in future generations of communication networks. While typical communication use cases are over medium-range air interfaces, the inherently small beamwidths and transceiver footprints at THz frequencies support nano-communication paradigms. In particular, the use of the THz band for in-body and on-body communications has been gaining attention recently. By exploiting the accurate THz sensing and imaging capabilities, body-centric THz biomedical applications can transcend the limitations of molecular, acoustic, and radio-frequency solutions. In this paper, we study the use of the THz band for body-centric networks, by surveying works on THz device technologies, channel and noise modeling, modulation schemes, and networking topologies. We also promote THz sensing and imaging applications in the healthcare sector, especially for detecting zootonic viruses such as Coronavirus. We present several open research problems for body-centric THz networks.
Collapse
Affiliation(s)
- Nasir Saeed
- Department of Electrical EngineeringNorthern Border University Arar 9280 Saudi Arabia
| | - Mohamed Habib Loukil
- Department of Computer, Electrical and Mathematical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Hadi Sarieddeen
- Department of Computer, Electrical and Mathematical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Tareq Y Al-Naffouri
- Department of Computer, Electrical and Mathematical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Mohamed-Slim Alouini
- Department of Computer, Electrical and Mathematical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
22
|
Zhang T, Nazarov R, Popov AP, Demchenko PS, Bykov AV, Grigorev RO, Kuzikova AV, Soboleva VY, Zykov DV, Meglinski IV, Khodzitskiy MK. Development of oral cancer tissue-mimicking phantom based on polyvinyl chloride plastisol and graphite for terahertz frequencies. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:123002. [PMID: 33205633 PMCID: PMC7670095 DOI: 10.1117/1.jbo.25.12.123002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE A new concept of a biotissue phantom for terahertz (THz) biomedical applications is needed for reliable and long-term usage. AIM We aimed to develop a new type of biotissue phantom without water content and with controllable THz optical properties by applying graphite powders into a polyvinyl chloride plastisol (PVCP) matrix and to give a numerical description to the THz optical properties of the phantoms using the Bruggeman model (BM) of the effective medium theory (EMT). APPROACH The THz optical properties of graphite and the PVCP matrix were measured using THz time-domain spectroscopy, which works in the frequency range from 0.1 to 1 THz. Two phantoms with 10% and 12.5% graphite were fabricated to evaluate the feasibility of describing phantoms using the EMT. The EMT then was used to determine the concentration of graphite required to mimic the THz optical properties of human cancerous and healthy oral tissue. RESULTS The phantom with 16.7% of graphite has the similar THz optical properties as human cancerous oral tissue in the frequency range of 0.2 to 0.7 THz. The THz optical properties of the phantom with 21.9% of graphite are close to those of human healthy oral tissue in the bandwidth from 0.6 to 0.8 THz. Both the refractive index and absorption coefficient of the samples increase with an increase of graphite concentration. The BM of the EMT was used as the numerical model to describe the THz optical properties of the phantoms. The relative error of the BM for the refractive index estimation and the absorption coefficient is up to 4% and 8%, respectively. CONCLUSIONS A water-free biotissue phantom that mimics the THz optical properties of human cancerous oral tissue was developed. With 21.9% of graphite, the phantom also mimics human healthy oral tissue in a narrow frequency range. The BM proved to be a suitable numerical model of the phantom.
Collapse
Affiliation(s)
- Tianmiao Zhang
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
- Tydex LLC, Saint Petersburg, Russia
| | - Ravshanjon Nazarov
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Alexey P. Popov
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, Oulu, Finland
| | - Petr S. Demchenko
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Alexander V. Bykov
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, Oulu, Finland
| | - Roman O. Grigorev
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Anna V. Kuzikova
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Victoria Y. Soboleva
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Dmitry V. Zykov
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Igor V. Meglinski
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, Oulu, Finland
- Aston University, Aston Institute of Materials Research, School of Engineering and Applied Science, Birmingham, United Kingdom
- Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Mikhail K. Khodzitskiy
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| |
Collapse
|
23
|
Tang J, Ma J, Guo L, Wang K, Yang Y, Bo W, Yang L, Jiang H, Wu Z, Zeng B, Gong Y. The Effect of KcsA Channel on Lipid Bilayer Electroporation Induced by Picosecond Pulse Trains. J Membr Biol 2020; 253:271-286. [PMID: 32405692 DOI: 10.1007/s00232-020-00123-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023]
Abstract
Membrane proteins are the major component of plasma membranes, and they play crucial roles in all organisms. To understand the influence of the presence of KcsA channel on cell membrane electroporation induced by picosecond pulse trains (psPT), in this paper, the electroporation of KcsA membrane protein system and bare lipid bilayer system (POPC) with the applied psPT are simulated using molecular dynamics (MD) method. First, we find that the average pore formation time of the KcsA system is longer than the bare system with the applied psPT. In the KcsA system, water protrusions appear more slowly. Then, the system size effects of psPT in the MD simulations are investigated. When the system size decreases, the average pore formation time of small KcsA membrane protein system is shorter than the bare system with the applied psPT. It is found that the psPT makes the protein fluctuation of small system increase greatly; meanwhile the instability of protein disturbs the water and then affects the water protrusion appearance time. Furthermore, it shows that the protein fluctuation of constant electric field is smaller than that of psPT and no field, and protein fluctuation increases with the psPT repetition frequency increasing.
Collapse
Affiliation(s)
- Jingchao Tang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,CNRS, UMR 7565, 54506, Vandoeuvre les Nancy, France
| | - Jialu Ma
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lianghao Guo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Kaicheng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wenfei Bo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lixia Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Haibo Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhe Wu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Baoqing Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Tang J, Ma J, Guo L, Wang K, Yang Y, Bo W, Yang L, Wang Z, Jiang H, Wu Z, Zeng B, Gong Y. Interpretation of the molecular mechanism of the electroporation induced by symmetrical bipolar picosecond pulse trains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183213. [PMID: 32057755 DOI: 10.1016/j.bbamem.2020.183213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Picosecond pulse trains (psPTs) are emerging as a new characteristic diagnostic and therapeutic tool in biomedical fields. To specifically determine the stimulus provided to cells, in this article, we use a molecular dynamics (MD) model to show the molecular mechanisms of electroporation induced by symmetrical bipolar psPTs and predict a bipolar cancellation for the studied picosecond pulses. Electric field conditions that do not cause electroporation reveal that the interfacial water molecules continuously flip and redirect as the applied bipolar psPT reverses, and the molecules cannot keep moving in one direction or leave the lipid-water interface. Based on our simulation results, we determine the threshold for electroporation with symmetrical bipolar psPTs. For a fixed electric field intensity, a lower repetition frequency leads to more rapid electroporation. For a fixed repetition frequency, a higher electric field intensity leads to more rapid electroporation. We found that the water dipole relaxation time decreases as the electric field magnitude increases. Additionally, the influences of the symmetrical bipolar psPT intensity and frequency on the pore formation time are presented. Discrete nanoscale pores can form with the applied psPT at terahertz (THz) repetition frequency. When the psPT amplitude increases or the frequency decreases, the number of water bridges will increase. Moreover, for the first time, the molecular mechanism of bipolar cancellation for the studied picosecond pulse is discussed preliminarily. Our results indicate that the influence of the unipolar picosecond pulse on the interfacial water dipoles will accumulate in one direction, but the bipolar picosecond pulse does not cause this effect.
Collapse
Affiliation(s)
- Jingchao Tang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; CNRS, UMR 7565, F-54506 Vandoeuvre les Nancy, France
| | - Jialu Ma
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lianghao Guo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Kaicheng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wenfei Bo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lixia Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Zhao Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Haibo Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan Province, China
| | - Zhe Wu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Baoqing Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China.
| |
Collapse
|
25
|
Xiang Z, Tang C, Chang C, Liu G. A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: signal characteristics. Sci Bull (Beijing) 2020; 65:308-317. [PMID: 36659096 DOI: 10.1016/j.scib.2019.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023]
Abstract
In this paper, we use the theory of quantum optics and electrodynamics to study the electromagnetic field problem in the nervous system based on the assumption of an ordered arrangement of water molecules on the neuronal surface. Using the Lagrangian of the water molecule-field ion, the dynamic equations for neural signal generation and transmission are derived. Perturbation theory and the numerical method are used to solve the dynamic equations, and the characteristics of high-frequency signals (the dispersion relation, the time domain of the field, the frequency domain waveform, etc.) are discussed. This model predicts some intrinsic vibration modes of electromagnetic radiation on the neuronal surface. The frequency range of these vibration modes is in the THz and far-infrared ranges.
Collapse
Affiliation(s)
- Zuoxian Xiang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China; Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chuanxiang Tang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Guozhi Liu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Sitnikov DS, Ilina IV, Revkova VA, Konoplyannikov MA, Kalsin VA, Baklaushev VP. System for Long-Term Irradiation of Living Cell Culture with High-Intensity THz Pulses. HIGH TEMPERATURE 2020; 58:36-43. [DOI: 10.1134/s0018151x20010174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Accepted: 10/22/2019] [Indexed: 03/07/2025]
|
27
|
Wang Y, Jiang Z, Xu D, Chen T, Chen B, Wang S, Mu N, Feng H, Yao J. Study of the dielectric characteristics of living glial-like cells using terahertz ATR spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:5351-5361. [PMID: 31646050 PMCID: PMC6788616 DOI: 10.1364/boe.10.005351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 05/06/2023]
Abstract
The attenuated total reflection spectroscopy system with the Si container attached on the prism has been demonstrated as an efficient technique to obtain the dielectric properties of living cells in the THz range. We proposed a method to determine the dielectric responses of living cells based on the combination of the single-interface and two-interface ATR models without cell thickness. The experimental results for living glial-like cells (PC12, SVG P12 and HMO6) showed the dielectric responses in the THz region were related significantly to cell number, intracellular fluid, and cell structure. Moreover, the glioma cells (C6 and U87) exhibited different dielectric properties compared with the glial-like cells, which could be one reason for the glioma tissue diagnosis using THz wave.
Collapse
Affiliation(s)
- Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhinan Jiang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Beike Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shi Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
28
|
Danciu M, Alexa-Stratulat T, Stefanescu C, Dodi G, Tamba BI, Mihai CT, Stanciu GD, Luca A, Spiridon IA, Ungureanu LB, Ianole V, Ciortescu I, Mihai C, Stefanescu G, Chirilă I, Ciobanu R, Drug VL. Terahertz Spectroscopy and Imaging: A Cutting-Edge Method for Diagnosing Digestive Cancers. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1519. [PMID: 31075912 PMCID: PMC6539301 DOI: 10.3390/ma12091519] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
The Terahertz's wavelength is located between the microwave and the infrared region of the electromagnetic spectrum. Because it is non-ionizing and non-invasive, Terahertz (THz)-based detection represents a very attractive tool for repeated assessments, patient monitoring, and follow-up. Cancer acts as the second leading cause of death in many regions, and current predictions estimate a continuous increasing trend. Of all types of tumors, digestive cancers represent an important percentage and their incidence is expected to increase more rapidly than other tumor types due to unhealthy lifestyle habits. Because it can precisely differentiate between different types of molecules, depending on water content, the information obtained through THz-based scanning could have several uses in the management of cancer patients and, more importantly, in the early detection of different solid tumors. The purpose of this manuscript is to offer a comprehensive overview of current data available on THz-based detection for digestive cancers. It summarizes the characteristics of THz waves and their interaction with tissues and subsequently presents available THz-based technologies (THz spectroscopy, THz-tomography, and THZ-endoscope) and their potential for future clinical use. The third part of the review is focused on highlighting current in vitro and in vivo research progress in the field, for identifying specific digestive cancers known as oral, esophageal, gastric, colonic, hepatic, and pancreatic tumors.
Collapse
Affiliation(s)
- Mihai Danciu
- Pathology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Teodora Alexa-Stratulat
- Medical Oncology-Radiotherapy, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Cosmin Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Andrei Luca
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Irene Alexandra Spiridon
- Pathology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | | | - Victor Ianole
- Pathology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Irina Ciortescu
- Gastroenterology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Catalina Mihai
- Gastroenterology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Gabriela Stefanescu
- Gastroenterology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Ioan Chirilă
- Environmental Health, National Institute of Public Health, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| | - Romeo Ciobanu
- Electrical Engineering Faculty, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania.
| | - Vasile Liviu Drug
- Gastroenterology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700051 Iasi, Romania.
| |
Collapse
|
29
|
Zhou R, Wang C, Xu W, Xie L. Biological applications of terahertz technology based on nanomaterials and nanostructures. NANOSCALE 2019; 11:3445-3457. [PMID: 30758358 DOI: 10.1039/c8nr08676a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Terahertz (THz) technology is now drawing increasing attention around the world; it has been considered as an efficient non-destructive, non-contact and label-free optical method for biological detection. In this field, nanomaterials and nanostructures have been constantly advancing the development of THz technology. Here, we proposed some latest applications of nanotechnology to improve THz biological detection capability for providing progressive THz systems, thus enabling outstanding detection performance utilizing THz spectroscopy and imaging; these will encourage broader interest in various fields. The uniqueness, limitations, and future prospects of THz biological applications based on nanomaterials and nanostructures will also be reviewed in light of recent developments.
Collapse
Affiliation(s)
- Ruiyun Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China.
| | | | | | | |
Collapse
|
30
|
Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Smirnov S, Anoshkin IV, Demchenko P, Gomon D, Lioubtchenko DV, Khodzitsky M, Oberhammer J. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications. NANOSCALE 2018; 10:12291-12296. [PMID: 29926050 DOI: 10.1039/c8nr03740j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.
Collapse
Affiliation(s)
- Serguei Smirnov
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, Osquldas väg 10, SE-100 44, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
32
|
Masaki N, Okazaki S. Selective delivery of laser energy to ester bonds of triacylglycerol in lipid droplets of adipocyte using a quantum cascade laser. BIOMEDICAL OPTICS EXPRESS 2018; 9:2095-2103. [PMID: 29760972 PMCID: PMC5946773 DOI: 10.1364/boe.9.002095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The recent development of quantum cascade lasers (QCLs) has facilitated the irradiation of a mid-infrared laser beam that is specifically absorbed by a target molecular bond. Aiming for a selective delivery of laser energy to a specific absorption at 1,738 cm-1 by the ester bonds of triacylglycerol (TAG), a QCL beam with a wavenumber of 1,710 cm-1 was irradiated to 3T3-L1 adipocytes and preadipocytes. Neutral red staining, and FITC-labeled annexin V and ethidium homodimer-III assays revealed the occurrence of adipocyte-specific cell death 24 h after QCL irradiation. The selective delivery of laser energy to endogenous molecules can affect biological processes in a living organism.
Collapse
|
33
|
Cao Y, Huang P, Li X, Ge W, Hou D, Zhang G. Terahertz spectral unmixing based method for identifying gastric cancer. ACTA ACUST UNITED AC 2018; 63:035016. [DOI: 10.1088/1361-6560/aa9e1a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Demchenko P, Gomon D, Anoshkin I, Smirnov S, Lioubtchenko D, Khodzitsky M. Study of influence of densification on control of conductivity and spectral characteristics of thin films of carbon nanotubes in terahertz frequency range. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819506022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Avseenko A, Khodzitsky M. Definition of thresholds of the heating effects of THz radiation on cancer cells. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819510002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Wu X, Yu T, Xu H, Sun X, Kou D, Li L. Morphological and functional changes of microglia cultured under different oxygen concentrations and the analysis of related mechanisms. Exp Ther Med 2017; 15:2015-2019. [PMID: 29434798 PMCID: PMC5776651 DOI: 10.3892/etm.2017.5596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023] Open
Abstract
This study investigated the effects of different concentrations of oxygen exposure on the morphology and function of N9 microglia and analyzed its mechanisms. N9 microglia were cultured under the condition of high (95% O2 and 5% CO2), normal (95% air and 5% CO2) and low oxygen (95% CO2 and 5% O2) concentrations. The cell morphologies were observed under inverted phase contrast microscope after 24 h. Flow cytometry was applied to detect cell survival and apoptotic rate. The mRNA and protein expression levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis, respectively. The results showed that, N9 microglial apoptotic rates in hyperoxia and hypoxia conditions were significantly higher than those in the normal group (P<0.05) and the apoptosis rate in the hypoxia group was higher than that in the hyperoxia group (P<0.05). The mRNA and protein expression levels of IL-1β and TNF-α in the hyperoxia and hypoxia groups were significantly higher than those in the normal group (P<0.05) and the mRNA and protein expression levels in hypoxia group were higher than those in the hyperoxia group (P<0.05). Therefore, N9 microglia cultured under hyperoxia and hypoxia conditions can be activated, enhancing pro-inflammatory response and inducing cell apoptosis. The mechanism may be that the secretion of neurotoxic factors IL-1β and TNF-α is involved in these responses.
Collapse
Affiliation(s)
- Xing Wu
- Department of Pain Clinic, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Tengbo Yu
- Department of Bone Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hongyan Xu
- Zone One, Qingdao The First Sanatorium of PLA Navy, Qingdao, Shandong 266000, P.R. China
| | - Xiuming Sun
- Department of Pain Clinic, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dewei Kou
- Department of Pain Clinic, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Liping Li
- Department of Bone Surgery, Qingdao Central Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|